# Penalisation of the Standard Random Walk by a Function of the One-sided Maximum, of the Local Time, or of the Duration of the Excursions 

Pierre Debs

Institut Élie Cartan Nancy<br>B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France<br>E-mail: Pierre.Debs@iecn.u-nancy.fr

Summary. Call $\left(\Omega, \mathcal{F}_{\infty}, \mathbb{P}, X, \mathcal{F}\right)$ the canonical space for the standard random walk on $\mathbb{Z}$. Thus, $\Omega$ denotes the set of paths $\phi: \mathbb{N} \rightarrow \mathbb{Z}$ such that $|\phi(n+1)-\phi(n)|=1$, $X=\left(X_{n}, n \geqslant 0\right)$ is the canonical coordinate process on $\Omega ; \mathcal{F}=\left(\mathcal{F}_{n}, n \geqslant 0\right)$ is the natural filtration of $X, \mathcal{F}_{\infty}$ the $\sigma$-field $\bigvee_{n \geqslant 0} \mathcal{F}_{n}$, and $\mathbb{P}_{0}$ the probabilitiy on $\left(\Omega, \mathcal{F}_{\infty}\right)$ such that under $\mathbb{P}_{0}, X$ is the standard random walk started form 0, i.e., $\mathbb{P}_{0}\left(X_{n+1}=j \mid X_{n}=i\right)=\frac{1}{2}$ when $|j-i|=1$.

Let $G: \mathbb{N} \times \Omega \rightarrow \mathbb{R}^{+}$be a positive, adapted functional. For several types of functionals $G$, we show the existence of a positive $\mathcal{F}$-martingale ( $M_{n}, n \geqslant 0$ ) such that, for all $n$ and all $\Lambda_{n} \in \mathcal{F}_{n}$,

$$
\frac{\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} G_{p}\right]}{\mathbb{E}_{0}\left[G_{p}\right]} \quad \longrightarrow \quad \mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right] \quad \text { when } p \rightarrow \infty
$$

Thus, there exists a probability $Q$ on $\left(\Omega, \mathcal{F}_{\infty}\right)$ such that $Q\left(\Lambda_{n}\right)=\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right]$ for all $\Lambda_{n} \in \mathcal{F}_{n}$. We describe the behavior of the process $(\Omega, X, \mathcal{F})$ under $Q$.

The three sections of the article deal respectively with the three situations when $G$ is a function:

- of the one-sided maximum;
- of the sign of $X$ and of the time spent at zero;
- of the length of the excursions of $X$.


## 1 Introduction

Let $\left\{\Omega,\left(X_{t}, \mathcal{F}_{t}\right)_{t \geqslant 0}, \mathcal{F}_{\infty}, \mathbb{P}_{x}\right\}$ be the canonical one-dimensional Brownian motion. For several types of positive functionals $\Gamma: \mathbb{R}^{+} \times \Omega \rightarrow \mathbb{R}^{+}$, B. Roynette, P. Vallois and M. Yor show in RVY06 that, for fixed $s$ and for all $\Lambda_{s} \in \mathcal{F}_{s}$,

$$
\lim _{t \rightarrow \infty} \frac{\mathbb{E}_{x}\left[\mathbb{1}_{\Lambda_{s}} \Gamma_{t}\right]}{\mathbb{E}_{x}\left[\Gamma_{t}\right]}
$$

exists and has the form $\mathbb{E}_{x}\left[\mathbb{1}_{\Lambda_{s}} M_{s}^{x}\right]$, where $\left(M_{s}^{x}, s \geqslant 0\right)$ is a positive martingale. This enables them to define a probability $Q_{x}$ on $\left(\Omega, \mathcal{F}_{\infty}\right)$ by:

$$
\forall \Lambda_{s} \in \mathcal{F}_{s} \quad Q_{x}\left(\Lambda_{s}\right)=\mathbb{E}_{x}\left[\mathbb{1}_{\Lambda_{s}} M_{s}^{x}\right]
$$

moreover, they precisely describe the behavior of the canonical process $X$ under $Q_{x}$. This they do for numerous functionals $\Gamma$, for instance a function of the one-sided maximum, or of the local time, or of the age of the current excursion (cf. RVY06, RVY).

Our purpose is to study a discrete analogue of their results. More precisely, let $\Omega$ denote the set of all functions $\phi$ from $\mathbb{N}$ to $\mathbb{Z}$ such that $|\phi(n+1)-\phi(n)|=1$, let $X=\left(X_{n}, n \geqslant 0\right)$ be the process of coordinates on that space, $\mathcal{F}=\left(\mathcal{F}_{n}, n \geqslant 0\right)$ the canonical filtration, $\mathcal{F}_{\infty}$ the $\sigma$-field $\bigvee_{n \geqslant 0} \mathcal{F}_{n}$, and $\mathbb{P}_{x}(x \in \mathbb{N})$ the family of probabilities on $\left(\Omega, \mathcal{F}_{\infty}\right)$ such that under $\mathbb{P}_{x}$ $X$ is the standard random walk started at $x$. For notational simplicity, we often write $\mathbb{P}$ for $\mathbb{P}_{0}$. Our aim is to establish that for several types of positive, adapted functionals $G: \mathbb{N} \times \Omega \rightarrow \mathbb{N}$,
i) for each $n \geqslant 0$ and each $\Lambda_{n} \in \mathcal{F}_{n}$,

$$
\frac{\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} G_{p}\right]}{\mathbb{E}_{0}\left[G_{p}\right]}
$$

tends to a limit when $p$ tends to infinity;
ii) this limit is equal to $\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right]$, for some $\mathcal{F}$-martingale $M$ such that $M_{0}=1$.

Call $Q\left(\Lambda_{n}\right)$ this limit. Assuming i) and ii), $Q$ is a probability on each $\sigma$-field $\mathcal{F}_{n}$; it extends in a unique way to a probability (still called $Q$ ) on the $\sigma$-field $\mathcal{F}_{\infty}$. This can be seen either by applying Kolmogorov's theorem on projective limits (knowing $Q$ on the $\mathcal{F}_{n}$ amounts to knowing the finite marginal laws of the process $X$ ), or directly, since every finitely additive probability on the Boolean algebra $\mathcal{A}=\bigcup_{n} \mathcal{F}_{n}$ extends to a $\sigma$-additive probability on $\mathcal{F}_{\infty}$ (a Cantorian diagonal argument shows that every decreasing sequence $\left(A_{k}\right)$ in $\mathcal{A}$ with limit $\bigcap_{k} A_{k}=\varnothing$ is stationary; hence every finitely additive probability on $\mathcal{A}$ is $\sigma$-additive on $\mathcal{A}$ ). In short, $Q$ is the unique probability on $\left(\Omega, \mathcal{F}_{\infty}\right)$ such that

$$
\forall n \in \mathbb{N} \quad \forall \Lambda_{n} \in \mathcal{F}_{n} \quad Q\left(\Lambda_{n}\right)=\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right]
$$

We will also study the process $X$ under $Q$.

1) In the first section, $G$ is a function of the one-sided maximum, i.e.,

$$
G_{p}=\varphi\left(S_{p}\right)
$$

where $S_{p}=\sup \left\{X_{k}, k \leqslant p\right\}$ and where $\varphi$ is a function from $\mathbb{N}$ to $\mathbb{R}^{+}$satisfying

$$
\sum_{k=0}^{\infty} \varphi(k)=1
$$

We will also need the function $\Phi: \mathbb{N} \longrightarrow \mathbb{R}^{+}$given by

$$
\Phi(k):=\sum_{j=k}^{\infty} \varphi(j) .
$$

The results of Section 1 are summarized in the following statement:
Theorem 1. 1. a) For each $n \geqslant 0$ and each $\Lambda_{n} \in \mathcal{F}_{n}$, one has

$$
\lim _{p \rightarrow \infty} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \varphi\left(S_{p}\right)\right]}{\mathbb{E}\left[\varphi\left(S_{p}\right)\right]}=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{\varphi}\right],
$$

where $M_{n}^{\varphi}:=\varphi\left(S_{n}\right)\left(S_{n}-X_{n}\right)+\Phi\left(S_{n}\right)$.
b) $\left(M_{n}^{\varphi}, n \geqslant 0\right)$ is a positive martingale, with $M_{0}^{\varphi}=1$, non uniformly integrable; in fact, $M_{n}^{\varphi}$ tends a.s. to 0 when $n \rightarrow \infty$.
2. Call $Q^{\varphi}$ the probability on $\left(\Omega, \mathcal{F}_{\infty}\right)$ characterized by

$$
\forall n \in \mathbb{N}, \Lambda_{n} \in \mathcal{F}_{n}, \quad Q^{\varphi}\left(\Lambda_{n}\right)=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{\varphi}\right]
$$

Then
a) $S_{\infty}$ is finite $Q^{\varphi}$-a.s. and satisfies for every $k \in \mathbb{N}$ :

$$
\begin{equation*}
Q^{\varphi}\left(S_{\infty}=k\right)=\varphi(k) \tag{1}
\end{equation*}
$$

b) Under $Q^{\varphi}$, the r.v. $T_{\infty}:=\inf \left\{n \geqslant 0, X_{n}=S_{\infty}\right\}$ (which is not a stopping time in general) is a.s. finite and
i. $\left(X_{n \wedge T_{\infty}}, n \geqslant 0\right)$ and $\left(S_{\infty}-X_{T_{\infty}+n}, n \geqslant 0\right)$ are two independent processes;
ii. conditional on the r.v. $S_{\infty}$, the process $\left(X_{n \wedge T_{\infty}}, n \geqslant 0\right)$ is a standard random walk stopped when it first hits the level $S_{\infty}$;
iii. $\left(S_{\infty}-X_{T_{\infty}+n}, n \geqslant 0\right)$ is a 3-Bessel walk started from 0 .
3. Put $R_{n}=2 S_{n}-X_{n}$. $\operatorname{Under} Q^{\varphi},\left(R_{n}, n \geqslant 0\right)$ is a 3-Bessel walk independent of $S_{\infty}$.

The proofs of the second and third parts of this theorem rest largely upon a theorem due to Pitman (cf. Pit75]) and on the study of the large $p$ asymptotics of $\mathbb{P}\left(\Lambda_{n} \mid S_{p}=k\right)$ for $\Lambda_{n} \in \mathcal{F}_{n}$.

We must now explain the precise meaning of the ' 3 -Bessel walk' mentioned in the theorem and further in this article. In fact, two processes, which we call the 3 -Bessel walk and the 3 -Bessel* walk, will play a role in this work; they are identical up to a one-step space shift.

The 3-Bessel walk is the Markov chain $\left(R_{n}, n \geqslant 0\right)$, with values in $\mathbb{N}=$ $\{0,1,2, \ldots\}$, whose transition probabilities from $x \geqslant 0$ are given by

$$
\begin{equation*}
\pi(x, x+1)=\frac{x+2}{2 x+2} ; \quad \pi(x, x-1)=\frac{x}{2 x+2} \tag{2}
\end{equation*}
$$

The 3-Bessel* walk is the Markov chain $\left(R_{n}^{*}, n \geqslant 0\right)$, valued in $\mathbb{N}^{*}=$ $\{1,2, \ldots\}$, such that $R^{*}-1$ is a 3 -Bessel walk. So its transition probabilities from $x \geqslant 1$ are

$$
\pi^{*}(x, x+1)=\frac{x+1}{2 x} ; \quad \pi^{*}(x, x-1)=\frac{x-1}{2 x}
$$

2) In the second section, the functional $G_{p}$ will be a function of the local time at 0 of the random walk. The local time is the process $\left(L_{n}, n \geqslant 0\right)$ such that $L_{n}$ is the number of times that $X$ was null strictly before time $n$. In other words,

$$
L_{n}=\sum_{m \geqslant 0} \mathbb{1}_{m<n} \mathbb{1}_{X_{m}=0}
$$

Observe that $L_{n}$ is also the sum of the number of up-crossings from 0 to 1 and of the number of down-crossings from 0 to -1 , up to time $n$. Given two functions $h^{+}$and $h^{-}$from $\mathbb{N}^{*}$ to $\mathbb{R}^{+}$such that

$$
\frac{1}{2} \sum_{k=1}^{\infty}\left(h^{+}(k)+h^{-}(k)\right)=1
$$

we consider the penalisation functional

$$
G_{p}:=h^{+}\left(L_{p}\right) \mathbb{1}_{X_{p}>0}+h^{-}\left(L_{p}\right) \mathbb{1}_{X_{p}<0}
$$

Putting

$$
\Theta(x)=\frac{1}{2} \sum_{k=x+1}^{\infty}\left(h^{+}(k)+h^{-}(k)\right)
$$

we obtain the following penalisation theorem.
Theorem 2. 1. a) For each $n \geqslant 0$ and each $\Lambda_{n} \in \mathcal{F}_{n}$, one has

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} G_{p}\right]}{\mathbb{E}\left[G_{p}\right]}=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{h^{+}, h^{-}}\right] \tag{3}
\end{equation*}
$$

where $M_{n}^{h^{+}, h^{-}}:=X_{n}^{+} h^{+}\left(L_{n}\right)+X_{n}^{-} h^{-}\left(L_{n}\right)+\Theta\left(L_{n}\right)$.
b) $M_{n}^{h^{+}, h^{-}}$is a positive, non uniformly integrable martingale ; indeed, it tends to 0 when $n$ tends to infinity.
2. Call $Q^{h^{+}, h^{-}}$the probability on $\mathcal{F}_{\infty}$ whose restriction to $\mathcal{F}_{n}$ is given by

$$
\forall \Lambda_{n} \in \mathcal{F}_{n}, \quad Q^{h^{+}, h^{-}}\left(\Lambda_{n}\right)=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{h^{+}, h^{-}}\right]
$$

This $Q^{h^{+}, h^{-}}$has the following properties:
a) $L_{\infty}$ is $Q^{h^{+}, h^{-}}$-a.s. finite and satisfies

$$
\forall k \in \mathbb{N}^{*}, \quad Q^{h^{+}, h^{-}}\left(L_{\infty}=k\right)=\frac{1}{2}\left(h^{+}(k)+h^{-}(k)\right)
$$

b) The r.v. $g:=\sup \left\{n \geqslant 0, X_{n}=0\right\}$ is $Q^{h^{+}, h^{-}}$-a.s. finite and, under $Q^{h^{+}, h^{-}}$,
i. The processes $\left(X_{g+u}, u \geqslant 0\right)$ and $\left(X_{u \wedge g}, u \geqslant 0\right)$ are independent.
ii. With probability $\frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k)$, the process $\left(X_{g+u}, u \geqslant 1\right)$ is a 3-Bessel* walk started from 1.
With probability $\frac{1}{2} \sum_{k=1}^{\infty} h^{-}(k)$, the process $\left(-X_{g+u}, u \geqslant 1\right)$ is a 3-Bessel* walk started from 1 .
iii. Conditional on $L_{\infty}=l$, the process $\left(X_{u \wedge g}, u \geqslant 0\right)$ is a standard random walk stopped at its l-th passage at 0 .

Our unusual choice for the definition of the local time at 0 will be helpful when proving the first point. The second part of the proof of this theorem rests essentially on an article by Le Gall (cf LeG85) which enables us to assess, under specific conditions, that a 3-Bessel* walk for $\mathbb{P}$ is is still a 3-Bessel* walk for $Q^{h^{+}, h^{-}}$.
3) In the third part, the penalisation functional $G_{p}$ will be a function of the longest excursion completed until time $p$. Set $g_{n}:=\sup \left\{k \leqslant n, X_{k}=0\right\}$, $d_{n}:=\inf \left\{k \geqslant n, X_{k}=0\right\}$, and $\Sigma_{n}:=\sup \left\{d_{k}-g_{k}, d_{k} \leqslant n\right\} ;$ for $n \geqslant 0$, $\Sigma_{n}$ is the duration of the longest excursion completed until time $n$.

Fix an even integer $x \geqslant 0$, and consider the penalisation functional

$$
G_{p}:=\mathbb{1}_{\Sigma_{p} \leqslant x}
$$

To study penalisation by this $G$, we must also introduce $A_{n}:=n-g_{n}$, which is the age of the current excursion, and $A_{n}^{*}:=\sup _{k \leqslant n} A_{k}$, which is the longest duration of a (complete or incomplete) excursion until $n$. We also call $\tau=$ $\inf \left\{n>0, X_{n}=0\right\}$ the first return time to 0 , and we put

$$
\theta(x):=\mathbb{E}_{0}\left[\left|X_{x}\right| \mid \tau>x\right] .
$$

Theorem 3. 1. a) For each $n \geqslant 0$ and each $\Lambda_{n} \in \mathcal{F}_{n}$ :

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} \mathbb{1}_{\Sigma_{p} \leqslant x}\right]}{\mathbb{P}_{0}\left[\Sigma_{p} \leqslant x\right]}=\mathbb{E}_{0}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right], \tag{4}
\end{equation*}
$$

where

$$
M_{n}:=\left\{\frac{\left|X_{n}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right) \mathbb{1}_{A_{n} \leqslant x}\right\} \mathbb{1}_{\Sigma_{n} \leqslant x}
$$

(In this expression and in similar ones, the meaning of $\tilde{\mathbb{P}}$ and $\tilde{T}_{0}$ is to be interpreted as follows: $\tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)$ stands for $f\left(X_{n}, x-A_{n}\right)$, with $f(y, z)=\mathbb{P}_{y}\left(T_{0} \leqslant z\right)$.)
b) Moreover, $\left(M_{n}, n \geqslant 0\right)$ is a positive martingale, non uniformly integrable; indeed, $\lim _{n \rightarrow \infty} M_{n}=0 \mathbb{P}$-a.s.
2. Call $Q^{x}$ the probability on $\mathcal{F}_{\infty}$ whose restriction to $\mathcal{F}_{n}$ is defined by

$$
\forall \Lambda_{n} \in \mathcal{F}_{n}, \quad Q^{x}\left(\Lambda_{n}\right)=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}\right]
$$

Under $Q^{x}$, one has:
a) $\Sigma_{\infty} \leqslant x$ a.s. and satisfies for all $y \leqslant x$ :

$$
Q^{x}\left(\Sigma_{\infty}>y\right)=1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)}
$$

b) $A_{\infty}^{*}=\infty$ a.s.
c) The r.v. $g:=\sup \left\{n \geqslant 0, X_{n}=0\right\}$ is a.s. finite. Moreover, if $p=2 l$ or $2 l+1$ with $l \geqslant 0$,

$$
Q^{x}(g>p)=\left(\frac{1}{2}\right)^{l} \sum_{k=0}^{l \wedge \frac{x}{2}} C_{2 l-2 k}^{l-k} C_{2 k}^{k}\left(1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>2 k)}\right)
$$

d) For $y$ such that $0 \leqslant y \leqslant x$,
i. $\left(A_{n}, n \leqslant T_{y}^{A}\right)$ has the same law under $\mathbb{P}$ and $Q^{x}$.
ii. $\left(A_{n}, n \leqslant T_{y}^{A}\right)$ and $X_{T_{y}^{A}}$ are independent under $\mathbb{P}$ and under $Q^{x}$.
iii. Under $Q^{x}$, the law of $X_{T_{y}^{A}}$ is given by

$$
Q^{x}\left(X_{T_{y}^{A}}=k\right)=\left\{\frac{|k|}{\theta(x)}+\mathbb{P}_{k}\left(T_{0} \leqslant x-y\right)\right\} \mathbb{P}\left(X_{y}=k \mid \tau>y\right)
$$

iv.

$$
Q^{x}\left(g>T_{y}^{A}\right)=1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)}
$$

v. Under $Q^{x},\left(A_{n}, n \leqslant T_{y}^{A}\right)$ is independent of $\left\{g>T_{y}^{A}\right\}$.
3. $\operatorname{Under} Q^{x}$,
a) The processes $\left(X_{n \wedge g}, n \geqslant 0\right)$ and $\left(X_{g+n}, n \geqslant 0\right)$ are independent.
b) With probability $\frac{1}{2}$, the process $\left(X_{g+n}, n \geqslant 0\right)$ is a 3-Bessel* walk and with probability $\frac{1}{2}$, the process $\left(-X_{g+n}, n \geqslant 0\right)$ is a 3-Bessel* walk.
c) Conditional on $L_{\infty}=l$, the process $\left(X_{n \wedge g}, n \geqslant 0\right)$ is a standard random walk stopped at its $l$-th return time to 0 and conditioned by $\left\{\Sigma_{\tau_{l}} \leqslant x\right\}$, where $\tau_{l}$ is the $l$-th return time to 0 .

The proof of the first point of this theorem rests largely on a Tauberian theorem (cf [Fel50]) which gives the large $p$ asymptotics of $\mathbb{P}\left(\Sigma_{p} \leqslant x\right)$. And the study of the process $X$ under $Q^{x}$ rests on arguments similar to those used in the proof of Theorem 2

## 2 Principle of Penalisation

Penalisation can intuitively be interpreted as a generalisation of conditioning by a null event.

Consider the event $A_{\infty}:=\left\{S_{\infty} \leqslant a\right\}$, where $a \in \mathbb{N}$. By recurrence of the standard walk, $A_{\infty}$ is a $\mathbb{P}$-null event. One way of conditioning by $A_{\infty}$, which involves the filtration $\left(\mathcal{F}_{n}\right)$, is to consider the sequence of events $A_{p}:=$ $\left\{S_{p} \leqslant a\right\}$ and to study the limit

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n} \cap\left\{S_{p} \leqslant a\right\}}\right]}{\mathbb{E}\left[\mathbb{1}_{\left\{S_{p} \leqslant a\right\}}\right]}, \tag{5}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and each $\Lambda_{n} \in \mathcal{F}_{n}$.
Simple arguments show that the limit in (5) exists and equals

$$
\mathbb{E}\left[\mathbb{1}_{\left\{\Lambda_{n}, S_{n} \leqslant a\right\}} \frac{a+1-X_{n}}{a+1}\right]
$$

Put $M_{n}:=\mathbb{1}_{\left\{S_{n} \leqslant a\right\}} \frac{a+1-X_{n}}{a+1}$. The process $M$ is the martingale $\frac{a+1-X}{a+1}$ stopped when $S$ first hits $a+1$; so it is a positive $\mathbb{P}_{0}$-martingale. Since $M_{0}=1$ and $M_{\infty}=0$ a.s., $M$ is not uniformly integrable. But a probability $Q_{(n)}$ can be defined on $\mathcal{F}_{n}$ by

$$
\frac{d Q_{(n)}}{d \mathbb{P}_{\left.\right|_{\mathcal{F}_{n}}}}=M_{n}
$$

moreover, for $m<n, Q_{(m)}$ and $Q_{(n)}$ agree on $\mathcal{F}_{m}$. By Kolmogorov's existence theorem (cf Bil pp. 430-435), there exists a probability $Q$ on $\left(\Omega, \mathcal{F}_{\infty}\right)$ whose restriction to each $\mathcal{F}_{n}$ is the corresponding $Q_{(n)}$; in other words, $Q$ is characterized by

$$
Q\left(\Lambda_{n}\right):=\mathbb{E}\left[\mathbb{1}_{\left\{\Lambda_{n}, S_{n} \leqslant a\right\}} \frac{a+1-X_{n}}{a+1}\right]
$$

for all $n \in \mathbb{N}$ and $\Lambda_{n} \in \mathcal{F}_{n}$.
When studying the behavior of $\left(X_{n}, n \geqslant 0\right)$ under the new probability $Q$, one obtains that $S_{\infty}$ is a.s. finite and uniformly distributed on $[0, a]$. A more detailed study shows that:

- $\left(X_{n \wedge T_{\infty}}, n \geqslant 0\right)$ and $\left(S_{\infty}-X_{T_{\infty}+n}, n \geqslant 0\right)$ are two independent processes.
- Conditional on $\left\{S_{\infty}=k\right\},\left(X_{n \wedge T_{\infty}}, n \geqslant 0\right)$ is a standard random walk stopped when it reaches the value $k$.
- $\left(S_{\infty}-X_{T_{\infty}+n}, n \geqslant 0\right)$ is a 3 -Bessel walk started from 0 , independent from $\left(S_{\infty}, T_{\infty}\right)$.
This raises several natural questions: What happens when $\mathbb{1}_{\left\{S_{n} \leqslant a\right\}}$ is replaced with a more complicated function of the supremum? In that case, what does the limit (5) become? Can one still define a probability $Q$, and how is the behavior of ( $X_{n}, n \geqslant 0$ ) under $Q$ influenced by this modification?

This simple idea of replacing the indicator by a more complex function is the essence of penalisation. All this is evidently not limited to the case of the one-sided maximum, but extends to many other increasing, adapted functionals tending $\mathbb{P}$-a.s. to $+\infty$. There exist various examples of penalisation, and also a general principle (cf Deb07) but this article is only devoted to three examples of penalisation functionals: the one-sided maximum, the local time at 0 and the maximal duration of the completed excursions.

## 3 Penalisation by a Function of the One-sided Maximum: Proof of Theorem 1

1) We start by recalling a few facts.

The next result is classical (cf. Fel50 p. 75):
Lemma 1. For $k \in \mathbb{Z}$ and $n \in \mathbb{N}$,

$$
\mathbb{P}_{0}\left(X_{n}=k\right)=\left(\frac{1}{2}\right)^{n} C_{n}^{\frac{n+k}{2}}
$$

Remark 1. In the sequel, we put

$$
p_{n, k}:=\mathbb{P}_{0}\left(X_{n}=k\right)
$$

observe that $p_{n, k} \neq 0$ if and only if $n$ and $k$ have the same parity and $|k| \leqslant n$.

Lemma 2. For $k$ in $\mathbb{Z}$ and $n$ and $r$ in $\mathbb{N}$, one has

$$
\mathbb{P}_{0}\left(X_{n}=k, S_{n} \geqslant r\right)= \begin{cases}\mathbb{P}\left(X_{n}=k\right) & \text { if } k>r ;  \tag{6}\\ \mathbb{P}\left(X_{n}=2 r-k\right) & \text { if } k \leqslant r .\end{cases}
$$

Proof. This formula is trivial when $k>r$; when $k \leqslant r$, it is Désiré André's well-known reflection principle (see for instance Fel50 p. 72 and pp. 88-89).

From Lemma 2 and Remark 1 one easily derives the law of $S$ :
Lemma 3. For $n$ and $r$ in $\mathbb{N}$, one has

$$
\begin{equation*}
\mathbb{P}_{0}\left(S_{n}=r\right)=p_{n, r}+p_{n, r+1}=p_{n, r} \vee p_{n, r+1} \tag{7}
\end{equation*}
$$

Proof. Summing (6) over all $k \in \mathbb{Z}$ gives
$\mathbb{P}\left(S_{n} \geqslant r\right)=\sum_{k>r} \mathbb{P}\left(X_{n}=k\right)+\sum_{k \leqslant r} \mathbb{P}\left(X_{n}=2 r-k\right)=\mathbb{P}\left(X_{n}>r\right)+\mathbb{P}\left(X_{n} \geqslant r\right)$.
Consequently,

$$
\mathbb{P}\left(S_{n}=r\right)=\mathbb{P}\left(S_{n} \geqslant r\right)-\mathbb{P}\left(S_{n} \geqslant r+1\right)=\mathbb{P}\left(X_{n}=r+1\right)+\mathbb{P}\left(X_{n}=r\right)
$$

and (7) follows by definition of $p_{n, k}$ and by Remark 1
2) We start showing point 1 of Theorem 1 .

Lemma 4. For each $k \geqslant 0$, the ratio

$$
\frac{\mathbb{P}\left(S_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorized by 1 for all $n \geqslant 0$ and tends to 1 when $n \rightarrow+\infty$.
Proof. The denominator is minorated by $\mathbb{P}\left(X_{1}=\ldots=X_{n}=-1\right)=2^{-n}$; so it does not vanish. Observe that, for even $n$ and even $k \geqslant 2$,

$$
\frac{\mathbb{P}\left(S_{n}=k-1\right)}{\mathbb{P}\left(S_{n}=0\right)}=\frac{\mathbb{P}\left(S_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)}=\frac{p_{n, k}}{p_{n, 0}}=\left(\frac{n-k+2}{n+2}\right)\left(\frac{n-k+4}{n+4}\right) \cdots\left(\frac{n}{n+k}\right)
$$

and for odd $n$ and odd $k \geqslant 1$,

$$
\frac{\mathbb{P}\left(S_{n}=k-1\right)}{\mathbb{P}\left(S_{n}=0\right)}=\frac{\mathbb{P}\left(S_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)}=\frac{p_{n, k}}{p_{n, 1}}=\left(\frac{n-k+2}{n+1}\right)\left(\frac{n-k+4}{n+3}\right) \cdots\left(\frac{n+1}{n+k}\right)
$$

Clearly, these products are smaller than 1 and tend to 1 when $n$ goes to infinity.

Lemma 5. For all $x \in \mathbb{N}$ and $y \in \mathbb{Z}$ such that $y \leqslant x$, the ratio

$$
\frac{\mathbb{E}\left[\varphi\left(x \vee\left(y+S_{n}\right)\right)\right]}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorized for all $n \in \mathbb{N}$ by $(x-y) \varphi(x)+\Phi(x)$ and tends to $(x-y) \varphi(x)+\Phi(x)$ when $n$ tends to infinity.

Proof. Write

$$
\begin{aligned}
\frac{\mathbb{E}\left[\varphi\left(x \vee\left(y+S_{n}\right)\right)\right]}{\mathbb{P}\left(S_{n}=0\right)} & =\varphi(x) \frac{\mathbb{P}\left(y+S_{n}<x\right)}{\mathbb{P}\left(S_{n}=0\right)}+\sum_{k \geqslant x} \varphi(k) \frac{\mathbb{P}\left(y+S_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)} \\
& =\varphi(x) \sum_{k<x-y} \frac{\mathbb{P}\left(S_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)}+\sum_{k \geqslant x} \varphi(k) \frac{\mathbb{P}\left(S_{n}=k-y\right)}{\mathbb{P}\left(S_{n}=0\right)} .
\end{aligned}
$$

By Lemma 4 this sum is majorized by $(x-y) \varphi(x)+\sum_{k \geqslant x} \varphi(k)$ and tends to this value by dominated convergence.

To establish point 1 of Theorem in observe first that

$$
M_{n}^{\varphi}=\varphi\left(S_{n}\right)\left(S_{n}-X_{n}\right)+\Phi\left(S_{n}\right)
$$

is a positive martingale. Positivity is obvious: $\varphi, \Phi$, and $S-X$ are positive. To see that $M^{\varphi}$ is a martingale, consider $M_{n+1}^{\varphi}-M_{n}^{\varphi}$.

If $S_{n+1}=S_{n}$, the only thing that varies in the expression of $M^{\varphi}$ when $n$ is changed to $n+1$ is $X$; so, in that case,

$$
M_{n+1}^{\varphi}-M_{n}^{\varphi}=-\varphi\left(S_{n}\right)\left(X_{n+1}-X_{n}\right)
$$

On the other hand, if $S_{n+1} \neq S_{n}$, one has $S_{n+1}=S_{n}+1$ because each step of $S$ is 0 or 1 ; one also has $X_{n+1}=S_{n+1}$ because $S$ can increase only when pushed up by $X$, and $X_{n}=S_{n}$ because $X_{n}$ must simultaneously be $\leqslant S_{n}$ and at distance 1 from $X_{n+1}$. So $S_{n+1}-X_{n+1}=S_{n}-X_{n}=0$, giving

$$
\begin{aligned}
M_{n+1}^{\varphi}-M_{n}^{\varphi} & =\Phi\left(S_{n+1}\right)-\Phi\left(S_{n}\right)=\Phi\left(S_{n}+1\right)-\Phi\left(S_{n}\right) \\
& =-\varphi\left(S_{n}\right)=-\varphi\left(S_{n}\right)\left(X_{n+1}-X_{n}\right) .
\end{aligned}
$$

All in all, the equality $M_{n+1}^{\varphi}-M_{n}^{\varphi}=-\varphi\left(S_{n}\right)\left(X_{n+1}-X_{n}\right)$ holds everywhere; this entails that $M^{\varphi}$ is a martingale, verifying

$$
\begin{equation*}
\left|M_{n}^{\varphi}-M_{0}^{\varphi}\right| \leqslant n \tag{8}
\end{equation*}
$$

and since $M_{0}^{\varphi}=\Phi(0)=1$, one has $\mathbb{E}\left[M_{n}^{\varphi}\right]=1$.
We now proceed to prove 1.a of Theorem 1 For $0 \leqslant n \leqslant p$, one can write $S_{p}=S_{n} \vee\left(X_{n}+\widetilde{S}_{p-n}\right)$, where $\widetilde{S}$ is the maximal process of the standard random walk $\left(X_{n+k}-X_{n}\right)_{k \geqslant 0}$, which is independent from $\mathcal{F}_{n}$. Hence

$$
\mathbb{E}\left[\varphi\left(S_{p}\right) \mid \mathcal{F}_{n}\right]=\widetilde{\mathbb{E}}\left[\varphi\left(S_{n} \vee\left(X_{n}+\widetilde{S}_{p-n}\right)\right)\right]
$$

where $\widetilde{\mathbb{E}}$ integrates over $\widetilde{S}_{p-n}$ only, $S_{n}$ and $X_{n}$ being kept fixed. So, for $\Lambda_{n} \in \mathcal{F}_{n}$,

$$
\frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \varphi\left(S_{p}\right)\right]}{\mathbb{P}\left(S_{p-n}=0\right)}=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \frac{\widetilde{\mathbb{E}}\left[\varphi\left(S_{n} \vee\left(X_{n}+\widetilde{S}_{p-n}\right)\right)\right]}{\widetilde{\mathbb{P}}\left(\widetilde{S}_{p-n}=0\right)}\right]
$$

When $p$ tends to infinity, Lemma 5 says that the ratio in the right-hand side tends to $M_{n}^{\varphi}$ and is dominated by $M_{n}^{\varphi}$, which is integrable by (8). Consequently,

$$
\frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \varphi\left(S_{p}\right)\right]}{\mathbb{P}\left(S_{p-n}=0\right)} \quad\left\{\begin{array}{l}
\text { is majorated by } \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{\varphi}\right] \text { for all } p \geqslant n  \tag{9}\\
\text { and tends to } \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{\varphi}\right] \quad \text { when } p \rightarrow \infty
\end{array}\right.
$$

Taking in particular $\Lambda_{n}=\Omega$, one also has

$$
\frac{\mathbb{E}\left[\varphi\left(S_{p}\right)\right]}{\mathbb{P}\left(S_{p-n}=0\right)} \rightarrow \mathbb{E}\left[M_{n}^{\varphi}\right]=1 \quad \text { when } p \rightarrow \infty
$$

and to establish 1.a of Theorem 1 it suffices to take the ratio of these two limits.

Half of 1.b is already proven: we have seen above that $M^{\varphi}$ is a positive martingale, with $M_{0}^{\varphi}=1$. The proof that $M_{n}^{\varphi} \rightarrow 0$ a.s. is postponed; we first establish 2.a.

The set-function $Q^{\varphi}$ defined on the Boolean algebra $\bigcup_{n} \mathcal{F}_{n}$ by $Q^{\varphi}\left(\Lambda_{n}\right)=$ $\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{\varphi}\right]$ if $\Lambda_{n} \in \mathcal{F}_{n}$, is a probability on each $\sigma$-field $\mathcal{F}_{n}$. As recalled in the introduction, $Q^{\varphi}$ automatically extends to a probability (still called $Q^{\varphi}$ ) on the $\sigma$-field $\mathcal{F}_{\infty}$.

For $k$ and $n$ in $\mathbb{N}$, the event $\left\{S_{n} \geqslant k\right\}$ is equal to $\left\{T_{k} \leqslant n\right\}$, where $T_{k}=\inf \left\{m: X_{m} \geqslant k\right\}=\inf \left\{m: S_{m} \geqslant k\right\}$. Now, by Doob's stopping theorem,

$$
\begin{aligned}
Q^{\varphi}\left(S_{n} \geqslant k\right)=Q^{\varphi}\left(T_{k} \leqslant n\right) & =\mathbb{E}\left[\mathbb{1}_{T_{k} \leqslant n} M_{n}^{\varphi}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{T_{k} \leqslant n} M_{n \wedge T_{k}}^{\varphi}\right]=\mathbb{E}\left[\mathbb{1}_{T_{k} \leqslant n} M_{T_{k}}^{\varphi}\right] .
\end{aligned}
$$

But $\mathbb{P}_{0}$-a.s., $X_{T_{k}}=S_{T_{k}}=k$ and $M_{T_{k}}^{\varphi}=\Phi(k)$; wherefrom

$$
Q^{\varphi}\left(S_{n} \geqslant k\right)=\Phi(k) \mathbb{P}\left(S_{n} \geqslant k\right)
$$

Fixing $k$, let now $n$ tend to infinity. The events $\left\{S_{n} \geqslant k\right\}$ form an increasing sequence, with limit $\left\{S_{\infty} \geqslant k\right\}$; hence

$$
Q^{\varphi}\left(S_{\infty} \geqslant k\right)=\Phi(k) \mathbb{P}\left(S_{\infty} \geqslant k\right)=\Phi(k)
$$

This implies that $S_{\infty}$ is $Q^{\varphi}$-a.s. finite, with

$$
Q^{\varphi}\left(S_{\infty}=k\right)=\Phi(k)-\Phi(k+1)=\varphi(k)
$$

so 2.a is established.

This also implies that the $\mathbb{P}$-a.s. limit $M_{\infty}^{\varphi}$ of $M^{\varphi}$ is null, by the following argument. Using Fatou's lemma, one writes

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{S_{\infty}} \geqslant k M_{\infty}^{\varphi}\right] & =\mathbb{E}\left[\lim _{n}\left(\mathbb{1}_{S_{n} \geqslant k} M_{n}^{\varphi}\right)\right] \\
\leqslant & \liminf _{n} \mathbb{E}\left[\mathbb{1}_{S_{n} \geqslant k} M_{n}^{\varphi}\right] \\
& =\liminf _{n} Q^{\varphi}\left(S_{n} \geqslant k\right)=Q^{\varphi}\left(S_{\infty} \geqslant k\right)=\Phi(k) ;
\end{aligned}
$$

then, by dominated convergence, one has

$$
\mathbb{E}\left[\mathbb{1}_{S_{\infty}=\infty} M_{\infty}^{\varphi}\right]=\mathbb{E}\left[\lim _{k}\left(\mathbb{1}_{S_{\infty} \geqslant k} M_{\infty}^{\varphi}\right)\right]=\lim _{k} \mathbb{E}\left[\mathbb{1}_{S_{\infty} \geqslant k} M_{\infty}^{\varphi}\right] \leqslant \lim _{k} \Phi(k)=0
$$

and $\mathbb{P}\left(S_{\infty}=\infty\right)=1$ now implies $\mathbb{E}\left[M_{\infty}^{\varphi}\right]=0$. Point 1.b is proven.
3) Here are now a few facts on 3-Bessel walks, which will play an important role in the rest of the proof of Theorem 1 .

Proposition 1. Let $\left(R_{n}, n \geqslant 0\right)$ be a 3-Bessel walk; put $J_{n}=\inf _{m \geqslant n} R_{m}$.

1. Conditional on $\mathcal{F}_{n}^{R}$, the law of $J_{n}$ is uniform on $\left\{0,1, \ldots, R_{n}\right\}$.
2. Suppose now $R_{0}=0$ (therefore $J_{0}=0$ too).
a) The process $\left(Z_{n}, n \geqslant 0\right)$ defined by $Z_{n}=2 J_{n}-R_{n}$ is a standard random walk, and its natural filtration $\mathcal{Z}$ is also the natural filtration of the 2-dimensional process $(R, J)$.
b) If $T$ is a stopping time for $\mathcal{Z}$ such that $R_{T}=J_{T}$, then the process $\left(R_{T+n}-R_{T}, n \geqslant 0\right)$ is a 3-Bessel walk started from 0 and independent of $\mathcal{Z}_{T}$.

Proof. 1. By the Markov property, it suffices to show that if $R_{0}=k$, the r.v. $J_{0}$ is uniformly distributed on $\{0, \ldots, k\}$. The function $f(x)=1 /(1+x)$ defined for $x \geqslant 0$ is bounded and verifies for $x \geqslant 1$

$$
f(x)=\pi(x, x-1) f(x-1)+\pi(x, x+1) f(x+1)
$$

where $\pi$ is the transition kernel of the 3 -Bessel walk, given by (2). Thus $f$ is $\pi$-harmonic except at $x=0$, and $f\left(R_{n \wedge \sigma_{0}}\right)$ is a bounded martingale, where $\sigma_{x}$ denotes the hitting time of $x$ by $R$. (This result is due to LeG85 p. 449.) For $0 \leqslant a \leqslant k$, by stopping, $\mu_{n}^{a}=f\left(R_{n \wedge \sigma_{a}}\right)$ is also a bounded martingale. A Borel-Cantelli argument shows that the paths of $R$ are a.s. unbounded; hence $\liminf _{n \rightarrow \infty} f\left(R_{n}\right)=0$ and $\mu_{\infty}^{a}=f(a) \mathbb{1}_{J_{0} \leqslant a}$. The martingale equality $f(a) \mathbb{P}\left(J_{0} \leqslant a\right)=\mathbb{E}\left[\mu_{\infty}^{a}\right]=\mathbb{E}\left[\mu_{0}^{a}\right]=f(k)$ yields $\mathbb{P}\left(J_{0} \leqslant a\right)=(a+1) /(k+1)$, so the law of $J_{0}$ is uniform on $\{0, \ldots, k\}$.

Part 2 of Proposition depends only on the law of the process $R$, so we need not prove it for all 3 -Bessel walks started at 0 , it suffices to prove it for some particular 3-Bessel walk started at 0 . Given a standard random walk $Z^{\prime}$ with $Z_{0}^{\prime}=0$ and its past maximum $S_{n}^{\prime}=\sup _{m \leqslant n} Z_{m}^{\prime}$, Pitman's theorem [Pit75] says that the process $R=2 S^{\prime}-Z^{\prime}$ is a 3 -Bessel walk started from 0 , with future minimum $J_{n}=\inf _{m \geqslant n} R_{m}$ given by $J=S^{\prime}$. We shall prove 2.a and 2.b for this particular 3 -Bessel walk $R$.

The process $Z=2 J-R$ is also equal to $2 S^{\prime}-R=Z^{\prime}$, so it is a standard random walk. Both $J=S^{\prime}$ and $R=2 S^{\prime}-Z^{\prime}$ are adapted to the filtration of $Z$; conversely, $Z=2 J-R$ is adapted to the filtration generated by $R$ and $J$. This proves 2.a.

To show 2.b, let $T$ be $\mathcal{Z}$-stopping time such that $R_{T}=J_{T}$. One has

$$
Z_{T}^{\prime}=2 J_{T}-R_{T}=J_{T}=S_{T}^{\prime}
$$

The process $\widetilde{Z}$ defined by $\widetilde{Z}_{n}=Z_{T+n}^{\prime}-Z_{T}^{\prime}$ is a standard random walk independent of $\mathcal{Z}_{T}$, started from 0 , with past maximum

$$
\widetilde{S}_{n}=\sup _{m \leqslant n} \widetilde{Z}_{m}=S_{T+n}^{\prime}-Z_{T}^{\prime}=S_{T+n}^{\prime}-S_{T}^{\prime}
$$

By Pitman's theorem, $\widetilde{R}=2 \widetilde{S}-\widetilde{Z}$ is a 3 -Bessel walk, and it is independent of $\mathcal{Z}_{T}$ because so is $\widetilde{Z}$. Now,

$$
\widetilde{R}_{n}=2 \widetilde{S}_{n}-\widetilde{Z}_{n}=2\left(S_{T+n}^{\prime}-S_{T}^{\prime}\right)-\left(Z_{T+n}^{\prime}-Z_{T}^{\prime}\right)=R_{T+n}-R_{T}
$$

thus 2.b holds and Proposition 1 is established.
4) The next step is the proof of point 3 in Theorem (1) We start with a small computation:

Lemma 6. Let a r.v. $U$ be uniformly distributed on $\{0, . ., r\}$. Then

$$
\mathbb{E}[\varphi(U)(r-U)+\Phi(U)]=1
$$

Proof. It suffices to write

$$
\begin{aligned}
(r+1) \mathbb{E}[1-\Phi(U)]=\sum_{i=0}^{r}(1 & -\Phi(i))=\sum_{i=0}^{r} \sum_{j=0}^{i-1} \varphi(j)=\sum_{j=0}^{r-1} \sum_{i=j+1}^{r} \varphi(j) \\
& =\sum_{j=0}^{r-1}(r-j) \varphi(j)=(r+1) \mathbb{E}[(r-U) \varphi(U)]
\end{aligned}
$$

The next proposition proves the first half of point 3 in Theorem 1 .
Proposition 2. Under $Q^{\varphi}$, the process $\left(R_{n}, n \geqslant 0\right)$ given by $R_{n}=2 S_{n}-X_{n}$ is a 3-Bessel started from 0 .

Proof. According to Pitman's theorem Pit75, under the probability $\mathbb{P}$, the process $\left(R_{n}, n \geqslant 0\right)$ is a 3 -Bessel walk with future infimum $J_{n}=S_{n}$. Call $\mathcal{R}$ the natural filtration of $R$. By Proposition 1.1, the conditional law of $S_{n}$ given $\mathcal{R}_{n}$ is uniform on $\left\{0, \ldots, R_{n}\right\}$; consequently Lemma 6ives

$$
\mathbb{E}\left[M_{n}^{\varphi} \mid \mathcal{R}_{n}\right]=\mathbb{E}\left[\varphi\left(S_{n}\right)\left(R_{n}-S_{n}\right)+\Phi\left(S_{n}\right) \mid \mathcal{R}_{n}\right]=1
$$

Now, let $f$ be any bounded function on $\mathbb{N}^{n+1}$. One has

$$
\begin{aligned}
\mathbb{E}^{Q^{\varphi}}\left[f\left(R_{0}, \ldots, R_{n}\right)\right] & =\mathbb{E}\left[f\left(R_{0}, \ldots, R_{n}\right) M_{n}^{\varphi}\right] \\
& =\mathbb{E}\left[f\left(R_{0}, \ldots, R_{n}\right) \mathbb{E}\left[M_{n}^{\varphi} \mid \mathcal{R}_{n}\right]\right]=\mathbb{E}\left[f\left(R_{0}, \ldots, R_{n}\right)\right]
\end{aligned}
$$

As $n$ and $f$ were arbitrary, $R$ has the same law under $Q^{\varphi}$ as under $\mathbb{P}$, that is, $Q^{\varphi}$ also makes $R$ a 3 -Bessel walk.

To finish proving point 3 , it remains to establish that $R$ is independent of $S_{\infty}$ under $Q^{\varphi}$. This will easily follow from the next lemma, which decomposes $Q^{\varphi}$ as a sum of measures carried by the level sets of $S_{\infty}$.

Lemma 7. Call $Q^{(k)}$ the probability $Q^{\varphi}$ for $\varphi=\delta_{k}$, that is, $\varphi(k)=1$ and $\varphi(x)=0$ for $x \neq k$. Then $Q^{(k)}$ is supported by the event $\left\{S_{\infty}=k\right\}$, and, for a general $\varphi$ and for all $\Lambda \in \mathcal{F}_{\infty}$ one has

$$
\begin{gathered}
Q^{\varphi}(\Lambda)=\sum_{k \geqslant 0} \varphi(k) Q^{(k)}(\Lambda) \\
Q^{\varphi}\left(\Lambda \mid S_{\infty}=k\right)=Q^{(k)}(\Lambda) \quad \text { for all } k \text { such that } \varphi(k)>0
\end{gathered}
$$

Proof. For $\Lambda_{n} \in \mathcal{F}_{n}$, one can use formula (9) twice and write

$$
\begin{aligned}
Q^{\varphi}\left(\Lambda_{n}\right) & =\lim _{p} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \varphi\left(S_{p}\right)\right]}{\mathbb{P}\left(S_{p-n}=0\right)}=\lim _{p} \sum_{k} \varphi(k) \frac{\mathbb{P}\left(\Lambda_{n} \cap\left\{S_{p}=k\right\}\right)}{\mathbb{P}\left(S_{p-n}=0\right)} \\
& =\sum_{k} \varphi(k) \lim _{p} \frac{\mathbb{P}\left(\Lambda_{n} \cap\left\{S_{p}=k\right\}\right)}{\mathbb{P}\left(S_{p-n}=0\right)}=\sum_{k} \varphi(k) Q^{(k)}\left(\Lambda_{n}\right)
\end{aligned}
$$

where lim and $\Sigma$ commute by dominated convergence, owing to the majoration in (9). So the probabilities $Q^{\varphi}$ and $\sum_{k} \varphi(k) Q^{(k)}$ coincide on $\bigcup_{n} \mathcal{F}_{n}$; therefore they also coincide on $\mathcal{F}_{\infty}$.

Applying now equation (11) with $\varphi=\delta_{k}$ gives $Q^{(k)}\left(S_{\infty}=k\right)=1$, that is, $Q^{(k)}$ is supported by $\left\{S_{\infty}=k\right\}$.

Consequently, for any $\Lambda \in \mathcal{F}_{\infty}$, one has $Q^{\varphi}\left(\Lambda \cap\left\{S_{\infty}=k\right\}\right)=\varphi(k) Q^{(k)}(\Lambda)$ because all other terms in the series vanish. Using (11) again, one may replace $\varphi(k)$ with $Q^{\varphi}\left(S_{\infty}=k\right)$; this proves $Q^{\varphi}\left(\Lambda \mid S_{\infty}=k\right)=Q^{(k)}(\Lambda)$ whenever $\varphi(k)>0$.

The proof of independence in Theorem $\mathbb{1} 3$ is now a child's play: Proposition 2 says that the law of $R$ under $Q^{\varphi}$ is always the law of the 3 -Bessel walk, whatever the choice of $\varphi$. We may in particular take $\varphi=\delta_{k}$, so it is also true under $Q^{(k)}$. Since $Q^{(k)}$ is also the conditioning of $Q^{\varphi}$ by $\left\{S_{\infty}=k\right\}$, under $Q^{\varphi}$ the law of $R$ conditional on $\left\{S_{\infty}=k\right\}$ does not depend upon $k$, thus $R$ is independent of $S_{\infty}$.
5) So far, all of Theorem 1 has been established, except 2.b, to which the rest of the proof will be devoted. Finiteness of $T_{\infty}$ is due to $X$ being integer-valued and its supremum $S_{\infty}$ being finite.

Put $U_{n}=X_{n \wedge T_{\infty}}$ and $V_{n}=S_{\infty}-X_{T_{\infty}+n}$. To prove 2.b.i and 2.b.iii we have to show that under $Q^{\varphi}$ the process $V$ is a 3 -Bessel walk independent of the process $U$. Call $\nu$ the law of the 3-Bessel walk. For bounded functionals $F$ and $G$, we must prove that

$$
\mathbb{E}^{Q^{\varphi}}[F \circ U G \circ V]=\mathbb{E}^{Q^{\varphi}}[F \circ U] \int G(v) \nu(\mathrm{d} v)
$$

Replacing now $Q^{\varphi}$ by $\sum_{k} \varphi(k) Q^{(k)}$ (see Lemma 7 ), it suffices to show it when $\varphi=\delta_{k}$. Similarly, 2.b.ii only refers to a conditional law given $S_{\infty}$; by Lemma 7 again, we may replace $Q^{\varphi}$ by $Q^{(k)}$. Finally, when proving 2.b, we may suppose $\varphi=\delta_{k}$ and $Q^{\varphi}=Q^{(k)}$ for a fixed $k \geqslant 0$. Hence the random time $T_{\infty}$ becomes the stopping time $T_{k}=\inf \left\{n \geqslant 0, X_{n}=k\right\}$, and it remains to show that

- ( $\left.X_{n \wedge T_{k}}, n \geqslant 0\right)$ is a standard random walk stopped when it first hits the level $k$;
- ( $\left.2 k-X_{T_{k}+n}, n \geqslant 0\right)$ is a 3 -Bessel walk started at 0 ;
- These two processes are independent.

By point 3 of Theorem we know that $R=2 S-X$ is a 3 -Bessel walk; and as we are now working under $Q^{(k)}$, we have $S_{\infty}=k$ a.s. Put $J_{n}=\inf _{m \geqslant n} R_{m}$.

We shall first show that the processes $J$ and $S$ are equal on the interval [ $0, T_{k}$ ]. Given $n$, call $\tau$ the first time $p \geqslant n$ when $X_{p}=S_{n}$, and observe that on the event $\left\{T_{k} \geqslant n\right\}, \tau$ is finite because $X_{n} \leqslant S_{n} \leqslant k=X_{T_{k}}$. For all $m \geqslant n$, one has $R_{m}=S_{m}+\left(S_{m}-X_{m}\right) \geqslant S_{n}+0$, with equality for $m=\tau$; thus $J_{n}=S_{n}$ on $\{\tau<\infty\}$ and a fortiori on $\left\{T_{k} \geqslant n\right\}$.

We shall now apply Proposition 12 to the 3 -Bessel walk $R=2 S-X$ and its future infimum $J$. Part 2.a of this proposition says that $Z=2 J-R$ is a standard random walk. We just saw that $J=S$ on the random time-interval [ $0, T_{k}$ ]; consequently, on this interval, $Z=2 S-R=X$. And as $T_{k}$ is the first time when $X=k$, it is also the first time when $Z=k$. This proves that $\left(X_{n \wedge T_{k}}, n \geqslant 0\right)$ is a standard random walk stopped at level $k$, and also that the $\mathcal{Z}$-stopping time $T_{k}$ satisfies $\mathcal{Z}_{T_{k}}=\mathcal{F}_{T_{k}}$, where $\mathcal{Z}$ is the filtration of $Z$.

Remarking that $R_{T_{k}}=J_{T_{k}}=k$, part 2.b of proposition 1 can be applied to $T_{k}$; it says that $\left(R_{T_{k}+n}-k, n \geqslant 0\right)$ is a 3 -Bessel walk independent of $\mathcal{F}_{T_{k}}$, and hence also of the process $\left(X_{n \wedge T_{k}}, n \geqslant 0\right)$. But $R_{T_{k}+n}=$ $2 S_{T_{k}+n}-X_{T_{k}+n}=2 k-X_{T_{k}+n}$ since $S_{T_{k}}=k=S_{\infty}$; so this 3 -Bessel walk is nothing but ( $k-X_{T_{k}+n}, n \geqslant 0$ ). This concludes the proof of Theorem 1 .

## 4 Penalisation by a Function of the Local Time: Proof of Theorem 2

Definition 1. Recall that the 3-Bessel* walk is the Markov chain ( $R_{n}^{*}, n \geqslant 0$ ), valued in $\mathbb{N}^{*}=\{1,2, \ldots\}$, such that $R^{*}-1$ is a 3-Bessel walk. So its transition probabilities from $x \geqslant 1$ are

$$
\pi^{*}(x, x+1)=\frac{x+1}{2 x} ; \quad \pi^{*}(x, x-1)=\frac{x-1}{2 x}
$$

1) We now prove point 1 of Theorem 2. First, $\left(M_{n}^{h^{+}, h^{-}}, n \geqslant 0\right)$ is a positive martingale. Positivity is obvious from the definitions of $h, h^{-}$and $\Theta$. To see that $M^{h^{+}, h^{-}}$is a martingale, we shall verify that the increment $M_{n+1}^{h^{+}, h^{-}}-M_{n}^{h^{+}, h^{-}}$has the form $\left(X_{n+1}-X_{n}\right) K_{n}$, where $K_{n}$ is $\mathcal{F}_{n}$-measurable and $\left|K_{n}\right| \leqslant 1$. There are three cases, depending on the value of $X_{n}$.

If $X_{n}>0$, then $X_{n+1} \geqslant 0$, so $X_{n}^{+}=X_{n}, X_{n+1}^{+}=X_{n+1}$, and $L_{n+1}=L_{n}$. Consequently, in that case, $M_{n+1}^{h^{+}, h^{-}}-M_{n}^{h^{+}, h^{-}}=\left(X_{n+1}-X_{n}\right) h^{+}\left(L_{n}\right)$.

Similarly, if $X_{n}<0$, one has $X_{n}^{-}=-X_{n}, X_{n+1}^{-}=-X_{n+1}, L_{n+1}=L_{n}$ and $M_{n+1}^{h^{+}, h^{-}}-M_{n}^{h^{+}, h^{-}}=-\left(X_{n+1}-X_{n}\right) h^{-}\left(L_{n}\right)$.

Last, if $X_{n}=0$, then $L_{n+1}=L_{n}+1$ and $X_{n+1}= \pm 1$. In that case,

$$
\begin{aligned}
M_{n+1}^{h^{+}, h^{-}}-M_{n}^{h^{+}, h^{-}=}= & \mathbb{1}_{\left\{X_{n+1}=1\right\}} h^{+}\left(L_{n}+1\right)+\mathbb{1}_{\left\{X_{n+1}=-1\right\}} h^{-}\left(L_{n}+1\right) \\
& +\Theta\left(L_{n}+1\right)-\Theta\left(L_{n}\right) \\
= & h^{\operatorname{sgn}\left(X_{n+1}-X_{n}\right)}\left(L_{n}+1\right)-\frac{1}{2}\left(h^{+}\left(L_{n}+1\right)+h^{-}\left(L_{n}+1\right)\right) \\
= & \left(X_{n+1}-X_{n}\right) \frac{1}{2}\left(h^{+}\left(L_{n}+1\right)-h^{-}\left(L_{n}+1\right)\right)
\end{aligned}
$$

This establishes the claim; consequently, $M^{h^{+}, h^{-}}$is a martingale which satisfies

$$
\left|M_{n}^{h^{+}, h^{-}}-M_{0}^{h^{+}, h^{-}}\right| \leqslant n
$$

and, as $M_{0}^{h^{+}, h^{-}}=1$, one has $\mathbb{E}\left[M_{n}^{h^{+}, h^{-}}\right]=1$.
To finish the proof of point 1 in Theorem2, it remains to show formula (3). This will use the following lemma.

Lemma 8. For each integer $k$ such that $0<k<\left\lfloor\frac{n}{2}\right\rfloor$,

$$
\frac{\mathbb{P}\left(L_{n}=k\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is bounded above by 2 and tends to 1 when $n \rightarrow \infty$.
Remark 2. In the sequel, for $h: \mathbb{N} \rightarrow \mathbb{R}^{+}$such that $\sum_{k=1}^{\infty} h(k)<\infty$, we put $M_{n}^{h, 0}=X_{n}^{+} h\left(L_{n}\right)+\Theta\left(L_{n}\right)$ for $n \geqslant 0$. When $\sum_{k=1}^{\infty} h(k)=1$, this notation is consistent with the one used so far; in general, $M^{h, 0}$ is a martingale too, for dividing it by the constant $\Theta(0)=\sum_{k=1}^{\infty} h(k)$ reduces it to the previous case.
Lemma 9. Let $h: \mathbb{N} \longrightarrow \mathbb{R}^{+}$be such that $\sum_{k=1}^{\infty} h(k)<\infty$. For $a \geqslant 0$ and
$x \in \mathbb{Z}$,

$$
\frac{\mathbb{E}_{x}\left[h\left(L_{n}+a\right) \mathbb{1}_{X_{n}>0}\right]}{\mathbb{P}\left(S_{n}=0\right)}
$$

is bounded above by $2\left(h(a) x^{+}+\frac{1}{2} \sum_{k \geqslant a+1} h(k)\right)$ and converges to $h(a) x^{+}+$ $\frac{1}{2} \sum_{k \geqslant a+1} h(k)$ when $n \rightarrow \infty$.

Proof of Lemma 8. Call $\gamma_{n}=\left|\left\{p \leqslant n, X_{p}=0\right\}\right|$ the number of visits to 0 up to time $n$. Clearly, $\gamma_{n}=L_{n+1}$ and

$$
\mathbb{P}\left(L_{n}=k\right)=\mathbb{P}\left(\gamma_{n-1}=k\right)
$$

We shall study the law of $\gamma_{n}$. Define a sequence $\left(V_{n}, n \geqslant 0\right)$ by

$$
\left\{\begin{array}{l}
V_{0}=0 \\
V_{n+1}=\inf \left\{k>0, X_{V_{n}+k}=0\right\}
\end{array}\right.
$$

and put $\left(X_{n}^{(k)}\right)_{n \geqslant 0}=\left(X_{V_{k}+n}\right)_{n \geqslant 0}$ and $T_{i}^{(k)}=\inf \left\{n \geqslant 0, X_{n}^{(k)}=i\right\}$.
Owing to the symmetry of the random walk and the Markov property,

$$
\forall i \geqslant 1 \quad \mathbb{P}\left(V_{i}=k\right)=\mathbb{P}\left(T_{1}^{(i-1)}=k-1\right)
$$

So $\forall i \geqslant 1, V_{i} \stackrel{\mathcal{L}}{=} T_{1}^{(i-1)}+1$. Moreover, according to the strong Markov property, $\left(X_{n}^{(2)}, n \geqslant 0\right)$ is independent of $\mathcal{F}_{V_{1}}$ and hence

$$
V_{1}+V_{2} \stackrel{\mathcal{L}}{=} T_{1}^{(0)}+T_{1}^{(1)}+2
$$

Wherefrom, by induction,

$$
V_{1}+V_{2}+\ldots+V_{k} \stackrel{\mathcal{L}}{=} T_{1}^{(0)}+T_{1}^{(1)}+\ldots+T_{1}^{(k-1)}+k
$$

So

$$
\begin{aligned}
& \mathbb{P}\left(\gamma_{n}=k\right)=\mathbb{P}\left(V_{1}+\ldots+V_{k-1} \leqslant n<V_{1}+\ldots+V_{k}\right) \\
& =\mathbb{P}\left(T_{1}^{(0)}+T_{1}^{(1)}+\ldots+T_{1}^{(k-2)}+k-1 \leqslant n<T_{1}^{(0)}+T_{1}^{(1)}+\ldots+T_{1}^{(k-1)}+k\right) \\
& =\mathbb{P}\left(T_{k-1}+k-1 \leqslant n<T_{k}+k\right)=\mathbb{P}\left(S_{n-k+1} \geqslant k-1, S_{n-k}<k\right) \\
& \quad=\mathbb{P}\left(S_{n-k+1}=k-1\right)+\mathbb{P}\left(T_{k}=n-k+1\right) .
\end{aligned}
$$

Taking inspiration from the proof of Lemma 4, it is easy to see that

$$
\frac{\mathbb{P}\left(S_{n-k}=k-1\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorated by 1 and tends to 1 when $n$ tends to infinity.
According to Fel50 p. 89,

$$
\mathbb{P}\left(T_{r}=n\right)=\frac{r}{n} C_{n}^{\frac{n+r}{2}}\left(\frac{1}{2}\right)^{n}
$$

Appealing again to the proof of Lemma 4 it is easy to show that

$$
\frac{\mathbb{P}\left(T_{k}=n-k\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorated by 1 and tends to 0 when $n$ goes to infinity. The proof is over.

Remark 3. From the preceding result, one easily sees that

$$
\frac{\mathbb{P}_{x}\left(L_{n}=k, X_{n}>0\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorated by 1 and tends to $\frac{1}{2}$ when $n \rightarrow \infty$.
Proof of Lemma 9. Start from

$$
\mathbb{E}_{x}\left[h\left(L_{n}+a\right) \mathbb{1}_{X_{n}>0}\right]=\mathbb{E}_{x}\left[h\left(L_{n}+a\right) \mathbb{1}_{X_{n}>0}\left(\mathbb{1}_{T_{0}>n}+\mathbb{1}_{T_{0} \leqslant n}\right)\right]
$$

One has

$$
h\left(L_{n}+a\right) \mathbb{1}_{X_{n}>0} \mathbb{1}_{T_{0}>n}= \begin{cases}0 & \text { si } x \leqslant 0 \\ h(a) \mathbb{1}_{T_{0}>n} & \text { si } x>0\end{cases}
$$

According to Lemma 4.

$$
\frac{h(a) \mathbb{1}_{x>0} \mathbb{P}_{x}\left(T_{0}>n\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

is majorated by $x^{+} h(a)$ and converges to $x^{+} h(a)$.
Write

$$
\frac{\mathbb{E}_{x}\left[h\left(L_{n}+a\right) \mathbb{1}_{\left\{X_{n}>0, T_{0} \leqslant n\right\}}\right]}{\mathbb{P}\left(S_{n}=0\right)}=\sum_{k \geqslant 1} \frac{\mathbb{P}_{x}\left(L_{n}=k, X_{n}>0\right)}{\mathbb{P}\left(S_{n}=0\right)} h(k+a)
$$

By Lemma 8 this sum is majorated by $\sum_{k \geqslant 1} h(k+a)$ and converges to $\frac{1}{2} \sum_{k \geqslant 1} h(k+a)$ when $n \rightarrow \infty$.

We shall now prove point 1.a in Theorem [2 For each $0 \leqslant n \leqslant p$, one has $L_{p}=L_{n}+\tilde{L}_{p-n}$ where $\tilde{L}$ is the local time at 0 of the standard random walk $\left(X_{n+k}\right)_{k \geqslant 0}$ which, given $X_{n}$, is independent of $\mathcal{F}_{n}$. So

$$
\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0} \mid \mathcal{F}_{n}\right]=\tilde{\mathbb{E}}_{X_{n}}\left[h\left(L_{n}+\tilde{L}_{p-n}\right) \mathbb{1}_{\tilde{X}_{p-n}>0}\right]
$$

where $\tilde{\mathbb{E}}$ integrates only $\tilde{L}_{p-n}$ and $\tilde{X}_{p-n}$ and where $L_{n}$ and $X_{n}$ are fixed. Then, for all $\Lambda_{n} \in \mathcal{F}_{n}$,

$$
\frac{\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0, \Lambda_{n}}\right]}{\mathbb{P}\left(S_{p-n}=0\right)}=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \frac{\tilde{\mathbb{E}}_{X_{n}}\left[h\left(L_{n}+\tilde{L}_{p-n}\right) \mathbb{1}_{\tilde{X}_{p-n}>0}\right]}{\mathbb{P}\left(S_{p-n}=0\right)}\right]
$$

When $p \rightarrow \infty$, Lemma 9 says that the ratio in the right-hand side tends to $M_{n}^{h, 0}$ and is dominated by $2 M_{n}^{h, 0}$, which is integrable. Consequently, when $p \rightarrow \infty$,

$$
\frac{\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0, \Lambda_{n}}\right]}{\mathbb{P}\left(S_{p-n}=0\right)} \rightarrow \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} M_{n}^{h, 0}\right]
$$

and taking $\Lambda_{n}=\Omega$, one has

$$
\frac{\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0}\right]}{\mathbb{P}\left(S_{p-n}=0\right)} \rightarrow \mathbb{E}\left[M_{n}^{h, 0}\right]
$$

Taking the ratio of these two limits yields

$$
\frac{\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0, \Lambda_{n}}\right]}{\mathbb{E}\left[h\left(L_{p}\right) \mathbb{1}_{X_{p}>0}\right]} \rightarrow \frac{\mathbb{E}\left[\Lambda_{n} M_{n}^{h, 0}\right]}{\mathbb{E}\left[M_{n}^{h, 0}\right]} .
$$

To finalize the proof of point 1.a, it now suffices to use the symmetry of the standard random walk and the fact that $\mathbb{E}\left[M_{n}^{h^{+}, h^{-}}\right]=1$.
2) Let us now show point 2 in Theorem 2, Put $\tau_{l}=\inf \left\{k \geqslant 0, \gamma_{k}=l\right\}$. Then

$$
\begin{aligned}
Q^{h^{+}, h^{-}}\left(L_{n} \geqslant l\right) & =Q^{h^{+}, h^{-}}\left(\tau_{l} \leqslant n-1\right) \\
& =\mathbb{E}\left[\mathbb{1}_{\tau_{l} \leqslant n-1} M_{\tau_{l}}^{h^{+}, h^{-}}\right]=\Theta(l-1) \mathbb{P}\left(\tau_{l} \leqslant n-1\right) .
\end{aligned}
$$

For fixed $l$, the sequence of events $\left\{L_{n} \geqslant l\right\}$ is increasing and tends to $\left\{L_{\infty} \geqslant l\right\}$; so

$$
Q^{h^{+}, h^{-}}\left(L_{\infty} \geqslant l\right)=\Theta(l-1) \mathbb{P}\left(\tau_{l} \leqslant \infty\right)=\Theta(l-1)
$$

Hence $L_{\infty}$ is $Q^{h^{+}, h^{-}}$-a.s. finite, with

$$
Q^{h^{+}, h^{-}}\left(L_{\infty}=l\right)=\Theta(l-1)-\Theta(l)=\frac{1}{2}\left(h^{+}(l)+h^{-}(l)\right)
$$

and 2.a is established.
To show that the $\mathbb{P}$-a.s. limit $M_{\infty}^{h^{+}, h^{-}}$of $M^{h^{+}, h^{-}}$is null, it suffices to apply the same method as for $M^{\varphi}$, with $L$ instead of $S$ and $M^{h^{+}, h^{-}}$instead of $M^{\varphi}$.

The study of the process $\left(X_{n}, n \geqslant 0\right)$ under $Q^{h^{+}, h^{-}}$starts with the next three lemmas.

Lemma 10. Under $\mathbb{P}_{1}$ and conditional on the event $\left\{T_{p}<T_{0}\right\}$, the process $\left(X_{n}, 0 \leqslant n \leqslant T_{p}\right)$ is a 3-Bessel* walk started from 1 and stopped when it first hits the level $p$ ( $c f$. [LeG85]).

For typographical simplicity, call $T_{p, n}:=\inf \left\{k>n, X_{k}=p\right\}$ the time of the first visit to $p$ after $n$, and $\mathcal{H}_{l}:=\left\{T_{p, \tau_{l}}<\tau_{l+1, X_{\tau_{l}+1}=1}\right\}$, the event that the $l$-th excursion is positive and reaches level $p$.
Lemma 11. Under the law $Q^{h^{+}, h^{-}}$and conditional on the event $\mathcal{H}_{l}$, the process $\left(X_{n+\tau_{l}}, 1 \leqslant n \leqslant T_{p, \tau_{l}}-\tau_{l}\right)$ is a 3-Bessel* walk started from 1 and stopped when it first hits the level $p$.

Lemma 12. Put $\Gamma^{+}:=\left\{X_{n+g}>0, \forall n>0\right\}$ and $\Gamma^{-}:=\left\{X_{n+g}<0, \forall n>0\right\}$. Then:

$$
Q^{h^{+}, h^{-}}\left(\Gamma^{+}\right)=1-Q^{h^{+}, h^{-}}\left(\Gamma^{-}\right)=\frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k)
$$

Proof of Lemma 11. Let $G$ be a function from $\mathbb{Z}^{n}$ to $\mathbb{R}^{+}$. Then, according to the definition of the probability $Q^{h^{+}, h^{-}}$and owing to Doob's stopping theorem,

$$
\begin{aligned}
\mathcal{K} & :=Q^{h^{+}, h^{-}}\left[G\left(X_{\tau_{l}+1}, \ldots, X_{\tau_{l}+n}\right) \mathbb{1}_{n+\tau_{l} \leqslant T_{p, \tau_{l}}} \mid \mathcal{H}_{l}\right] \\
& =\frac{Q^{h^{+}, h^{-}}\left[G\left(X_{\tau_{l}+1}, \ldots, X_{\tau_{l}+n}\right) \mathbb{1}_{\tau_{l}+n \leqslant T_{p, \tau_{l}}<\tau_{l+1}, X_{\tau_{l}+1}=1}\right]}{Q^{h^{+}, h^{-}}\left(\mathcal{H}_{l}\right)} \\
& =\frac{\mathbb{E}\left[G\left(X_{\tau_{l}+1}, \ldots, X_{\tau_{l}+n}\right) \mathbb{1}_{\tau_{l}+n \leqslant T_{p, \tau_{l}}<\tau_{l+1}, X_{\tau_{l}+1}=1} M_{\tau_{l+1}}^{h^{+}, h^{-}}\right]}{\mathbb{E}\left[\mathbb{1}_{\mathcal{H}_{l}} M_{\tau_{l+1}}^{h^{+}, h^{-}}\right]} .
\end{aligned}
$$

Replacing $M_{\tau_{l+1}}^{h^{+}, h^{-}}$by the constant $\Theta(l)$ and using the Markov property, one gets

$$
\begin{aligned}
\mathcal{K} & =\frac{\mathbb{E}\left[G\left(X_{\tau_{l}+1}, \ldots, X_{\tau_{l}+n}\right) \mathbb{1}_{\tau_{l}+n \leqslant T_{p, \tau_{l}}<\tau_{l+1}, X_{\tau_{l}+1}=1}\right]}{\mathbb{P}\left(\mathcal{H}_{l}\right)} \\
& =\frac{\mathbb{E}_{1}\left[G\left(X_{0}, \ldots, X_{n-1}\right) \mathbb{1}_{n-1 \leqslant T_{p}<T_{0}}\right]}{\mathbb{P}_{1}\left(T_{p}<T_{0}\right)} \\
& =\mathbb{E}_{1}\left[G\left(X_{0}, \ldots, X_{n-1}\right) \mathbb{1}_{n-1 \leqslant T_{p}} \mid T_{p}<T_{0}\right] .
\end{aligned}
$$

Remark 4. By letting $p \rightarrow \infty$, one deduces therefrom that, conditional on $\left\{g=\tau_{l}, X_{\tau_{l}+1}=1\right\},\left(X_{n+g}, n \geqslant 1\right)$ is a 3 -Bessel* walk under $Q^{h^{+}, h^{-}}$.
Proof of Lemma 12, As $g$ is $Q^{h^{+}, h^{-}}$-a.s. finite and as $X_{n} \neq 0$ for $n>g$, one has

$$
\begin{equation*}
Q^{h^{+}, h^{-}}\left(\Gamma^{+}\right)=\lim _{n \rightarrow \infty} Q^{h^{+}, h^{-}}\left(X_{n}>0\right) \tag{10}
\end{equation*}
$$

Now,

$$
Q^{h^{+}, h^{-}}\left(X_{n}>0\right)=\mathbb{E}\left[\mathbb{1}_{X_{n}>0} M_{n}^{h^{+}, h^{-}}\right]=\mathbb{E}\left[\mathbb{1}_{X_{n}>0} \Theta\left(L_{n}\right)+X_{n}^{+} h^{+}\left(L_{n}\right)\right]
$$

Since $\mathbb{1}_{X_{n}>0} \Theta\left(L_{n}\right) \leqslant \Theta\left(L_{n}\right) \leqslant 1$, the dominated convergence theorem gives

$$
\mathbb{E}\left[\mathbb{1}_{X_{n}>0} \Theta\left(L_{n}\right)\right] \xrightarrow{n \rightarrow \infty} 0 .
$$

We already know that $M^{h^{+}, 0}$ is a martingale. Consequently,

$$
\mathbb{E}\left[M_{n}^{h^{+}, 0}\right]=\mathbb{E}\left[M_{0}^{h^{+}, 0}\right]=\frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k)
$$

wherefrom

$$
\mathbb{E}\left[X_{n}^{+} h^{+}\left(L_{n}\right)\right]=\frac{1}{2} \mathbb{E}\left[\sum_{k=1}^{L_{n}} h^{+}(k)\right] \leqslant \frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k) .
$$

By dominated convergence again,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}^{+} h^{+}\left(L_{n}\right)\right]=\frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k)
$$

and so, according to (10), $Q^{h^{+}, h^{-}}\left(\Gamma^{+}\right)=\frac{1}{2} \sum_{k=1}^{\infty} h^{+}(k)$.
For $F: \mathbb{Z}^{n} \rightarrow \mathbb{R}^{+}$,

$$
\begin{aligned}
& \mathbb{E}^{Q}\left[F\left(X_{g+1}, \ldots, X_{g+n}\right) \mathbb{1}_{X_{g+1}=1}\right]=\sum_{l \geqslant 1} \mathbb{E}^{Q}\left[F\left(X_{g+1}, \ldots, X_{g+n}\right) \mathbb{1}_{g=\tau_{l}, X_{g+1}=1}\right] \\
& =\sum_{l \geqslant 1} \mathbb{E}^{Q}\left[F\left(X_{g+1}, \ldots, X_{g+n}\right) \mid g=\tau_{l}, X_{\tau_{l}+1}=1\right] Q^{h^{+}, h^{-}}\left(g=\tau_{l}, X_{\tau_{l}+1}=1\right) \\
& =\mathbb{E}_{1}\left[F\left(X_{0}, \ldots, X_{n-1}\right) \mid T_{0}=\infty\right] \sum_{l \geqslant 1} Q^{h^{+}, h^{-}}\left(g=\tau_{l}, X_{\tau_{l}+1}=1\right) \\
& =\mathbb{E}_{1}\left[F\left(X_{0}, \ldots, X_{n-1}\right) \mid T_{0}=\infty\right] Q^{h^{+}, h^{-}}\left(\Gamma^{+}\right) .
\end{aligned}
$$

This shows half of point 2.b.ii. The other half, when $X_{g+1}=-1$, is easily obtained using the symmetry of the walk.

To end of the proof of Theorem 2, we shall show that, conditional on $\left\{L_{\infty}=l\right\}$ and under the law $Q^{h^{+}, h^{-}}$, the process $\left(X_{u}, u<g\right)$ is a standard random walk stopped at its $l$-th passage at 0 .

Let $F$ be a function from $\mathbb{Z}^{n}$ to $\mathbb{R}^{+}$and $l$ an element of $\mathbb{N}^{*}$. From the definition of $Q^{h^{+}, h^{-}}$and the optional stopping theorem,

$$
\begin{aligned}
& \mathbb{E}^{Q}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}} \mid L_{\infty}=l\right]=\frac{\mathbb{E}^{Q}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}<\infty} \mathbb{1}_{\tau_{l+1}=\infty}\right]}{Q^{h^{+}, h^{-}}\left(L_{\infty}=l\right)} \\
= & \frac{\mathbb{E}^{Q}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}<\infty}\right]-\mathbb{E}^{Q}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}<\tau_{l+1}<\infty}\right]}{Q^{h^{+}, h^{-}}\left(L_{\infty}=l\right)} \\
= & \frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}} M_{\tau_{l}}\right]-\mathbb{E}^{Q}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}} M_{\tau_{l+1}}\right]}{Q^{h^{+}, h^{-}}\left(L_{\infty}=l\right)} \\
= & \frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}}\right](\Theta(l-1)-\Theta(l))}{\frac{1}{2}\left(h^{+}(l)+h^{-}(l)\right)}=\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l}}\right] .
\end{aligned}
$$

## 5 Penalisation by the Length of the Excursions

### 5.1 Notation

For $n \geqslant 0$, call $g_{n}\left(\right.$ respectively $\left.d_{n}\right)$ the last zero before $n$ (respectively after $n$ ):

$$
\begin{aligned}
g_{n} & :=\sup \left\{k \leqslant n, X_{k}=0\right\} \\
d_{n} & :=\inf \left\{k>n, X_{k}=0\right\}
\end{aligned}
$$

Thus $d_{n}-g_{n}$ is the duration of the excursion that straddles $n$. Put

$$
\Sigma_{n}=\sup \left\{d_{k}-g_{k}, d_{k} \leqslant n\right\}
$$

so $\Sigma_{n}$ is the longest excursion before $g_{n}$; remark that

$$
\begin{equation*}
\Sigma_{n}=\Sigma_{g_{n}} \tag{11}
\end{equation*}
$$

Define $\left(A_{n}, n \geqslant 0\right)$, the "age process", by

$$
A_{n}=n-g_{n}
$$

and call $\mathcal{A}_{n}=\sigma\left(A_{n}, n \geqslant 0\right)$ the filtration generated by $A$. Set

$$
\begin{equation*}
A_{n}^{*}=\sup _{k \leqslant n} A_{k} \tag{12}
\end{equation*}
$$

and observe that

$$
A_{n}^{*}=\left(\Sigma_{n}-1\right) \vee\left(n-g_{n}\right),
$$

wherefrom

$$
\begin{equation*}
A_{g_{n}}^{*}=\Sigma_{g_{n}}-1 \tag{13}
\end{equation*}
$$

In the sequel, $\gamma_{l}:=\sum_{k=0}^{n} \mathbb{1}_{\left\{X_{k}=0\right\}}$ is the number of passage times at 0 up to time $n, \tau=\inf \left\{n>0, X_{n}=0\right\}$ is the first return time to 0 and a function $\theta$ is defined by

$$
\mathbb{E}\left[\left|X_{x}\right| \mid \tau>x\right]=: \theta(x)
$$

### 5.2 Proof of Theorem 3

1) We start with point 1 of Theorem 3. To show formula (4), we need:

## Proposition 3.

$$
\mathbb{P}\left(\Sigma_{k} \leqslant x\right) \underset{k \rightarrow \infty}{\sim}\left(\frac{2}{\pi k}\right)^{\frac{1}{2}} \theta(x)
$$

To establish this Proposition, we will use the following lemma:
Lemma 13. For every $f: \mathbb{Z} \rightarrow \mathbb{R}^{+}$, every $n \geqslant 0$ and every $k>0$,

$$
\mathbb{E}\left[f\left(X_{n}\right) \mid A_{n}=k\right]=\mathbb{E}\left[f\left(X_{k}\right) \mid \tau>k\right]
$$

and a Tauberian Theorem:
Theorem 4 (Cf. Fel71] p. 447). Given $q_{n} \geqslant 0$, suppose that the series

$$
S(s)=\sum_{n=0}^{\infty} q_{n} s^{n}
$$

converges for $0 \leqslant s<1$. If $0<p<\infty$ and if the sequence $\left\{q_{n}\right\}$ is monotone, then the two relations:

$$
S(s) \underset{s \rightarrow 1^{-}}{\sim} \frac{1}{(1-s)^{p}} C
$$

and

$$
q_{n} \underset{n \rightarrow \infty}{\sim} \frac{1}{\Gamma(p)} n^{p-1} C
$$

where $0<C<\infty$, are equivalent.
Proof of Lemma 13. By the Markov property,

$$
\begin{aligned}
& \mathbb{E}\left[f\left(X_{n}\right) \mid A_{n}=k\right]=\mathbb{E}\left[f\left(X_{n}\right) \mid n-g_{n}=k\right] \\
& \quad=\mathbb{E}\left[f\left(X_{n}\right) \mid X_{n-k}=0, X_{n-k+1} \neq 0, \ldots, X_{n} \neq 0\right]=\mathbb{E}\left[f\left(X_{k}\right) \mid \tau>k\right]
\end{aligned}
$$

Proof of Proposition 3 Let $\delta_{\beta}$ be a geometric r.v. with parameter $\beta$, where $0<\beta<1$, and such that $\delta_{\beta}$ is independent of the walk $X$. Then

$$
\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(\delta_{\beta}=k\right) \mathbb{P}\left(\Sigma_{k} \leqslant x\right)=\sum_{k=1}^{\infty}(1-\beta)^{k-1} \beta \mathbb{P}\left(\Sigma_{k} \leqslant x\right)
$$

Now, from (11) and (13),

$$
\begin{align*}
\mathbb{P}\left(\Sigma_{\delta_{\beta}}\right. & \leqslant x)=\mathbb{P}\left(\Sigma_{g_{\delta_{\beta}}} \leqslant x\right)=\mathbb{P}\left(A_{g_{\delta_{\beta}}}^{*} \leqslant x\right)=\mathbb{P}\left(T_{x}^{A} \geqslant g_{\delta_{\beta}}\right) \\
& =\mathbb{P}\left(\delta_{\beta} \leqslant d_{T_{x}^{A}}\right)=1-\mathbb{P}\left(\delta_{\beta}>d_{T_{x}^{A}}\right)=1-\mathbb{E}\left[(1-\beta)^{d_{T_{x}^{A}}}\right] \\
& =1-\mathbb{E}\left[(1-\beta)^{T_{x}^{A}}(1-\beta)^{T_{0} \circ \theta_{T_{x}^{A}}}\right] \\
& =1-\mathbb{E}\left[(1-\beta)^{T_{x}^{A}} \mathbb{E}_{X_{T_{x}^{A}}}\left[(1-\beta)^{T_{0}}\right]\right] . \tag{14}
\end{align*}
$$

Definition 2. A stopping time $T$ is said to be $X$-standard if $T$ is a.s. finite and if the stopped process $\left(X_{n \wedge T}, n \geqslant 0\right)$ is uniformly integrable.
According to ALR04, if $T$ is $X$-standard and if $T$ is independent of $X_{T}$, then

$$
\begin{equation*}
\forall \alpha \in \mathbb{R} \quad \mathbb{E}\left[\operatorname{ch}(\alpha)^{-T}\right]=\mathbb{E}\left[\exp \left(\alpha X_{T}\right)\right]^{-1} \tag{15}
\end{equation*}
$$

Recall that $\operatorname{Arg} \operatorname{ch}(\alpha)=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$. When $\operatorname{ch} \alpha=(1-\beta)^{-1}$,
$\alpha=\operatorname{Arg} \operatorname{ch}\left(\frac{1}{1-\beta}\right)=\ln \left(\frac{1}{1-\beta}+\sqrt{\frac{1}{(1-\beta)^{2}}-1}\right)=\ln \left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)$.
According to ALR04, $T_{k}$ and $T_{x}^{A}$ satisfy these properties, hence

$$
\begin{aligned}
& \mathbb{E}_{k}\left[(1-\beta)^{T_{0}}\right]=\mathbb{E}_{0}\left[(1-\beta)^{T_{k}}\right]=\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{-k} \\
& \mathbb{E}\left[(1-\beta)^{T_{x}^{A}}\right]=\mathbb{E}\left[\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{X_{T_{x}^{A}}}\right]^{-1}
\end{aligned}
$$

So, owing to the independence of $T_{x}^{A}$ et $X_{T_{x}^{A}}$ and the above formulae,

$$
\begin{aligned}
\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right) & =1-\mathbb{E}\left[(1-\beta)^{T_{x}^{A}}\right] \mathbb{E}\left[\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{-\left|X_{T_{x}^{A}}\right|}\right] \\
& =\frac{\frac{1}{2}\left[\mathbb{E}\left[\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{\left|X_{T_{x}^{A}}\right|}\right]-\mathbb{E}\left[\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{-\left|X_{T_{x}^{A}}\right|}\right]\right]}{\mathbb{E}\left[\left(\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right)^{X_{T_{x}^{A}}}\right]} .
\end{aligned}
$$

For all $k \in \mathbb{N}$,

$$
\left[\frac{1+\sqrt{2 \beta-\beta^{2}}}{1-\beta}\right]^{k} \underset{\beta \rightarrow 0^{+}}{\sim} 1+k \sqrt{2 \beta},
$$

and consequently $\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right) \underset{\beta \rightarrow 0^{+}}{\sim} \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right] \sqrt{2 \beta}$.
Thus we have obtained

$$
\sum_{k=1}^{\infty}(1-\beta)^{k} \mathbb{P}\left(\Sigma_{k} \leqslant x\right) \underset{\beta \rightarrow 0^{+}}{\sim} \sqrt{\frac{2}{\beta}}(1-\beta) \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right]
$$

In order to apply Theorem 4, put $\alpha=1-\beta$. This gives

$$
\sum_{k=1}^{\infty} \alpha^{k} \mathbb{P}\left(\Sigma_{k} \leqslant x\right) \underset{\alpha \rightarrow 1^{-}}{\sim} \frac{\sqrt{2}}{\sqrt{1-\alpha}} \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right]
$$

and now Theorem 4 with $p=\frac{1}{2}$ and $C=\sqrt{2} \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right]$ gives

$$
\mathbb{P}\left(\Sigma_{k} \leqslant x\right) \underset{\alpha \rightarrow 1^{-}}{\sim} \frac{1}{\Gamma\left(\frac{1}{2}\right)} k^{\frac{1}{2}-1} C=\left(\frac{2}{\pi k}\right)^{\frac{1}{2}} \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right]
$$

## By Lemma 13

$$
\mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right]=\mathbb{E}\left[\left|X_{T_{x}^{A}}\right| \mid A_{T_{x}^{A}}=x\right]=\mathbb{E}\left[\left|X_{x}\right| \mid \tau>x\right]=\theta(x)
$$

It is now possible to finalise the proof of point 1.a. Let $\tilde{T}_{0}$ be the hitting time of 0 by the walk $\left(X_{n+k}\right)_{k \geqslant 0}$, and $\Sigma^{\prime}$ be the maximal length of the excursions of the walk $\left(X_{k+n+\tilde{T}_{0}}\right)_{k \geqslant 0}$.

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{p} \leqslant x}\right] & =\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x, T_{0} \circ \theta_{n}>p-n}\right] \\
& +\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x, T_{0} \circ \theta_{n} \leqslant(p-n) \wedge\left(x-A_{n}\right), \Sigma^{\prime}{ }_{p-n-T_{0} \circ \theta_{n}} \leqslant x}\right]=(1)+(2)
\end{aligned}
$$

Call $\tilde{\mathbb{P}}$ the measure associated to the walk $\left(X_{n+k}\right)_{k \geqslant 0}, X_{n}$ and $A_{n}$ being fixed. Then

$$
(1)=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x} \tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0}>p-n\right)\right] \underset{p \rightarrow \infty}{\sim} \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x}\left(\frac{2}{\pi p}\right)^{\frac{1}{2}}\left|X_{n}\right|\right]
$$

Call also $\mathbb{P}^{\prime}$ the measure associated to the walk $\left(X_{k+n+\tilde{T}_{0}}\right)_{k \geqslant 0}, \tilde{T}_{0}$ being fixed. For $p>n+x,(p-n) \wedge x-A_{n}=x-A_{n}$; consequently

$$
\text { (2) } \begin{aligned}
\underset{p \rightarrow \infty}{\sim} \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x, A_{n} \leqslant x} \tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right) \mathbb{P}^{\prime}\left(\Sigma_{p-n-\tilde{T}_{0}}^{\prime} \leqslant x\right)\right] \\
\underset{p \rightarrow \infty}{\sim} \mathbb{E}\left[\mathbb{1}_{\Lambda_{n}, \Sigma_{n} \leqslant x, A_{n} \leqslant x} \tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)\left(\frac{2}{\pi p}\right)^{\frac{1}{2}} \theta(x)\right]
\end{aligned}
$$

One derives therefrom

$$
\lim _{p \rightarrow \infty} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}} \mathbb{1}_{\Sigma_{p} \geqslant x}\right]}{\mathbb{E}\left[\mathbb{1}_{\Sigma_{p} \geqslant x}\right]}=\mathbb{E}\left[\mathbb{1}_{\Lambda_{n}}\left\{\frac{\left|X_{n}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right) \mathbb{1}_{A_{n} \leqslant x}\right\} \mathbb{1}_{\Sigma_{n} \leqslant x}\right] .
$$

Remark 5. These notations $\tilde{\mathbb{P}}$ et $\tilde{T}_{0}$, or similar ones, will frequently occur in the sequel. We have not been completely rigorous when defining them; a rigorous definition is possible as follows: $\tilde{\mathbb{P}}_{\tilde{X}_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)$ stands for $f\left(X_{n}, x-A_{n}\right)$ where $f(y, z)=\mathbb{P}_{y}\left(T_{0} \leqslant z\right)$.

We shall now see that ( $M_{n}, n \geqslant 0$ ) is indeed a martingale. The parity of $n+1$ comes into play, so we shall consider two cases.

Suppose first that $n+1$ is odd. In that case, $\Sigma_{n+1}=\Sigma_{n}$ and $A_{n+1}=A_{n}+1$. Recall that $x \rightarrow|x|$ is harmonic except at 0 for the symmetric random walk. Hence, on the event $\left\{X_{n} \neq 0\right\}$, the only relevant term is

$$
\mathcal{C}_{n+1}:=\mathbb{1}_{\left\{A_{n+1} \leqslant x, \Sigma_{n} \leqslant x\right\}} \tilde{\mathbb{P}}_{X_{n+1}}\left(\tilde{T}_{0} \leqslant x-A_{n+1}\right)
$$

and on $X_{n}=0$, it sufices to verify that, when conditioned by $\mathcal{F}_{n}$, this quantity equals $\left(1-\frac{1}{\theta}\right) \mathbb{1}_{\Sigma_{n} \leqslant x}$.

By the Markov property, if $X_{n} \neq 0$,
$\tilde{\mathbb{P}}_{x_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)=\frac{1}{2}\left(\tilde{\mathbb{P}}_{x_{n}+1}\left(\tilde{T}_{0} \leqslant x-A_{n}-1\right)+\tilde{\mathbb{P}}_{x_{n}-1}\left(\tilde{T}_{0} \leqslant x-A_{n}-1\right)\right)$.
So

$$
\begin{array}{r}
\mathbb{E}\left[\mathbb{1}_{X_{n} \neq 0} \mathcal{C}_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbb{1}_{X_{n} \neq 0}\left(\mathbb{1}_{X_{n+1}=X_{n}+1}+\mathbb{1}_{X_{n+1}=X_{n}-1}\right) \mathcal{C}_{n+1} \mid \mathcal{F}_{n}\right] \\
=\mathbb{1}_{X_{n} \neq 0, \Sigma_{n} \leqslant x, A_{n} \leqslant x-1} \frac{1}{2}\left[\tilde{\mathbb{P}}_{X_{n}+1}\left(\tilde{T}_{0} \leqslant x-A_{n}-1\right)+\tilde{\mathbb{P}}_{X_{n}-1}\left(\tilde{T}_{0} \leqslant x-A_{n}-1\right)\right] \\
=\mathbb{1}_{X_{n} \neq 0, \Sigma_{n} \leqslant x, A_{n} \leqslant x-1} \tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)
\end{array}
$$

And, as $\mathbb{1}_{X_{n} \neq 0, A_{n}=x} \tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right)=0$, one has

$$
\mathbb{E}\left[\mathbb{1}_{X_{n} \neq 0} \mathcal{C}_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{1}_{X_{n} \neq 0} \mathcal{C}_{n}
$$

It remains to show that

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{1}_{X_{n}=0} \mathcal{C}_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{1}_{X_{n}=0, \Sigma_{n} \leqslant x}\left(1-\frac{1}{\theta}\right) . \tag{16}
\end{equation*}
$$

This will use the classical result ( Fel50 pp. 73-77)

$$
\begin{equation*}
\mathbb{P}\left(X_{1}>0, \ldots, X_{2 n-1}>0, X_{2 n}=2 r\right)=\frac{1}{2}\left(p_{2 n-1,2 r-1}-p_{2 n-1,2 r+1}\right) \tag{17}
\end{equation*}
$$

where $p_{n, r}=\frac{1}{2^{n}} C_{n}^{\frac{n+r}{2}}$.
Using formula (17) with $x=2 n$, one can write

$$
\begin{aligned}
& \mathbb{P}(\tau>x) \theta(x)=\mathbb{P}(\tau>x) \mathbb{E}\left[\left|X_{x}\right| \mid \tau>x\right]=\mathbb{E}\left[\left|X_{x}\right| \mathbb{1}_{\{\tau>x\}}\right] \\
& \quad=\mathbb{E}\left[X_{x} \mathbb{1}_{\left\{\tau>x, X_{x}>0\right\}}\right]-\mathbb{E}\left[X_{x} \mathbb{1}_{\left\{\tau>x, X_{x}<0\right\}}\right]=2 \mathbb{E}\left[X_{x} \mathbb{1}_{\left\{\tau>x, X_{x}>0\right\}}\right] \\
& \quad=2 \sum_{k>0, k \text { even }}^{x} k \mathbb{P}\left(X_{x}=k, \tau>x\right)=4 \sum_{\ell>0}^{n} \ell \mathbb{P}\left(X_{2 n}=2 \ell, \tau>2 n\right) \\
& =2 \sum_{\ell>0}^{n} \ell\left(p_{2 n-1,2 \ell-1}-p_{2 n-1,2 \ell+1}\right)=\left(\frac{1}{2}\right)^{2 n-2} \sum_{\ell>0}^{n} \ell\left(C_{2 n-1}^{n+\ell-1}-C_{2 n-1}^{n+\ell}\right) .
\end{aligned}
$$

Now, $\sum_{\ell=1}^{n} \ell\left(C_{2 n-1}^{n+\ell-1}-C_{2 n-1}^{n+\ell}\right)=\sum_{\ell=0}^{n-1} C_{2 n-1}^{n+\ell}=2^{2 n-2}$; so we obtain

$$
\begin{equation*}
\theta(x) \mathbb{P}(\tau>x)=1 \tag{18}
\end{equation*}
$$

On the other hand,

$$
\begin{gather*}
\mathbb{E}\left[\mathbb{1}_{X_{n}=0} \mathcal{C}_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{1}_{X_{n}=0, \Sigma_{n} \leqslant x} \frac{1}{2}\left(\mathbb{P}_{1}\left(T_{0} \leqslant x-1\right)+\mathbb{P}_{-1}\left(T_{0} \leqslant x-1\right)\right) \\
=\mathbb{1}_{X_{n}=0, \Sigma_{n} \leqslant x} \mathbb{P}(\tau \leqslant x)=\mathbb{1}_{X_{n}=0, \Sigma_{n} \leqslant x}(1-\mathbb{P}(\tau>x)) ; \tag{19}
\end{gather*}
$$

hence, considering (18) and (19), formula (16) is established.
We now consider the case that $n+1$ is even. In that case, $\left\{A_{n} \leqslant x\right\}=$ $\left\{A_{n} \leqslant x-1\right\}$. Indeed, $A_{n}=n-g_{n}$ is odd and $x$ is even by hypothesis, so the event $\left\{A_{n}=x\right\}$ is null. Moreover, if $\left|X_{n}\right| \geqslant 3$, on a $\Sigma_{n+1}=\Sigma_{n}$.
Last, if $\left|X_{n}\right|=1$, there are two cases. Either $X_{n+1} \neq 0$ and one always has $\Sigma_{n+1}=\Sigma_{n}$, or $X_{n+1}=0$ and we must see that in that case

$$
\left\{\Sigma_{n+1} \leqslant x\right\}=\left\{\Sigma_{n} \leqslant x, n+1-g_{n} \leqslant x\right\}=\left\{\Sigma_{n} \leqslant x, A_{n} \leqslant x-1\right\}
$$

So, one is always on the event $\left\{\Sigma_{n} \leqslant x, A_{n} \leqslant x-1\right\}$, and the same argument as when $n+1$ was odd and $X_{n} \neq 0$ shows that, conditional on $\mathcal{F}_{n}, M_{n+1}$ is equal to $M_{n}$. This shows that $M$ is a martingale; positivity is immediate. The proof that $M$ is not uniformly integrable is postponed until later in this section.
2) We now start studying the process $\Sigma$ under $Q^{x}$. We shall first show that, for all $y \leqslant x, Q^{x}\left(\Sigma_{\infty}>y\right)=1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)}$.

Put $T_{y}^{\Sigma}:=\inf \left\{n \geqslant 0, \Sigma_{n}>y\right\}$. Clearly, $X_{T_{y}^{\Sigma}}=0$ and hence

$$
\begin{aligned}
& Q^{x}\left(\Sigma_{p}>y\right)=Q^{x}\left(T_{y}^{\Sigma} \leqslant p\right)=\mathbb{E}\left[\mathbb{1}_{T_{y}^{\Sigma} \leqslant p} M_{T_{y}^{\Sigma}}\right] \\
&=\mathbb{E}\left[\mathbb{1}_{T_{y}^{\Sigma} \leqslant p}\left\{\frac{\left|X_{T_{y}^{\Sigma}}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{T_{y}^{\Sigma}}}\left(\tilde{T}_{0} \leqslant x-A_{T_{y}^{\Sigma}}\right) \mathbb{1}_{A_{T_{y}^{\Sigma}} \leqslant x}\right\} \mathbb{1}_{\Sigma_{T_{y}} \leqslant x}\right] \\
&=\mathbb{P}\left[T_{y}^{\Sigma} \leqslant p, \Sigma_{T_{y}^{\Sigma}} \leqslant x\right] .
\end{aligned}
$$

Letting $p$ go to infinity, we obtain that $Q^{x}\left(\Sigma_{\infty}>y\right)=\mathbb{P}\left(\Sigma_{T_{y}^{\Sigma}} \leqslant x\right)$. For $y \leqslant x,\left\{\Sigma_{T_{y}^{A}} \leqslant x\right\}$ is a full event; so

$$
\left\{\Sigma_{T_{y} \Sigma} \leqslant x\right\}=\left\{\Sigma_{T_{y}^{A}} \leqslant x\right\} \cap\left\{T_{0} \circ \theta_{T_{y}^{A}}+y \leqslant x\right\}=\left\{T_{0} \circ \theta_{T_{y}^{A}}+y \leqslant x\right\}
$$

By the Markov property and Lemma 13 ,

$$
\begin{array}{r}
Q^{x}\left(\Sigma_{\infty}>y\right)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{T_{0} \circ \theta_{T_{y} A}+y \leqslant x} \mid \mathcal{A}_{T_{y}^{A}}\right]\right]=\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}\left(\tilde{T}_{0} \leqslant x-y\right)\right] \\
=\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} \leqslant x-y\right) \mid \tau>y\right]=1-\frac{\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0}>x-y\right) \mathbb{1}_{\tau>y}\right]}{\mathbb{P}(\tau>y)} \\
=1-\frac{\mathbb{E}\left[\mathbb{1}_{T_{0} \circ \theta_{y}>x-y, \tau>y}\right]}{\mathbb{P}(\tau>y)}=1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)} .
\end{array}
$$

On the other hand, for all $n \geqslant 0$, one has $Q^{x}\left(\Sigma_{n} \leqslant x\right)=1$. According to the definition of the probability $Q^{x}$,

$$
Q^{x}\left(\Sigma_{n} \leqslant x\right)=\lim _{p \rightarrow \infty} \frac{\mathbb{P}\left(\Sigma_{n} \leqslant x, \Sigma_{p} \leqslant x\right)}{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)}=\lim _{p \rightarrow \infty} \frac{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)}{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)}=1
$$

3) We shall now describe several properties of $g$ and $\left(A_{n}, n \geqslant 0\right)$ under $Q^{x}$.
a) We first show that $g$ is $Q^{x}$-a.s. finite; this implies that $A_{\infty}=\infty Q^{x}$-a.s.

Lemma 14. For all $n \geqslant 0$ and $k \geqslant 0$,

$$
\mathbb{P}\left(A_{2 n}=2 k\right)=\mathbb{P}\left(A_{2 n+1}=2 k+1\right)=C_{2 n-2 k}^{n-k} C_{2 k}^{k}\left(\frac{1}{2}\right)^{n}
$$

Proof. According to Fel50 p. 79, "Arcsin law for last visit",

$$
\mathbb{P}\left(g_{2 n}=2 k\right)=C_{2 n-2 k}^{n-k} C_{2 k}^{k}\left(\frac{1}{2}\right)^{n}
$$

Therefore

$$
\mathbb{P}\left(A_{2 n}=2 k\right)=\mathbb{P}\left(2 n-g_{2 n}=2 k\right)=\mathbb{P}\left(g_{2 n}=2 n-2 k\right)=C_{2 n-2 k}^{n-k} C_{2 k}^{k}\left(\frac{1}{2}\right)^{n}
$$

and as $A_{2 n+1}=A_{2 n}+1$, the proof is over.

The next lemma is instrumental in the sequel.
Lemma 15. For each $p>0$,

$$
Q^{x}\left(g>p \mid \mathcal{F}_{p}\right)=\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right) \frac{1}{M_{p}}
$$

Proof. Recall that $T_{0, p}:=\inf \left\{n>p, X_{n}=0\right\}$ is the first zero after $p$, and remark that $\Sigma_{T_{0, p}}=\Sigma_{p} \vee\left\{A_{p}+\tau \circ \theta_{p}\right\}$. Recall also that under $Q^{x}$, the event $\left\{\Sigma_{p} \leqslant x\right\}$ is almost sure. So, for every $\Lambda_{p} \in \mathcal{F}_{p}$,

$$
\begin{aligned}
& Q^{x}\left(\left\{\Lambda_{p}\right\} \cap\{g>p\}\right)=Q^{x}\left(\left\{\Lambda_{p}\right\} \cap\left\{T_{0, p}<\infty\right\}\right) \\
& \quad=\mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} M_{T_{0, p}}\right]=\mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} \mathbb{1}_{\Sigma_{T_{0, p} \leqslant x}}\right]=\mathbb{E}\left[\mathbb{1}_{\Lambda_{p}, \Sigma_{p} \leqslant x} \tilde{\mathbb{P}}_{X_{p}}\left[\tilde{\tau} \leqslant x-A_{p}\right]\right] \\
& \quad=\mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} \frac{\tilde{\mathbb{P}}_{X_{p}}\left[\tilde{\tau} \leqslant x-A_{p}\right]}{M_{p}} M_{p}\right]=\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{\Lambda_{p}} \frac{\tilde{\mathbb{P}}_{X_{p}}\left[\tilde{\tau} \leqslant x-A_{p}\right]}{M_{p}}\right],
\end{aligned}
$$

and consequently one has

$$
Q^{x}\left(g>p \mid \mathcal{F}_{p}\right)=\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right) \frac{1}{M_{p}}
$$

We now suppose that $p=2 l$ where $l \geqslant 0$; when $p=2 l+1$ the computation is similar, we won't give it (see Lemma 14). According to Lemma 15 ,

$$
\begin{aligned}
Q^{x}(g & >p)=\mathbb{E}^{Q^{x}}\left[\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{g>p} \mid \mathcal{F}_{p}\right]\right]=\mathbb{E}^{Q^{x}}\left[\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right) \frac{1}{M_{p}}\right] \\
& =\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right)\right]=\sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right) \mathbb{1}_{A_{p}=2 k}\right] \\
& =\sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{p}}\left(\tilde{\tau} \leqslant x-A_{p}\right) \mid A_{p}=2 k\right] \mathbb{P}\left(A_{p}=2 k\right) \\
& =\sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{2 k}}(\tilde{\tau} \leqslant x-2 k) \mid \tau>2 k\right] \mathbb{P}\left(A_{p}=2 k\right) \\
& =\sum_{k=0}^{l \wedge \frac{x}{2}} \frac{\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{2 k}}(\tilde{\tau} \leqslant x-2 k) \mathbb{1}_{\tau>2 k}\right]}{\mathbb{P}(\tau>2 k)} \mathbb{P}\left(A_{p}=2 k\right) \\
& =\sum_{k=0}^{l \wedge \frac{x}{2}}\left[1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>2 k)}\right] \mathbb{P}\left(A_{p}=2 k\right) \\
& =\sum_{k=0}^{l \wedge \frac{x}{2}} C_{2 l-2 k}^{l-k} C_{2 k}^{k}\left(\frac{1}{2}\right)^{l}\left(1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>2 k)}\right) .
\end{aligned}
$$

This gives the law of $g$ under $Q^{x}$. Then, for $p>2, Q^{x}(g>p) \leqslant \mathbb{E}\left[\mathbb{1}_{A_{p}} \leqslant x\right]$. Now, $A_{p}$ tends to infinity $\mathbb{P}$-a.s.; consequently,

$$
Q^{x}(g=\infty)=\lim _{p \rightarrow \infty} Q^{x}(g>p) \leqslant \lim _{p \rightarrow \infty} \mathbb{P}\left(A_{p} \leqslant x\right)=0
$$

and $g$ is $Q^{x}$-a.s. finite.
Remark 6. It is now easy to see that $M$ is not uniformly integrable. Indeed, as $g$ is finite, so is also $L_{\infty}$, and the argument given earlier for $M^{\varphi}$ and $S$ immediately adapts to $M$ and $L$.
b) To establish 2.d.i et 2.d.ii., we shall need:

Lemma 16. For all $y \leqslant x$, one has

$$
\mathbb{E}\left[M_{T_{y}^{A}}\right]=1
$$

Proof of Lemma 16. Recall that the event $\left\{\Sigma_{T_{y}^{A}} \leqslant x\right\}$ has probability 1. By formula (18) and the proof of point 2.a,

$$
\begin{aligned}
\mathbb{E}\left[M_{T_{y}^{A}}\right] & =\mathbb{E}\left[\frac{\left|X_{T_{y}^{A}}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}\left(\tilde{T}_{0} \leqslant x-y\right)\right] \\
& =\frac{\theta(y)}{\theta(x)}+\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}\left(\tilde{T}_{0} \leqslant x-y\right)\right]=\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)}+1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)}
\end{aligned}
$$

Let $F$ be a positive functional and $G: \mathbb{R} \rightarrow \mathbb{R}^{+}$. Recall that after ALR04, $X_{T_{y}^{A}}$ and $\mathcal{A}_{T_{A}}$ are independent under $\mathbb{P}$. On the other hand, as $M_{T_{y}^{A}}$ is a function of $X_{T_{y}^{A}}^{y}$, one has

$$
\begin{array}{r}
\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right) G\left(X_{T_{y}^{A}}\right)\right]=\mathbb{E}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right) G\left(X_{T_{y}^{A}}\right) M_{T_{y}^{A}}\right] \\
=\mathbb{E}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right] \mathbb{E}\left[G\left(X_{T_{y}^{A}}\right) M_{T_{y}^{A}}\right] . \tag{20}
\end{array}
$$

So, taking $G \equiv 1$ and using Lemma 16, one has

$$
\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right]=\mathbb{E}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right]
$$

which shows that $\left(A_{n}, n \leqslant T_{y}^{A}\right)$ has the same law under $\mathbb{P}$ and $Q^{x}$. Using again formula (20), one obtains

$$
\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right) G\left(X_{T_{y}^{A}}\right)\right]=\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right] \mathbb{E}^{Q^{x}}\left[G\left(X_{T_{y}^{A}}\right)\right]
$$

this shows that $\left(A_{n}, n \leqslant T_{y}^{A}\right)$ and $X_{T_{y}^{A}}$ are independent under $Q^{x}$.
c) The rest of the proof of point 2 is quite easy, taking into account what has already been done:

$$
\begin{aligned}
\mathbb{E}^{Q^{x}}\left[G\left(X_{T_{y}^{A}}\right)\right] & =\mathbb{E}\left[G\left(X_{T_{y}^{A}}\right) M_{T_{y}^{A}}\right]=\mathbb{E}\left[\mathbb{E}\left[G\left(X_{T_{y}^{A}}\right) M_{T_{y}} \mid \mathcal{A}_{T_{y}^{A}}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left.G\left(X_{y}\right)\left\{\frac{\left|X_{y}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} \leqslant x-y\right)\right\} \right\rvert\, \tau>y\right]\right] \\
& =\mathbb{E}\left[\left.G\left(X_{y}\right)\left\{\frac{\left|X_{y}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} \leqslant x-y\right)\right\} \right\rvert\, \tau>y\right] \\
& =\mathbb{E}\left[\left.G\left(X_{y}\right)\left\{\frac{\left|X_{y}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} \leqslant x-y\right)\right\} \right\rvert\, \tau>y\right] \\
& =\sum_{k} G(k)\left\{\frac{|k|}{\theta(x)}+\mathbb{P}_{k}\left(T_{0} \leqslant x-y\right)\right\} \mathbb{P}\left(X_{y}=k \mid \tau>y\right)
\end{aligned}
$$

Consequently, the law of $X_{T_{y}^{A}}$ under $Q^{x}$ satisfies

$$
Q^{x}\left(X_{T_{y}^{A}}=k\right)=\left\{\frac{|k|}{\theta(x)}+\mathbb{P}_{k}\left(T_{0} \leqslant x-y\right)\right\} \mathbb{P}\left(X_{y}=k \mid \tau>y\right)
$$

(The quantity $\mathbb{P}\left(X_{y}=k \mid \tau>y\right)$ is explicitly given in [Fel50 p. 77).
We now compute $Q^{x}\left(g>T_{y}^{A}\right)$ :

$$
\begin{aligned}
& Q^{x}\left(g>T_{y}^{A}\right)=\mathbb{E}^{Q^{x}}\left[\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{g>T_{y}^{A}} \mid \mathcal{F}_{T_{y}^{A}}\right]\right]=\mathbb{E}^{Q^{x}}\left[\frac{\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}(\tilde{\tau} \leqslant x-y)}{M_{T_{y}^{A}}}\right] \\
& \quad=\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}(\tilde{\tau} \leqslant x-y)\right]=\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{y}}(\tilde{\tau} \leqslant x-y) \mid \tau>y\right]=1-\frac{\mathbb{P}(\tau>x)}{\mathbb{P}(\tau>y)} .
\end{aligned}
$$

Last, we now show that $\left(A_{n}, n \leqslant T_{y}^{A}\right)$ and $\left\{g>T_{y}^{A}\right\}$ are independent under $Q^{x}$; we use again the independence of $X_{T_{y}^{A}}$ and $A_{T_{y}^{A}}$ under $\mathbb{P}$.

$$
\begin{aligned}
\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right) \mathbb{1}_{g>T_{y}^{A}}\right. & =\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right) \mathbb{E}^{Q^{x}}\left[\mathbb{1}_{g>T_{y}^{A}} \mid \mathcal{A}_{T_{y}^{A}}\right]\right] \\
& =\mathbb{E}^{Q^{x}}\left[\frac{F\left(A_{n}, n \leqslant T_{y}^{A}\right) \tilde{\mathbb{P}}_{X_{T_{y}^{A}}}(\tilde{\tau} \leqslant x-y)}{M_{T_{y}^{A}}}\right] \\
& =\mathbb{E}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right] \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}(\tilde{\tau} \leqslant x-y)\right] \\
& =\mathbb{E}^{Q^{x}}\left[F\left(A_{n}, n \leqslant T_{y}^{A}\right)\right] Q^{x}\left(g>T_{y}^{A}\right) .
\end{aligned}
$$

4) To study the process $\left(X_{n}, n \geqslant 0\right)$ under $Q^{x}$, we start with the law of the process $\left(X_{n}, n \geqslant g\right)$. Recall that $\Gamma^{+}=\left\{X_{n}>0, n>g\right\}$ and $\Gamma^{-}=$ $\left\{X_{n}<0, n>g\right\} ;$ these events $\Gamma^{+}$and $\Gamma^{-}$are symmetric under $Q_{0}^{x}$ :

## Lemma 17.

$$
Q^{x}\left(\Gamma^{+}\right)=Q^{x}\left(\Gamma^{-}\right)=\frac{1}{2}
$$

Proof. First remark that

$$
Q^{x}\left(\Gamma^{+}\right)=\lim _{n \rightarrow \infty} Q^{x}\left(X_{n}>0\right), \quad Q^{x}\left(\Gamma^{-}\right)=\lim _{n \rightarrow \infty} Q^{x}\left(X_{n}<0\right)
$$

By definition of $Q^{x}$,

$$
Q^{x}\left(X_{n}>0\right)=\mathbb{E}\left[\mathbb{1}_{X_{n}>0}\left\{\frac{\left|X_{n}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right) \mathbb{1}_{A_{n} \leqslant x}\right\} \mathbb{1}_{\Sigma_{n} \leqslant x}\right]
$$

Owing to the symmetry of the walk under $\mathbb{P}$, one has

$$
\begin{aligned}
Q^{x}\left(X_{n}>0\right) & =\mathbb{E}\left[\mathbb{1}_{X_{n}<0}\left\{\frac{\left|X_{n}\right|}{\theta(x)}+\tilde{\mathbb{P}}_{X_{n}}\left(\tilde{T}_{0} \leqslant x-A_{n}\right) \mathbb{1}_{A_{n} \leqslant x}\right\} \mathbb{1}_{\Sigma_{n} \leqslant x}\right] \\
& =Q^{x}\left(X_{n}<0\right)
\end{aligned}
$$

One also has $\lim _{n \rightarrow \infty} Q^{x}\left(X_{n}=0\right)=0$ because $g$ is $Q^{x}$-a.s. finite; and as $Q^{x}\left(X_{n}>0\right)+Q^{x}\left(X_{n}<0\right)+Q^{x}\left(X_{n}=0\right)=2 Q^{x}\left(X_{n}>0\right)+Q^{x}\left(X_{n}=0\right)=1$, taking limits when $n$ tends to infinity, on obtains

$$
Q^{x}\left(\Gamma^{+}\right)+Q^{x}\left(\Gamma^{-}\right)=2 Q^{x}\left(\Gamma^{+}\right)=1
$$

We now describe the behavior of $\left(X_{n+g}, n>0\right)$ under $Q^{x}$ on $\Gamma^{+}$(the other case is completely similar). Take $a \in \mathbb{N}^{*}$ and $p \geqslant x$, and set $q_{a, a+1}:=$ $Q\left(X_{n+1}=a+1 \mid X_{n}=a, n>g\right)$.

$$
\begin{aligned}
q_{a, a+1} & =Q\left(X_{n+1}=a+1 \mid X_{n}=a, \forall i \leqslant p X_{n+i}>0\right) \\
& =\frac{Q\left(X_{n+1}=a+1, X_{n}=a, \forall i \leqslant p X_{n+i}>0\right)}{Q\left(X_{n}=a, \forall i \leqslant p X_{n+i}>0\right)} \\
& =\frac{\mathbb{E}\left[\mathbb{1}_{X_{n+1}=a+1, X_{n}=a, \forall i \leqslant p X_{n+i}>0} M_{p+n}\right]}{\mathbb{E}\left[\mathbb{1}_{X_{n}=a, \forall i \leqslant p X_{n+i}>0} M_{p+n}\right]} .
\end{aligned}
$$

Here $M_{p+n}=\frac{X_{p+n}}{\Theta(x)} \mathbb{1}_{\Sigma_{n} \leqslant x}$; hence we can condition the numerator (resp. the denominator) by $\mathcal{F}_{n+1}$ (resp. $\mathcal{F}_{n}$ ). The Markov property gives

$$
q_{a, a+1}=\frac{\mathbb{E}\left[\mathbb{1}_{X_{n+1}=a+1, X_{n}=a, \Sigma_{n} \geqslant x} \mathbb{E}_{a+1}\left[X_{p} \mathbb{1}_{X_{i}>0, \forall i \leqslant p-1}\right]\right]}{\mathbb{E}\left[\mathbb{1}_{X_{n}=a, \Sigma_{n} \geqslant x} \mathbb{E}_{a}\left[X_{p} \mathbb{1}_{X_{i}>0, \forall i \leqslant p}\right]\right]}
$$

Clearly, $\left(X_{p} \mathbb{1}_{X_{i}>0, \forall i \leqslant p}\right)_{p \geqslant 0}$ is a martingale, wherefrom

$$
q_{a, a+1}=\frac{(a+1) \mathbb{E}\left[\mathbb{1}_{X_{n+1}=a+1, X_{n}=a, \Sigma_{n} \geqslant x}\right]}{a \mathbb{E}\left[\mathbb{1}_{X_{n}=a, \Sigma_{n} \geqslant x}\right]} .
$$

Last, conditioning the numerator by $\mathcal{F}_{n}$ one gets

$$
q_{a, a+1}=\frac{a+1}{2 a}
$$

the transition probability of a 3 -Bessel* walk.

Recall the following notation:

$$
\begin{aligned}
& \gamma_{n}:=\left|\left\{k \leqslant n, X_{k}=0\right\}\right|, \gamma_{\infty}:=\lim _{n \rightarrow \infty} \gamma_{n} \\
& \tau_{1}:=T_{0}, \forall n \geqslant 2, \tau_{n}:=\inf \left\{k>\tau_{n-1}, X_{k}=0\right\}
\end{aligned}
$$

It remains to show that, conditional on $\left\{\gamma_{\infty}=l\right\},\left(X_{u}, u \leqslant g\right)$ is a standard random walk stopped at $\tau_{l}$ and conditioned by $\Sigma_{\tau_{l}} \leqslant x$.

Let $F$ be a functional on $\mathbb{Z}^{n}$.

$$
\begin{aligned}
& \mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}} \mid \gamma_{\infty}=l\right]=\frac{\mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}} \mathbb{1}_{\gamma_{\infty}=l}\right]}{\mathbb{E}^{Q^{x}}\left[\gamma_{\infty}=l\right]} \\
= & \frac{\mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}<\infty}\right]-\mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}<\tau_{l+1}<\infty}\right]}{\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{\tau_{l}<\infty} \mathbb{1}_{\tau_{l+1}=\infty}\right]} \\
= & \frac{\mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}<\infty}\right]-\mathbb{E}^{Q^{x}}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}<\tau_{l+1}<\infty}\right]}{\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{\tau_{l}<\infty}\right]-\mathbb{E}^{Q^{x}}\left[\mathbb{1}_{\tau_{l+1}<\infty}\right]} \\
= & \frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}<\infty} M_{\tau_{l}}\right]-\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n<\tau_{l+1}<\infty} M_{\tau_{l+1}}\right]}{\mathbb{E}\left[\mathbb{1}_{\tau_{l}<\infty} M_{\tau_{l}}\right]-\mathbb{E}\left[\mathbb{1}_{\tau_{l+1}<\infty} M_{\tau_{l+1}}\right]} .
\end{aligned}
$$

Under $\mathbb{P},\left\{\tau_{l}<\infty\right\}$ has probability 1 , and so

$$
M_{\tau_{l}}-M_{\tau_{l+1}}=\mathbb{1}_{\Sigma_{\tau_{l}} \leqslant x}\left(1-\mathbb{1}_{\tau_{l+1}-\tau_{l} \leqslant x}\right)=\mathbb{1}_{\Sigma_{\tau_{l}} \leqslant x, \tau_{l+1}-\tau_{l}>x}
$$

As $\tau_{l+1}-\tau_{l}$ is independent of $\mathcal{F}_{\tau_{l}}$, one gets

$$
\begin{aligned}
\mathbb{E}^{Q^{x}} & {\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}} \mid \gamma_{\infty}=l\right]=\frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}}\left(M_{\tau_{l}}-M_{\tau_{l+1}}\right)\right]}{\mathbb{E}\left[M_{\tau_{l}}-M_{\tau_{l+1}}\right]} } \\
& =\frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{\left\{n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x, \tau_{l+1}-\tau_{l}>x\right\}}\right]}{\mathbb{E}\left[\mathbb{1}_{\left\{\Sigma_{\tau_{l}} \leqslant x, \tau_{l+1}-\tau_{l}>x\right\}}\right]} \\
& =\frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x}\right] \mathbb{E}\left[\mathbb{1}_{\left\{\tau_{l+1}-\tau_{l}>x\right\}}\right]}{\mathbb{E}\left[\mathbb{1}_{\Sigma_{\tau_{l}} \leqslant x}\right] \mathbb{E}\left[\mathbb{1}_{\tau_{l+1}-\tau_{l}>x}\right]} \\
& =\frac{\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{\left\{n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x\right\}}\right]}{\mathbb{E}\left[\mathbb{1}_{\Sigma_{\tau_{l}} \leqslant x}\right]}=\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{n \leqslant \tau_{l}} \mid \Sigma_{\tau_{l}} \leqslant x\right] .
\end{aligned}
$$

## References

[ALR04] C. Ackermann, G. Lorang, and B. Roynette, Independence of time and position for a random walk, Revista Matematica Iberoamericana 20 (2004), no. 3, pp. 915-917.
[Bil] P. Billingsley, Probability measures.
[Deb07] Pierre Debs, Pénalisations de marches aléatoires, Thèse de Doctorat, Institut Élie Cartan, 2007.
[Fel50] Feller, An Introduction to Probability Theory and its Applications, vol. 1, 1950.
[Fel71] , An Introduction to Probability Theory and its Applications, vol. 2, 1966-1971.
[LeG85] J.F. LeGall, Une approche élémentaire des théorèmes de décomposition de Williams, Lecture Notes in Mathematics, Séminaire de Probabilités XX, 1984-1985, pp. 447-464.
[Pit75] J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability, vol. 7, 1975, pp. p. 511-526.
[RVY] B. Roynette, P. Vallois, and M. Yor, Brownian penalisations related to excursion lengths, submitted to Annales de l'Institut Henri Poincaré.
[RVY06] $\qquad$ , Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, Studia sci. Hungarica Mathematica 43 (2006), no. 3.

