Skip to main content

Matrix Valued Brownian Motion and a Paper by Pólya

  • Chapter
  • First Online:
Séminaire de Probabilités XLII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1979))

Abstract

This paper has two parts which are largely independent. In the first one I recall some known facts on matrix valued Brownian motion, which are not so easily found in this form in the literature. I will study three types of matrices, namely Hermitian matrices, complex invertible matrices, and unitary matrices, and try to give a precise description of the motion of eigenvalues (or singular values) in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G. E.; Askey, R.; Roy, R.: Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  2. Babillot, M.: A probabilistic approach to heat diffusion on symmetric spaces. J. Theoret. Probab. 7 (1994), no. 3, 599–607

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, M. V.; Keating, J. P.: The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41 (1999), no. 2, 236–266.

    Article  MathSciNet  Google Scholar 

  4. Biane, P.: La fonction zêta de Riemann et les probabilités. La fonction zêta, 165–193, Ed. Éc. Polytech., Palaiseau, 2003.

    Google Scholar 

  5. Biane, P.; Pitman, J.; Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 4, 435–465.

    Article  MathSciNet  MATH  Google Scholar 

  6. Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

    MATH  Google Scholar 

  7. Dyson, F. J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys. 3 1962 1191–1198.

    Article  MathSciNet  MATH  Google Scholar 

  8. Guivarc'h, Y.; Ji, L.; Taylor, J. C.: Compactifications of symmetric spaces. Progress in Mathematics, 156. Birkhäuser Boston, Inc., Boston, MA, 1998.

    Google Scholar 

  9. Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions. Corrected reprint of the 1984 original. Mathematical Surveys and Monographs, 83. American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  10. Jones, L.; O'Connell N.: Weyl chambers, symmetric spaces and number variance saturation. ALEA Lat. Am. J. Probab. Math. Stat. 2 (2006), 91–118

    MathSciNet  MATH  Google Scholar 

  11. Kac M.: Comments on [93] Bemerkung über die Intergraldarstellung der Riemannsche ξ-Funktion, in Pólya, G.: Collected papers. Vol. II: Location of zeros. Edited by R. P. Boas. Mathematicians of Our Time, Vol. 8. The MIT Press, Cambridge, Mass.-London, 1974.

    Google Scholar 

  12. Levitan, B. M.; Sargsjan, I. S.: Introduction to spectral theory: selfadjoint ordinary differential operators. Translated from the Russian by Amiel Feinstein. Translations of Mathematical Monographs, Vol. 39. American Mathematical Society, Providence, R.I., 1975.

    Google Scholar 

  13. Malliavin, M.-P.; Malliavin, P.: Factorisations et lois limites de la diffusion horizontale au-dessus d'un espace riemannien symétrique. Théorie du potentiel et analyse harmonique, pp. 164–217. Lecture Notes in Math., Vol. 404, Springer, Berlin, 1974.

    Chapter  Google Scholar 

  14. Pólya, G.: Bemerkung über die Integraldarstellung der Riemannschen ζ-Funktion. Acta Math. 48 (1926), no. 3–4, 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. Taylor, J. C.: The Iwasawa decomposition and the limiting behaviour of Brownian motion on a symmetric space of noncompact type. Geometry of random motion (Ithaca, N.Y., 1987), 303–332, Contemp. Math., 73, Amer. Math. Soc., Providence, RI, 1988.

    MATH  Google Scholar 

  16. Taylor, J. C.: Brownian motion on a symmetric space of noncompact type: asymptotic behaviour in polar coordinates. Canad. J. Math. 43 (1991), no. 5, 1065–1085.

    Article  MathSciNet  MATH  Google Scholar 

  17. Titchmarsh, E. C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford, at the Clarendon Press, 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Biane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biane, P. (2009). Matrix Valued Brownian Motion and a Paper by Pólya. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLII. Lecture Notes in Mathematics(), vol 1979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01763-6_7

Download citation

Publish with us

Policies and ethics