
Chapter I
Preliminaries

In this part we review some necessary concepts and results from ergodic theory,
which will be frequently used in this monograph.

Throughout this book, M is an m0-dimensional, smooth, compact and connected
Riemannian manifold without boundary. We use f ∈Cr(O,M) to denote a Cr map
from O to M, where O is an open subset of M, and we call f a Cr endomorphism on
M if f ∈Cr(M,M). We use T f to denote the tangent map induced by f when r ≥ 1.

For any compact metrizable space X and continuous map T : X → X , We use
MT (X) to denote the set of T -invariant Borel probability measures on X .

I.1 Metric Entropy

Let X be a compact metrizable space, T : X → X a continuous map on X , and μ a
T -invariant Borel probability measure on X .

For any finite partition η =
{

Ci
}

of X , define the entropy of η by

Hμ(η) =−∑
i
μ(Ci) logμ(Ci).

Let

hμ(T,η) = lim
n→∞

1
n

Hμ(η ∧T−1η ∧·· ·∧T−n+1η).

Then define the metric entropy of T with respect to μ as

hμ(T ) = sup{hμ(T,η) : η is a finite partition of X}.

For properties of the metric entropy, we refer the reader to [92].
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2 I Preliminaries

I.2 Multiplicative Ergodic Theorem

From Oseledec’s theorem we have the following version of Multiplicative Ergodic
Theorem for differentiable maps [92].

Theorem I.2.1 Let f be a C1 endomorphism on M. Then there exists a Borel subset
Γ ⊂M with fΓ ⊂ Γ and μ(Γ ) = 1 for any μ ∈M f (M). Moreover, the following
properties hold.

(1) There is a measurable integer function r : Γ → Z
+ with r ◦ f = r.

(2) For any x ∈ Γ , there are real numbers

+∞ > λ1(x) > λ2(x) > · · ·> λr(x)(x)≥−∞,

where λr(x)(x) could be −∞.
(3) If x ∈ Γ , there are linear subspaces

V (0)(x) = TxM ⊃V (1)(x)⊃ ·· · ⊃V (r(x))(x) = {0}

of TxM.
(4) If x ∈ Γ and 1≤ i≤ r(x), then

lim
n→∞

1
n

log
∣
∣Tx f nξ

∣
∣= λi(x)

for all ξ ∈V (i−1)(x)\V (i)(x). Moreover,

lim
n→∞

1
n

log
∣
∣det(Tx f n)

∣
∣=

r(x)

∑
i=1

λi(x)mi(x),

where mi(x) = dimV (i−1)(x)−dimV (i)(x) for all 1≤ i≤ r(x).
(5) λi(x) is measurably defined on

{
x ∈ Γ ∣∣ r(x)≥ i

}
and f -invariant, i.e. λi( f x) =

λi(x).
(6) Tx f

(
V (i)(x)

)⊂V (i)( f x) if i≥ 0.

The numbers
{
λi(x)

}r(x)
i=1 , given by Theorem I.2.1 are called the Lyapunov expo-

nents of f at x, and mi(x) is called the multiplicity of λi(x).
In many cases, we require that system (M, f ,μ) satisfies the following integra-

bility condition
log
∣∣det(Tx f )

∣∣ ∈ L1(M,μ). (I.1)

By Multiplicative Ergodic Theorem, under condition (I.1) we have

∫

M
log
∣
∣det(Tx f )

∣
∣dμ(x) =

∫

Γ

r(x)

∑
i=1

λi(x)mi(x)dμ(x). (I.2)
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Define
Γ∞ =

{
x ∈ Γ

∣
∣
∣ Tx f is degenerate or λr(x)(x) =−∞

}
.

The integrability condition (I.1) and identity (I.2) imply that

μ(Γ∞) = 0. (I.3)

Let

Γ ′ = Γ \
∞⋃

n=0

f−n(Γ∞). (I.4)

It is easy to see that f (Γ ′) ⊂ Γ ′ and for any x ∈ Γ ′, Tx f is an isomorphism and
λr(x)(x) >−∞. From (I.3) we have μ(Γ ′) = 1.

For x ∈M and 1 ≤ k ≤ m0, let (TxM)∧k be the kth-exterior power space of TxM,
namely, (TxM)∧k is the linear space of all linear combinations of elements in

{
ξ1∧

. . .∧ξk : ξi ∈ TxM,1 ≤ i≤ k
}

in which the following relations hold:

(1) for all α,β ∈ R and 1≤ i≤ k,

ξ1∧·· ·∧ (αξi +βξ ′i )∧·· ·∧ξk = αξ1∧·· ·∧ξi∧·· ·∧ξk

+ βξ1∧·· ·∧ξ ′i ∧·· ·∧ξk

(2) for all 1≤ i, j ≤ k,

ξ1∧·· ·∧ξi∧·· ·∧ξ j ∧·· ·∧ξk =−ξ1∧·· ·∧ξ j ∧·· ·∧ξi∧·· ·∧ξk

Obviously, if
{
ξi : 1≤ i≤m0

}
is a basis of TxM, then

{
ξi1 ∧·· ·∧ξik : 1≤ i1 ≤ ·· · ≤

ik ≤m0
}

is a basis of (TxM)∧k . Now, if
{

ei : 1≤ i≤m0
}

is an orthonormal basis of
TxM, then by letting

< ei1 ∧·· ·∧ eik ,e j1 ∧·· ·∧ e jk >
def=
{

1 if (i1, · · · , ik) = ( j1, · · · , jk)
0 otherwise

we can define an inner product < ·, ·> on (TxM)∧k , and it is clearly independent of
the choice of the orthonormal basis

{
ei : 1 ≤ i ≤ m0

}
. We shall denote also by | · |

the norm on (TxM)∧k induced by this inner product.
If f : M→M is a C1 map, we define for x ∈M and 1≤ k≤ m0

(Tx f )∧k : (TxM)∧k → (Tf xM)∧k

ξ1∧·· ·∧ξk �→ (Tx fξ1)∧·· ·∧ (Tx fξk)

and define

|(Tx f )∧| def= 1 +
m0

∑
k=1

|(Tx f )∧k |.
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Then an important conclusion from [77] gives

Proposition I.2.2 Let (M, f ,μ) be given. Then we have

lim
n→+∞

1
n

log |(Tx f n)∧|=∑
i
λi(x)+mi(x), μ− a.e.

and

lim
n→+∞

1
n

∫
log |(Tx f n)∧|dμ =

∫

∑
i

λi(x)+mi(x)dμ .

I.3 Inverse Limit Space

Let X be a compact metric space. For any continuous map T on X , let XT denote
the subset of XZ consisting of all full orbits, i.e.,

XT =
{

x̃ = {xi}i∈Z

∣∣
∣ xi ∈ X , Txi = xi+1, ∀i ∈ Z

}
.

Obviously, XT is a closed subset of XZ (endowed with the product topology and the
metric d(x̃, ỹ) =∑+∞

i=−∞ 2−|i|d(xi,yi) for x̃ = {xi}i∈Z, ỹ = {yi}i∈Z ∈ XZ). XT is called
the inverse limit space of system (X ,T ). Let p denote the natural projection from
XT to X , i.e.,

p(x̃) = x0, ∀x̃ ∈ XT ,

and θ : XT → XT as the shift homeomorphism. Clearly the following diagram
commutes,

XT θ−−−−→ XT

p
⏐
⏐



⏐
⏐

p

X −−−−→
T

X

i.e. p◦θ = T ◦ p.
It is a basic knowledge that p induces a continuous map from Mθ (XT ) to

MT (X), usually still denoted by p, i.e. for any θ -invariant Borel probability mea-
sure μ̃ on XT , p maps it to a T -invariant Borel probability measure pμ̃ on X
defined by

pμ̃(ϕ) = μ̃(ϕ ◦ p), ∀ϕ ∈C(X).

The following proposition guarantees that p is a bijection between Mθ (XT ) and
MT (X).

Proposition I.3.1 Let T be a continuous map on X. For any T-invariant Borel prob-
ability measure μ on X, there exists a unique θ -invariant Borel probability measure
μ̃ on XT such that pμ̃ = μ .

Before providing the proof of the above proposition, we first introduce two ele-
mentary lemmas.
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Lemma I.3.2 Let X and Y be two compact metrizable spaces, and h : X → Y a
continuous surjective map. Then for any Borel probability measure μ on Y , there
exists a Borel probability measure ν on X such that hν = μ .

Proof. Let

W =
{
ψ ∈C(X)

∣
∣ ∃ϕ ∈C(Y ) such that ψ = ϕ ◦ h

}
.

Obviously W is a linear subspace of C(X). Define a bounded linear functional L on
W as follows,

Lψ = μ(ϕ), where ϕ ∈C(Y ) such that ψ = ϕ ◦ h.

It is easy to see that L is a positive bounded linear functional with L1 = 1. By a
modification of the Hahn-Banach Theorem L can be extended to a positive bounded
linear functional on C(X) preserving the property L1 = 1. Then Rieze Represen-
tation Theorem implies that there is a Borel probability measure ν on X such that
Lψ = ν(ψ) for all ψ ∈C(X). It is easy to verify that hν = μ . ��
Lemma I.3.3 Let X and Y be two compact metrizable spaces, and T : X → X and
S : Y → Y measurable mappings on corresponding spaces. Suppose there is a con-
tinuous surjective map h : X → Y such that S ◦ h = h ◦T. Then for any S-invariant
Borel probability measure μ on Y , there is a T-invariant Borel probability measure
ν on X such that hν = μ .

Proof. From Lemma I.3.2, there is a Borel probability measure ν0 on X such that
hν0 = μ . Let

νn =
1
n

n−1

∑
i=0

T iν0,

and suppose that νnk → ν as nk → +∞. It is then easy to see that ν ∈MT (X) and
hν = μ . ��

We are now ready to prove Proposition I.3.1.
Proof of Proposition I.3.1. Let X0 =

⋂∞
n=0 T n(X). Obviously X0 is a compact

subset of X , and T (X0) = X0, μ(X0) = 1 for any μ ∈MT (X). Therefore XT = XT
0

and p : XT
0 → X0 is continuous and surjective. As a consequence of Lemma I.3.3,

there is μ̃ ∈Mθ (XT ) such that pμ̃ = μ . Since XT is a compact subset of XZ, μ̃ can
be uniquely determined by its values on all cylinder sets. For any Borel subsets A0,
A1, . . . , An ⊂M, we have

μ̃
(
[A0,A1, . . . ,An]

)
= μ(A0

⋂
T−1A1

⋂
· · ·
⋂

T−nAn),

where
[A0,A1, . . . ,An] =

{
x̃ ∈ XT

∣
∣ xi ∈ Ai, i = 0,1, . . . ,n

}

is a cylinder set in XT . This ensures that μ̃ is uniquely determined by μ . The proof
is completed. ��
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Remark I.1. In the circumstances of Proposition I.3.1, it is not hard to see that
(XT ,θ , μ̃) is ergodic if and only if (X ,T,μ) is ergodic.

The following proposition provides the relationship between the entropies of
these two systems.

Proposition I.3.4 Let T : X→ X be a continuous map on the compact metric space
X with an invariant Borel probability measure μ . Let XT be the inverse limit space of
(X ,T ), θ the shift homeomorphism and μ̃ the θ -invariant Borel probability measure
on XT such that pμ̃ = μ . Then

hμ(T ) = hμ̃(θ ). (I.5)

Proof. For each n ∈ N, take a maximal 1/n-separated set En of X . (Recall that a
subset E of a metric space (X ,d) is an ε-separated set of X iff d(x,y) ≥ ε for any
distinct points x,y∈ E . It is called a maximal ε-separated set of X if in addition E is
maximal, i.e., for any point x �∈ E and y ∈ E , d(x,y) < ε . Given a transform T : X←↩
and a positive integer n, one can define a new metric dn as

dn(x,y) := max
{

d(T kx,T ky) : 0≤ k≤ n
}
.

Then an ε-separated set of (X ,dn) is called an (n,ε)-separating set of X .) We define
a measurable finite partition ξn =

{
ξn(x)

∣
∣ x∈ En

}
of X such that ξn(x)⊂ Int(ξn(x))

and Int(ξn(x)) =
{

y ∈ X
∣
∣ d(y,x) < d(y,xi) if x �= xi ∈ En

}
for every x ∈ En. Clearly

Diamξn ≤ 1/n. By Theorem 8.3 of [92],

hμ(T ) = lim
n→∞

hμ(T,ξn). (I.6)

Using ξn, we may construct a measurable finite partition ηn of XT by

ηn =
n∨

i=−n

θ i(p−1ξn).

It is easy to see Diamηn→ 0 as n→ ∞, thus

hμ̃(θ ) = lim
n→∞

hμ̃(θ ,ηn). (I.7)

Notice that θ is invertible, by Theorem 4.12 (vii) of [92] we have

hμ̃(θ ,ηn) = hμ̃(θ , p−1ξn) = hμ(T,ξn).

This together with (I.6) and (I.7) yields that identity (I.5) holds. ��
In the previous proposition, we see that the entropies of these two systems are in

fact identical. Now we consider the relationship between the Lyapunov exponents
of these two systems.
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For any continuous endomorphism f on the manifold M, let M f denote the in-
verse limit space of system (M, f ). We still use p to denote the natural projection
from M f to M, and θ to denote the shift homeomorphism. For any f -invariant
Borel probability measure μ on M, we still use μ̃ to denote the θ -invariant Borel
probability measure on M f such that pμ̃ = μ .

Let E = p∗T M for the pull back bundle of the tangent bundle T M by the projec-
tion p : M f →M, and

Ex̃ = p∗x̃T M
p∗
�
p∗̃x

Tx0M

for the natural isomorphisms between fibers Ex̃ and Tx0M:

ξ = (x̃,v)
p∗
�
p∗̃x

v, ∀v ∈ Tx0 M, x̃ ∈M f .

When f is C1, a fiber preserving map on E , with respect to θ , can be defined as

p∗θ x̃ ◦T f ◦ p∗ : Ex̃→ Eθ x̃, for each x̃ ∈M f .

Since it is equivalent to T f on the fibers, we still denote it as T f ,

TM
p∗←−−−− E −−−−→ M f

T f

⏐⏐

 T f

⏐⏐



⏐⏐

θ

TM −−−−→
p∗

E −−−−→ M f

i.e. T f is a continuous bundle endomorphism covering the homeomorphism θ of
the compact base M f , so T f is a linear map on each fiber and there is a constant
K > 0 such that ‖T f‖ ≤ K for any x̃ ∈M f .

Let

Δ = M f \
+∞⋃

n=−∞
θ n(p−1(Γ∞)

)
.

Obviously θ (Δ) = Δ and for any x̃ = {xn}n∈Z ∈ Δ we have xn ∈M\Γ∞.
When the integrability condition (I.1) is satisfied, we have μ̃(Δ) = 1. By

Theorem 5.2 of [69], (1)-(3) of [83] and the Oseledec’s theorem in the Appendix of
[33], we have the following fundamental result.

Proposition I.3.5 There exists a Borel set Δ̃ ⊂ Δ , such that θΔ̃ = Δ̃ and μ̃(Δ̃) = 1.
Furthermore, for every x̃ = {xn}n∈Z ∈ Δ̃ , there is a splitting of the tangent space
Tx0M

Tx0M = E1(x̃)⊕E2(x̃)⊕·· ·⊕Er(x̃)(x̃)

and numbers +∞ > λ1(x̃) > λ2(x̃) > · · · > λr(x̃)(x̃) > −∞ and mi(x̃) (i = 1,2, . . . ,
r(x̃)), such that
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1) Txn f : TxnM→ Txn+1M is an isomorphism, ∀n ∈ Z.
2) r(·), λi(·) and mi(·) are θ -invariant, i.e.,

r(θ x̃) = r(x̃), λi(θ x̃) = λi(x̃) and mi(θ x̃) = mi(x̃)

for each i = 1, . . . ,r(x̃).
3) dimEi(x̃) = mi(x̃) for all n ∈ Z and 1≤ i≤ r(x̃).
4) The splitting is invariant under T f , i.e.,

Txn f Ei(θ nx̃) = Ei(θ n+1x̃)

for all n ∈ Z and 1≤ i≤ r(x̃).
5) For any n,m ∈ Z, let

T m
n (x̃) =

⎧
⎨

⎩

Txn f m, if m > 0,
id, if m = 0,
(T−m

n+m)−1, if m < 0.

Then,

lim
m→±∞

1
m

log
∣
∣T m

n (x̃)ξ
∣
∣= λi(x̃),

for all 0 �= ξ ∈ Ei(θ nx̃), 1≤ i≤ r(x̃).
6) We introduce

ρ (1)(x̃)≥ ρ (2)(x̃)≥ ·· · ≥ ρ (m0)(x̃)

to denote λ1(x̃), . . . , λ1(x̃), . . . , λi(x̃), . . . , λi(x̃), . . . , λr(x̃)(x̃), . . . , λr(x̃)(x̃) with
λi(x̃) being repeated mi(x̃) times. Now if {ξ1, . . . ,ξm0} is a basis of Tx0M which
satisfies

lim
m→±∞

1
m

log
∣
∣T m

0 (x̃)ξi
∣
∣= ρ (i)(x̃)

for every 1 ≤ i ≤ m0, then for any two non-empty disjoint subsets P,Q ⊂{
1, · · · ,m0

}
we have

lim
m→±∞

1
m

logγ
(
T m

0 (x̃)EP,T m
0 (x̃)EQ

)
= 0

where EP and EQ denote the subspaces of Tx0 M spanned by the vectors
{
ξi
}

i∈P
and

{
ξ j
}

j∈Q respectively and γ(·, ·) denotes the angle between the two associ-
ated subspaces.

7) x0 ∈ Γ ′ and r(x̃) = r(x0), λi(x̃) = λi(x0) and mi(x̃) = mi(x0) for all i = 1,2, . . . ,
r(x̃), where r(x0), λi(x0) and mi(x0) are as in Theorem I.2.1.

Definition I.3.1 The numbers
{
λi(x̃)

}r(x̃)
i=1 , given by Proposition I.3.5 are called the

Lyapunov exponents of (M f ,θ , μ̃) at x̃, and mi(x̃) is called the multiplicity of λi(x̃).




