Chapter 5
On the Determination of the Rouquier

Blocks

The aim of this chapter is the determination of the Rouquier blocks of the
cyclotomic Hecke algebras of all irreducible complex reflection groups. In the
previous chapter, we saw that the Rouquier blocks have the property of “semi-
continuity”. This property allows us to obtain the Rouquier blocks for any
cyclotomic Hecke algebra by actually calculating them in a small number of
cases. Following the theory developed in the two previous chapters, we only
need to determine the Rouquier blocks “associated with no and with each
essential hyperplane” for all irreducible complex reflection groups.

For the exceptional irreducible complex reflection groups, the computa-
tions were made with the use of the GAP package CHEVIE (cf. [37]). In
Section 5.2, we give the algorithm which has been used. This algorithm is
heuristic and was applied only to the groups G7, G11, Gi9, G2g, Gag and
G'32. The results presented in the Appendix allow us to use Clifford theory in
order to obtain the Rouquier blocks for the groups Gy, ..., Ga2 and Gas. The
remaining groups have already been studied by Malle and Rouquier in [53].
We have stored all the calculated data in a computer file and created GAP
functions to display them. These functions are presented in this chapter and
can be found on the author’s webpage [24].

As far as the groups of the infinite series are concerned, Clifford theory
again allows us to obtain the Rouquier blocks of the cyclotomic Hecke alge-
bras of G(de, e,r) (when r > 2 or r = 2 and e is odd) and G(2fd,2f,2) from
those of G(de, 1,r) and G(2fd, 2,2) respectively. Therefore, only the last two
cases need to be studied thoroughly.

In Section 5.3, we determine the Rouquier blocks associated with the essen-
tial hyperplanes for the group G(d, 1,r). The algorithm of Lyle and Mathas
(cf. [48]) for the determination of the blocks of an Ariki-Koike algebra over
a field has played a key role in the achievement of this goal. The description
of the Rouquier blocks for G(d, 1,r) is combinatorial and demonstrates an
unexpected relation between them and the families of characters of the Weyl
groups of type B,,, n <r.

In Section 5.4, we calculate the Rouquier blocks associated with no and
with each essential hyperplane for the group G(2d,2,2). The method used
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follows the same principles as the algorithm for the exceptional irreducible
complex reflection groups.

Finally, in Section 5.5, we explain how exactly we apply the results of
Clifford theory (Propositions 2.3.15 and 2.3.18) to obtain the Rouquier blocks
of the cyclotomic Hecke algebras of the groups G(de, e, r).

5.1 General Principles

Let W be an irreducible complex reflection group with field of definition K
and let H be its generic Hecke algebra. We suppose that the assumptions 4.2.3
are satisfied. Following Theorem 4.2.4, we can find a set of indeterminates v
such that the algebra K (v)H is split semisimple. Set A := Zx[v,v~1] and let
us denote by O the Rouquier ring Rx (y) of K. Let p be a prime ideal of Z
lying over a prime number p which divides the order of the group W. We can
determine the p-essential hyperplanes W from the factorization of the Schur
elements of H over K[v,v1].

Let ¢p : ve j +— y"¢7 be a cyclotomic specialization such that the integers
nc ; belong to no essential hyperplane for W. Such a cyclotomic specialization
will be called associated with no essential hyperplane. The blocks of OpoHy,
are called p-blocks associated with no essential hyperplane and coincide with
the blocks of A, A H.

Let ¢m : ve; — y"¢7 be a cyclotomic specialization such that the in-
tegers nc ; belong to exactly one essential hyperplane H, corresponding to
the essential monomial M. Such a cyclotomic specialization will be called
associated with the essential hyperplane H. The blocks of Oy0'H4,, are called
p-blocks associated with the essential hyperplane H. If H is not p-essential
for W, then the blocks of OpoHg, coincide with the p-blocks associated
with no essential hyperplane. If H is p-essential for W, then the blocks of
OpoHgy,, coincide with the blocks of Aq,, H, where qp = (M —1)A+pA. By
Proposition 3.2.3, the p-blocks associated with the essential hyperplane H
are unions of p-blocks associated with no essential hyperplane.

Following Proposition 4.4.4, the Rouquier blocks of Hg, can be obtained as
unions of p-blocks associated with no essential hyperplane, where p runs over
the set of prime ideals of Zg lying over the prime divisors of |W| (if p is not
¢g-bad, then the corresponding p-blocks are trivial). The Rouquier blocks of
Hg, are the Rouquier blocks associated with no essential hyperplane. Respec-
tively, the Rouquier blocks of Hy,, are the Rouguier blocks associated with
the essential hyperplane H. Like the p-blocks, the Rouquier blocks associated
with the essential hyperplane H are unions of Rouquier blocks associated with
no essential hyperplane.

The following result is a consequence of Theorem 3.3.2 and summarizes
the results of Chapter 4.
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Theorem 5.1.1. Let ¢ : ve ; — y™¢i be a cyclotomic specialization which is
not associated with no essential hyperplane. Let £ be the set of all essential
hyperplanes to which the integers nc ; belong. Let x,v € Irr(W). The charac-
ters x¢ and g belong to the same block of Opo'Hy if and only if there exist a
finite sequence Xo, X1, - - -, Xn € Ier(W) and a finite sequence Hy, ..., H, € £
such that

o (X0)¢ = X¢ and (Xn)g = Vg,
o forallj (1<j<n), (xj—1)¢ and (X;)s arein the same p-block associated
with the essential hyperplane H;.

Moreover, the characters x¢ and 1) belong to the same Rouquier block of Hy
if and only if there exist a finite sequence Xo, X1, - - -, Xn € Irt(W) and a finite
sequence Hy, ..., H, € £ such that

o (X0)o = Xo and (xn)y = s,
o forallj (1<j<mn), (xj—1)¢ and (x;)¢ are in the same Rouquier block
associated with the essential hyperplane H;.

Thanks to the above theorem, in order to determine the Rouquier blocks of
any cyclotomic Hecke algebra associated to W, we only need to consider a cy-
clotomic specialization associated with no and with each essential hyperplane
and

e cither calculate their p-blocks, for all prime ideals p lying over the prime
divisors of [W], and use Proposition 4.4.4 in order to obtain their Rouquier
blocks,

e or calculate directly their Rouquier blocks.

In the case of the exceptional groups, we will use the first method, whereas
in the case of the groups of the infinite series, we will mostly use the second
one. In both cases, we will need some criteria in order to determine the cor-
responding partitions of Irr(W) into blocks. These are results which have
already been presented in previous chapters, but we are going to repeat here
for the convenience of the reader. Once more, let ¢ : v¢ ; — y™¢7 be a cy-
clotomic specialization and let p be a prime ideal of Zx lying over the prime
number p.

Proposition 2.4.18. An irreducible character x € Irr(W) is a block of
OpoHg by itself if and only if sy, ¢ pZx [y, y~'].

Proposition 3.2.5. Let C be a block of A, 4H. If M is an essential monomial
for W which is not p-essential for any x € C, then C is a block of Aq,,H,
where qp = (M — 1)A + pA.

Proposition 4.3.8. If x,v¢ € Irr(W) belong to the same block of OpoHs,
then they are in the same p-block of W.
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Proposition 4.4.6. If x, ¢ € Irr(IV) are in the same block of O,0H, then
they are in the same Rouquier block of Hy4 and we have

aX¢ +AX¢> :a% +A,¢,¢.

5.2 The Exceptional Irreducible Complex Reflection
Groups

Let W := G, (4 < n < 37) be an irreducible exceptional complex reflection
group with field of definition K.

If n € {23,24,27,29,30,31,33,34,35,36,37}, then W has only one hyper-
plane orbit C with ec = 2. The generic Hecke algebra of W is defined over
a Laurent polynomial ring in two indeterminates v¢ o and v¢,; and the only
essential monomial for W is ve,0vc. %

If ¢ is the “spetsial” cyclotomic specialization (see Example 4.3.2), then ¢
is associated with no essential hyperplane for W. The p-blocks, for all ¢-bad
prime ideals p, and the Rouquier blocks of the spetsial cyclotomic Hecke
algebra of these groups have been calculated by Malle and Rouquier in [53].

If ¢ is a cyclotomic specialization associated with the unique essential
hyperplane for W, then Hy is isomorphic to the group algebra ZxW. Its
p-blocks are known from Brauer theory, whereas there exists a single Rouquier
block (see also [58], §3, Remark 1).

Therefore, we will only study in detail the remaining cases.

5.2.1 FEssential Hyperplanes

Let p1, po be two prime ideal of Zx lying over the same prime number p. If
¥ is a K-cyclotomic polynomial, then ¥(1) € p; if and only if ¥; € py. We
deduce that an essential hyperplane is pi-essential for W if and only if it is
po-essential for W. Therefore, we can talk about determining the p-essential
hyperplanes for W, where p runs over the set of prime divisors of |[W]|.

Together with Jean Michel, we have programmed into the GAP package
CHEVIE the Schur elements of the generic Hecke algebras of all excep-
tional irreducible complex reflection groups in factorized form (functions
SchurModels and SchurData). Given a prime ideal p of Zy, GAP provides us
with a way to determine whether an element of Zx belongs to p. Therefore,
we can easily determine the p-essential monomials and thus, the p-essential
hyperplanes for W.

In particular, we only need to follow this procedure for the groups G,
G111, G1g, Gaog, Gag and G35. In the Appendix, we give the specializations of
the parameters which make
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7) the twisted symmetric algebra of some finite cyclic group over
1), H(G5) and H(Gé).

11) the twisted symmetric algebra of some finite cyclic group over
) ( ) H(Gl()) H(Glz) H(Glg) H(G14) and H<G15)

19) the twisted symmetric algebra of some finite cyclic group over
Glﬁ) (G17) H(Gls), H(GQQ), H(Ggl) and H(GQQ)

o H(Gog) the twisted symmetric algebra of the cyclic group Cy over H(Gas).

H(G
H(G

. H(G
H(G
H(G

H(

In all these cases, Proposition 2.3.15 implies that the Schur elements of the
twisted symmetric algebra are scalar multiples of the Schur elements of the
subalgebra. Due to the nature of the specializations, we can obtain the es-
sential hyperplanes for the smaller group from the ones for the larger.

FEzample 5.2.1. The essential hyperplanes for G; are given in Example 5.2.3
(note that different letters represent different hyperplane orbits). The only
3-essential hyperplanes for G are:

01762:0,00761:0,00762:0,
by —by =0, by —by =0, by — by = 0.

All its remaining essential hyperplanes are strictly 2-essential. From these,
we can obtain the p-essential hyperplanes (where p = 2, 3)

o for G6 by setting bo = bl = b2 = 0,
e for G5 by setting ag = a; = 0,
o for G4 by setting ag = a1 = bg = by = by = 0.

We have created the GAP function EssentialHyperplanes which is applied
as follows:

gap> EssentialHyperplanes(W,p);
and returns

e the essential hyperplanes for W, if p = 0,
e the p-essential hyperplanes for W, if p divides the order of W,
e error, if p does not divide the order of W.

Example 5.2.2.

gap> W:=ComplexReflectionGroup(4) ;
gap> EssentialHyperplanes(W,0);
c_1-c_2=0

c_0-c_1=0

c_0-c_2=0

2¢_0-c_1-c_2=0

c_0-2c_1+c_2=0

c_0+c_1-2c_2=0

gap> EssentialHyperplanes(W,2);
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2c_0-c_1-c_2=0

c_0-2c_1+c_2=0

c_0+c_1-2c_2=0

c_0-c_1=0

c_1-c_2=0

c_0-c_2=0

gap> EssentialHyperplanes(W,3);
c_1-c_2=0

c_0-c_1=0

c_0-c_2=0

gap> EssentialHyperplanes(W,5);
Error, The number p should divide the order of the group.

5.2.2 Algorithm

Let p be a prime ideal of Zk lying over a prime number p which divides
the order of the group W. In this section, we will present an algorithm for
the determination of the p-blocks associated with no and with each essential
hyperplane for W. We use again here the notation of Section 5.1.

If we are interested in calculating the blocks of A, AH, we follow the steps
below:

1. We select the characters x € Irr(1W) whose generic Schur elements belong
to pA. The remaining ones will be blocks of A,4H by themselves, due
to Proposition 2.4.18. Thus we form a first partition A; of Irr(WW); one
part formed by the selected characters, each remaining character forming
a part by itself.

2. We calculate the p-blocks of W. By Proposition 4.3.8, if two irreducible
characters are not in the same p-block of W, then they cannot be in the
same block of Ay,4H. We intersect the partition \; with the partition
obtained by the p-blocks of W and we obtain a finer partition, named \o.

3. We find a cyclotomic specialization ¢ : ve ; — y"¢ associated with no
essential hyperplane by checking random values for the n¢ ;. Following
Proposition 4.4.6, we take the intersection of the partition we already have
with the subsets of Irr(W), where the sum a,, + A, remains constant.
This procedure is repeated several times, because sometimes the partition
becomes finer after some repetitions. Finally, we obtain the partition Ag,
which is the finest of them all.

If we are interested in calculating the blocks of Ag,,H for some p-essential

monomial M, the procedure is more or less the same:

1. We select the characters x € Irr(W) for which M is a p-essential mono-
mial. We form a first partition Ay of Irr(WW); one part formed by the
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selected characters, each remaining character forming a part by itself.
The idea is that, by Proposition 3.2.5, if M is not p-essential for any
character in a block C of ApaH, then C' is a block of A,,,H. This ex-
plains step 4 below.

2. We calculate the p-blocks of W. By Proposition 4.3.8, if two irreducible
characters are not in the same p-block of W, then they can not be in the
same block of Aq,,H. We intersect the partition A; with the partition
obtained by the p-blocks of W and we obtain a finer partition, named \s.

3. We find a cyclotomic specialization ¢ : ve ; +— 3"¢7 associated with the
p-essential hyperplane defined by M (again by checking random values
for the ne ;). We repeat the third step as described for A, 4H to obtain
the partition As.

4. We take the union of A3 and the partition defined by the blocks of A, 4H.

qnm

The above algorithm is, due to step 3, heuristic. However, we will see in
the next section that we only need to apply this algorithm to the groups Gz,
G11, Gig, Gag, Gog and G32. In these cases, we have been able to determine
(using again the criteria presented in Section 5.1) that the partition obtained
at the end is minimal and corresponds to the blocks we are looking for.

Remark. Eventually, the above algorithm provides us with the correct Rouquier
blocks for all exceptional irreducible complex reflection groups, except for Gsy.

Remark. If py, po are two prime ideals of Zy lying over the same prime
number p, we have observed that, for all exceptional irreducible complex re-
flection groups, the p1-blocks always coincide with the ps-blocks. Therefore,
we can talk about determining the p-blocks associated with no and with each
essential hyperplane.

5.2.3 Results

With the help of the GAP package CHEVIE, we developed an application
which implements the algorithm of the previous section. Using Proposition
4.4.4, we have been able to determine the Rouquier blocks associated with
no and with each essential hyperplane for the groups G7, G11, G19, Gag, Gog
and G32.

Now, Clifford theory allows us to calculate the Rouquier blocks associated
with no and with each essential hyperplane for the remaining exceptional irre-
ducible complex reflection groups. In all the cases presented in the Appendix,
the explicit calculation of the blocks of the twisted symmetric algebras with
the use of the algorithm of the previous section has shown that the assump-
tions of Corollary 2.3.19 are satisfied. Moreover, in all these cases, if H is the
twisted symmetric algebra of the finite cyclic group G over H, then each ir-
reducible character of H restricts to an irreducible character of H. Using the
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notation of Proposition 2.3.15, this means that |2| = 1, whence the blocks of
H are stable under the action of G. We deduce that the block-idempotents
of H and H over the Rouquier ring coincide. In particular, if C' is a block (of
characters) of H, then {ResZ(x)|x € C} is a block of H.

We will give here the example of G7 and show how we obtain the blocks
of G from those of G7. Nevertheless, let us first explain the notation of
characters used by the CHEVIE package.

Let W be an exceptional irreducible complex reflection group. For
X € Irr(W), we set d(x) := x(1) and we denote by b(x) the valuation of
the fake degree of x (for the definition of the fake degree, see [17], 1.20).
The irreducible characters x of W are determined by the corresponding pairs
(d(x),b(x)) and we write x = ¢ap, where d := d(x) and b := b(x). If two
irreducible characters y and x’ have d(x) = d(x’) and b(x) = b(x’), we use
primes ¢’ 7 to distinguish them (following [52,53]).

Example 5.2.3. The generic Hecke algebra of G7 is

H(Gr) = <S,T,U STU =TUS =UST, (T —yo)(T — 1 )(T — y2) =

(S—Z'o)(s—l'l):() >
0
(U—Zo)(U—Zl)(U—ZQ) =0

Let
zi > (G)'q™ (0<i<2),
b9y (G)gh (0<j<3),
2k — (C3)Fg™ (0 <k < 3)

be a cyclotomic specialization of H(G7). The only prime numbers which
divide the order of G are 2 and 3. Using the algorithm of the previous
section, we have determined the Rouquier blocks associated with no and
with each essential hyperplane for G7. We present here only the non-trivial
ones:

No essential hyperplane
{¢2,9’ ’ ¢2,15}’ {¢2,7’ s ¢2,13’}a {¢2,11’7 ¢2‘5/}, {¢2,7”’ ¢72,13”}7 {¢2,11”a ¢2,5” }’
{¢2,9// ) ¢2,3/}7 {¢2,11Wa ¢2,5”/}7 {(252,9”/7 ‘132,3” }7 {¢2,7/// ) ¢2,1}7 {‘153,61 ¢3,107 ¢3,2}7
{¢3,4, ¢3,8, ¥3,12}

cp—c2=0
{¢1,4/7¢1,8/}7 {¢1,8”7¢1,12/}a {¢1,12”1¢1,16}7 {¢1,10’:¢1,14'}7 {¢1,14//a¢1,1s’}:
{¢1,18”7¢1,22}a {452,9’79/)2,15}7 {¢2,7/7¢2,11’v¢2,13’7¢2,5’}v {¢2,7”v¢2,13”}7
{¢2,11” ’ ¢2,9" ) ¢2,5”a ¢2,3’ }’ {¢2,11’” ’ ¢2,5”’ }» {¢2,9”’ ’ ¢2,7”’ ) ¢2,3”a ¢2,1})
{b3,6, 3,10, ¢3,2}, {P3,4, 93,8, P3,12}

Ccop —C1 = 0
{b1,00 01,07} {1 21751 873, {D1 801751 100} {d1,65 1107} {P1,107> D114 s
{¢1,14’”7 ¢1,18” }7 {¢2,9/7 ¢2,7’ , $2,15, ¢2,13’ }7 {¢2,11’ ’ ‘152,5’}7 {¢2,7” ’ ¢2,11” ’ ‘152,13//1 ¢2,5”}7
{¢2.9” s d’z,a’}a {¢2,11”’1 ¢72,9’”a ¢2,5’”v 4)2,3” }» {472,7'“ s ‘152,1}7 {¢3,61 3,10, 4’3,2}7
{b3,4, b3,5, $3,12}

Co — C2 =
{¢1,01¢1,8’}7 {¢1.4”v¢1,12’}a {¢1,8”M¢1,16}» {¢1,6a¢1,14’}» {¢1,10”7¢1,18’}1
{¢1,14/”7 ‘1’1,22}; {¢2,9/7 4’2,11/ ’ ¢2,157 ¢'2‘5/ }: {¢’2,7/x ¢2,13/}7 {¢'2‘7“ ’ ¢’2,9“ ) ¢2,13//x ¢2,3’ }’
{¢2,11”7¢2,5//}7 {¢2,11/”7¢2,7”/1 ¢2,5W7 452,1}1 {¢2,9”/7¢2,3”}7
{¢3.6,#3,10, P3,2}, {¢3.4, P38, $3,12}
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b1 —ba=0
{¢1,4”v¢1,3’//}7 {¢1,8”7¢1,12”}7 {¢1,12’7¢1,16}7 {¢1,10’/7 4’1,14///}7 {¢1,14”7¢1,18”}7
{¢1,1s’ s ¢1,22}7 {¢2,9’a (252,15}, {¢2,7’ ’ ¢2,13’}a {¢2,11' s ¢2,5’ }’ {¢2,7”’ ¢72,11”’s ¢2,13”a ¢2,5’” }’
{¢2,11” ) ¢2,9“’ ’ ¢2,5//a ¢2,3”}7 {‘152,9” ) ¢2,7“/ ’ ¢2,3/a ¢2,1}a {‘753,67 $3,10, ¢3,2}7
{¢3,4, ¢3,8, ¥3,12}
bp —b1 =0
{(171,0, ¢1,4” }7 {¢1,4/a ¢1,8” }7 {¢1,s/a ¢1,12/ }7 {051,67 ¢1,10”}7 {¢1,10' ’ ¢1,14//}7 {¢1714/7 ¢1,18’}7
{¢2,9/ ) ¢2,7”7 $2,15, ¢2,13”}7 {¢2,7’7 4’2,11% ¢’2,13’ s ¢2,5”}7 {452,11’7 4’2,9” ’ 4’2,5’7 ‘152,3’ }7
) {ﬁ2,11’87¢2,5'”}, {ba,07s b3} {Pa 711, P21}, {d3,6, P3,10: P32}, {h3,4, P3,5, P3,12}
0 — b2 =
{‘1)1,07 ¢1,8”’}7 {¢1,4’7 4)1,12” }v {¢1.8/1 ¢1,16}7 {‘1’1,67 ¢1,14”/}v {¢1,10/ s ¢1,18”}7 {471,14/1 ¢1,22}>
{¢2,9’ ’ ¢2,11”' ’ ¢2,157 ¢2,5’” }’ {¢2,7’ ) ¢2,9”’a ¢’2,13’7 ¢2,3” }» {¢2,11’ ) ¢2,7”’a ¢’2,5’ ’ ¢2,1}7
{b2,711: 02,131}, {bo,1177, Po 57 s {bo 9175 bo 31}, {d3,65 b3,10: d3,2}, {d3,4, b3,8, b3,12}
ag —ay — 2bg + by + bz —2co+c1+c2 =0
{b1,65 02,97, P2,15, 3,4, 3,8, @312}, { P2 77, Do 157 }s {1Do 1175 ba 57 s {bo 77y o 1377},
{¢2,11”7¢2,5”}1 {¢2,9//a¢2,3’}7 {¢2,11’”7¢2,5'”}7 {¢2,9”/7¢2,3/'}7 {¢2,7’/M¢2,1}»
{#3,6, 3,10, ¢3,2}
ag —ay —2bg + b1 +ba +co—2c1 +c2=0
{¢1,10’7¢2,7/7 ¢2,13’7¢3,47 ¢3,8, P3,12}, {¢2,9/7¢2,15}7 {¢2,11’7¢2,5'}7 {¢2,7”7 ‘132,13”}7
{¢’2,11”7¢2,5”}7 {¢2,9”1 ¢72,3’}v {¢2.11’”7¢2.5/”}» {¢2,9/”v¢2,3”}7 {¢2,7”’1 ‘152,1}»
{¢3.6, #3,10, 3,2}
ag —ai — 2bg + b1 +b2 +co+c1 —2c2=0
{b1,1475 2,117 P2,505 P34, 3,8, $3,12}, {Bo,0rs 2,15}, {P2 775 b2 157}, { Do 7075 P2 1577 ),
{¢2,11“7¢’2,5“}x {¢2,9//x ¢2,3’}, {¢’2,11'”7¢’2,5'“}y {¢’2,9“”¢2,3“}; {¢>2,7///; ¢2,1})
{b3,6, 3,10, b3,2}
ag —a; —bg —by +2by —cog —c1 +2c2 =0
{d1,165 Po 7117, d2,1, 83,6, $3,10, 93,215 {Pa 075 $2,15}s {Po 775 2 137} {d2, 117, P25/}
{¢2,7”v¢2,13/’}1 {¢2,11//a¢2,5”}7 {¢2,9”7¢2,3’}7 {¢2,11/”7¢2,5”/}7 {¢2,9”/1¢2,3”}7
{¢3,4, ¢3,8, ¥3,12}
ap —a; —bg — by +2bs —cog+2¢c1 —c2 =0
{4’1,12” ) ¢2,9/“ ’ (152,3//1 ®3,6, 3,10, $3,2}, {¢2,9’7 $2,15}, {‘152,7/7 452,13’ Iz {¢2,11’ ’ ‘152,5/}7
{¢2,7“v¢2,13”}1 {¢2,11"1¢2,5”}7 {¢72,9”7¢2,3'}1 {‘152,11”’»‘;52,5’”}1 {¢2,7”’1¢72,1}1
{¢3,4, #3,8, 3,12}
ag —a; —bg — by +2bs +2¢cog —cy —co =0
{¢1,8”’7¢2,11’”7¢2,5”’v¢3,61 ¢3,101 ¢3,2}» {4’2,9'1 ¢2,15}7 {¢2.7’»¢2,13’}7 {¢2,11’7¢2,5’}1
{4’2,7“,@52,13“}: {¢2,11”)¢2,5”}7 {¢2,9”7¢2,3/}> {¢2,9///x¢2,3”}7 {¢'2,7/”7¢2,1}a
{b3,4, b3,8, b3,12}
ag —ay —bg+ba—co+c1 =0
{4’1,12“7(1’1,67¢'2‘9/’7¢’2,3'}; {¢2,9/,¢'2,15}; {¢’2,7/x¢2,13/}v {¢2,11’7¢’2,5'}> {¢2,7//x¢2,13”}7
{¢2,11”v¢72,5”}1
{¢2,11’”7 ¢2,5’” }’ {¢2,9"’ s ¢2,3"}’ {¢2,7”'f ¢’2,1}, {¢3,6a 453,10, ¢3,2}7 {4’3,4, ¢73,8’ ¢3,12}
ap—ar —bg+bzx—c1+c2=0
{¢1,16, ¢1,10’7 ¢2,7”v¢’2,13”}a {¢’2,9/a $2,15}, {¢2,7’»¢2,13’}7 {¢2,11’7¢2,5’}7 {¢2,11//»¢2,5”}7
{4’2.9“7‘1’2,3’}’
{bo 111775 o 5111} {bo o111 Po 311} {bo 7111, P21}, {d3,6, 3,105 ¢3,2}, {P3,4, d3,5, 3,12}
ag —ay —bg+ba+co—c2=0
{4)1.8’”’471,14”(752,11”1 ¢2,5”}’ {¢2,9’a 452,15}’ {¢2,7”¢2,13’}a {¢2,11”¢2,5’}’ {¢2,7”’ ¢72,13”}’
{92 9//:¢2 3/},
{bo11011: o501} {¢, 9/”7¢2 3ty Ao 7 d2,1}, {ds.6, ¢3,10, P32}, {P3,4, P3,8, 3,12}
ag—ai —bo+ by —co+ca=0
{¢1,12/,¢1,67¢2,9//’7¢2,3“}x {¢2,9/;¢2,15}, {¢2,7/7¢2,13'}; {¢’2,11/x¢2,5/}7 {¢2,7”7¢2,13”}7
{¢2,11”v¢2,5//}v
{b2,077s ba 51}y {bo 11177 o 511} {bo 7117, 2.1}, {b3,6, 03,10, ¢3,2}, {P3,4, b3,8, $3,12}
ap—ar —bg+b1+c1—c2=0
{4’1,8” ) l1’1,14/1 ¢2,11’”a ¢2,5W}7 {¢2,9’7 ¢2,15}7 {¢2,7’ ’ ¢2,13/}7 {¢2,11’ ) 4’2,5’}7 {¢2,7”7 ¢2,13” }7
{4’2,11”’(1’2,5"}7
{bo,017s b2 51 }s {Pa,0rrrs Po 311} {bo 7rrrs d2,1}, {bs,6, 3,10, 3,2}, {P3,4, d3,8, ¢3,12}
ag —ay —bg+bi+co—c1 =0
{¢1,4“ s ¢1,10” ¢72,7”’, ¢72,1}f {¢2,9’7 ¢2,15}, {¢72,7’ s ¢2,13’}f {¢2,11’a ¢2,5’ }’ {¢2,7”’ ¢72,13”}7
{¢2,11”7¢2,5“}a
{b2,0075 P23}, {2 117775 b2 5111 }s {2 91175 b2 317} {d3,65 $3,10, P32}, {34, b3,8, P3,12}

ap —a; —bg +2by —by —cog —c1 +2c2 =0

{¢1,12/:¢2,9//a ¢2,3/7¢3.6a ¢3,10: (753,2}7 {472,9/7(752,15}7 {052,7’:(752,13’}’ {¢2,11/7 ¢2,5/}7
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ao

ao

ao

ao

ao

ao

{¢2,7“v¢2,13”}7 {¢2,11”1¢2,5”}7 {472,11”’7(1’2,5”/}7 {¢2,9’”>¢2,3“}» {¢2,7’“v¢2,1}7

{¢3,4, #3,8, 3,12}

— a1y —bg+2by — by —cog+2c1 —co=0

{¢’1,8“ s ¢2,11” ’ ¢2,5”7 ¢73,6» ¢3,10, ¢’3,2}7 {¢2,9’) ¢2,15}7 {452,7’) ¢2,13’ }» {¢2,11’ > ¢2,5’ }7
{4’2,7“,@52,13“}: {¢2,9//x ¢2,3’}, {¢2,11'”7¢’2,5'“}y {¢’2,9“”¢2,3“}; {¢>2,7///; $2,1},

{¢3,4, b3,5, ¢3,12}

—a1 —bo+2by —bas+2co)—c1 —ca =0

{471,4" ’ ¢2,7": ¢’2,13”a $3,65 3,10, $3,2}5 {452,9’ #2151}, {¢2,7’7 ¢2,13' b {¢’2,11' ’ ¢2,5’ b
{4’2,11”7432,5”}1 {¢2,9’/a¢2,3’}7 {¢2,11’”7¢2,5’”}7 {¢2,9/”v¢2,3//}7 {¢2,7’/M¢2,1}7

{¢3,4, ¢3,8, ¥3,12}

—ay —by +ba—co+c2=0

{¢1.16, ¢1,10”7 ¢2,7’v¢2,13’}a {¢2,9’7¢2,15}7 {¢2,11’7¢2,5'}7 {¢2,7”7¢2,13”}7 {‘1’2,11”»¢2,5”}7
{¢2 9“7‘1’2 3/}»

{b2, 11015 b2 51}, { P2 g///7¢2 31ty Aba qrry P21}, {d3,65 ¢3,105 03,2}, {P3,4, d3,5, 3,12}
—aj —by+bater—ez=

{¢1,12”7¢1,18’7¢2,9’1 ¢2,15}1 {¢2,7’7¢2.13’}1 {¢2,11” 4’2,5’}7 {¢2,7"v¢2,13”}7 {¢72,11”a ¢2,5”}7
{2 9“7¢2 3/};

{21177, 35}, {a, 9/”v¢2 31y Ao s 2,1}, {ds,6, P3,10, P32}, {P3,4, P3,8, P3,12}
—a1—bi +by+co—c1=

{¢1,8”’7¢1,14”’¢2,11’) ¢2,5/}7 {¢’2,9/x $2,15}, {¢2,7’7¢’2,13'}> {¢2,7“,¢2,13“}x {¢2,11”7¢’2,5“}’
{¢2,9”v¢2,3’}a

{¢2,11"(f)7 G510}y {2,015 o g1}y {Po 711 d2,1}, {36, 03,10, 3,2}, {¢3,4, 03,8, P3,12}

—ai =

{4)1,07 ¢1,6}a {¢1,4’v¢71,10/}7 {¢1,8’7¢1,14/}7 {¢1,4//7¢1,10”}7 {¢1,8”7¢1,14”}1 {¢1,12’7¢’1,1s/}7
{d’l,s’” ) ¢1,14"’ }’ {¢1,12// ) ¢1,18"}1 {‘151,16; 451,22}’ {¢2,9’a (252,15}, {¢2,7’f ¢72,13’ }’
{¢2,11’7¢2,5/}7 {¢2,7”7¢2,13”}7 {¢2,11”:¢2,5//}a {¢2,9//a¢2,3’}: {¢2,11'”7¢2,5'”}»

{b2,0117: 02,30}, {b2 717 2,1}, {b3,6, #3,4, $3,10, b3,8, $3,2, $3,12}

—ay+bi—bys—co+c1 =0

{¢1,8“:¢1,14“':¢2,11/a ¢2,5/}: {452,9':(752,15}, {¢2,7/a ¢2,13/}7 {¢2,7”7¢2,13“}7 {¢2,11”7 ‘152,5”}7
{4’2,9”74’2,3’}7

{bo, 11015 251}, {ba 01y b 50}y {Pa 77, 2,1}, {@3,6, d3,10, P3,2}, {H3,4, P3,8, #5312}
—a1+b;y —bz —c1+c2=0

{¢1,12’7¢1,18”7¢2,9’7 4)2,15}7 {‘152,7’74)2,13'}1 {¢2,11’7 4’2,5’}7 {¢2,7//»¢2,13”}7 {¢2,11”a ¢2,5”}7
{¢2,9”7¢2,3’}1

{Po 1115 Do 5111}y {bo,grrs b 311}y {bo grirs 2,1}, {b3,6, 3,105 #3,2}, {h3,4, 3,8, d3,12}
—a1+br —ba+cop—c2=0

{¢1,4” ) ¢1,22, ¢2,7’ ) ¢)2,13’}’ {¢2,9” ¢2,15}’ {¢2,11’ ) ¢2,5’}a {¢2,7”1 ¢2,13”}7 {¢2,11” 3 ¢2,5”}7
{¢2,9”:¢2,3/}7

{bo, 11015 o501}y {ba 015 b 50}y {Pa 7, 2,1}, {@3,6, b3,10, P3,2}, {H3,4, P38, #3,12}

— a1 +bo —2b1 +bz—2cop+c1+c2=0

{‘f’l,m” ’ ¢2,7“ ’ ¢2,13//a $3.4, $3,8, $3,12}, {¢2,9/7 $2,15}, {¢2,7/7 ‘152,13’ b {¢2,11’ ’ ¢2,5/}7
{¢2,11”7¢2,5”}7

{b2,007: P25}y {2 11717, b2 50}y Lo 011y Po 51}y {bo 7111, d2,1}, {0365 H3,10, P3,2}

— a1 +bg —2by +ba+co—2c1+c2=0

{b1,1477 P2,1177: 2,505 3,4, 3,8, b3,12}, {P2 975 b2,15}, {b2 775 b2 137} {b2,117: b2,50 )
{472,7“"152,13”}, {¢2,9”a ¢’2,3’}, {¢2,11’”7¢’2,5'“}, {¢’2,9'”7¢2,3”}a {¢2,7”'x ¢’2,1}»
{b3,6,®3,10, b3,2}

—a1 +bg—2by +b2+co+c1 —2c2=0

{b1187 2,017, b2 375 3.4, P38, 3,12}, {Pa 9, 2,15}, {Po 77 b2 130}, {21175 b2 50 )
{4’2,7”»‘152,13”}1 {¢2,11//a¢2,5”}7 {452,11”/7452,5”’}7 {¢2,9’”7¢2,3”}» {¢2,7///7¢2,1}7

{#3,6, 3,10, ¢3,2}

—ay +byp—b1 —co+c1 =0

{¢1,4' ’ ¢1,10//1 ‘752,7”/7 ‘132,1}1 {¢2,9’7 ¢2,15}7 {¢2,7’ ) ¢2,13’ }a {¢2,11/7 ‘132,5’ }7 {‘152,7//1 ‘152,13”}7
{¢2,11”7¢2,5”}1

{4’2,9“’@52,3/}7 {452,11///: ¢2,5”/}7 {452,9”/7 ¢2,3“}, {¢’3,6, ®3,10, ¢3,2}7 {¢3,4: ¢3,8’ ¢3,12}
—a1+byg—by —c1+c2=0

{¢1,8’ s ‘151,14”1 ¢2,11’”1 ¢2,5W}> {¢2,9’1 ¢72,15}» {¢2,7’ ) ¢2,13/}7 {¢2,11’ s ¢2,5’}7 {¢’2,7” ’ ¢2,13”}v
{4’2,11”7(1’2,5“}’

{2,011 2.3} {2,007, o 51} {2 7117, G2,1}, {03,6, P3,10, P32}, {¢3,4, P3,5, P3,12}

—ay +bog—bi1+co—c2=0

{10, ¢1,1s’7¢2,9’”7¢2,3“}x {¢2,9’7 $2,15}, {¢’2,7’7¢’2,13'}1 {¢2,11" ¢'2,5'}» {¢2,7//x ¢’2,13”}7
{‘1’2,11”7¢2,5”}1

{b2,077s b2 31}y {ba 11177 o 511} {bo 7117, 2.1}, {b3,6, b3,10, ¢3,2}, {P3,4, b3,8, $3,12}
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ap —ai +bp—ba—co+ec2=0
{¢1,8’7¢1,14”’7¢2,11”1 ¢2,5”}v {¢2,9’7 ¢2,15}a {¢2,7’v¢2,13/}7 {4’2,11’7@52,5’}7 {¢2,7’/7 ‘152,13”}7
{¢2 97 (o2 3’}7
{b2,11177, ¢2 51}y {0a, 9///7¢2 31ty Aba qrry P21}, {d3,65 3,105 03,2}, {P3,4, d3,5, 3,12}
ao*a1+b0*bz+01*02:
{¢1‘4’ , P1,22, ¢2,7” s ¢2,1.5"} {¢72,9’ s ¢2,15} {¢2,7'f ¢’2,13’} {¢2,11" ¢2,5’} {¢2,11" ) ¢2,5”}7
{¢2 975 Pa, 3}
{2,111, 2 501}, {2 9/”v¢2 s b b2, 21}, {d3,6, 83,10, @3,2}, {934, P3,8, P3,12}
ag —ai +bg — bz +co— 1 =
{¢1 0 ¢1,1s”v ¢2,9”7¢2,3/} {¢2,9/7 ‘152,15} {¢’2,7/a ¢2,13/} {¢2,11’7¢2,5/} {¢2,7//a ¢2,13”}7
{¢2,11”7¢2,5”}7
{bo, 11015 a5}, {ba 015 b2 50}y {Pa 77, 2,1}, {@3,6, d3,10, P3,2}, {H3,4, P3,8, #3512}
ap —ay +bo + b1 —2ba —2¢co+c1+ca=0
{b1,1a17, o117, o 51175 P3,45 3,8, 3,12} {2 975 P2,15 )}, {da 7/, P2 137}y {P2,1175 P257 ),
{¢2,7"’¢2,13"}s {¢2,11":¢2,5”}7 {¢2,9”7¢2,3'}5 {¢2,9”"¢2,3”}7 {¢2,7”M¢2,1}a
{b3,6, 3,10, b3,2}
ag — a1 +bo+by —2ba +co —2c1 +c2 =0
{b1,1877s b2 01175 b 3175 B34, B35, 03,12}, {Pa 975 d2,15}, {Pa 775 2 137} {b2 1175 P25/}
{¢2,7”7¢2,13“}a {¢2,11//1¢2,5”}7 {¢2,9”7¢2,3/}a {¢2,11///7¢2,5/”}7 {¢2,7Wa¢2,1}a
{#3,6, 3,10, ¢3,2}
ag —ar +bo+by —2ba +co+c1 —2c2=0
{b1,22, b 7111, 2,1, 3,4, 3,5, b3,12}, {P2 97, 2,15}, {Po 77, b 157} {Po 1175 P2 57}
{¢’2,7”v¢2,13”}7 {¢2,11”»¢2,5”}7 {472,9”7(/)2.3/}7 {¢2,11”'»¢2,5’”}7 {¢2,9”’7¢2,3”}7
{936, 3,10, ¥3,2}
ag —ai + 2bg — by —bs —cog —c1 +2¢c2 =0
{¢1,8’»¢2,11’7 ¢2,5’7¢3,6’ ¢3,10» ¢3,2}7 {4’2,9/»(152,15}7 {4)2,7’»(152,13’}’ {¢2,7”’ ¢2,13”}v
{¢2,11” ) ¢2,5”}) {¢2,9”) ¢2,3’ }’ {¢2,11’” ’ ¢2,5’“ }’ {¢2,9”’ ’ ¢2,3”}a {¢2,7”’) ¢’2,1}»
{b3,4, b3,8, b3,12}
ag —ai; +2bg — by —by —co+2¢c1 —co=0
{4’1,4',@52,7’7 $2,1875 $3,6, 3,10, P3,2}, {472,9'»(152,15}’ {¢2,11"¢2,5'}7 {¢2,7”v 4’2,13”}’
{¢2,11”7¢2,5”}1 {¢2,9’/a¢2,3’}7 {¢2,11’”7¢2,5'”}7 {¢2,9/”7¢2,3//}7 {¢2,7’/M¢2,1}»
{¢3,4, ¢3,8, ¥3,12}
ap —ai +2bg — by —bs +2¢c)—c1 —c2 =0
{¢1.0, ¢2,9’ 2 $2,15, $3,65 $3,10, P3,2}, {¢2,7’7 P2 13/ I3 {¢2,11’a ¢2,5’}7 {¢2,7” ) ¢2,13” H
{¢2,11”7¢2,5”}1 {¢2,9”1¢2,3’}v {¢2.11’”7¢2,5’”}» {¢2,9'”v¢2,3”}’ {¢2,7W1¢2,1}»
{¢3,4, #3,8, 3,12}

Now, by Lemma A.1.1, the generic Hecke algebra H(Gs) of G is iso-
morphic to the subalgebra H := (S,U) of the following specialization H of
H(Gr)

H::<S,T,U

_ _ 3 . (S=z0)(S—z1)=0
STU=TUS =UST, T° =1, 77" 7 0 >

The algebra H is the twisted symmetric algebra of the cyclic group C5 over
the symmetric subalgebra H and this holds for all further specializations
of the parameters. If we denote by ¢ the characters of H and by v the
characters of H, we have

Indg(%,o) = (1,0 + P14 + P18 Indg(¢1,4) = Q14 + Q1,87 + P1,127
IndB (1) =1+ b112 +d116  IndB(Yi6) = P16+ Pr107 + G114
d2 (¢1.10) = d1.100 + b11ar + 1180 Indﬁ(wl,m) = ¢1,14' + Q1,18 + P1,22
Indj (Ya,51) = bogr + bo130 + Posm  Indp(P230) = por + do117 + 230

Indf (Ya31) = bo11r + bopm + doy  Indp(Par) = dogr + 211 + dois

Indf (1h21) = pogn + das + d21 Ind (Yo50) = bogm + do13 + Po 50

Indj(¥32) = ds6+ 3,10 + P32 Indj (¥34) = d3a+ 35+ P3,12-
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Let _
9.{ i (G)ig™ (0<i<2),
o= (@) (0<k < 3)

be a cyclotomic specialization of H(Gg). Let us consider the corresponding
cyclotomic specialization of H(G7)

T (C2)’iq‘“ (0<i<?2),
V:qy— (G (0<5<3
2k — (G)Fger (0 < k < 3).

—
~—

Then (H(G7))p is the twisted symmetric algebra of the cyclic group Cj
over the symmetric subalgebra (H(Gg))g. Therefore, the essential hyper-
planes for G are obtained from the essential hyperplanes for G7 by setting
bo = b1 =bs =0. If now, for example, 6 is associated with no essential hyper-
plane for Gg, then the Rouquier blocks of (H(G7))y are:

{b1,0, 01,47, b187}, {147, P1,87, P1,127 ), { 1,87, D112/, 1,16},
{b1.6: 1,107, P14}, {D1,107, G114, P1180 }, {P11a7, D118, D122},
{b2,9/, 2,137, 2,507, 2 70, P2 117, 215},

{27, b21177, P23, P29, 2,130, P25 },

{p2,117, 2,7, 2,31, P29, 250, D21}, { P36, P3,10, P32}, { P34, P38, 3,12}

By Clifford theory, the Rouquier blocks of (H(Gs))s, i-e., the Rouquier blocks
associated with no essential hyperplane for G are:

{10}, {¥1a}s {¥18}, {¥16}s {¥1,10) {¥1,14),
{ha 5, ho 7}, {23, Y25}, {23,921}, {2}, {¥3.4}-

In the same way, we obtain the Rouquier blocks associated with each essential
hyperplane for Gg. Here we present only the non-trivial ones:

No essential hyperplane

{2 5“’11’2 7} {2 3”’7#2 '} {¥ 3’71/’2 1}
C1 — C2 =

{U’l 477/11 8} {% 1077/)1 14} {wz 5//,1112 7} {wz 3”7#’2 3’7¢2 1,1/12 5/}
cp —C1 =

{1/11 0;’¢1,4} {wl,ﬁvwl,lo} {Tbg,f,//;¢2,3”7w2,7;w2,5’} {%,yﬂbz,l}
Cop — C2 = 0

{¥1,0,%1,8}s {¥1,6, %114}, {257, %0 575 V2,7, 92,1}, {0 57,400 5/ }
agp —a1 —2cop+c1+c2 =0

{wl 6;'¢'2 5”7#’2 7;1/)3 4} {¢2 3//»1112 5/} {1/12 3/77/}2 1}
ag —ay +co — 2c1 + ez =

{¥1,10, V2 317, %o, 5/’1113,4} {¥a.507, 02,7}, {0 37,021}
ao—a1+co+c1—2cz =0

{114, %2 37, V2,1, 5,4}, {¥a 57, %2,7}, {237, %0 5}
ag — a1 —co — c1 + 2¢2 =0

{¥1,8, %2 37, V2,1, 3,2}, {a s, ¥2,7}, {a 57,90 51}
ag — a1 —co+2¢1 —c2 =0

{U’l 45 7/)2 3”7@2’2 5753, 2} {1/’2,5”7'112,7}7 {¢2,3’7w2,1}
ag—a1+2c0—C1—C2=0

{wl,O; "/’2 ,57 w2,7; '¢3,2}> {% 3“»"/12,5/}7 {'4112 3/711’2,1}
a07a1760+61:0

{¥1,4,%1,65 %, 3”1/’2 1}h Va5 ¥2,7}, {37, ¥a 50}
ao—al—cl-‘rfzz

{18, 91,105 V2 57, P2,7}, {2 37,0 51} {Wa 37,21}
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ap —ay +co—c2 =0

{¥1,00%1,14, % 3700 51} {5005 %27} {ha 37, Y21}
ao—a1—00+02:o

{wl,&wl,ﬁ,w2,3//;¢2,5’}7 {w2,5//7¢2,7}7 {w2‘3/7¢2,1}
ag—ai +c1 —ceg =0

{1,4, 91,10, %o 511, 02,7}, {a 307, Vo 51} {tha 375 ¥2,1}
ag—ai +co—c1 =0

{w1,0,¢1,107¢2,3/a'¢'2,1}1 {¢2,5//a'¢2,7}7 {1/)2,3//»1112,5/}
apg —ap = 0

{¥1,0,%1,6} {¥1,4,%1,10}, {¥1,8: %114}, {507,027}, {a 37,00 51}, {¥a 57,0211,

{¥3,2,%3,4}

Since it will take too many pages to give here the Rouquier blocks asso-
ciated with all essential hyperplanes for all exceptional irreducible complex
reflection groups, and in order to make it easier to work with them, we have
stored these data in a computer file and created two GAP functions which
display them. These functions are called AllBlocks and DisplayAllBlocks and
they can be found on the author’s webpage, along with explanations for their
use. Here is an example of the use of the second one on the group Gjy.

FEzxample 5.2.4.

gap> W:=ComplexReflectionGroup (4) ;

gap> DisplayAllBlocks (W) ;

No essential hyperplane

(["phi{1,0}"], ["phi{1,43}"], ["phi{1,8}"], ["phi{2,5}"],
["phi{2,3}"], ["phi{2,1}"], ["phi{3,2}"]]

c_1-c_2=0

[["phi{1,0}"], ["phi{1,4}","phi{1,8}","phi{2,5}"],
["phi{2,3}","phi{2,1}"], ["phi{3,2}"]1]

c_0-c_1=0

[["phi{1,0}","phi{1,4}","phi{2,1}"], ["phi{1,8}"],
["phi{2,5}","phi{2,3}"], ["phi{3,2}"]]

c_0-c_2=0

[["phi{1,0}","phi{1,8}","phi{2,3}"], ["phi{1,43}"],
["phi{2,5}","phi{2,1}"], ["phi{3,2}"]1]
2c_0-c_1-c_2=0
[["phi{1,0}","phi{2,5}","phi{3,2}"],

["phi{1,4}"], ["phi{1,8}"], ["phi{2,3}"],["phi{2,1}"]]
c_0-2c_1+c_2=0

[["phi{1,0}"], ["phi{1,4}","phi{2,3}","phi{3,2}"],
["phi{1,8}"], ["phi{2,5}"], ["phi{2,1}"]]
c_0+c_1-2c_2=0
[["phi{1,0}"], ["phi{1,4}"], ["phi{1,8}","phi{2,1}",
"phi{3,2}"], ["phi{2,5}"], ["phi{2,3}"]]

Let W be any exceptional irreducible complex reflection group. Now that
we have the Rouquier blocks associated with no and with each essential hy-
perplane for W, we can determine the Rouquier blocks of any cyclotomic
Hecke algebra associated to W with the use of Theorem 5.1.1. We have
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also created the GAP functions RouquierBlocks and DisplayRouquierBlocks
(corresponding to AllBlocks and DisplayAllBlocks) which, given a cyclotomic
specialization ¢ : uc ; — ¢l 24", check to which essential hyperplanes the
integers ne ; belong and, using the stored data, apply Theorem 5.1.1 to return
the Rouquier blocks of Hy. We will give here an example of their use on Gjy.

Example 5.2.5. The generic Hecke algebra of G4 has a presantation of the
form

_ e (S = u0)(S — ur)(S —uz) = 0
H(Gy) = <S,T ’ TST =T8T, (T_uz)(T—ul)(T_W) =0 >

If we want to calculate the Rouquier blocks of the cyclotomic Hecke algebra

- _ (S =1(S = Ga)(S —¢q*) =0

we use the following commands (the way to define a cyclotomic Hecke algebra
in CHEVIE is explained in the GAP manual, cf., for example, [55]):

gap> W:=ComplexReflectionGroup (4) ;

gap> H:=Hecke(W, [[1,E(3)*q,E(3)"2xq~2]1]1);

gap> DisplayRouquierBlocks (H);

[["phi{1,0}"], ["phi{1,4}","phi{2,3}","phi{3,2}"],
["phi{1,8}"], ["phi{2,5}"], [ "phi{2,1}"]]

5.3 The Groups G(d,1,r)

The group G(d, 1,r) is the group of all r X r monomial matrices with non-zero
entries in 4. It is isomorphic to the wreath product pg! G, and its field of
definition is Q({y).

We will start by introducing some combinatorial notation and results
(cf. [18], §3A) which will be useful for the description of the Rouquier blocks
of the cyclotomic Ariki-Koike algebras, i.e., the cyclotomic Hecke algebras
associated to the group G(d,1,r).

5.3.1 Combinatorics

Let A = (A1, A, ..., An) be a partition, i.e., a finite decreasing sequence of
positive integers

The integer
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A= A4 A+ 4 g

is called the size of X\. We also say that A\ is a partition of |\|. The integer h
is called the height of A and we set h) := h. To each partition \ we associate

its B-number, Bx = (B1, B2, .- ., Bn), defined by

51 2:h+A171,ﬂ2 Z:h+)\272,...,ﬂhlih+>\h7h.

Ezample 5.3.1. It A\ = (4,2,2,1), then 8\ = (7,4,3,1).

Let n be a non-negative integer. The n-shifted 3-number of X is the sequence
of numbers defined by

Baln] == (B +n,B2+n,....0h+n,n—1,n—2,...,1,0).

We have (3,[0] = (a.
Ezample 5.3.2. 1t A = (4,2,2,1), then \[3] = (10,7,6,4,2,1,0).

Multipartitions

Let d be a positive integer and let A = (A0, A A(d=1) be a d-partition,
i.e., a family of d partitions indexed by the set {0,1,...,d — 1}. We set

A = hy@, B = By

and we have

A@ = (DA A,

The integer

d—1
L= N
a=0

is called the size of A. We also say that \ is a d-partition of |\|.

Ordinary Symbols

Let A = (MO XD Ad=D) be a d-partition. We call d-height of A the
family (b, M ... A=) and we define the height of A to be the integer

hy :=max {h¥[0<a<d—1}.

Definition 5.3.3. The ordinary standard symbol of X is the family of num-
bers defined by

By = (Bgm,B;U, . ,Bgd‘”) ,
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where, for all a (0 < a <d— 1), we have
B := B@[hy — @],

An ordinary symbol of X\ is a symbol obtained from the ordinary standard
symbol by shifting all the rows by the same integer.

The ordinary standard symbol of a d-partition A is of the form

BY =" b . b;‘%’
1 1 1 1
BY =" o) bl

(d=1) _ (d=1) H(d—1) (d—1)
BT = p(D D pldn),

The ordinary content of a d-partition of ordinary standard symbol B) is
the multiset
Conty := B/(\O) u Bg\l) u---u Bgdil)

or (with the above notation) the polynomial defined by

Conty () := Z Z 29

0<a<d 1<i<hy

Ezample 5.3.4. If d =2 and XA = ((2,1), (3)), then

31
By = .
We have Conty = {0,1,3,4} or Conty(z) =1+ z + 2 + 2.

Charged Symbols
Let us suppose that we have a given “weight system”, i.e., a family of integers
m:= (m(o), m®, ... 7m(d*l)).

Let A = MA@ AW A@=1) be a d-partition. We call (d, m)-charged height
of X the family (he®, he™ ... held=1), where

he® = pO) — m(o), he = pM) — m(l), ceey held=1) .= pld=1) _ pp(d=1),
We define the m-charged height of X\ to be the integer

hey = max{hc(“) [0<a<d-1}.



5.3 The Groups G(d,1,r) 107

Definition 5.3.5. The m-charged standard symbol of A is the family of num-
bers defined by

Bey = (B, B, ... BTV,
where, for all a (0 < a <d— 1), we have
Bcg\a) = ﬁ(a) [h,C)\ — hc(a)].
An m-charged symbol of A is a symbol obtained from the m-charged standard
symbol by shifting all the rows by the same integer.
Remark. The ordinary symbols correspond to the weight system
m(o) — m(l) =R m(dil) — O

The m-charged standard symbol of A is a tableau of numbers arranged
into d rows indexed by the set {0,1,...,d — 1} such that the a* row has
length equal to hey +m(®. For all a (0<a<d-1), weset 1@) .= hey +ml(@)
and we denote by

(a) bcga) bc . bclfa)

the a*™ row of the m-charged standard symbol.
The m-charged content of a d-partition of m-charged standard symbol Bc)y
is the multiset
Contc)y, := Bcg\o) U Bcg\l) -U Bc (d—1)

or (with the above notation) the polynomial defined by

Contcy (x Z Z zb be™ .

0<a<d1<i<|(@)

Ezample 5.3.6. f d =2, A =((2,1),(3)) and m = (—1,2), then

31
Bey = .
“ (73210)

We have Contcy = {{0,1,1,2,3,3,7}} or Contcy(x) = 142z + 22+ 223 +27.

5.3.2 Ariki-Koike Algebras

The generic Ariki-Koike algebra associated to G(d, 1,r) (cf. [4,19]) is the al-
gebra ‘Hg , generated over the Laurent polynomial ring in d+1 indeterminates

,_ —1 —1 -1 -1
Lg = Dlug, ug w1, Uy ..., Ug—1,Uy 1, T, ]
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by the elements s, t1,t2,...,t,._1 satisfying the relations:

stist; = tistys, st; =t;s, for j # 1,

tjtj+1tj - tj+1tjtj+17 titj = tjti, for ‘Z — j‘ > 17
(S — UO)(S — ul) s (S — 'U'd—l) = O,

(t; —z)(t;+1)=0,forall j=1,2,...,r— 1

Remark. If the last relation in the above definition is replaced by
(t —)(t; —1) =0,

then we obtain a presentation of the generic Hecke algebra of G(d,1,r). How-
ever, the second “—7” becomes a “+”7 when we specialize via a cyclotomic
specialization, so we might as well consider the generic Ariki-Koike algebra
instead.

For every d-partition A\ of r, we consider the free £;-module which has as
basis the family of standard tableaux of A\. We can give to this module the
structure of a Hy -module (cf. [3,4,39]) and hence obtain the Specht module
Sp* associated to .

Let K4 be the field of fractions of L4. The KyHg -module ICdSpA7 ob-
tained by extension of scalars, is absolutely irreducible and every irreducible
KaHg r-module is isomorphic to a module of this type. Thus, Kg is a splitting
field for H4,. We denote by x» the (absolutely) irreducible character of the
KaHg r-module ICdSpA.

5.3.3 Rouquier Blocks, Charged Content and Residues

Let ¢ be an indeterminate and let

¢>-{u“HCSme (0<a<d),

T —q"

be a cyclotomic specialization of H, . Since the algebra KgqHy,, is split, we
can deduce easily from Theorem 4.2.4 and Proposition 4.3.4 that the algebra
Q(Ca,q)(Ha,r)g is split semisimple. Therefore, the Rouquier blocks of (Ha,r)e
are the blocks of the algebra Rgc,)(q)(Ha,r)e, where

Raocen (@) = ZlCalla-a ™. (q" — 1),24].

Theorem 3.13 in [18] gives a description of the Rouquier blocks of (H4.,)4
when n # 0. However, in the proof it is supposed that 1 — (; always belongs
to a prime ideal of Z[(4]. This is not correct, unless d is a power of a prime
number. Therefore, we will state here the part of the theorem that is correct
and only for the case n = 1.
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Theorem 5.3.7. Let ¢ be a cyclotomic specialization of Hgq, such that
o(x) = q. Let X and p be two d-partitions of r. If the irreducible char-
acters (xa)¢ and (xu)¢ are in the same Rouquier block of (Hayr)g, then
Contcy = Contc,, with respect to the weight system m = (mo,ma,...,Mg—1).
The converse holds when d is a power of a prime number.

Remark. In[25], we have proved that the converse of Theorem 5.3.7, and thus
the description by Broué and Kim, holds when ¢ is the spetsial cyclotomic
specialization and d is any positive integer.

Set O := Rg(c,)(q). Let p be a prime ideal of Z[(4] lying over a prime
number p. By Proposition 4.4.2, the ring O is a Dedekind ring, whence O,0
is a discrete valuation ring. Let us denote by k, the residue field of Oy and
by 7, the canonical surjection Oy, — ky. Following Corollary 2.1.14, the
morphism 7, induces a block bijection between Oy (Ha,r)e and ky(Ha,r)g-

Definition 5.3.8. The diagram of a d-partition \ is the set
A i={(i,j,a)[(0<a<d—1)(1<i<h@)1<j<A)}

A node of X is any ordered triple (i,j,a) € [\]. The p-residue of the node
x = (i, J,a) with respect to ¢ is

(mp (4 = 1), mp (¢(ua))), if n = 0 and 7y (¢(ua)) 7# mp(P(us))
for b # a,

resp o (x) 1=
Tp (d(ugz? ™)), otherwise.

Let Resp 4 1= {resp ¢(z) |z € [A] for some d-partition A of r} be the set of
all possible residues. For any d-partition A of » and f € Resp 4, we set

Cr(A) =z € [N |resy ¢ (2) = f}-

Definition 5.3.9. Let A and p be two d-partitions of . We say that A and p
are p-residue equivalent with respect to ¢ if Cr(A) = Cy(p) for all f € Resy 4.

Then [48], Theorem 2.13 implies the following:

Theorem 5.3.10. Let A and p be two d-partitions of . The irreducible char-
acters (xx)¢ and (xu)p are in the same block of Opo(Har)e if and only if
A and p are p-residue equivalent with respect to ¢.

Corollary 5.3.11. Let p; and ps be two prime ideals of Z[(q4] lying over
the same prime number p. Then the blocks of Op,0(Har)e coincide with the
blocks of Op,0(Ha,r)e-
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Proof. Let p be a prime ideal of Z[(4] lying over p and let a,b,¢,d € Z such
that 0 < a < b < d— 1. We have m,(¢%¢%) =, (¢4¢?) if and only if c=d and
7p(C3) = mp(CY). If mp(C2) =mp(CY), then the element (3 — ¢4 belongs to all
the prime ideals lying over p. Following the definition of p-residue, we deduce
that two d-partitions A and p of r are pp-residue equivalent with respect to
¢ if and only if X\ and p are po-residue equivalent with respect to ¢. |

Theorem 5.3.10, combined with Proposition 4.4.4, gives the following;:

Proposition 5.3.12. Let A and p be two d-partitions of r. The irreducible
characters (xx)e and (xu)e are in the same Rouquier block of (Ha,r)e if and
only if there exist a finite sequence Aoy, \(1), - - -, A(m) of d-partitions of r and
a finite sequence p1, ..., pm of ¢-bad prime ideals for G(d,1,r) such that

° )\(0) =\ and /\(m) = U,
o foralli (1 < i < m), the d-partitions \;_1) and Ay are p;-residue
equivalent with respect to ¢.

5.3.4 FEssential Hyperplanes

The Schur elements of the algebra K4H 4, have been independently calculated
by Geck, Tancu and Malle [36] and by Mathas [54]. Following their description
by Theorem A.7.2, we deduce that the essential hyperplanes for G(d, 1,r) are
of the form

e N =0,
o KN+ My, — My =0, where 0 <s<t<dand —r<k<r.

The hyperplane N = 0 is always essential for G(d, 1, 7). Let H be a hyperplane
of the form kN + My — M; = 0, where 0 < s <t < dand —r < k < r. The
hyperplane H is essential for G(d, 1, r) if and only if there exists a prime ideal
p of Z[(4] such that ¢5 — ¢} € p. In this case, H is p-essential for G(d, 1,r).
In particular, if p; and py are two prime ideals of Z[(;] lying over the same
prime number p, then H is pi-essential if and only if it is po-essential.

Ezample 5.3.13. The hyperplane My = M; is (2)-essential for G(2,1,7),
whereas it is not essential for G(6,1,r), for all » > 0.

5.3.5 Results

Now we are going to determine the Rouquier blocks associated with no and
with each essential hyperplane for G(d, 1, 7). All the results presented in this
section have been first published in [25].
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Proposition 5.3.14. The Rouquier blocks associated with no essential hy-
perplane for G(d,1,r) are trivial.

Proof. Let ¢ be a cyclotomic specialization associated with no essential hyper-
plane for G(d, 1,r). By Theorem A.7.2, the coefficients of the Schur elements
of KyHa, are units in Z[(4]. We deduce that there are no ¢-bad prime ideals,
whence every irreducible character is a Rouquier block by itself. |

Proposition 5.3.15. Let A\, be two d-partitions of r. The following two
assertions are equivalent:

(i) The irreducible characters xx and x, are in the same Rougquier block
associated with the essential hyperplane N = 0.
(ii) We have |\ | = |uD| for alla =0,1,...,d— 1.

Proof. Let

r +—1

¢.{uar—>gquma (0<a<d),

be a cyclotomic specialization associated with the essential hyperplane N = 0.

(i)=(ii) Due to Proposition 5.3.12, it is enough to prove that if two
d-partitions A, u of 7 are p-residue equivalent with respect to ¢ for some
prime ideal p of Z[(,], then |A(@)| = |u(@)]| for all a = 0,1,...,d — 1. Since
the integers m, (0 < a < d) do not belong to another essential hyperplane
for G(d,1,r), we have m,(C4q™=) # my(Chq™) for all 0 < a < b < d. If
xz = (4,7,a) is a node of X or pu, then resy o(z) = (mp(j — 1), mp((Gq™)).
Since A and p are p-residue equivalent, the number of nodes of A whose
p-residue’s second entry is m, ((§¢™<) must be equal to the number of nodes
of ;1 whose p-residue’s second entry is m,((j¢™<), foralla =0,1,...,d—1.
We deduce that

IND| = |{(i,j,a) | (1 <i <A <j <A
= [{(i,5,a) | (1 < i <A1 < j < ul)} = @)

foralla=0,1,...,d—1.
(5) = (1) Leta€{0,1,...,d—1}. It is enough to show that if A and p are
two distinct d-partitions of r such that

IND| = [p@] and A\®) = for all b # a,

then (xa)¢ and (xu)s are in the same Rouquier block of (Hg,)e. Set
1:=|A\@] = |u()]. The partitions A and u(®) correspond to two distinct
irreducible characters of the group &;. The cyclotomic Ariki-Koike algebra
obtained from H;; via a cyclotomic specialization associated with the
hyperplane N = 0 is isomorphic to the group algebra Z[&;]. For any finite
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group, it is known that 1 is the only block-idempotent of its group algebra
over Z (see also [58], §3, Remark 1). Thus, all irreducible characters of &;
belong to the same Rouquier block of Z[&;]. Proposition 5.3.12 implies

that there exist a finite sequence v(q), v/(1), .., V(m) of partitions of I and
a finite sequence p1,pa, ..., Pm of prime numbers dividing the order of &;
such that

°* V) = )\(a) and Vim) = #(a)’

e forall i (1 <i < m),v;_1) and v are (p;)-residue equivalent with
respect to the cyclotomic specialization of H;; associated with the es-
sential hyperplane N = 0.

For all ¢ (1 <i <m), we define v4; to be the d-partition of  such that
v = Ay and 1Y) == A®) for all b £ a.

Let p; be a prime ideal of Z[(4] lying over the prime number p;. Then we
have

o vg0=AXand vg;, = i,
e forall i (1 < i < m), vg;—1 and vy, are p;-residue equivalent with
respect to ¢.

By Proposition 5.3.12, the characters (xx)¢ and (x.)¢ are in the same
Rouquier block of (Hyr)e. [ |

Proposition 5.3.16. Let A\, pu be two d-partitions of r and let H be an es-
sential hyperplane for G(d,1,7) of the form kN + My — M, = 0, where
0<s<t<dand —r <k < r. The irreducible characters x» and x,
are in the same Rouquier block associated with the hyperplane H if and only
if the following conditions are satisfied:

(1) We have X% = 1@ for all a ¢ {s,t}.
(2) If ¥t = A AD) and pst = (), u®), then Contcyse = Conteyet
with respect to the weight system (0, k).

Proof. Let
5. {uwg‘;qma (0<j<d

r —q"

be a cyclotomic specialization associated with the essential hyperplane H.
We can assume, without loss of generality, that n = 1. We can also assume
that mg = 0 and m; = k.

Suppose that (xa)e and (x.)e belong to the same Rouquier block of
(Ha,r)¢- By Theorem 5.3.7, we have Contcy = Contc, with respect to the
weight system m = (mg,mq,...,mg_1). Since the m,, a ¢ {s,t}, can take
any value (as long as they do not belong to another essential hyperplane), the
equality Contcy = Contc,, yields the first condition. Moreover, the m-charged



5.3 The Groups G(d,1,r) 113

standard symbols Bcy and Be, must have the same cardinality, whence
hcx = hcy,. Therefore, we obtain

Bc(;) = E\a) [hey — hCE\a)] = ﬂl(ta) [he, — hc/(f)] Bc(“ for all a ¢ {s,t},
whence we deduce the following equality between multisets:
BCE\S) U Bcf\t) = Bcff) U Bcff).
We can assume that the mg, a ¢ {s,t}, are sufficiently large so that
hey € {hc hcg\t } and hey € {hc, (s) hc .
If A%t = (A A®) and gt = (u®), @), then we have

B, = B, Bl = B, B = Bel®), Bl =

ltbt /L“'t - BCS)
with respect to the weight system (0, k). We obtain Contcys: = Contc,,s+ with
respect to the weight system (0, k).

Now let us suppose that the conditions (1) and (2) are satisfied. Since H
is an essential hyperplane for G(d, 1, r), there exists a prime ideal p of Z[(4]
such that ¢ — ¢ € p. We are going to show that the partitions A and u are
p-residue equivalent with respect to ¢. Thanks to the first condition, we only
need to compare the p-residues of the nodes with third entry s or t.

Set [ := |A%*|. The first condition yields that |u**| = I. Let Ha,; be the
generic Ariki-Koike algebra associated to the group G(2,1,1). The algebra
Hs,; is defined over the Laurent polynomial ring

ZUo, Uy ', U, U X, XY,
Let us consider the cyclotomic specialization
9:Uy— 1,U; — —¢", X — q.

Due to Theorem 5.3.7, condition (2) implies that the characters (xxst)y
and (x,=)s belong to the same Rouquier block of (Hs;)y. We deduce that
EN + My — My =0 is a (2)-essential hyperplane for G(2,1,1) and that o is
associated with this hyperplane. Following Proposition 5.3.12, A** and u*!
must be (2)-residue equivalent with respect to 1. We have
e (i,5,0) € [X**] (respectively [p®']) if and only if (i,7,s) € [\ (respec-
tively [u]). Moreover, res(s) (i,7,0) = m2)(¢’ "), whereas res, (i, j, s) =
o (5 ):
o (i,7,1) € [X*'] (respectively [p®']) if and only if (i,75,¢t) € [\ (respec-
tively [u]). Moreover, res(a) (4, j, 1) = m(2)(—¢" ™7 ~7), whereas res, 4(i, j, 5)
_ t htj—i
= mp(Caq )-
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Note that we have m(9)(1) = 7m(2)(—1) and 7, (¢5) = mp(¢)). We deduce that
A5t and pst are (2)-residue equivalent with respect to 9 if and only if A and
1 are p-residue equivalent with respect to ¢. ]

The following result is a corollary of the above proposition. However, we
will show that it can also be obtained independently, with the use of the
Morita equivalences established in [30].

Corollary 5.3.17. Let A\, pu be two d-partitions of v and let H be an essential
hyperplane for G(d,1,r) of the form kN + My —M; =0, where 0 < s <t <d
and —r < k <r. Let

qs-{“aHCf;qm“ (0<a<d)

T —q"

be a cyclotomic specialization associated with the essential hyperplane H.
The irreducible characters (xx)¢ and (xu)e are in the same Rouquier block
of (Ha,r)¢ if and only if the following conditions are satisfied:

(1) We have X9 = (D) for all a ¢ {s,t}.

(2) If Xt = (AN XO) st = (u) 1) and 1 .= |\t = |u®t|, then the
characters (xxst)y and (Xust)9 belong to the same Rouquier block of the
cyclotomic Ariki-Koike algebra of G(2,1,1) obtained via the specialization

9 UO i qmstl = _qmth '_)qn

Proof. Set O := Rqc,)(q). Since H is an essential hyperplane for G(d, 1,r),
there exists a prime ideal p of Z[(4] such that (5 — ¢} € p. Due to
Corollary 5.3.11, the Rouquier blocks of (Hg,)s coincide with the blocks
of OpO(Hd7r)¢.

From now on, all algebras are considered over the ring O, 0. Following [30],
Theorem 1.1, we obtain that the algebra (Hg,,)e is Morita equivalent to the
algebra

A= B Hon)y @H(Gw)sr @ @ H(Sny o,

ny,....ng_1 >0
ny+...+ng_1=r7r

where ¢/ is the restriction of ¢ to Zlus, us ', up,u; bz, 21 and ¢ is the
restriction of ¢ to Z[x,x~1]. Therefore, (Hg,)s and A have the same blocks.

Since n # 0, the blocks of H(Sp, )¢, .., H(Gn,)e are trivial. Thus,
we obtain that the irreducible characters (xa)¢ and (x,.)¢ are in the same
(Rouquier) block of (Hg,, )4 if and only if the following conditions are satisfied:

(1) We have A(®) = (@) for all a ¢ {s,t}.
(2) If A5t = (A& 2O st o= (u), u®) and 1 := || = ||, then the
characters (xst)y and ()t )¢ belong to the same block of (Ha)e -
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Theorem 5.3.10 implies that the second condition holds if and only if the
2-partitions A\** and p*! are p-residue equivalent with respect to ¢’. Using
the same reasoning as in the proof of Proposition 5.3.16, we obtain that A%
and ! are p-residue equivalent with respect to ¢’ if and only if they are
(2)-residue equivalent with respect to 9, i.e., if and only if the characters
(Xast)y and (x,st)9 belong to the same Rouquier block of (Ha;)y. [ ]

Ezample 5.3.18. Let d := 3 and r := 3. The irreducible characters of
G(3,1,3) are parametrized by the 3-partitions of 3. The generic Ariki-Koike
algebra associated to G(3, 1, 3) is the algebra Hs 3 generated over the Laurent
polynomial ring in 4 indeterminates

—1 —1 —1 —1
Z[UO,UO Uy, Uy ,U2,Uy T, T ]

by the elements s, t1, to satisfying the relations:

° stlstl = tlstls, St2 = tQS, t1t2t1 = tgtltz,
° (S—UO)(S—Ul)(S—Ug):O,
° (t1—1')(t1+1):(t2—93)(t2+1):0

Let
¢.{um §qm (0<a<2),

r —q"

be a cyclotomic specialization of H3 5. The essential hyperplanes for G(3, 1, 3)
are:

e N=0.

° kN+M0—M1:Ofork:e{—Q,—l,O,l,Q}.
o KN+ My— My =0 for k€ {-2,-1,0,1,2}.
o kN + M, — My =0 for k€ {-2,-1,0,1,2}.
Let us suppose that my = 0, m; = 0, mg = 5 and n = 1. These integers belong
only to the essential hyperplane My — M7 = 0. Following Proposition 5.3.16,

two irreducible characters (xx)s, (xu)¢ are in the same Rouquier block of
(Hs,3)e if and only if

(1) We have \(?) = ;2.

(2) If A% := AO@ AD) and pO = (u@, uV), then Contcyor = Conte,o1
with respect to the weight system (0,0), i.e., Contyor = Cont 1.

The first condition yields immediately that the irreducible characters cor-

responding to the 3-partitions (0,0, (1,1,1)), (0,0,(2,1)) and (0,0, (3)) are

singletons. Moreover, we have:

321 210
B0 = (2 1 O) s B,y = (3 5 1) )
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31 10
Bne = (1 0) » B, = <3 1) ,

&
=
[ V]
>
—~
=
I
N
— Do
&
=
=
©
N/
=
|
N
DN =
~~

Hence, the Rouquier blocks of (H33), are:

{xc,m.ank
{xw@0,0,1,1)}
{xw,0,219}

X030}
{X((1,171),®,®)7X(@,(171,1),®)}7
{X(@n.00, x0.20).01
IX(3),0,0) X(0,3),0) }
{Xx(,1,),0> X((1),,1),0) 1
{X(@,0.0) X(),2.0}
10. {X((1,1),0,(1))> X(@,(1,1),(1)) }»
1L {X((2),0,(1)5 X(0,(2),() }»
12, {X((1),0,(1,1)): X(0,(1),(1,1) >
13 {x((1),0,2))5 X(0,(1),2 -

S N S al ol

©

By definition, these are the Rouquier blocks associated with the (1 — (3)-
essential hyperplane My — M; = 0.
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If we now take my = m; = ms = 0 and n = 1, then the Rouquier blocks
of (Hs3)e are unions of the Rouquier blocks associated with the essential
hyperplanes My — M; = 0, My — My = 0 and M; — Ms = 0. Following
Theorem 5.1.1, the Rouquier blocks of (Hs3), are:

—

{x,m.anh

{X0,1,1),0,0)5 X(0,(1,1,1),0)> X(@,0,(1,1,1)) }»

{X(2,1),0,0) X(0,2,1),0)5 X(0,0,(2,1)) }»

{X((3).0,0)5 X(0,(3).0), X(0,0,3)) }»

{X((l,l),(l),@)aX((l) (1,1),0)2X((1,1),0,(1))» X((1),0,(1,1)) X (0,(1,1),(1)) X (B,(1),(1, ))}7
{X((Q),(l),(l)):X((l),(2),(2)) X((2),0,(1))> X((1),0,(2))» X(0,(2),(1))s X(@,(1),( )}

A

5.4 The Groups G(2d,2,2)

Let d > 1. The group G(2d,2,2) has 4d irreducible characters of degree 1,
and d? — d irreducible characters of degree 2,

Xllclv le (OS k#l<d);

where x,° = x;;°. The field of definition of G(2d,2,2) is Q((aa)-
The generic Hecke algebra of the group G(2d,2,2) is the algebra Hag
generated over the Laurent polynomial ring in d 4+ 4 indeterminates

—1 —1 —1 —1 —1 —1 —1
Z[xo,wo y L1, L1 ,Y0,Yg sY1,Y1 20,20 521521 7'~~azd717'zd_1]

by the elements s, t, u satisfying the relations:

e stu = tus = ust,
o (s—wmo)(s—z1)=(t—yo)(t—y1) =(u—2)(u—21) (a—24-1) =0.

5.4.1 FEssential Hyperplanes

Let _
x; — (=1)'q% (0<i<2),
¢y = (=1)7¢" (0<j<2),
2 — Chgor (0<k<d)

be a cyclotomic specialization of Hag.

The essential hyperplanes for G(2d,2,2) are determined by the Schur el-
ements of Hoy. The Schur elements of Hoy have been calculated by Malle



118 5 On the Determination of the Rouquier Blocks

([49], Theorem 3.11). Following their description (see Subsection 6.7.3), the

essential hyperplanes for G(2d,2,2) are:

o Ay— Ay =0 (2-essential),

e By— B; =0 (2-essential),

e Cpy—C;=0,where 0 <k <l <dand ¢} — ¢ belongs to a prime ideal p
of Z[(2q4] (p-essential),

° Ai—Alfi-i-Bj—Blfj—i—Ck—Cl:O, where 0 <4, <1, 0<k<i<d
and ¢¥ — ¢} belongs to a prime ideal p of Z[(2q] (p-essential).

Remark. When we say that a hyperplane is 2-essential, we mean that it is
J-essential for all prime ideals T of Z[(2q) lying over 2.

5.4.2 Results

In order to determine the Rouquier blocks associated with no and with each
essential hyperplane for G(2d,2,2), we are going to use Proposition 4.4.6.
Following that result, if two irreducible characters x4 and 14 belong to the
same Rouquier block of (H24)e, then

Ay, + AX4> =Gy, + A¢¢'

Using the formulas for the Schur elements of Hayy given in the Appendix, we
can obtain the value of the sum a,, + A, for all x € Irr(G(2d,2,2)):

Proposition 5.4.1. Let x € Irr(G(2d, 2,2)). If x is a linear character Xk,

then
d—1

Ay, —|—AX¢ =d(a; — a1—; +b; —bi_ + 2¢p) — 2201.
=0

If x is a character X,lcf of degree 2, then

d—1
Ay, + Ay, :d(ck+cl)f2Zcm.

m=0
Now we are ready to prove our main result ([26], Theorem 4.3):

Theorem 5.4.2. For the group G(2d,2,2), we have that:

(1) The non-trivial Rouquier blocks associated with no essential hyperplane

are
{Xbs Xai} forall0<k<l<d.

(2) The non-trivial Rouquier blocks associated with the 2-essential hyperplane
Ag = A; are
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{x0jk, X1k} for all0<j<1and0<k<d,

{Xhis X} for all 0 <k <1 <d.

(3) The non-trivial Rouquier blocks associated with the 2-essential hyperplane
By = B; are

{Xiok, Xi1k} for all0 <i<1 and 0 <k <d,

O X2) forall0 <k <1 <d.

(4) The non-trivial Rouquier blocks associated with the p-essential hyperplane
C,=C (0<k<l<d) are

{Xiji, xiji} for all0<i,j <1,

(X b Xoms Xims Xom} for all 0 < m < d with m ¢ {k,1},

(X X}
{Xpes X25} for all0 <r < s <d withr,s¢ {kI}.

(5) The non-trivial Rouquier blocks associated with the p-essential hyperplane
Ai—Al_i—FBj—Bl_j—FCk—Cl =0 (OS’L,]S 1,0§k‘<l<d) are

{Xijllefi,lfj,laXllcl,Xil}v
(XL, X2} for all0 <r < s < d with (r,s) # (k, ).

Proof. Let
x; — (=1)i¢¥ (0<i<2),
¢ qy;— (—1)¢" (0<j<2),
2 Chg (0< Kk < d)

be a cyclotomic specialization of Hog.

(1) If ¢ is a cyclotomic specialization associated with no essential hy-
perplane, then, by Proposition 2.4.18, each linear character is a Rouquier
block by itself, whereas any character of degree 2 is not. Due to the for-
mulas of Proposition 5.4.1, Proposition 4.4.6 yields that the character Xllcl
(0 < k <l < d) can be in the same Rouquier block only with the
character x3,.

(2) Suppose that ¢ is a cyclotomic specialization associated with the es-
sential hyperplane Ag = Aj. Since the hyperplane Ag = A; is not essential
for the characters of degree 2, Proposition 3.2.5 implies that {x},, X%l} is a
Rouquier block of (Haq)g for all 0 < k < I < d. Moreover, the hyperplane
Ap = Aj is 2-essential for all characters of degree 1 and thus, due to Propo-
sition 2.4.18, there exist no linear character which is a block by itself. Due to
the formulas of Proposition 5.4.1, Proposition 4.4.6 yields that the character
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Xojk (0 <35 <1,0 <k <d)can be in the same Rouquier block only with the
character x1jx-

(3) If ¢ is a cyclotomic specialization associated with the essential hyper-
plane By = B;, we proceed as in the previous case.

(4) If ¢ is a cyclotomic specialization associated with the p-essential hy-
perplane Cy = C, where 0 < k <[ < d, then the Rouquier blocks of (Hz2q)4
are unions of the Rouquier blocks associated with no essential hyperplane,
due to Proposition 3.2.3. Hence, the characters yL, and x?2, are in the same
Rouquier block of (Haq) for all 0 < r < s < d. Now, the hyperplane Cj, = C}
is p-essential for the following characters:

) Xijk» Xijh fOI‘ all 0 S i,j S 1,

. Xiiv Xll;j, for all 0 <m < d with m ¢ {k,1}.

Due to the formulas of Proposition 5.4.1, Proposition 4.4.6 yields that

e the character y;;r (0 <4,j < 1) can be in the same Rouquier block only
with the character x;ji,

e the character xi,, (0 < m < dwithm ¢ {k,l}) can be in the same
Rouquier block only with the characters X%m, Xllm, X%m.

It remains to show that {x},,. X2} (0 < m < d with m ¢ {k,l}) is not a
Rouquier block of (Ha4)e. Following [49], Table 3.10, there exists an element
T, of Hogq such that

Xllcm(Tl) = Xim(Tl) =T+ 7.

Suppose that {x}..., X2, } is a Rouquier block of (H24) 4 and set QG = ¢,
Then, by Corollary 2.2.13, we must have

¢(lelml) ¢(Sxim)

€0,

where O denotes the Rouquier ring of Q((24). We have

D) (1 1
1 ) + B(sy2 ) = #(zo+ o) <¢(8Xim)+¢(5x2 ))7

km

where
(o + 1) = ¢ — ¢™ = yao\#(Q(Czdm _ yal‘#(Q(CQd))‘.

Since ¢ is associated with the hyperplane C), = C}, we must have ag # a1,
whence ¢(zo + 1)~ € O. We deduce that
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Using the formulas for the description of the Schur elements of X}ﬂi given in
the Appendix, we can easily calculate that the above element does not belong
to the Rouquier ring.

(5) Suppose that ¢ is a cyclotomic specialization associated with the
p-essential hyperplane A;—Ay_;+B;—B1_;j+Cy—C; =0, where 0 < 7,5 <1
and 0 < k < < d. We have to distinguish two cases:

(a) If p is lying over an odd prime number, then this hyperplane is p-essential
for only three characters: x;jr, X1—i,1—j; and either x,lcl or X%l' If Ois
the Rouquier ring of Q((a24), then, by Proposition 2.4.18, these three
characters belong to the same block of Oy0(Ha4)g. All the remaining
characters are blocks of Oy0(Haq)g by themselves. Since the Rouquier
blocks of (Haq)e are unions of the Rouquier blocks associated with no
essential hyperplane, we obtain the desired result.

(b) If p lies over 2, then the hyperplane A, — A1_;+ B; — B1_; +C, —C; =0
is p-essential for the characters ik, X1-i1-j.1, X5, and x3;. Using the
same reasoning as in case (4), we can show that the set
{Xijks X1—i1—j.1, Xbps X3} is a Rouquier block of (Hzq)s (and not a
union of two Rouquier blocks). Due to Proposition 3.2.5, the remain-
ing Rouquier blocks associated with no essential hyperplane remain as
they are. [ |

Ezample 5.4.3. Let d := 2. The group G(4,2,2) has 8 irreducible characters
of degree 1, xix (0 < 4,7,k < 1), and 2 irreducible characters of degree 2,
Xé’12~ The generic Hecke algebra of the group G(4,2,2) is the algebra Hy
generated over the Laurent polynomial ring in 6 indeterminates

-1 -1 -1 -1 -1 -1
Z[anxO s X1,L1 ,Y0,Yg sY1,Y1 520,20 71,21 ]

by the elements s, t, u satisfying the relations:

e stu = tus = ust,
o (s—xo)(s—a1)=(t—yo)(t —y1) =(u—2)(u—2)=0
Let 4

x; = (=1)¢% (0<i<?2),

¢4y = (1) (0<j<2),

2k = (=D)Fge (0< k< 2)
be a cyclotomic specialization of H4. The essential hyperplanes for G(4,2,2)
are:

° H12 A():Al,
HQZ .B():.Bl7
H32 C()ch,

Hy: Ay— A1 +By—B1+Cy—Cy =0,
Hy: Ag— Ay +B1 —By+Cy—C1 =0,
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o Hg: A1 —Ag+By— B1+Cy—Cy =0,
o Hy: A1 —Ag+B1 —By+Cy—Cy=0.

The only non-trivial Rouquier block associated with no essential hyperplane
is {x41, X321 }- The Rouquier blocks associated with

Hi are: {x000, X100}, {X001, X101}, {X010, X110}, {X011, X111}, {X01, X1 }-
H> are: {x000, X010}, {X001, X011}, {X100, X110}, {X101, X111}, {X01, X1}
Hj are: {x000, X001}, {x010, 011}, {X100, X101}, {X110, X111}, {X01: X31}-
Hy are: {xo01}, {x010}, {xo11}, {x100}, {x101}, {x110}, {x000, X111, X01, X51}-
Hs are: {x000}, {x001}, {xo011}, {x100}, {x110}, {x111}, {x010, X101, X01, X1 }-
Hg are: {xo000}, {x001}, {xo010}, {x101}, {x110}, {x111}, {x100, X011, X1, X1 }-
Hq are: {xo000}, {x010}, {x011}, {x100}, {x101}, {x111}, {x110, X001, X1, X1 }-

Let us take ag = 2, a1 =4, by = 3, by = 1 and ¢y = ¢; = 0. These integers
belong to the essential hyperplanes Hs, Hy and H7. By Theorem 5.1.1, the
Rougquier blocks of (Ha4), are

{Xoom X001, X110, X111, X(l)p X(2)1}’ {X0107 X011}7 {Xmo» X101}-

5.5 The Groups G(de, e, r)

All the results in this section have first appeared in [26].

5.5.1 The groups G(de,e,r), r > 2

We define the Hecke algebra of G(de,e,r), 7 > 2, to be the algebra He ¢,
generated over the Laurent polynomial ring in d 4+ 1 indeterminates

-1 1 1 -1
Lo, Vg 3 V1,V] " sensVd—1,Vg 1, &, T "]

by the elements ag, aq, ..., a, satisfying the relations:

o (ap—vo)(ap—v1) - (ap —v4—1) = (a; —x)(a; +1) =0, for j=1,...,r,

® (10301 = 4341043, AjGj410; = Aj4105;0541, fOI‘j = 2, ceey T — ].,
® (104203010203 = A3G1020a3071072,

o aja; =ajai, for j=4,...,r,

e aja; = aja;, for 2<i<j<rwithj—i>1,

e aga; = ajag, for j =3,...,r,

® (paiaz = aiazap,

® (20apQi1G2aia2a1 -+ = Qpaia2a102a1a2 - - .

e+1 factors e+1 factors
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Let )
¢ {UJH 24" (0 <j <d),

Tz —q"

be a cyclotomic specialization of Hge,. Following Theorem 5.1.1, the
Rougquier blocks of (Hge e, )4 coincide with the Rouquier blocks of (Hge,e,r)ge s
where )

¢ {”f’ = G (0<j < d),

T — qen7

since the integers {(n;)o<j<a,n} and {(en;)o<;<d,en} belong to the same
essential hyperplanes for G(de, e, ).

We now consider the generic Ariki-Koike algebra Hge , generated over the
ring

Z[uo,ual,ul, ufl, . ,ude,l,u;elil,x,x_l]
by the elements s,ti,to,...,t._1 satisfying the relations described in
Subsection 5.3.2. Let us consider the following cyclotomic specialization of
Hde,r:
9 {ua — 5.4 (0 <a<de,mg:=Ngmodd)

T — "

Following Lemma A.7.1, the algebra (Hge )y is the twisted symmetric alge-
bra of the cyclic group C, over the symmetric subalgebra (Hae,e,r) e

From now on, set H := (Hae,r)o, H := (Hae,e;r)ges G = Ce, K 1= Q((ge)
and let R (¢) be the Rouquier ring of K. Applying Proposition 2.3.18 yields:

Proposition 5.5.1. The block-idempotents of (ZRx(q)H)C coincide with
the block-idempotents of (ZRx(q)H) .

The action of the cyclic group GV of order e on Irr(K (q)H) corresponds
to the action generated by the cyclic permutation by d-packages on the
de-partitions of r (cf., for example, [51], §4.A):

1q s (AO N N \@A=) o N(de=d) A (de= 1))
= (Ade=d) o \(de=1) A \d=) N (de=2d) 1\ (de—d =)y

The de-partitions which are fixed by the action of GV, i.e., the de-partitions
which are of the form

(MO A=Y A @D O Ay,

where the first d partitions are repeated e times, are called d-stuttering.

Proposition 5.5.2. If X is a de-partition of v, then the characters xx and
Xra(xn) belong to the same Rouquier block of H. In particular, the blocks of
Ri(q)H are stable under the action of G .
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Proof. The symmetric group G4 acts naturally on the set of de-partitions of
r, and thus on Trr(K (q)H): If 7 € &4 and A = (MO A A\(de=1)) jg 5
de-partition of r, then 7(\) := (ATO) \) " A\(7(de=1))) "The action of
GY on Irr(K(q)H) corresponds to the action of the cyclic subgroup of order
e of G4 generated by the element

d—1 e—1

=T I

=0 i=1

where ¢;; denotes the transposition (4,7 + id). In order to prove that the
characters x and x.,(x) belong to the same Rouquier block of H, it suffices
to show that the characters x, and X, (x) are in the same Rouquier block
of H forall j(0<j<d)andi(0<i<e).

Following Theorem 5.1.1, the Rouquier blocks of H are unions of the
Rouquier blocks associated with all the essential hyperplanes of the form

Ms=DM; (0<s<t<de, s=tmodd).

Recall that the hyperplane M, = M; is actually essential for G(de, 1,r) if
and only if the element (5, — ¢}, belongs to a prime ideal of Z[(g).

Suppose that e = p7'p5? - - - pm where the pj, are distinct prime numbers.
For k€ {1,2,...,m}, we set ¢;, := e/p;*. Then gecd(cy) = 1 and, by Bezout’s
theorem, there exist integers (by)1<k<m such that ka=1 brc, = 1. We have
1= Z?:l i, where 7 := ibpcg. The element 1 — CZ,"“ belongs to all the prime
ideals of Z[(4c| lying over the prime number p;. Now set

lo:=0 and Il := (lx—1 + ix) mode, for all k(1 <k <m).

We have that the element Cj:lk’ld - éjlkd = Zi:rl’“’ld(l — (%) belongs to
all the prime ideals of Z[(4e] lying over the prime number p;. Therefore, the
hyperplane M, ,q = Mj4,q is essential for G(de, 1,7) for all k (1 <k <m).
Moreover, if we denote by 7 ; 5 the transposition (j + lxk_1d,j + lxd), then
e we have \@ =7, (N for all @ ¢ {j + ly_1d, j + l1.d},

e the 2-partitions (AUHe—1d) \GHd)) and (7;,; x(N)UFT=1d) 7 (A)UHED)

= (AUHd) \G+lk-14)) have the same ordinary content.
By Proposition 5.3.16, the characters xx and x,,,,(x) belong to the same

Rouquier block associated with the essential hyperplane M; ;. 4 = Mjy,q
and thus, to the same Rouquier block of H. We have

0ji = Tji,1© 7420 O Tjim—10 Tjim O Tjim—-19"""0Tji20°Tjil.

Consequently, the characters xx and x,, ) belong to the same Rouquier
block of H for all j (0 < j <d) and i (0 <i <e). [ |
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Thanks to the above result, Proposition 5.5.1 now reads:

Corollary 5.5.3. The block-idempotents of (ZRx(q)H)C coincide with the
block-idempotents of R (q)H.

The following theorem demonstrates how we obtain the Rouquier blocks
of H from the Rouquier blocks of H (already determined in Section 5.3).

Theorem 5.5.4. Let A\ be a de-partition of v and x the corresponding ir-

reducible character of G(de,1,7). We define Irr(K (q)H)x to be the subset of

Irr(K (q)H) with the property:

K(qH _
Resg H00) = ) X-
xErr (K (q)H) A

Then

(1) If X is d-stuttering and xx is a block of Ry (q)H by itself, then there are
e irreducible characters (X)geur(i(q)m),- Fach of these characters is a
block of Ry (q)H by itself.

(2) The other blocks of Rk (q)H are in bijective correspondence with the re-
maining blocks of Ry (q)H via the map of Proposition 2.3.18, i.e., the
corresponding block-idempotents of R (q)H coincide with the remaining
block-idempotents of Ry (q)H.

Proof. If X is a d-stuttering partition, then it is the only element in its orbit
2 under the action of GV. Set 2 := Irr(K (q)H)x. By Proposition 2.3.15, we
have |2||2| = |G| = e, whence |2| = e. Moreover, if ¥ € §2, then its Schur
element sy is equal to the Schur element sy of x . If x» is a block of R (¢)H
by itself, then, Propositions 4.4.4 and 2.4.18 imply that sy = sy is invertible
in Rx(q). Thus, Y is a block of Ry (q)H by itself.

If )\ is d-stuttering and x, is not a block of R (q)H by itself, then, due
to Theorem 5.1.1, there exists a de-partition p # A such that x and x,
belong to the same Rouquier block associated with an essential hyperplane
H for G(de,1,r) such that the integers {(mq)o<a<de,en} belong to H. If
H is N = 0, then, by Proposition 5.3.15, we have |A(@| = |u(®)| for all
a=0,1,...,de — 1. Since X # u, there exists b € {0,1,...,de — 1} such that
MO £ 4 ®) If 1 is the de-partition of r obtained from A by replacing A(%)
with p(*), then ) and Y, belong to the same block of R (¢)H and v is not
d-stuttering. If H is of the form kN + My — M; = 0, where —r <k <r and
0<s <t < de, then \*) = (@ for all @ ¢ {s,t}. If s # tmodd or e > 2,
then p cannot be d-stuttering. Suppose now that s = t mod d and e = 2. The
description of sy by Theorem A.7.2 implies that the hyperplane My = M, is
not essential for x . Due to Proposition 3.2.5, we deduce that k # 0. Since the
integers {(mq)o<a<de, €n} belong to H and ms = my, we must have n = 0.
If u is d-stuttering, then p(®) = pu® and |p®)| = [u®| = AX®| = |X®)|. Let
v be the de-partition obtained from A by replacing A*) with p(*). Then v is
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not d-stuttering and the characters y, and x, belong to the same Rouquier
block associated with the essential hyperplane N = 0. Since n = 0, Theorem
5.1.1 implies that x and x, belong to the same block of R (¢)H. We will
now show that the blocks of Ry (¢)H which contain at least one character
corresponding to a not d-stuttering partition are in bijective correspondence
with the remaining blocks of Ry (q)H via the map of Proposition 2.3.18.

Suppose that A is not a d-stuttering partition and b is the block containing
Xa- Let y € Trr(K(¢)H)» and let b be the block of R (q)H which contains
X. In order to establish the desired bijection, we have to show that b is
stable under the action of G, i.e., that b = Tr(G,b) := EgeG/Ggg(B). By
Proposition 2.3.15, we have that b = Tr(G, D).

If A = AO XD \@ A @d=D N ed=d) A (ed=1)Y - then,
fori=0,1,...,e =1, we define the d-partition ;) by

)\(z) — ()\(zd)7 )\('L'd—i—l)7 e A(id—‘—d—l))

and we have
)\ == ()\(0), )\(1)7 ey )\(5_1)).

Since A is not d-stuttering, there exists m € {1, ..., e — 1} such that A(g) # A(m).
If p is any prime divisor of e, we denote by A(p) the de-partition obtained from
A by exchanging A(,;,) and A(c/p)- Set

d—1

op = [Loim Tjesp ojm:
J=0

where ¢;; denotes the transposition (j,j + id) for all ¢ (0 < ¢ < e). Then
A(p) = op(A). In the proof of Proposition 5.5.2, we showed that the characters
Xx and X, () are in the same Rouquier block of H for all j (0 < j < d) and
i (0 <i < e). Therefore, the characters xx and x(,) belong to the same block
of R (q)H. Moreover, by construction, the de-partition A(p) is not fixed by
the generator 7'5/ P of the unique subgroup of order p of GV. Thus, the order

of the stabilizer GXA@) of Xx(p) is prime to p.

By Proposition 2.3.15, we know that for each X, € Irr(K(q)H)x(p), we
have |G;</Mp) ||Gx,| = e. Hence, |Gy, | is divisible by the largest power of p di-
viding e. Since b = Tr(G, b), the elements of Irr(K (q)H) () belong to blocks

of Rx(q)H which are conjugate of b by G, whose stabilizer is G3. Following
Lemma 2.3.16, we deduce that, for any prime number p, |G| is divisible by

the largest power of p dividing e. Thus, G; = G and Tr(G,b) = b. [ |

Ezample 5.5.5. Let d :== 1, e := 3 and r := 3. The Hecke algebra of G(3, 3, 3)
is the algebra H3 3 3 generated over the Laurent polynomial ring Z[z, 2] by
the elements a1, as, az satisfying the relations:
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® (1a2a1 = aza1a2, a1a3a1 = A3a103, 20302 = 430243,
® (10203010203 = A30102030102,
o (a1 —z)(a1 +1)=(ag—2x)(az+1) = (ag —x)(az+1) =0.

Let ¢ : x — ¢" with n # 0 be a cyclotomic specialization of Hs 3 3. We can
apply Theorem 5.5.4 and obtain the Rouquier blocks of (H333)e from the
Rouquier blocks of (Hs )y, where Hs 3 is the generic Ariki-Koike algebra
associated to G(3,1,3) and

ﬁ.{ua'—’Cél(OSaSQL

x —q".

Since n # 0, the Rouquier blocks of (H3 3)s coincide with the Rouquier blocks
of (Hs3)e, where
9,{uaHC§ (0<a<?),

T Q.
The latter have been calculated in Example 5.3.18 and are:

{x,m.ank
X((1,1,1),0,8)> X(0,(1,1,1),0)5 X(0,0,(1,1,1)) }
{X(2,1),0,0) X(0,(2,1),0)5 X(0,0,(2,1)) }»
X((3),0,0)> X(0,(3),0)» X(0,0,(3)) }»
{X011,1,0)X((1),(1,1),0) X ((1,1),0, (1)) X ((1),0,(1,1))> X(0,(1,1),(1)) X (@,(1),(1,1)) >
- X@,0.0)5 X((1),2),0) X((2),0,(1)) X((1),0,(2))» X(0,(2),(1))> X(@,(1),(2)) }-

Set H := (H33)9, H = (H333)s and K := Q(¢3). We have that

SN o e

Irr(K (q)H) = {t1,%2, ..., 110},

where

o %1 =Resg O (X(1,1,1),0.0) = Resg (7 (X0,01,1,1),0) = Resy(d) 1 (x(0.0,1,1,1));
K(q K(q)H

o U2 =Resy (T (X(21).0.0) = RGSKEZSH(XM 2.1).0)) = RGSKEgH(X(@ 0,(2,1)))5
K K(q

o U5 =Resyc (T (X((3).00) = Resp ) (X(0,3).0)) = Resye( 7 (X0,0,(3)):

K(g)H

(
(
(
° Yu= Resﬁﬁiiﬁ(x«l 0.0.0)) = Respe 3 (X@,0,1),0)) = ResK<q X((1),0,(1,1)))5
(
(
(

i

o ¥s = Resyc (2 (x(1),010,0) = ReSK@)g(X(m,(l),(l,l))) = Res o )% (X((1,1),0,));
* Y= ResKEZ;H X((2),1),0)) = RGSK<q)H(X(o,<2),(1))) = RGSKEZ§H(X<<1>,0,<2>>)7
° Y7 = Resx(qm X((1) (2) 0) = RGSKEq)H(X(o,u),(z))) RGSK(CI)H(X<<2>,0,<1>>)7

o s+ 1o + P10 = Resy q)H(X«l) (1),(1))-

Following Theorem 5.5.4, the Rouquier blocks of H are
{on}s {2}, {hs}, {a, ¥s}, {ve, 7}, {¥s}, {¥o}, {¥10}-
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5.5.2 The Groups G(de,e,?2)

If the integer e is odd, then everything that we said in the previous section
applies to the case of G(de, e,2). Hence, we can obtain the Rouquier blocks
of the cyclotomic Hecke algebras of G(de, e, 2) from those of G(de, 1,2).

If e is even, then Clifford theory allows us to obtain the Rouquier blocks
of the cyclotomic Hecke algebras of G(de,e,2) from those of G(de, 2,2).

Let f,d > 1. We denote by Hafq2r2 the generic Hecke algebra of
G(2fd,2f,2) generated over the Laurent polynomial ring in d + 4
indeterminates

-1 -1 -1 -1 -1 -1 -1
Z[.’L’(hfl?o y L1, L7 ,Y0,Yg sY1,Yp U0, Uy UL, Ug "'7ud717ud,1]

by the elements S, T, U satisfying the relations:
o STU =UST, TUS(TS)f_1 = U(S’T)f7
[ (S—xo)(S—xl) = (T—yo)(T—yl) = (U_UQ)(U_U]_> e (U—ud,l) =0.
Let _
z; = (—1)'q" (0<i<1),
¢y = (=1)7g% (0<j<1),
up, ngeh (0<h<d)

be a cyclotomic specialization of Hafqof2. Following Theorem 5.1.1, the
Rouquier blocks of (Hgfd,gf’g)(z, coincide with the Rouquier blocks of
(H2fd,24,2) 47, Where

of:qw = (1) (0<j <),
up = Chgfr (0<h <d),

z; — (—1)¢f% (0<i<1),

since the integers in {a;, b;, en } and {fa;, fb;, fen} belong to the same essen-
tial hyperplanes for G(2fd,2f,2).

We now consider the generic Hecke algebra Hayrq of G(2fd,2,2) generated
over the ring

—1 —1 —1 —1 —1 —1 —1
Z[x()vx() , L1, T ayO,yO y Y1, Y1 720320 s %15 % ~-~7Zfd—lazfd_1}

by the elements s, t, u satisfying the relations:

e stu = tus = ust,

o (s—wmo)(s—w)=(t—yo)(t —y1) =(u—20)(u—21) - (u—2pa-1) =0.
Let us consider the following cyclotomic specialization of Hafq:

z; — (—1)i¢f% (0<i<1),
0:qy; = (1)7gf (0<j <),
2k = CFaq™ (0 <k < fd, e, = ermodd)-
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Following Lemma A.7.3, the algebra (Hasq)y is the twisted symmetric algebra
of the cyclic group Cy over the symmetric subalgebra (Hafa,27,2) /-

From now on, set H := (Hapa)s, H = (Hapaor2)er, G = Cf,
K = Q(C2ra)s ylPI] = g and let R (y) be the Rouquier ring of K. Apply-

ing Proposition 2.3.18 yields:

Proposition 5.5.6. The block-idempotents of (ZRx(y)H)C coincide with
the block-idempotents of (ZRx (y)H)Y .

The action of the cyclic group GV of order f on Irr(K (y)H) corresponds
to the action

Xijk > Xigkt+d (0<14,57<1,0<k< fd),

Xllc? = Xllcfd,l+d (0O<k<l<[fd),
where all the indexes are considered mod fd.
Let x € Irr(K(y)H). If we denote by (2 the orbit of x under the action

of GV, then |2 = f. We define 2 to be the subset of Irr(K (y)H) with the

property:
K(y)H o _
ResK(y)ﬂ(X) = Z X-
XES?

By Proposition 2.3.15, we know that [£2[|2| = f, whence 2] = 1. Since
(2 is also the orbit of y under the action of G, we deduce that the block-
idempotents of Rk (y)H are fixed by the action of G.

With the help of the following lemma, we will show that the Rouquier
blocks of H are also stable under the action of GY. Here the results of
Theorem 5.4.2 are going to be used as definitions.

Lemma 5.5.7. Let k1, ko, k3 be three distinct elements of {0,1,..., fd—1}.
If the blocks of R (y)H are unions of the Rouquier blocks associated with the
(not necessarily essential) hyperplanes Ci, = Ck, and Cy, = Cy,, then they
are also unions of the Rouquier blocks associated with the (not necessarily
essential) hyperplane Cy, = Ch,.

Proof. We only need to show that

(a) the characters x; j, and x; jk, are in the same block of R (y)H for all
0<i,j<1,

(b) the characters X,lﬁfm and Xllc32m are in the same block of Ry (y)H for all
0<m < fdwith m ¢ {ky,ks}.

Since the blocks of Ry (y)H are unions of the Rouquier blocks associated
with the hyperplanes Cj, = Cj, and Cj, = Cj,, Theorem 5.4.2 implies that

(1) Xi,jk, and x4k, are in the same block of R (y)H for all 0 <i,j <1,
(2) Xi,jke and X; jk, are in the same block of R (y)H for all 0 <4,j <1,
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(3) Xkl , and Xk are in the same block of Ry (y)H for all 0 < m < fd
Wlth m ¢ {]fl, kg},

(4) sz, and 2m are in the same block of R (y)H for all 0 < m < fd
with m ¢ {kzg, k3}.

We immediately deduce (a) for all 0 < 4,5 <1 and (b) for all 0 < m < fd
with m ¢ {ki, ko, ks}. Finally, (3) implies that the characters Xli-ka and

X}kag are in the same block of Ry (y)H, whereas by (4), X;lgsz and X}C‘fkg

are also in the same block of Rk (y)H. Thus, the characters X,1€’12k2 and X}kag
belong to the same Rouquier block of H.

Theorem 5.5.8. The Rouquier blocks of H are stable under the action of
GV. In particular, the block-idempotents of Ry (y)H coincide with the block-
idempotents of R (y)H.

Proof. Following Theorem 5.1.1, the Rouquier blocks of H are unions of the
Rouquier blocks associated with all the essential hyperplanes of the form

Clz+7rzd:Ch+nd (O§h<d,0§m<n<f)

Recall that the hyperplane Ch+md Ch4na is actually essential for G(2fd,2,2)
if and only if the element (j, hmd _ (J'}j"d belongs to a prime ideal of Z[(2f4].

Suppose that f = pil p? -+ - plr, where the p; are distinct prime numbers.
For s € {1,2,...,r}, we set hs := f/pls. Then ged(hs) = 1 and by Bezout’s
theorem, there exist integers (gs)1<s<, such that Z;Zl gshs = 1. The element
1 —ngshs belongs to all the prime ideals of Z[(2 4| lying over the prime number
ps. Let h € {0,1,...,d—1} and m € {0,1,..., f — 2} and set

lo:=m and lg:= (ls—1 + gshs) mod f, for all s(1 <s<r).

We have that the element Ch—Hs 1 ChH d ChHs - C}“h‘*) belongs to
all the prime ideals of Z[(s fd} lying over the prime number ps. Therefore, the
hyperplane Chyy, 4= Chyi.4 is essential for G(2fd,2,2) for all s (1 <s<r).
Since g = m and [, = m + 1, Lemma 5.5.7 implies that the Rouquier blocks
of H are unions of the Rouquier blocks associated with the (not necessarily
essential) hyperplane

Chimd = Chi(m+1)ds

following their description by Theorem 5.4.2. Since this holds for all
m (0 < m < f—2), Lemma 5.5.7 again implies that the Rouquier blocks
of H are unions of the Rouquier blocks associated with all the hyperplanes
of the form

C}L+7rzd = Oh+nd (O <Sm<n< f)7

for all h (0 < h < d). Consequently, we obtain that
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e the characters (i jh+md)o<m<s are in the same block of Rk (y)H for all
0<i,j<land 0<h<d,

e the characters (X}lﬁmd’h+nd)0§m<n<f are in the same block of Ry (y)H
forall 0 < h < d,

e the characters (Xiﬁmd,h'+nd)0ém7n<f are in the same block of R (y)H
forall0 < h<h <

Thus, the blocks of Rx (y)H are stable under the action of GV. Now, Propo-
sition 5.5.6 implies that the block-idempotents of Rk (y)H coincide with the
block-idempotents of R (y)H. [ ]

_ Thanks to the above result, in order to determine the Rouquier blocks of
‘H, it suffices to calculate the Rouquier blocks of H: if C' is a Rouquier block

of H, then {Resggzgg(x) | x € C} is a Rouquier block of H.

Ezample 5.5.9. Let f:=2 and d := 1. The group G(4,4,2) is isomorphic to
the group G(2,1,2). The generic Hecke algebra Hy 22 of G(4,4,2) is gener-
ated over the Laurent polynomial ring in 4 indeterminates

—1 —1 —1 —1
Z[I.vao y L1, L7 ,Y0,Yy Y1,Yq ]

by the elements S and T satisfying the relations:

o (S—20)(S—x1)=(T—yo)(T —1)=0.
o STST =TSTS.
Let
b {mz — (—1)%q% (0<i<1),
Clyi o (F1)¢ (05 <1)

be a cyclotomic specialization of Ha 2 2. Since G(4,4,2) = G(2,1,2), we can
use the results on the Ariki-Koike algebras in order to determine the Rouquier
blocks of (Ha2,2)s. However, here we will demonstrate how we can apply
Theorem 5.5.8 and obtain the Rouquier blocks of (H4,22)4 from the Rouquier
blocks of (H4)g, where Hy is the generic Hecke algebra associated to G(4, 2, 2)
and

z; — (=1)ig% (0<i<1),
D]y (=17 (0<5<1),
ze (VDF (0< k<.
Set H := (Ha)y, H := (Ha42)p, K := Q(i) and y"| .= ¢. We have that

Irr (K (y)H) = {X((2).0)> X(0,(2))s X((1,1),0)5 X(0,(1,1))> X((1),(1)) }»

where
H K(y)H
* X((2),0) = RGSKEz;g(Xooo) = RGSKEg;g(Xom),
K(y)H K(y)H
* X(0,2) = ReSKEZ;g(Xom) = ReSKEz;H(Xou),
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H
o X0 = Resie (1) (x100) = Resy( ) (xi0),

K K

* X(@©,01,1) = ResKéz;H(x 0) = ResKEz;H(Xln)
H H

® X((1),(1)) :RGSK§Z§H(X01) R%KEZ;H(XOQ
Following Theorem 5.5.8, the Rouquier blocks associated with no essential
hyperplane for G(4,4,2) are trivial (as expected). For ag = 2, a1 =4, by = 3
and b; = 1, the Rouquier blocks of H have been calculated in Example 5.4.3
and are:

{X0007X0017X1107X111,X(1)17X%1}a {xo0105 X011}, {X1005 X101}
Thanks to Theorem 5.5.8, we deduce that the Rouquier blocks of H are:

{Xe@),0)> X0,,1) X(),an H Ix@.@) > 1X,1).0}-

We can verify the above result with the use of Proposition 5.3.16, which yields
that two irreducible characters (xx)g and (x,)s are in the same Rouquier
block of H if and only if Contcy = Contc,, with respect to the weight system
(0,1).



	5 On the Determination of the Rouquier Blocks
	5.1 General Principles
	5.2 The Exceptional Irreducible Complex Reflection Groups
	5.2.1 Essential Hyperplanes
	5.2.2 Algorithm
	5.2.3 Results

	5.3 The Groups G(d,1,r)
	5.3.1 Combinatorics
	5.3.2 Ariki-Koike Algebras
	5.3.3 Rouquier Blocks, Charged Content and Residues
	5.3.4 Essential Hyperplanes
	5.3.5 Results

	5.4 The Groups G(2d,2,2)
	5.4.1 Essential Hyperplanes
	5.4.2 Results

	5.5 The Groups G(de,e,r)
	5.5.1 The groups G(de,e,r), r>2
	5.5.2 The Groups G(de,e,2)




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




