
Chapter 3

The Method of Small-Volume
Expansions for Medical Imaging

Habib Ammari and Hyeonbae Kang

3.1 Introduction

Inverse problems in medical imaging are in their most general form ill-
posed [47]. They literally have no solution. If, however, in advance we have
additional structural information or supply missing information, then we may
be able to determine specific features about what we wish to image with a
satisfactory resolution and accuracy. One such type of information can be
that the imaging problem is to find unknown small anomalies with signif-
icantly different parameters from those of the surrounding medium. These
anomalies may represent potential tumors at early stage.

Over the last few years, the method of small-volume expansions has been
developed for the imaging of such anomalies. The aim of this chapter is to
provide a synthetic exposition of the method, a technique that has proven
useful in dealing with many medical imaging problems. The method relies on
deriving asymptotics. Such asymptotics have been investigated in the case
of the conduction equation, the elasticity equation, the Helmholtz equation,
the Maxwell system, the wave equation, the heat equation, and the Stokes
system. A remarkable feature of this method is that it allows a stable and
accurate reconstruction of the location and of some geometric features of the
anomalies, even with moderately noisy data.

In this chapter we first provide asymptotic expansions for internal and
boundary perturbations due to the presence of small anomalies. We then
apply the asymptotic formulas for the purpose of identifying the location and
certain properties of the shape of the anomalies. We shall restrict ourselves
to conductivity and elasticity imaging and single out simple fundamental
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algorithms. We should emphasize that, since biological tissues are nearly
incompressible, the model problem in elasticity imaging we shall deal with is
the Stokes system rather than the Lamé system. The method of small-volume
expansions also applies to the optical tomography and microwave imaging.
However, these techniques are not discussed here. We refer the interested
reader to, for instance, [2].

Applications of the method of small-volume expansions in medical imag-
ing are described in this chapter. In particular, the use of the method of
small-volume expansions to improve a multitude of emerging imaging tech-
niques is highlighted. These imaging modalities include electrical impedance
tomography (EIT), magnetic resonance elastography (MRE), impediography,
magneto-acoustic imaging, infrared thermography, and acoustic radiation
force imaging.

EIT uses low-frequency electrical current to probe a body; the method
is sensitive to changes in electrical conductivity. By injecting known amounts
of current and measuring the resulting electrical potential field at points
on the boundary of the body, it is possible to “invert” such data to deter-
mine the conductivity or resistivity of the region of the body probed by the
currents. This method can also be used in principle to image changes in dielec-
tric constant at higher frequencies, which is why the method is often called
“impedance” tomography rather than “conductivity” or “resistivity” tomog-
raphy. However, the aspect of the method that is most fully developed to date
is the imaging of conductivity/resistivity. Potential applications of electrical
impedance tomography include determination of cardiac output, monitoring
for pulmonary edema, and in particular screening for breast cancer. See, for
instance, [35–37,41, 44–46].

Recently, a commercial system called TransScan TS2000 (TransScan Med-
ical, Ltd, Migdal Ha’Emek, Israel) has been released for adjunctive clinical
uses with X-ray mammography in the diagnostic of breast cancer. The math-
ematical model of the TransScan can be viewed as a realistic or practical
version of the general electrical impedance system. In the TransScan, a pa-
tient holds a metallic cylindrical reference electrode, through which a constant
voltage of 1–2.5V, with frequencies spanning 100Hz–100KHz, is applied.
A scanning probe with a planar array of electrodes, kept at ground potential,
is placed on the breast. The voltage difference between the hand and the probe
induces a current flow through the breast, from which information about the
impedance distribution in the breast can be extracted. See [25]. The method
of small-volume expansions provides a rigorous mathematical framework for
the TransScan. See Chap. 1 for a detailed study of this EIT system.

Since all the present EIT technologies are only practically applicable in
feature extraction of anomalies, improving EIT calls for innovative measure-
ment techniques that incorporate structural information. A very promising
direction of research is the recent magnetic resonance imaging technique,
called current density imaging, which measures the internal current density
distribution. See the breakthrough work by Seo and his group described
in Chap. 1. See also [52, 53]. However, this technique has a number of
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disadvantages, among which the lack of portability and a potentially long
imaging time. Moreover, it uses an expensive magnetic resonance imaging
scanner.

Impediography is another mathematical direction for future EIT research
in view of biomedical applications. It keeps the most important merits of EIT
(real time imaging, low cost, portability). It is based on the simultaneous
measurement of an electric current and of acoustic vibrations induced by
ultrasound waves. Its intrinsic resolution depends on the size of the focal spot
of the acoustic perturbation, and thus it may provide high resolution images.

In magneto-acoustic imaging, an acoustic wave is applied to a biological tis-
sue placed in a magnetic field. The probe signal produces by the Lorentz force
an electric current that is a function of the local electrical conductivity of the
biological tissue [59]. We provide the mathematical basis for this magneto-
acoustic imaging approach and propose a new algorithm for solving the
inverse problem which is quite similar to the one we design for impediography.

Extensive work has been carried out in the past decade to image, by induc-
ing motion, the elastic properties of human soft tissues. This wide application
field, called elasticity imaging or elastography, is based on the initial idea that
shear elasticity can be correlated with the pathological state of tissues. Several
imaging modalities can be used to estimate the resulting tissue displacements.

Magnetic resonance elastography is a recently developed technique that
can directly visualize and quantitatively measure the displacement field
in tissues subject to harmonic mechanical excitation at low-frequencies. A
phase-contrast magnetic resonance imaging technique is used to spatially map
and measure the complete three-dimensional displacement patterns. From
this data, local quantitative values of shear modulus can be calculated and
images that depict tissue elasticity or stiffness can be generated. The inverse
problem for magnetic resonance elastography is to determine the shape and
the elastic parameters of an elastic anomaly from internal measurements of
the displacement field. In most cases the most significant elastic parameter
is the stiffness coefficient. See, for instance, [42, 58, 60, 64, 65].

Another interesting approach to assessing elasticity is to use the acoustic
radiation force of an ultrasonic focused beam to remotely generate mechanical
vibrations in organs. The acoustic force is due to the momentum transfer from
the acoustic wave to the medium. This technique is particularly suited for
in vivo applications as it allows in depth vibrations of tissues exactly at the
desired location. The radiation force acts as a dipolar source at the pushing
ultrasonic beam focus. A spatio-temporal sequence of the propagation of the
induced transient wave can be acquired, leading to a quantitative estimation
of the viscoelastic parameters of the studied medium in a source-free region.

Infrared thermal imaging is becoming a common screening modality in
the area of breast cancer. By carefully examining aspects of temperature
and blood vessels of the breasts in thermal images, signs of possible cancer
or pre-cancerous cell growth may be detected up to 10 years prior to being
discovered using any other procedure. This provides the earliest detection
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of cancer possible. Because of thermal imaging’s extreme sensitivity, these
temperature variations and vascular changes may be among the earliest signs
of breast cancer and/or a pre-cancerous state of the breast. An abnormal
infrared image of the breast is an important marker of high risk for developing
breast cancer.

3.2 Conductivity Problem

In this section we provide an asymptotic expansion of the voltage potentials
in the presence of a diametrically small anomaly with conductivity different
from the background conductivity.

Let Ω be a smooth bounded domain in R
d, d ≥ 2 and let νx denote the

outward unit normal to ∂Ω at x. Define N(x, z) to be the Neumann function
for −Δ in Ω corresponding to a Dirac mass at z. That is, N is the solution to

⎧⎨
⎩
−ΔxN(x, z) = δz in Ω,

∂N

∂νx

∣∣∣
∂Ω

= − 1
|∂Ω| ,

∫
∂Ω

N(x, z) dσ(x) = 0 for z ∈ Ω.
(3.1)

Note that the Neumann function N(x, z) is defined as a function of x ∈ Ω
for each fixed z ∈ Ω.

Let B be a smooth bounded domain in R
d, 0 < k �= 1 < +∞, and let

v̂ = v̂(B, k) be the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv̂ = 0 in R
d \B,

Δv̂ = 0 in B,

v̂|− − v̂|+ = 0 on ∂B,

k
∂v̂

∂ν

∣∣∣∣
−
− ∂v̂

∂ν

∣∣∣∣
+

= 0 on ∂B,

v̂(ξ) − ξ → 0 as |ξ| → +∞.

(3.2)

Here we denote

v|±(ξ) := lim
t→0+

v(ξ ± tνξ), ξ ∈ ∂B,

and
∂v

∂νξ

∣∣∣∣
±

(ξ) := lim
t→0+

〈∇v(ξ ± tνξ), νξ〉 , ξ ∈ ∂B,

if the limits exist, where νξ is the outward unit normal to ∂B at ξ, and 〈, 〉 is
the scalar product in R

d. For ease of notation we will sometimes use the dot
for the scalar product in R

d.



3 The Method of Small-Volume Expansions for Medical Imaging 103

Let D denote a smooth anomaly inside Ω with conductivity 0 < k �=
1 < +∞. The voltage potential in the presence of the set D of conductivity
anomalies is denoted by u. It is the solution to the conductivity problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(
χ(Ω \D) + kχ(D)

)
∇u = 0 in Ω,

∂u

∂ν

∣∣∣∣
∂Ω

= g

(
g ∈ L2(∂Ω),

∫
∂Ω

g dσ = 0
)
,

∫
∂Ω

u dσ = 0 ,

(3.3)

where χ(D) is the characteristic function of D.
The background voltage potential U satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ΔU = 0 in Ω ,

∂U

∂ν

∣∣∣∣
∂Ω

= g ,

∫
∂Ω

U dσ = 0 .

(3.4)

The following theorem gives asymptotic formulas for both boundary and
internal perturbations of the voltage potential that are due to the presence
of a conductivity anomaly.

Theorem 3.1 (Voltage perturbations). Suppose that D = δB+z, δ being
the characteristic size of D, and let u be the solution of (3.3), where 0 < k �=
1 < +∞.

(i) The following asymptotic expansion of the voltage potential on ∂Ω holds
for d = 2, 3:

u(x) ≈ U(x)− δd∇U(z)M(k,B)∂zN(x, z). (3.5)

Here U is the background solution, that is, the solution to (3.4), N(x, z)
is the Neumann function, that is, the solution to (3.1), and M(k,B) =
(mpq)dp,q=1 is the polarization tensor (PT) given by

M(k,B) := (k − 1)
∫
B

∇v̂(ξ) dξ, (3.6)

where v̂ is the solution to (3.3).
(ii) Let w be a smooth harmonic function in Ω. The weighted boundary

measurements Iw satisfies

Iw :=
∫
∂Ω

(u−U)(x)
∂w

∂ν
(x) dσ(x) ≈ −δd∇U(z) ·M(k,B)∇w(z). (3.7)
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(iii) The following inner asymptotic formula holds:

u(x) ≈ U(z) + δv̂(
x− z

δ
) · ∇U(z) for x near z . (3.8)

The inner asymptotic expansion (3.8) uniquely characterizes the shape and
the conductivity of the anomaly. In fact, suppose for two Lipschitz domains B
and B′ and two conductivities k and k′ that v̂(B, k) = v̂(B′, k′) in a domain
englobing B and B′ then using the jump conditions satisfied by v̂(B, k) and
v̂(B′, k′) we can easily prove that B = B′ and k = k′.

The asymptotic expansion (3.5) expresses the fact that the conductivity
anomaly can be modeled by a dipole far away from z. It does not hold uni-
formly in Ω. It shows that, from an imaging point of view, the location z
and the polarization tensor M of the anomaly are the only quantities that
can be determined from boundary measurements of the voltage potential,
assuming that the noise level is of order δd+1. It is then important to pre-
cisely characterize the polarization tensor and derive some of its properties,
such as symmetry, positivity, and isoperimetric inequalities satisfied by its
elements, in order to develop efficient algorithms for reconstructing conduc-
tivity anomalies of small volume.

We list in the next theorem important properties of the PT.

Theorem 3.2 (Properties of the polarization tensor). For 0 < k �=
1 < +∞, let M(k,B) = (mpq)dp,q=1 be the PT associated with the bounded
domain B in R

d and the conductivity k. Then

(i) M is symmetric.
(ii) If k > 1, then M is positive definite, and it is negative definite if 0 <

k < 1.
(iii) The following isoperimetric inequalities for the PT

⎧⎪⎪⎨
⎪⎪⎩

1
k − 1

trace(M) ≤ (d− 1 +
1
k

)|B|,

(k − 1) trace(M−1) ≤ d− 1 + k

|B| ,
(3.9)

hold, where trace denotes the trace of a matrix.

The polarization tensor M can be explicitly computed for disks and ellipses
in the plane and balls and ellipsoids in three-dimensional space. See [18,
pp. 81–89]. The formula of the PT for ellipses will be useful here. Let B be
an ellipse whose semi-axes are on the x1- and x2-axes and of length a and b,
respectively. Then, we recall that M(k,B) takes the form

M(k,B) = (k − 1)|B|

⎛
⎜⎝

a + b

a + kb
0

0
a + b

b + ka

⎞
⎟⎠ , (3.10)

where |B| denotes the volume of B.
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Formula (3.5) shows that from boundary measurements we can always
represent and visualize an arbitrary shaped anomaly by means of an equiv-
alent ellipse of center z with the same polarization tensor. Further, it is
impossible to extract the conductivity from the polarization tensor. The in-
formation contained in the polarization tensor is a mixture of the conductivity
and the volume. A small anomaly with high conductivity and larger anomaly
with lower conductivity can have the same polarization tensor.

The bounds (3.9) are known as the Hashin–Shtrikman bounds. By making
use of these bounds, a size estimation of B can be obtained.

3.3 Wave Equation

With the notation of Sect. 3.2, consider the initial boundary value problem
for the (scalar) wave equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
t u−∇ ·

(
χ(Ω \D) + kχ(D)

)
∇u = 0 in ΩT ,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) for x ∈ Ω ,

∂u

∂ν
= g on ∂ΩT ,

(3.11)

where T < +∞ is a final observation time, ΩT = Ω×]0, T [, ∂ΩT = ∂Ω×]0, T [.
The initial data u0, u1 ∈ C∞(Ω), and the Neumann boundary data g ∈
C∞(0, T ; C∞(∂Ω)) are subject to compatibility conditions.

Define the background solution U to be the solution of the wave equation
in the absence of any anomalies. Thus U satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂2
tU −ΔU = 0 in ΩT ,

U(x, 0) = u0(x), ∂tU(x, 0) = u1(x) for x ∈ Ω ,

∂U

∂ν
= g on ∂ΩT .

The following asymptotic expansion holds as δ → 0.

Theorem 3.3 (Perturbations ofweightedboundary measurements).
Set ΩT = Ω×]0, T [ and ∂ΩT = ∂Ω×]0, T [. Let w ∈ C∞(ΩT ) satisfy
(∂2
t −Δ)w(x, t) = 0 in ΩT with ∂tw(x, T ) = w(x, T ) = 0 for x ∈ Ω. Define

the weighted boundary measurements

Iw(T ) :=
∫
∂ΩT

(u − U)(x, t)
∂w

∂ν
(x, t) dσ(x) dt .
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Then, for any fixed T > diam(Ω), the following asymptotic expansion for
Iw(T ) holds as δ → 0:

Iw(T ) ≈ δd
∫ T

0

∇U(z, t)M(k,B)∇w(z, t) dt, (3.12)

where M(k,B) is defined by (3.6).

Expansion (3.12) is a weighted expansion. Pointwise expansions similar to
those in Theorem 3.1 which is for the steady-state model can also be obtained.

Let y ∈ R
3 be such that |y − z| � δ. Choose

U(x, t) := Uy(x, t) :=
δt=|x−y|
4π|x− y| for x �= y . (3.13)

It is easy to check that Uy is the outgoing Green function to the wave equa-
tion:

(∂2
t −Δ)Uy(x, t) = δx=yδt=0 in R

3×]0,+∞[ .

Moreover, Uy satisfies the initial conditions: Uy(x, 0) = ∂tUy(x, 0) = 0 for
x �= y. Consider now for the sake of simplicity the wave equation in the
whole three-dimensional space with appropriate initial conditions:

⎧⎪⎨
⎪⎩

∂2
t u−∇ ·

(
χ(R3 \D) + kχ(D)

)
∇u = δx=yδt=0 in R

3×]0,+∞[,

u(x, 0) = 0, ∂tu(x, 0) = 0 for x ∈ R
3, x �= y .

(3.14)

For ρ > 0, define the operator Pρ on tempered distributions by

Pρ[ψ](t) =
∫
|ω|≤ρ

e−
√
−1ωtψ̂(ω) dω,

where ψ̂ denotes the Fourier transform of ψ. Clearly, the operator Pρ trun-
cates the high-frequency component of ψ.

Theorem 3.4 (Pointwise perturbations). Let u be the solution to (3.14).
Set Uy to be the background solution. Suppose that ρ = O(δ−α) for some
α < 1

2 .

(i) The following outer expansion holds

Pρ[u− Uy](x, t) ≈ −δ3

∫
R

∇Pρ[Uz](x, t− τ) ·M(k,B)∇Pρ[Uy](z, τ) dτ,

(3.15)

for x away from z, where M(k,B) is defined by (3.6) and Uy and Uz
by (3.13).
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(ii) The following inner approximation holds:

Pρ[u− Uy](x, t) ≈ δv̂

(
x− z

δ

)
· ∇Pρ[Uy](x, t) for x near z , (3.16)

where v̂ is given by (3.2) and Uy by (3.13).

Formula (3.15) shows that the perturbation due to the anomaly is in the
time-domain a wavefront emitted by a dipolar source located at the point z.

Taking the Fourier transform of (3.15) in the time variable gives an ex-
pansion of the perturbations resulting from the presence of a small anomaly
for solutions to the Helmholtz equation at low frequencies (at wavelengths
large compared to the size of the anomaly).

3.4 Heat Equation

Suppose that the background Ω is homogeneous with thermal conductivity 1
and that the anomaly D = δB+z has thermal conductivity 0 < k �= 1 < +∞.
In this section we consider the following transmission problem for the heat
equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu−∇ ·
(
χ(Ω \D) + kχ(D)

)
∇u = 0 in ΩT ,

u(x, 0) = u0(x) for x ∈ Ω ,

∂u

∂ν
= g on ∂ΩT ,

(3.17)

where the Neumann boundary data g and the initial data u0 are subject to
a compatibility condition. Let U be the background solution defined as the
solution of ⎧⎪⎪⎨

⎪⎪⎩

∂tU −ΔU = 0 in ΩT ,

U(x, 0) = u0(x) for x ∈ Ω ,

∂U

∂ν
= g on ∂ΩT .

The following asymptotic expansion holds as δ → 0.

Theorem 3.5 (Perturbations ofweightedboundary measurements).
Let w ∈ C∞(ΩT ) be a solution to the adjoint problem, namely, satisfy
(∂t + Δ)w(x, t) = 0 in ΩT with w(x, T ) = 0 for x ∈ Ω. Define the weighted
boundary measurements

Iw(T ) :=
∫
∂ΩT

(u − U)(x, t)
∂w

∂ν
(x, t) dσ(x) dt .
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Then, for any fixed T > 0, the following asymptotic expansion for Iw(T )
holds as δ → 0:

Iw(T ) ≈ −δd
∫ T

0

∇U(z, t) ·M(k,B)∇w(z, t) dt, (3.18)

where M(k,B) is defined by (3.6).

Note that (3.18) holds for any fixed positive final time T while (3.12)
holds only for T > diam(Ω). This difference comes from the finite speed
propagation property for the wave equation compared to the infinite one for
the heat equation.

Consider now the background solution to be the Green function of the
heat equation at y:

U(x, t) := Uy(x, t) :=

⎧⎪⎨
⎪⎩

e−
|x−y|2

4t

(4πt)d/2
for t > 0,

0 for t < 0 .

(3.19)

Let u be the solution to the following heat equation with an appropriate
initial condition:

⎧⎪⎨
⎪⎩

∂tu−∇ ·
(
χ(Rd \D) + kχ(D)

)
∇u = 0 in R

d×]0,+∞[,

u(x, 0) = Uy(x, 0) for x ∈ R
d.

(3.20)

Proceeding as in the derivation of (3.15), we can prove that δu(x, t) := u−U
is approximated by

− (k−1)
∫ t

0

1
(4π(t− τ))d/2

∫
∂D

e−
|x−x′|2
4(t−τ)

∂v̂

∂ν

∣∣∣∣
−

(
x′ − z

δ
) ·∇Uy(x′, τ) dσ(x′) dτ,

(3.21)

for x near z. Therefore, analogously to Theorem 3.4, the following pointwise
expansion follows from the approximation (3.21).

Theorem 3.6 (Pointwise perturbations). Let y ∈ R
3 be such that |y −

z| � δ. Let u be the solution to (3.20). The following expansion holds

(u−U)(x, t) ≈ −δd
∫ t

0

∇Uz(x, t−τ)M(k,B)∇Uy(z, τ) dτ for |x−z| � O(δ) ,

(3.22)

where M(k,B) is defined by (3.6) and Uy and Uz by (3.19).

When comparing (3.22) and (3.15), we shall point out that for the heat
equation the perturbation due to the anomaly is accumulated over time.
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An asymptotic formalism for the realistic half space model for thermal
imaging well suited for the design of anomaly reconstruction algorithms has
been developed in [22].

3.5 Modified Stokes System

Consider the modified Stokes system, i.e., the problem of determining v and
q in a domain Ω from the conditions:

⎧⎪⎨
⎪⎩

(Δ + κ2)v −∇q = 0,

∇ · v = 0,

v|∂Ω = g .

(3.23)

The problem (3.23) governs elastic wave propagation in nearly-incompressible
media. In biological media, the compression modulus is 4–6 orders higher than
the shear modulus. We can prove that the Lamé system converges to (3.23)
as the compression modulus goes to +∞.

Let (Gil)di,l=1 be the Dirichlet Green’s function for the operator in (3.23),
i.e., for y ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Δx + κ2)Gil(x, y)−
∂Fi(x − y)

∂xl
= δilδy(x) in Ω ,

d∑
l=1

∂

∂xl
Gil(x, y) = 0 in Ω,

Gil(x, y) = 0 on ∂Ω .

(3.24)

Denote by (e1, . . . , ed) an orthonormal basis of R
d. Let d(ξ) := (1/d)∑

k ξkek and v̂pq , for p, q = 1, . . . , d, be the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μΔv̂pq +∇p̂ = 0 in R
d \B,

μ̃Δv̂pq +∇p̂ = 0 in B,

v̂pq|− − v̂pq|+ = 0 on ∂B,

(p̂N + μ̃
∂v̂pq
∂N

)|− − (p̂N + μ
∂v̂pq
∂N

)|+ = 0 on ∂B,

∇ · v̂pq = 0 in R
d,

v̂pq(ξ)→ ξpeq − δpqd(ξ) as |ξ| → ∞,

p̂(ξ)→ 0 as |ξ| → +∞ .

(3.25)

Here ∂v/∂N = (∇v + (∇v)T ) ·N and T denotes the transpose.
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Define the viscous moment tensor (VMT) (Vijpq)i,j,p,q=1,...,d by

Vijpq := (μ̃− μ)
∫
B

∇v̂pq · (∇(ξiej) +∇(ξiej)T ) dξ . (3.26)

Consider an elastic anomaly D inside a nearly-compressible medium Ω.
The anomaly D has a shear modulus μ̃ different from that of Ω, μ. The dis-
placement field u solves the following transmission problem for the modified
Stokes problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μΔ + ω2)u +∇p = 0 in Ω \D,

(μ̃Δ + ω2)u +∇p = 0 in D,

u
∣∣
− = u

∣∣
+

on ∂D ,

(p|+ − p|−)N + μ
∂u
∂N

∣∣∣∣
+

− μ̃
∂u
∂N

∣∣∣∣
−

= 0 on ∂D,

∇ · u = 0 in Ω ,

u = g on ∂Ω,∫
Ω

p = 0 ,

(3.27)

where g ∈ L2(∂Ω) satisfies the compatibility condition
∫
∂Ω

g ·N = 0.

Let (U, q) denote the background solution to the modified Stokes system
in the absence of any anomalies, that is, the solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(μΔ + ω2)U +∇q = 0 in Ω,

∇ ·U = 0 in Ω ,

U = g on ∂Ω,∫
Ω

q = 0 .

(3.28)

The following asymptotic expansions hold.

Theorem 3.7 (Expansions of the displacement field).Suppose that D=
δB + z, and let u be the solution of (3.27), where 0 < μ̃ �= μ < +∞.

(i) The following inner expansion holds:

u(x) ≈ U(z) + δ

d∑
p,q=1

∂qU(z)pv̂pq(
x− z

δ
) for x near z , (3.29)

where v̂pq is defined by (3.25)
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(ii) Let (Vijpq) be the VMT defined by (3.26). The following outer expansion
holds uniformly for x ∈ ∂Ω:

(u−U)(x) ≈ δd
[ d∑
i,j,p,q,�=1

e�∂jG�i(x, z)∂qU(z)pVijpq

]
, (3.30)

where Vijpq is given by (3.26), and the Green function (Gil)di,l=1 is defined
by (3.24) with κ2 = ω2/μ, μ being the shear modulus of the background
medium.

The notion of a viscous moment tensor extends the notion of a polarization
tensor to quasi-incompressible elasticity. The VMT V characterizes all the
information about the elastic anomaly that can be learned from the leading-
order term of the outer expansion (3.30). It can be explicitly computed for
disks and ellipses in the plane and balls and ellipsoids in three-dimensional
space. If B is a two dimensional disk, then

V = 4 |B|μ (μ̃− μ)
μ̃ + μ

P ,

where P = (Pijpq) is the orthogonal projection from the space of symmetric
matrices onto the space of symmetric matrices of trace zero, i.e.,

Pijpq =
1
2
(δipδjq + δiqδjp)−

1
d
δijδpq .

If B is an ellipse of the form

x2
1

a2
+

x2
2

b2
= 1, a ≥ b > 0 , (3.31)

then the VMT for B is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V1111 = V2222 = −V1122 = −V2211 = |B| 2μ(μ̃− μ)
μ + μ̃− (μ̃− μ)m2

,

V1212 = V2112 = V1221 = V2121 = |B| 2μ(μ̃− μ)
μ + μ̃ + (μ̃− μ)m2

,

the remaining terms are zero,

(3.32)

where m = (a− b)/(a + b).
If B is a ball in three dimensions, the VMT associated with B and an

arbitrary μ̃ is given by
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Viiii =
20μ|B|

3
μ̃− μ

2μ̃ + 3μ
, Viijj = −10μ|B|

3
μ̃− μ

2μ̃ + 3μ
(i �= j) ,

Vijij = Vijji = 5μ|B| μ̃− μ

2μ̃ + 3μ
, (i �= j) ,

the remaining terms are zero.

(3.33)

Theorem 3.8 (Properties of the viscousmoment tensor). For 0 < μ̃ �=
μ < +∞, let V = (Vijpq)di,p,q=1 be the VMT associated with the bounded
domain B in R

d and the pair of shear modulus (μ̃, μ). Then

(i) For i, j, p, q = 1, . . . , d,

Vijpq = Vjipq , Vijpq = Vijqp, Vijpq = Vpqij . (3.34)

(ii) We have

∑
p

Vijpp = 0 for all i, j and
∑
i

Viipq = 0 for all p, q ,

or equivalently, V = PV P .
(iii) The tensor V is positive (negative, resp.) definite on the space of sym-

metric matrices of trace zero if μ̃ > μ ( μ̃ < μ, resp.).
(iv) The tensor (1/(2μ))V satisfies the following bounds

Tr
( 1

2μ
V
)
≤ |B|

( μ̃
μ
− 1

)(
(d− 1)

μ

μ̃
+

d(d− 1)
2

)
, (3.35)

Tr
( 1

2μ
V
)−1

≤ 1
|B|( μ̃μ − 1)

(
(d− 1)

μ̃

μ
+

d(d− 1)
2

)
, (3.36)

where for C = (Cijpq), Tr(C) :=
∑d
i,j=1 Cijij .

Note that the VMT V is a 4-tensor and can be regarded, because of its
symmetry, as a linear transformation on the space of symmetric matrices.
Note also that, in view of Theorem 3.2, the right-hand sides of (3.35) and
(3.36) are exactly in the two-dimensional case (d = 2) the Hashin–Shtrikman
bounds (3.9) for the PT associated with the same domain B and the conduc-
tivity contrast k = μ̃/μ.

3.6 Electrical Impedance Imaging

In this section we apply the asymptotic formula (3.5) for the purpose of
identifying the location and certain properties of the shape of the conduc-
tivity anomalies. We single out two simple fundamental algorithms that take
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advantage of the smallness of the anomalies: projection-type algorithms and
multiple signal classification (MUSIC)-type algorithms. These algorithms are
fast, stable, and efficient.

We refer to Chap. 1 for basic mathematical and physical concepts of elec-
trical impedance tomography.

3.6.1 Detection of a Single Anomaly:
A Projection-Type Algorithm

We briefly discuss a simple algorithm for detecting a single anomaly. We refer
to Chap. 1 for further details. The projection-type location search algorithm
makes use of constant current sources. We want to apply a special type of
current that makes ∂U constant in D. Injection current g = a · ν for a fixed
unit vector a ∈ R

d yields ∇U = a in Ω.
Assume for the sake of simplicity that d = 2 and D is a disk. Set

w(y) = −(1/2π) log |x− y| for x ∈ R
2 \Ω, y ∈ Ω .

Since w is harmonic in Ω, then from (3.10) and (3.7), it follows that

Iw [a] ≈ (k − 1)|D|
π(k + 1)

(x− z) · a
|x− z|2 , x ∈ R

2 \Ω . (3.37)

The first step for the reconstruction procedure is to locate the anomaly.
The location search algorithm is as follows. Take two observation lines Σ1

and Σ2 contained in R
2 \Ω given by

Σ1 := a line parallel to a,

Σ2 := a line normal to a .

Find two points Pi ∈ Σi, i = 1, 2, so that

Iw[a](P1) = 0, Iw [a](P2) = max
x∈Σ2

|Iw[a](x)| .

From (3.37), we can see that the intersecting point P of the two lines

Π1(P1) := {x | a · (x− P1) = 0}, (3.38)

Π2(P2) := {x | (x− P2) is parallel to a} (3.39)

is close to the center z of the anomaly D: |P − z| = O(δ2).
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Once we locate the anomaly, the factor |D|(k − 1)/(k + 1) can be esti-
mated. As we said before, this information is a mixture of the conductivity
and the volume.

3.6.2 Detection of Multiple Anomalies:
A MUSIC-Type Algorithm

Consider m anomalies Ds = δBs + zs, s = 1, . . . ,m. Suppose for the sake of
simplicity that all the domains Bs are disks. Let yl ∈ R

2 \Ω for l = 1, . . . , n
denote the source points. Set

Uyl
= wyl

:= −(1/2π) log |x− yl| for x ∈ Ω, l = 1, . . . , n .

The MUSIC-type location search algorithm for detecting multiple anomalies
is as follows. For n ∈ N sufficiently large, define the matrix A = [All′ ]nl,l′=1 by

All′ = Iwyl
[yl′ ] :=

∫
∂Ω

(u − Uyl′ )(x)
∂wyl

∂ν
(x) dσ(x) .

Expansion (3.7) yields

All′ ≈ −δd
m∑
s=1

2(ks − 1)|Bs|
ks + 1

∇Uyl′ (zs)∇Uyl
(zs) .

Introduce

gz =
(
Uy1(z), . . . , Uyn(z)

)∗
,

where v∗ denotes the transpose of the vector v.

Lemma 3.9. Suppose that n > m. The following characterization of the
location of the anomalies in terms of the range of the matrix A holds:

gz ∈ Range(A) iff z ∈ {z1, . . . , zm} . (3.40)

The MUSIC-type algorithm to determine the location of the anomalies is
as follows. Let Pnoise = I−P , where P is the orthogonal projection onto the
range of A. Given any point z ∈ Ω, form the vector gz. The point z coincides
with the location of an anomaly if and only if Pnoisegz = 0. Thus we can
form an image of the anomalies by plotting, at each point z, the cost function
1/||Pnoisegz||. The resulting plot will have large peaks at the locations of the
anomalies.

Once we locate the anomalies, the factors |Ds|(ks − 1)/(ks + 1) can be
estimated from the significant singular values of A.
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3.7 Impediography

The core idea of impediography is to couple electric measurements to localized
elastic perturbations. A body (a domain Ω ⊂ R

2) is electrically probed: One
or several currents are imposed on the surface and the induced potentials
are measured on the boundary. At the same time, a circular region of a few
millimeters in the interior of Ω is mechanically excited by ultrasonic waves,
which dilate this region. The measurements are made as the focus of the
ultrasounds scans the entire domain. Several sets of measurements can be
obtained by varying amplitudes of the ultrasound waves and the applied
currents.

Within each disk of (small) volume, the conductivity is assumed to be
constant per volume unit. At a point x ∈ Ω, within a disk B of volume VB ,
the electric conductivity γ is defined in terms of a density ρ as γ(x) = ρ(x)VB .

The ultrasonic waves induce a small elastic deformation of the disk B. If
this deformation is isotropic, the material points of B occupy a volume V p

B

in the perturbed configuration, which at first order is equal to

V p
B = VB(1 + 2

Δr

r
) ,

where r is the radius of the disk B and Δr is the variation of the radius due
to the elastic perturbation. As Δr is proportional to the amplitude of the
ultrasonic wave, we obtain a proportional change of the deformation. Using
two different ultrasonic waves with different amplitudes but with the same
spot, it is therefore easy to compute the ratio V p

B/VB. As a consequence, the
perturbed electrical conductivity γp satisfies

∀ x ∈ Ω, γp(x) = ρ(x)V p
B = γ(x)ν(x) ,

where ν(x) = V p
B/VB is a known function. We make the following realistic as-

sumptions: (1) the ultrasonic wave expands the zone it impacts, and changes
its conductivity: ∀x ∈ Ω, ν(x) > 1, and (2) the perturbation is not too small:
ν(x) − 1� VB .

3.7.1 A Mathematical Model

Let u be the voltage potential induced by a current g, in the absence of
ultrasonic perturbations. It is given by

⎧⎨
⎩
∇x · (γ(x)∇xu) = 0 in Ω,

γ(x)
∂u

∂ν
= g on ∂Ω ,

(3.41)
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with the convention that
∫
∂Ω

u = 0. We suppose that the conductivity γ of
the region close to the boundary of the domain is known, so that ultrasonic
probing is limited to interior points. We denote the region (open set) by Ω1.

Let uδ be the voltage potential induced by a current g, in the presence of
ultrasonic perturbations localized in a disk-shaped domain D := z + δB of
volume |D| = O(δ2). The voltage potential uδ is a solution to

⎧⎨
⎩
∇x · (γδ(x)∇xuδ(x)) = 0 in Ω ,

γ(x)
∂uδ
∂ν

= g on ∂Ω ,
(3.42)

with the notation

γδ(x) = γ(x)
[
1 + χ(D)(x) (ν(x) − 1)

]
,

where χ(D) is the characteristic function of the domain D.
As the zone deformed by the ultrasound wave is small, we can view it

as a small volume perturbation of the background conductivity γ, and seek
an asymptotic expansion of the boundary values of uδ − u. The method of
small-volume expansions shows that comparing uδ and u on ∂Ω provides
information about the conductivity. Indeed, we can prove that

∫
∂Ω

(uδ − u)g dσ =
∫
D

γ(x)
(ν(x) − 1)2

ν(x) + 1
∇u · ∇u dx + o(|D|)

= |∇u(z)|2
∫
D

γ(x)
(ν(x)− 1)2

ν(x) + 1
dx + o(|D|) .

Therefore, we have

γ(z) |∇u(z)|2 = E(z) + o(1) , (3.43)

where the function E(z) is defined by

E(z) =

(∫
D

(ν(x)− 1)2

ν(x) + 1
dx

)−1 ∫
∂Ω

(uδ − u)g dσ . (3.44)

By scanning the interior of the body with ultrasound waves, given an
applied current g, we then obtain data from which we can compute

E(z) := γ(z)|∇u(z)|2

in an interior sub-region of Ω. The new inverse problem is now to reconstruct
γ knowing E .
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3.7.2 A Substitution Algorithm

The use of E leads us to transform (3.41), having two unknowns γ and u
with highly nonlinear dependency on γ, into the following nonlinear PDE
(the 0-Laplacian)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇x ·
(
E
|∇u|2

∇u
)

= 0 in Ω ,

E
|∇u|2

∂u

∂ν
= g on ∂Ω .

(3.45)

We emphasize that E is a known function, constructed from the measured
data (3.44). Consequently, all the parameters entering in (3.45) are known. So,
the ill-posed inverse problem of EIT model is converted into less complicated
direct problem (3.45).

The E-substitution algorithm, which will be explained below, uses two
currents g1 and g2. We choose this pair of current patterns to have ∇u1 ×
∇u2 �= 0 for all x ∈ Ω, where ui, i = 1, 2, is the solution to (3.41). We refer to
Chap. 1 and the references therein for an evidence of the possibility of such
a choice. The E-substitution algorithm is based on an approximation of a
linearized version of problem (3.45).

Suppose that γ is a small perturbation of conductivity profile γ0: γ =
γ0 + δγ. Let u0 and u = u0 + δu denote the potentials corresponding to γ0

and γ with the same Neumann boundary data g. It is easily seen that δu
satisfies ∇ · (γ∇δu) = −∇ · (δγ∇u0) in Ω with the homogeneous Dirichlet
boundary condition. Moreover, from

E = (γ0 + δγ)|∇(u0 + δu)|2 ≈ γ0|∇u0|2 + δγ|∇u0|2 + 2γ0∇u0 · ∇δu ,

after neglecting the terms δγ∇u0 · ∇δu and δγ|∇δu|2, it follows that

δγ ≈ E
|∇u0|2

− γ0 − 2γ0
∇δu · ∇u0

|∇u0|2
.

The E-substitution algorithm is as follows. We start from an initial guess
for the conductivity γ, and solve the corresponding Dirichlet conductivity
problem {

∇ · (γ∇u0) = 0 in Ω,

u0 = ψ on ∂Ω .

The data ψ is the Dirichlet data measured as a response to the current g (say
g = g1) in absence of elastic deformation. The discrepancy between the data
and our guessed solution is

ε0 :=
E

|∇u0|2
− γ . (3.46)
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We then introduce a corrector, δu, computed as the solution to

{
∇ · (γ∇δu) = −∇ · (ε0∇u0) in Ω,

δu = 0 on ∂Ω,

and update the conductivity

γ :=
E − 2γ∇δu · ∇u0

|∇u0|2
.

We iteratively update the conductivity, alternating directions of currents (i.e.,
with g = g2).

In the case of incomplete data, that is, if E is only known on a subset ω
of the domain, we can follow an optimal control approach. See [29].

3.8 Magneto-Acoustic Imaging

Denote by γ(x) the unknown conductivity and let the voltage potential v
be the solution to the conductivity problem (3.41). Suppose that the γ is a
known constant on a neighborhood of the boundary ∂Ω and let γ∗ denote
γ|∂Ω.

In magneto-acoustic imaging, ultrasonic waves are focused on regions of
small diameter inside a body placed on a static magnetic field. The oscil-
lation of each small region results in frictional forces being applied to the
ions, making them move. In the presence of a magnetic field, the ions ex-
perience Lorentz force. This gives rise to a localized current density within
the medium. The current density is proportional to the local electrical con-
ductivity [59]. In practice, the ultrasounds impact a spherical or ellipsoidal
zone, of a few millimeters in diameter. The induced current density should
thus be sensitive to conductivity variations at the millimeter scale, which
is the precision required for breast cancer diagnostic. The feasibility of this
conductivity imaging technique has been demonstrated in [43].

Let z ∈ Ω and D be a small impact zone around the point z. The created
current by the Lorentz force density is given by

Jz(x) = cχD(x)γ(x)e, (3.47)

for some constant c and a constant unit vector e both of which are inde-
pendent of z. Here, χD denotes the characteristic function of D. With the
induced current Jz the new voltage potential, denoted by uz, satisfies

{
∇ · (γ∇uz + Jz) = 0 in Ω,

uz = g on ∂Ω.
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According to (3.47), the induced electrical potential wz := v − uz satisfies
the conductivity equation:

{
∇ · γ∇wz = c∇ · (χDγe) for x ∈ Ω,

wz(x) = 0 for x ∈ ∂Ω.
(3.48)

The inverse problem for the vibration potential tomography, which is a
synonym of Magneto-Acoustic Imaging, is to reconstruct the conductivity
profile γ from boundary measurements of ∂uz

∂ν |∂Ω or equivalently ∂wz

∂ν |∂Ω for
z ∈ Ω.

Since γ is assumed to be constant in D and |D| is small, we obtain using
Green’s identity [5]

∫
∂Ω

γ∗
∂wz
∂ν

gdσ ≈ −c|D|∇(γv)(z) · e. (3.49)

The relation (3.49) shows that, by scanning the interior of the body with
ultrasound waves, c∇(γv)(z) · e can be computed from the boundary mea-
surements ∂wz

∂ν |∂Ω in Ω. If we can rotate the subject, then c∇(γv)(z) for any
z in Ω can be reconstructed. In practice, the constant c is not known. But,
since γv and ∂(γv)/∂ν on the boundary of Ω are known, we can recover c
and γv from c∇(γv) in a constructive way. See [5].

The new inverse problem is now to reconstruct the contrast profile γ
knowing

E(z) := γ(z)v(z) (3.50)

for a given boundary potential g, where v is the solution to (3.41).
In view of (3.50), v satisfies

⎧⎨
⎩
∇ · E

v
∇v = 0 in Ω,

v = g on ∂Ω.
(3.51)

If we solve (3.51) for v, then (3.50) yields the conductivity contrast γ. Note
that to be able to solve (3.51) we need to know the coefficient E(z) for all z,
which amounts to scanning all the points z ∈ Ω by the ultrasonic beam.

Observe that solving (3.51) is quite easy mathematically: If we put w =
ln v, then w is the solution to

{
∇ · E∇w = 0 in Ω,

w = ln g on ∂Ω,
(3.52)

as long as g > 0. Thus if we solve (3.52) for w, then v := ew is the solution
to (3.51). However, taking an exponent may amplify the error which already
exists in the computed data E . In order to avoid this numerical instability,
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we solve (3.51) iteratively. To do so, we can adopt an iterative scheme similar
to the one proposed in the previous section.

Start with γ0 and let v0 be the solution of

{
∇ · γ0∇v0 = 0 in Ω,

v0 = g on ∂Ω.
(3.53)

According to (3.50), our updates, γ0 + δγ and v0 + δv, should satisfy

γ0 + δγ =
E

v0 + δv
, (3.54)

where {
∇ · (γ0 + δγ)∇(v0 + δv) = 0 in Ω,

δv = 0 on ∂Ω,

or equivalently

{
∇ · γ0∇δv +∇ · δγ∇v0 = 0 in Ω,

δv = 0 on ∂Ω.
(3.55)

We then linearize (3.54) to have

γ0 + δγ =
E

v0(1 + δv/v0)
≈ E

v0

(
1− δv

v0

)
. (3.56)

Thus
δγ = −Eδv

v2
0

− δ, δ = − E
v0

+ γ0. (3.57)

We then find δv by solving
⎧⎨
⎩
∇ · γ0∇δv −∇ ·

(
Eδv
v20

+ δ
)
∇v0 = 0 in Ω,

δv = 0 on ∂Ω,

or equivalently
⎧⎨
⎩
∇ · γ0∇δv −∇ ·

(
E∇v0
v20

δv
)

= ∇ · δ∇v0 in Ω,

δv = 0 on ∂Ω.
(3.58)

In the case of incomplete data, that is, if E is only known on a subset ω
of the domain, we can follow an optimal control approach. See [5].
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3.9 Magnetic Resonance Elastography

Let u be the solution to the modified Stokes system (3.27). The inverse
problem in the magnetic resonance elastography is to reconstruct the shape
and the shear modulus of the anomaly D from internal measurements of u.

Based on the inner asymptotic expansion (3.29) of δu (:= u −U) of the
perturbations in the displacement field that are due to the presence of the
anomaly, a reconstruction method of binary level set type can be designed.

The first step for the reconstruction procedure is to locate the anomaly.
This can be done using the outer expansion of δu, i.e., an expansion far away
from the elastic anomaly.

Suppose that z is reconstructed. Since the representation D = z + δB is
not unique, we can fix δ. We use a binary level set representation f of the
scaled domain B:

f(x) =
{

1, x ∈ B,

−1, x ∈ R
3 \B.

(3.59)

Let

2h(x) = μ̃

(
f(

x− z

δ
) + 1

)
− μ

(
f(

x− z

δ
)− 1

)
, (3.60)

and let β be a regularization parameter. Then the second step is to fix a
window W (for instance a sphere containing z) and solve the following con-
strained minimization problem

min
μ̃,f

L(f, μ̃) =
1
2

∥∥∥∥ δu(x) − δ

d∑
p,q=1

∂qU(z)pv̂pq(
x− z

δ
) +∇U(z)(x − z)

∥∥∥∥
2

L2(W )

+ β

∫
W

|∇h(x)| dx ,

(3.61)

subject to (3.25). Here,
∫
W |∇h| dx is the total variation of the shear modulus

and |∇h| is understood as a measure:

∫
W

|∇h| = sup
{∫

W

h∇ · v dx, v ∈ C1
0(W ) and |v| ≤ 1 in W

}
.

This regularization indirectly controls both the length of the level curves and
the jumps in the coefficients.

The local character of the method is due to the decay of

δ

d∑
p,q=1

∂qU(z)pv̂pq(
· − z

δ
)−∇U(z)(· − z)

away from z. This is one of the main features of the method. In the presence
of noise, because of a trade-off between accuracy and stability, we have to
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choose carefully the size of W . The size of W should not be so small to
preserve some stability and not so big so that we can gain some accuracy.
See [8].

The minimization problem (3.61) corresponds to a minimization with
respect to μ̃ followed by a step of minimization with respect to f . The min-
imization steps are over the set of μ̃ and f , and can be performed using a
gradient based method with a line search. Of importance to us are the opti-
mal bounds satisfied by the viscous moment tensor V . We should check for
each step whether the bounds (3.35) and (3.36) on V are satisfied or not. In
the case they are not, we have to restate the value of μ̃. Another way to deal
with (3.35) and (3.36) is to introduce them into the minimization problem
(3.61) as a constraint. Set α = Tr(V ) and β = Tr(V −1) and suppose for
simplicity that μ̃ > μ. Then, (3.35) and (3.36) can be rewritten (when d = 3)
as follows ⎧⎪⎪⎨

⎪⎪⎩
α ≤ 2(μ̃− μ)(3 +

2μ
μ̃

)|D|,

2μ(μ̃− μ)
3μ + 2μ̃

|D| ≤ β−1 .

(3.62)

3.10 Imaging by the Acoustic Radiation Force

A model problem for the acoustic radiation force imaging is (3.14), where y
is the location of the pushing ultrasonic beam. The transient wave u(x, t) is
the induced wave. The inverse problem is to reconstruct the shape and the
conductivity of the small anomaly D from measurements of u on R

3×]0,+∞[.
It is easy to detect T = |y − z| and the location z of the anomaly from
measurements of u(x, t)− Uy(x, t).

Suppose that the wavefield in a window W containing the anomaly can be
acquired. In view of Theorem 3.4, the shape and the conductivity of D can
be approximately reconstructed, analogously to MRE, by minimizing over k
and f the following functional:

L(f, k) =
1

2ΔT

∫ T+ ΔT
2

T−ΔT
2

∥∥∥∥Pρ[u− Uy]− δv̂

(
x− z

δ

)
· ∇Pρ[Uy]

∥∥∥∥
2

L2(W )

dt

+β

∫
W

|∇h(x)| dx ,

(3.63)

subject to (3.2). Here ΔT = O(δ/
√
k) is small, 2h(x) = k(f(x−zδ ) + 1) −

(f(x−zδ )− 1), and f given by (3.59).
To detect the anomaly from measurements of the wavefield away from

the anomaly one can use a time-reversal technique. As shown in Chap. 2, the
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main idea of time-reversal is to take advantage of the reversibility of the wave
equation in a non-dissipative unknown medium in order to back-propagate
signals to the sources that emitted them. In the context of anomaly detection,
one measures the perturbation of the wave on a closed surface surrounding
the anomaly, and retransmits it through the background medium in a time-
reversed chronology. Then the perturbation will travel back to the location
of the anomaly. We can show that the time-reversal perturbation focuses on
the location z of the anomaly with a focal spot size limited to one-half the
wavelength which is in agreement with the Rayleigh resolution limit.

In mathematical words, suppose that we are able to measure the pertur-
bation w := u − Uy and its normal derivative at any point x on a sphere S
englobing the anomaly D. The time-reversal operation is described by the
transform t �→ t0 − t. Both the perturbation w and its normal derivative on
S are time-reversed and emitted from S. Then a time-reversed perturbation,
denoted by wtr, propagates inside the volume Ω surrounded by S. Taking
into account the definition of the outgoing fundamental solution (3.13) to the
wave equation, spatial reciprocity and time reversal invariance of the wave
equation, the time-reversed perturbation wtr due to the anomaly D in Ω
should be defined by

wtr(x, t) =
∫

R

∫
S

[
Ux(x′, t−s)

∂w

∂ν
(x′, t0−s)− ∂Ux

∂ν
(x′, t−s)w(x′, t0 −s)

]
dσ(x′) ds ,

where

Ux(x′, t− τ) =
δ(t− τ − |x− x′|)

4π|x− x′| .

However, with the high frequency component of w truncated as in Theorem
3.4, we take the following definition:

wtr(x, t) =
∫

R

∫
S

[
Ux(x′, t− s)

∂Pρ[u− Uȳ]
∂ν

(x′, t0 − s)

−∂Ux
∂ν

(x′, t− s)Pρ[u− Uȳ](x′, t0 − s)
]
dσ(x′) .

According to Theorem 3.4, we have

Pρ[u− Uy](x, t) ≈ −δ3

∫
R

∇Pρ[Uz](x, t− τ) · p(z, τ) dτ ,

where

p(z, τ) = M(k,B)∇Pρ[Uy](z, τ) .
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Thus, since

∫
R

∫
S

[
Ux(x′, t− s)

∂Pρ[Uz]
∂ν

(x′, t0 − s− τ)

−∂Ux
∂ν

(x′, t− s)Pρ[Uz](x′, t0 − s− τ)
]
dσ(x′) ds

= Pρ[Uz](x, t0 − τ − t)− Pρ[Uz](x, t− t0 + τ) ,

we arrive at

wtr(x, t) ≈ −δ3

∫
R

p(z, τ) · ∇z
[
Pρ[Uz](x, t0 − τ − t)−Pρ[Uz](x, t− t0 + τ)

]
dτ .

Formula (3.64) can be interpreted as the superposition of incoming and
outgoing waves, centered on the location z of the anomaly. Suppose that
p(z, τ) is concentrated at the travel time τ = T . Formula (3.64) takes there-
fore the form

wtr(x, t) ≈ −δ3p · ∇z
[
Pρ[Uz](x, t0 − T − t)− Pρ[Uz](x, t− t0 + T )

]
,

where p = p(z, T ). The wave wtr is clearly sum of incoming and outgoing
spherical waves.

Formula (3.64) has an important physical interpretation. By changing the
origin of time, T can be set to 0 without loss of generality. By taking Fourier
transform of (3.64) over the time variable t, we obtain that

ŵtr(x, ω) ∝ δ3p · ∇
(

sin(ω|x− z|)
|x− z|

)
,

where ŵtr denotes the Fourier transform of wtr and ω is the wavenumber and,
which shows that the time-reversal perturbation wtr focuses on the location
z of the anomaly with a focal spot size limited to one-half the wavelength. An
identity parallel to (3.64) can be rigorously derived in the frequency domain.
It plays a key role in the resolution limit analysis. See [7].

3.11 Infrared Thermal Imaging

In this section we apply (3.18) (with an appropriate choice of test functions
w and background solutions U) for the purpose of identifying the loca-
tion of the anomaly D. The first algorithm makes use of constant heat flux
and, not surprisingly, it is limited in its ability to effectively locate multiple
anomalies.
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Using many heat sources, we then describe an efficient method to locate
multiple anomalies and illustrate its feasibility. For the sake of simplicity we
consider only the two-dimensional case.

3.11.1 Detection of a Single Anomaly

For y ∈ R
2 \Ω, let

w(x, t) = wy(x, t) :=
1

4π(T − t)
e−

|x−y|2
4(T−t) . (3.64)

The function w satisfies (∂t+Δ)w = 0 in ΩT and the final condition w|t=T = 0
in Ω.

Suppose that there is only one anomaly D = z + δB with thermal con-
ductivity k. For simplicity assume that B is a disk. Choose the background
solution U(x, t) to be a harmonic (time-independent) function in ΩT . We
compute

∇wy(z, t) =
y − z

8π(T − t)2
e−

|z−y|2
4(T−t) ,

M(k,B)∇wy(z, t) =
(k − 1)|B|

k + 1
y − z

4π(T − t)2
e−

|z−y|2
4(T−t) ,

and

∫ T

0

M(k,B)∇wy(z, t) dt =
(k − 1)|B|

k + 1
y − z

4π

∫ T

0

e−
|z−y|2
4(T−t)

(T − t)2
dt .

But
d

dt
e−

|z−y|2
4(T−t) =

−|z − y|2
4

e−
|z−y|2
4(T−t)

(T − t)2

and therefore

∫ T

0

M(k,B)∇wy(z, t) dt =
(k − 1)|B|

k + 1
y − z

π|z − y|2 e
− |z−y|2

4(T−t) .

Then the asymptotic expansion (3.18) yields

Iw(T )(y) ≈ δ2 k − 1
k + 1

|B|∇U(z) · (y − z)
π|y − z|2 e−

|y−z|2
4T . (3.65)
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Now we are in a position to present our projection-type location search
algorithm for detecting a single anomaly. We prescribe the initial condition
u0(x) = a · x for some fixed unit constant vector a and choose g = a · ν
as an applied time-independent heat flux on ∂ΩT , where a is taken to be a
coordinate unit vector. Take two observation lines Σ1 and Σ2 contained in
R

2 \Ω such that

Σ1 := a line parallel to a, Σ2 := a line normal to a .

Next we find two points Pi ∈ Σi (i = 1, 2) so that Iw(T )(P1) = 0 and

Iw(T )(P2) =

⎧⎨
⎩

min
x∈Σ2

Iw(T )(x) if k − 1 < 0 ,

max
x∈Σ2

Iw(T )(x) if k − 1 > 0.

Finally, we draw the corresponding lines Π1(P1) and Π2(P2) given by (3.38).
Then the intersecting point P of Π1(P1)∩Π2(P2) is close to the anomaly D:
|P − z| = O(δ |log δ|) for δ small enough.

3.11.2 Detection of Multiple Anomalies:
A MUSIC-Type Algorithm

Consider m anomalies Ds = δBs+ zs, s = 1, . . . ,m, whose heat conductivity
is ks. Choose

U(x, t) = Uy′(x, t) :=
1

4πt
e−

|x−y′|2
4t for y′ ∈ R

2 \Ω

or, equivalently, g to be the heat flux corresponding to a heat source placed
at the point source y′ and the initial condition u0(x) = 0 in Ω, to obtain that

Iw(T ) ≈− δ2
m∑
s=1

(1 − ks)
64π2

(y′ − zs)M (s)(y − zs)

×
∫ T

0

1
t2(T − t)2

exp
(
−|y − zs|2

4(T − t)
− |y

′ − zs|2
4t

)
dt,

where w is given by (3.64) and M (s) is the polarization tensor of Ds.
Suppose for the sake of simplicity that all the domains Bs are disks. Then

it follows from (3.10) that M (s) = m(s)I2, where m(s) = 2(ks−1)|Bs|/(ks+1)
and I2 is the 2 × 2 identity matrix. Let yl ∈ R

2 \ Ω for l ∈ N be the source
points. We assume that the countable set {yl}l∈N has the property that any
analytic function which vanishes in {yl}l∈N vanishes identically.
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The MUSIC-type location search algorithm for detecting multiple
anomalies is as follows. For n ∈ N sufficiently large, define the matrix
A = [All′ ]nl,l′=1 by

All′ :=− δ2
m∑
s=1

(1− ks)
64π2

m(s)(yl′ − zs) · (yl − zs)

×
∫ T

0

1
t2(T − t)2

exp
(
−|yl − zs|2

4(T − t)
− |yl

′ − zs|2
4t

)
dt .

For z ∈ Ω, we decompose the symmetric real matrix C defined by

C :=
[∫ T

0

1
t2(T − t)2

exp
(
−|yl − z|2

4(T − t)
− |yl

′ − z|2
4t

)
dt

]
l,l′=1,...,n

as follows:

C =
p∑
l=1

vl(z)vl(z)∗ (3.66)

for some p ≤ n, where vl ∈ R
n and v∗l denotes the transpose of vl. Define the

vector g
(l)
z ∈ R

n×2 for z ∈ Ω by

g(l)
z =

(
(y1 − z)vl1(z), . . . , (yn − z)vln(z)

)∗
, l = 1, . . . , p. (3.67)

Here vl1, . . . , vln are the components of the vector vl, l = 1, . . . , p. Let yl =
(ylx, yly) for l = 1, . . . , n, z = (zx, zy), and zs = (zsx, zsy). We also introduce

g(l)
zx =

(
(y1x − zx)vl1(z), . . . , (ynx − zx)vln(z)

)∗

and

g(l)
zy =

(
(y1y − zy)vl1(z), . . . , (yny − zy)vln(z)

)∗
.

Lemma 3.10. The following characterization of the location of the anomalies
in terms of the range of the matrix A holds:

g(l)
zx and g(l)

zy ∈ Range(A) ∀ l ∈ {1, . . . , p} iff z ∈ {z1, . . . , zm} . (3.68)

Note that the smallest number n which is sufficient to efficiently recover the
anomalies depends on the (unknown) number m. This is the main reason to
take n sufficiently large. As for the electrical impedance imaging, the MUSIC-
type algorithm for the thermal imaging is as follows. Compute Pnoise, the
projection onto the noise space, by the singular value decomposition of the
matrix A. Compute the vectors vl by (3.66). Form an image of the locations,



128 H. Ammari and H. Kang

z1, . . . , zm, by plotting, at each point z, the quantity ‖g(l)
z ·a‖/‖Pnoise(g

(l)
z ·a)‖

for l = 1, . . . , p, where g
(l)
z is given by (3.67) and a is a unit constant vector.

The resulting plot will have large peaks at the locations of zs, s = 1, . . . ,m.
The algorithms described for reconstructing thermal anomalies can be

extended to the realistic half-space model. See [22].

3.12 Bibliography and Concluding Remarks

In this chapter, applications of the method of small-volume expansions in
emerging medical imaging are outlined. This method leads to very effective
and robust reconstruction algorithms in many imaging problems [15]. Of
particular interest are emerging multi-physics or hybrid imaging approaches.
These approaches allow to overcome the severe ill-posedness character of
image reconstruction.

Part (i) in Theorem 3.1 was proven in [14, 33, 40] and in a more general
form in [31]. The proof in [14] is based on a decomposition formula of the
solution into a harmonic part and a refraction part first derived in [48]. In this
connection, see [49–51, 54, 56]. Part (iii) is from [21]. The Hashin-Shtrikman
bounds for the polarization tensor were proved in [32, 57]. Theorem 3.7 and
the results on the viscous moment tensor in Theorem 3.8 are from [6]. The
initial boundary-value problems for the wave equation in the presence of
anomalies of small volume have been considered in [1, 17]. See [16] for the
time-harmonic regime. Theorem 3.4 is from [7]. See also [19,20,30] for similar
results in the case of compressible elasticity. In that paper, a time-reversal
approach was designed for locating the anomaly from the outer expansion
(3.15). We refer to Chap. 2 for basic physical principles of time reversal. See
also [38, 39].

The projection algorithm was introduced in [23, 24, 55, 63]. The MUSIC-
type algorithm for locating small electromagnetic anomalies from the re-
sponse matrix was first developed in [28]. See also [9, 11–13, 34]. It is worth
mentioning that the MUSIC-type algorithm is related to time reversal [61,62].

Impediography was proposed in [3] and the substitution algorithm pro-
posed there. An optimal control approach for solving the inverse problem in
impediography has been described in [29]. The inversion was considered as a
minimization problem, and it was performed in two or three dimensions.

Magnetic resonance elastography was first proposed in [60]. The results
provided on this technique are from [6]. For physical principles of radiation
force imaging we refer to [26, 27]. Thermal imaging of small anomalies has
been considered in [10]. See also [22] where a realistic half space model for
thermal imaging was considered and accurate and robust reconstruction al-
gorithms are designed.

To conclude this chapter, it is worth mentioning that the inner expan-
sions derived for the heat equation can be used to improve reconstruction
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in ultrasonic temperature imaging. The idea behind ultrasonic temperature
imaging hinges on measuring local temperature near anomalies. The aim is
to reconstruct anomalies with higher spatial and contrast resolution as com-
pared to those obtained from boundary measurements alone.

We would also like to mention that our approach for the magneto-acoustic
tomography can be used in photo-acoustic imaging. The photo-acoustic effect
is the physical basis for photo-acoustic imaging; it refers to the generation
of acoustic waves by the absorption of optical energy. In [4], a new method
for reconstructing absorbing regions inside a bounded domain from boundary
measurements of the induced acoustic signal has been developed. There, the
focusing property of the time-reversed acoustic signal has been shown.
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