Skip to main content

Monotonicity of the extremal functions for one-dimensional inequalities of logarithmic Sobolev type

  • Chapter
  • First Online:
Séminaire de Probabilités XLII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1979))

Abstract

In various one-dimensional functional inequalities, the optimal constants can be found by considering only monotone functions. We study the discrete and continuous settings (and their relationships); we are interested in Poincarè or logarithmic Sobolev inequalities, and several variants obtained by modifying entropy and energy terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cécile Ané, Sébastien Blachère, Djȧlil Chafaï, Pierre Fougères, Ivan Gentil, Florent Malrieu, Cyril Roberto and Grégory Scheffer. Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de France, Paris, 2000. With a preface by Dominique Bakry and Michel Ledoux.

    Google Scholar 

  2. F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math., 159(3):481–497, 2003. Dedicated to Professor Aleksander Pelczyński on occasion of his 70th birthday (Polish).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1–28, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. Eric A. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1):194–211, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. Djalil Chafaï. Entropies, convexity, and functional inequalities. J. Math. Kyoto Univ., 44(2):325–363, 2004.

    MathSciNet  Google Scholar 

  6. Mu-Fa Chen and Feng-Yu Wang. Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc., 349(3):1239–1267, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mufa Chen. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. China Ser. A, 42(8):805–815, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mufa Chen. Variational formulas and approximation theorems for the first eigen-value in dimension one. Sci. China Ser. A, 44(4):409–418, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivan Gentil, Arnaud Guillin and Laurent Miclo. Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133 (2005), no. 3, 409–436.

    Google Scholar 

  10. Leonard Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.

    Article  MathSciNet  Google Scholar 

  11. Laurent Miclo. Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Annales de la Faculté des Sciences de Toulouse, Sér. 6, no. 17(1):121–192, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  12. Laurent Miclo. On eigenfunctions of Markov processes on trees. Probab. Theory Related Fields, 142(3–4):561–594, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. S. Rothaus. Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators. J. Funct. Anal., 39(1):42–56, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. S. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal., 42(1):102–109, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. S. Rothaus. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal., 42(1):110–120, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  16. Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.

    MATH  Google Scholar 

  17. Laurent Saloff-Coste. Lectures on finite Markov chains. In Lectures on probability theory and statistics (Saint-Flour, 1996), volume 1665 of Lecture Notes in Math., pages 301–413. Springer, Berlin, 1997.

    Google Scholar 

  18. Liming Wu. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields, 118(3):427–438, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miclo Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laurent, M. (2009). Monotonicity of the extremal functions for one-dimensional inequalities of logarithmic Sobolev type. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLII. Lecture Notes in Mathematics(), vol 1979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01763-6_2

Download citation

Publish with us

Policies and ethics