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Summary. Call (£2, Foo, P, X, F) the canonical space for the standard random walk
on Z. Thus, {2 denotes the set of paths ¢ : N — Z such that |¢p(n + 1) — ¢(n)| =1,
X = (X,,n >0) is the canonical coordinate process on 2; F = (Fp,n > 0) is
the natural filtration of X, F. the o-field \/n>0fn, and Py the probabilitiy on
(2, Fs) such that under Py, X is the standard random walk started form 0, i.e.,
Po (Xn+1 =j|Xn =1i) = 2 when [j —i| = 1.

Let G : N x 2 — RT be a positive, adapted functional. For several types of
functionals G, we show the existence of a positive F-martingale (M., n > 0) such

that, for all n and all A4,, € F,,
EO []lAn GP]
Eo [Gp]

Thus, there exists a probability @ on (£2, Fs) such that Q(A,) = Eo[la, M,] for
all A,, € F,,. We describe the behavior of the process ({2, X, F) under Q.

Eo[la, M,] when p — oo.

The three sections of the article deal respectively with the three situations when
G is a function:
e of the one-sided maximum;
e of the sign of X and of the time spent at zero;
e of the length of the excursions of X.

1 Introduction

Let {12, (X, Ft) >0 Foos IP, } be the canonical one-dimensional Brownian mo-

tion. For several types of positive functionals I" : Rt x {2 — R, B. Roynette,
P. Vallois and M. Yor show in [RVY06] that, for fixed s and for all A, € F;,

lim Ealla,l4) [La, T3]
t—o00 Ew [Ft]
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exists and has the form E,[14, M7], where (MZ,s > 0) is a positive martin-
gale. This enables them to define a probability @, on (£2, Fs) by:

VA € Fy Qo) = Ey[l 4, M7

moreover, they precisely describe the behavior of the canonical process X
under @,. This they do for numerous functionals I', for instance a function
of the one-sided maximum, or of the local time, or of the age of the current
excursion (cf. [RVY06], [RVY]).

Our purpose is to study a discrete analogue of their results. More pre-
cisely, let {2 denote the set of all functions ¢ from N to Z such that
p(n+1) —@p(n)| =1, let X = (X,,n >0) be the process of coordinates on
that space, F = (F,,n > 0) the canonical filtration, F, the o-field \/n>0 Fs
and P, (x € N) the family of probabilities on ({2, F.) such that under P,
X is the standard random walk started at x. For notational simplicity, we
often write IP for IPy. Our aim is to establish that for several types of positive,
adapted functionals G : N x 2 — N,

i) for each n > 0 and each A,, € F,,

Eo []1 An Gp]
Eo [Gp] ’

tends to a limit when p tends to infinity;
ii) this limit is equal to Eg[14, My], for some F-martingale M such that
My =1.

Call Q(A,,) this limit. Assuming i) and ii), @ is a probability on each o-field
Fn; it extends in a unique way to a probability (still called @) on the o-field
Foo- This can be seen either by applying Kolmogorov’s theorem on projective
limits (knowing @ on the F,, amounts to knowing the finite marginal laws
of the process X), or directly, since every finitely additive probability on the
Boolean algebra A = |J,, F,, extends to a o-additive probability on Fu, (a
Cantorian diagonal argument shows that every decreasing sequence (Ay) in A
with limit (1), Ar = @ is stationary; hence every finitely additive probability
on A is o-additive on A). In short, @ is the unique probability on (£2, Fuo)
such that

vYneN VA, eF, Q(An) =Eg [1a, M,].

We will also study the process X under Q.
1) In the first section, G is a function of the one-sided maximum, i.e.,

Gp = ¢ (5p)

where S, = sup { X}, k < p} and where ¢ is a function from N to R* satisfying

D k) =1

k=0
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We will also need the function @ : N — R given by

B(k) = > o).
j=k

The results of Section 1 are summarized in the following statement:

Theorem 1. 1. a) For each n > 0 and each A,, € F,,, one has

CIVREES)

P (S, M

where M2 := p(S,)(Sn — X)) + D(Sy).

b) (M¢,n > 0) is a positive martingale, with M = 1, non uniformly
integrable; in fact, MY tends a.s. to 0 when n — oo.

2. Call Q¥ the probability on (12, Foo) characterized by
VYneN, A, € F,, QF(A,) =E[ls, MS].
Then

a) Seo 18 finite Q¥-a.s. and satisfies for every k € N:
Q7 (S0 = k) = (k). (1)

b) Under Q¥, the r.v. Too = inf{n >0, X,, = S} (which is not a
stopping time in general) is a.s. finite and

i. (Xpar., n = 0) and (Sec — X7oo4n, n = 0) are two independent
processes;

ii. conditional on the r.v. Se, the process (Xpar,,, n = 0) is a stan-
dard random walk stopped when it first hits the level Soo;

it1. (Soo — X1o4n, m = 0) is a 3-Bessel walk started from 0.

3. Put R, = 25,—X,,. Under Q%, (R,,n > 0) is a 3-Bessel walk independent
of Sec-

The proofs of the second and third parts of this theorem rest largely
upon a theorem due to Pitman (cf. [Pit75]) and on the study of the large p
asymptotics of P (A4,]S, = k) for A,, € F,.
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We must now explain the precise meaning of the ‘3-Bessel walk’ mentioned
in the theorem and further in this article. In fact, two processes, which we call
the 3-Bessel walk and the 3-Bessel* walk, will play a role in this work; they
are identical up to a one-step space shift.

The 3-Bessel walk is the Markov chain (R,,n > 0), with values in N =
{0,1,2,...}, whose transition probabilities from = > 0 are given by

x+2 T
7r(x,:z:+1):m; W(x,x—l):2m+2.

(2)

The 3-Bessel® walk is the Markov chain (R},n > 0), valued in N* =
{1,2,...}, such that R* — 1 is a 3-Bessel walk. So its transition probabilities
from x > 1 are

x+1 r—1

T (z,x+1) = P (e —1) = P

2) In the second section, the functional G, will be a function of the local
time at 0 of the random walk. The local time is the process (L,,n > 0) such
that L,, is the number of times that X was null strictly before time n. In other
words,

Lo=) lncnlx,—o.

m=0

Observe that L, is also the sum of the number of up-crossings from 0 to 1
and of the number of down-crossings from 0 to —1, up to time n. Given two
functions AT and A~ from N* to RT such that

(W (k) +h™ (k) = 1,

1 o)
2
k=1

we consider the penalisation functional

Gp = h+(Lp) ]IXp>0 +h- (Lp) ]IXp<0'

Putting
O(z) = ;kz (WF (k) + B (k).
=x+1

we obtain the following penalisation theorem.

Theorem 2. 1. a) For each n >0 and each A, € F,, one has

lim Ells, Gy

Aol [, MR
Jim = = Bl M) 3)

where M0 .= XFht(L,) + X, h™(Ly) + O(Ly).
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b) beﬁ’hf is a positive, non uniformly integrable martingale ; indeed, it
tends to 0 when n tends to infinity.

2. Call Qhﬂhi the probability on Fo, whose restriction to F, s given by
VA, € Foy QYN (A,) = B[y, MM
This thh* has the following properties:
a) Lo is Qh+’h_ -a.s. finite and satisfies
VkeN*, Q"M (Lo =k)= % (h* (k) + b~ (k).

b) The r.v. g := sup{n > 0,X,, =0} is Qhﬂhi -a.s. finite and, under
QM

i. The processes (Xgiu, v = 0) and (Xyng, u > 0) are independent.

it. With probability £ > 77, h™(k), the process (Xgiu, u = 1) is a
3-Bessel™ walk started from 1.
With probability 3372 h™(k), the process (—Xgiu, u > 1) is a
3-Bessel™ walk started from 1.

iti. Conditional on Log = I, the process (Xuyng,u = 0) is a standard
random walk stopped at its I-th passage at 0.

Our unusual choice for the definition of the local time at 0 will be helpful
when proving the first point. The second part of the proof of this theorem rests
essentially on an article by Le Gall (cf [LeG85]) which enables us to assess,
under specific conditions, that a 3-Bessel* walk for P is is still a 3-Bessel*
walk for Qh"h .

3) In the third part, the penalisation functional G, will be a function of
the longest excursion completed until time p. Set g, := sup {k < n, Xj = 0},
dy, = inf{k >n, Xi, =0}, and X, := sup{dy — gi, dp < n}; for n > 0,
X, is the duration of the longest excursion completed until time n.

Fix an even integer x > 0, and consider the penalisation functional

Gp = ]lgpgz.

To study penalisation by this G, we must also introduce A,, := n — g,,, which
is the age of the current excursion, and A}, := supj,,, A, which is the longest
duration of a (complete or incomplete) excursion until n. We also call 7 =
inf {n > 0, X,, = 0} the first return time to 0, and we put

0(z) :=Eo[|Xz| | 7> 2].
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Theorem 3. 1. a) For each n > 0 and each A,, € F,:

Eo[la, 1y, <]

— Eo[l 4 M,], 4
oo Po[Z, < 2 olLa, Ma] )

where

X, - ~
M, = {L‘(x) +Px, (To ST - An) ]lAn@c} Lo, <o

(In this expression and in similar ones, the meaning ofIF’ and Ty is to
be interpreted as follows: Px, (Ty < x— A,) stands for f(X,,z—A,),
with f(y,z) =P, (To < 2).)

b) Moreover, (M,,,n > 0) is a positive martingale, non uniformly inte-
grable; indeed, lim,,_,o, M,, =0 P-a.s.

2. Call Q7 the probability on Fo, whose restriction to JF,, is defined by
VA, € Fy, Q" (Ap) =E[14, M,].
Under Q*, one has:

a) Yoo < x a.s. and satisfies for all y < x:

P(r>ux

Q" (T >y) = 1= p,

~— | —

b) Af, = o0 a.s.

¢) The rv. g :==sup{n >0, X,, =0} is a.s. finite. Moreover, if p = 21
or2l+1 with 1 > 0,

| NS
Q" (g>p) = (%) pIeme (1 - I]PP((TT—>>29§<:))>'
k=0

d) For y such that 0 < y < x,
i. (An, n < T;‘) has the same law under P and Q.
1. (An, n < T;‘) and XTyA are independent under P and under Q*.

1. Under QF, the law of XT;x is given by
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.

t(gsTA) =1 P >2)
Q7(g>1T;) =1 P sy
v. Under Q7, (An, n < T;‘) is independent of {g > T;‘}.

3. Under Q7,
a) The processes (Xnng, n = 0) and (Xg4pn, n > 0) are independent.

b) With probability %, the process (Xgin,n > 0) is a 3-Bessel* walk and
with probability %, the process (—Xg4n,n > 0) is a 3-Bessel* walk.

¢) Conditional on Lo, = 1, the process (Xnong, n > 0) is a standard
random walk stopped at its l-th return time to 0 and conditioned by
{¥,, <z}, where 7; is the l-th return time to 0.

The proof of the first point of this theorem rests largely on a Tauberian
theorem (cf [Fel50]) which gives the large p asymptotics of P (X, < ). And
the study of the process X under Q" rests on arguments similar to those used
in the proof of Theorem

2 Principle of Penalisation

Penalisation can intuitively be interpreted as a generalisation of conditioning
by a null event.

Consider the event A, := {S < a}, where a € N. By recurrence of
the standard walk, A, is a IP-null event. One way of conditioning by A,
which involves the filtration (F,), is to consider the sequence of events A, :=
{S, < a} and to study the limit

E [ﬂAnm{Spga}] (5)

lim ,

p=oo B []l{spg‘l}]
for each n € N and each A, € F,.
Simple arguments show that the limit in (G]) exists and equals

a+1—Xn}

E[ﬂ{An,snsa} )

Put My, :=1y5,<a} ‘”al_le". The process M is the martingale at:X stopped
when S first hits a 4+ 1; so it is a positive Pg-martingale. Since My = 1 and
My, = 0 a.s., M is not uniformly integrable. But a probability Q(,) can be

defined on F,, by
dQn)
= M M
d]P n»y

Fn
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moreover, for m < n, Q) and Q) agree on F,,. By Kolmogorov’s exis-
tence theorem (cf [Bil] pp. 430-435), there exists a probability Q on (2, F.)
whose restriction to each 7, is the corresponding Q(,); in other words, @ is
characterized by

a+1—Xn]

Q (An) :ZE{ﬂ{An,sn@} P}

for alln € N and A,, € F,.

When studying the behavior of (X,,, n > 0) under the new probability @,
one obtains that Sy, is a.s. finite and uniformly distributed on [0, a]. A more
detailed study shows that:

o (Xuar., n=0)and (Sec— X7 4, N =
e Conditional on {Soo =k}, (Xparo,
stopped when it reaches the value k.

o (Soo—X71_4n,n >0)is a 3-Bessel walk started from 0, independent from

(Soos To)-

This raises several natural questions: What happens when 1yg, <q} is re-
placed with a more complicated function of the supremum? In that case, what
does the limit (@) become? Can one still define a probability @, and how is
the behavior of (X,,,n > 0) under @ influenced by this modification?

This simple idea of replacing the indicator by a more complex function is
the essence of penalisation. All this is evidently not limited to the case of the
one-sided maximum, but extends to many other increasing, adapted function-
als tending P-a.s. to +o00. There exist various examples of penalisation, and
also a general principle (cf [Deb07]) but this article is only devoted to three
examples of penalisation functionals: the one-sided maximum, the local time
at 0 and the maximal duration of the completed excursions.

0) are two independent processes.
> 0) is a standard random walk

3 Penalisation by a Function of the One-sided Maximum:
Proof of Theorem [

1) We start by recalling a few facts.
The next result is classical (cf. [Fel50] p. 75):

Lemma 1. For k€ Z and n € N,

Remark 1. In the sequel, we put
Pnk = IPO(Xn = ]{Z),

observe that p, , # 0 if and only if n and k have the same parity and |k| < n.
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Lemma 2. For k in Z and n and r in N, one has

Pox k55— { PR =N ifk>r; o
O = o 2 T (X, =2 — k) ifk<r

Proof. This formula is trivial when k& > r; when k < r, it is Désiré André’s
well-known reflection principle (see for instance [Fel50] p. 72 and pp. 88-89). O

From Lemma 2] and Remark [I] one easily derives the law of S:
Lemma 3. For n and r in N, one has
IPO(Sn = T) = Pn,r +pn,7‘+1 = Pn,r vpn,r—i—l- (7)

Proof. Summing (@) over all k € Z gives

=Y P(Xp=k)+> P(X,=2r—k)=P(X, >r)+P(X, >r).

k>r k<r
Consequently,
P(S,=7)=P(S, >27)—P(S, 2>r+1) =P(X,, =r+ 1)+ P(X,, =r),
and (7)) follows by definition of p, ; and by Remark [Il O
2) We start showing point 1 of Theorem [
Lemma 4. For each k > 0, the ratio

RS, =1
0

is majorized by 1 for alln > 0 and tends to 1 when n — +o0.

Proof. The denominator is minorated by P(X; = ... = X,, = —1) = 27"
so it does not vanish. Observe that, for even n and even k > 2,

e~ Fe— — ok = (M) () - ()

and for odd n and odd k > 1

S = N R )

Clearly, these products are smaller than 1 and tend to 1 when n goes to infinity.
O
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Lemma 5. For all x € N and y € Z such that y < x, the ratio

E[cp(x V (y—i—Sn))}
P(S, = 0)

is majorized for alln € N by (x—y)p(x)+P(x) and tends to (x—y)p(x)+P(x)
when n tends to infinity.

Proof. Write

Elp(zV (y+Sn))] _

Byt5a<n) 5 Bt Sai)
P, =0 9 s, Z‘p P(S, = 0)
k>x
IP (Sn=k—y)
DI + 3ot 2=ty
k<z—y ]P k>x ]P(Sn O)

By Lemma [l this sum is majorized by (z — y)p(z) + )5, (k) and tends
to this value by dominated convergence. O

To establish point 1 of Theorem [Il observe first that
My = ¢(8,)(Sn — Xn) + (Sn)

is a positive martingale. Positivity is obvious @, @, and S — X are positive.
To see that M? is a martingale, consider MY, — M.

If S;,+1 = Sy, the only thing that varies in the expression of M¥ when n
is changed to n + 1 is X; so, in that case,

Mrerl - My = _Qp(sn)(XnJrl - Xn)

On the other hand, if S,,41 # Sy, one has S, 11 = S, +1 because each step
of Sis 0 or 1; one also has X,,;1 = S,41 because S can increase only when
pushed up by X, and X,, = S,, because X,, must simultaneously be < 5,, and
at distance 1 from X,,41. S0 Sp41 — Xpp1 = 9, — X, =0, giving

M7 | — M? = D(Spy1) —D(Sy) = P(Sn + 1) — D(Sy)
= —p(Sn) = —(Sn)(Xn+1 — Xn).
All in all, the equality M7 | — M = —¢(Sn)(Xp41 — X,,) holds every-
where; this entails that M¥ is a martingale, verifying
| M7 = M| < n; (8)

and since M{ = &(0) = 1, one has E[My?] = 1.
We now proceed to prove 1.a of Theorem [ For 0 < n < p, one can write

Sy = Sp V (X, + Sp—p), where S is the maximal process of the standard
random walk (Xy45 — X3) g0, Which is independent from F,. Hence
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E[@(Sp) | ‘Fn} = E[@(Sn \ (Xn + gp—n))}a

where E integrates over §p,n only, S, and X, being kept fixed. So, for
A, € Fp,

E[1,4, ©(Sp)]
P(Sp—n, =0)

E[o(S, V (X, + Sp-n))] ]
P(Sp—n =0)
When p tends to infinity, Lemma [ says that the ratio in the right-hand

side tends to M? and is dominated by M, which is integrable by (g]).
Consequently,

:E{m

n

E[L4, ¢(S,)] { is majorated by E[1,, Mf] for all p > n ()

P(Sy—rn =0) and tends to E[14, M¢] when p — oco.

Taking in particular A, = {2, one also has

E[p(Sp)]
P(S,_, =0)

and to establish 1.a of Theorem [ it suffices to take the ratio of these two
limits.

—E[M?] =1 when p — oo,

n

Half of 1.b is already proven: we have seen above that MY is a positive
martingale, with M = 1. The proof that M — 0 a.s. is postponed; we first
establish 2.a.

The set-function Q¥ defined on the Boolean algebra J,, F,, by Q¥(4,) =
E[l,, M7 if A, € F,, is a probability on each o-field F,,. As recalled in the
introduction, Q¥ automatically extends to a probability (still called Q¥) on
the o-field F.

For k and n in N, the event {S,, > k} is equal to {T}, < n}, where
Ty = inf{m : X,, > k} = inf{m : S,, > k}. Now, by Doob’s stopping
theorem,

Q?(Sn 2 k) = Q¥ (Tk < n) = E[lg, < M|
= E[]lTkgn M;zp/\Tk] = E[ﬂTkQTL M;fk]
But Po-a.s., X7, = St, = k and My = &(k); wherefrom
Q¥ (S, =2 k) =d(k)P(S, = k).

Fixing k, let now n tend to infinity. The events {S,, > k} form an increasing
sequence, with limit {S., > k}; hence

Q7 (S > k) = (k) P(Ss > k) = B(k).
This implies that S, is Q¥-a.s. finite, with

Q7 (S = k) = D(k) — P(k + 1) = o(k);

so 2.a is established.
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This also implies that the P-a.s. limit M¥ of M¥ is null, by the following
argument. Using Fatou’s lemma, one writes

Efls > MZ] = E[h}}l(]lsn% M)
< liminfE[]lSn>k M:f]

=liminf Q¥ (S, 2 k) = Q¥(Se = k) = P(k);
then, by dominated convergence, one has

E[ﬂsx:w Mo%] = E[h}in(]lgoo>k Mg;)] = h]?l]E[ﬂSoc>k Mi] g llin@(k') = O7

and P(S. = 00) = 1 now implies E[MZ] = 0. Point 1.b is proven.
3) Here are now a few facts on 3-Bessel walks, which will play an important
role in the rest of the proof of Theorem [l

Proposition 1. Let (R, n > 0) be a 3-Bessel walk; put J,, = inf,,>, Ry,.
1. Conditional on FE, the law of J,, is uniform on {0,1,... R,}.
2. Suppose now Ryg = 0 (therefore Jo = 0 too).
a) The process (Z,, n > 0) defined by Z, = 2J,, — R, is a standard
random walk, and its natural filtration Z is also the natural filtration
of the 2-dimensional process (R, J).
b) If T is a stopping time for Z such that Ry = Jr, then the process
(Rr4n — Ry, n > 0) is a 3-Bessel walk started from 0 and independent
Of ZT.

Proof. 1. By the Markov property, it suffices to show that if Ry = k, the
r.v. Jy is uniformly distributed on {0, ..., k}. The function f(z) = 1/(1 + )
defined for x > 0 is bounded and verifies for z > 1

fl@) =m(e,e=1) fle - 1) +w(e,z+1) fz+1),

where 7 is the transition kernel of the 3-Bessel walk, given by ([2). Thus f is
m-harmonic except at @ = 0, and f(R,ne,) i @ bounded martingale, where
o, denotes the hitting time of z by R. (This result is due to [LeG85] p. 449.)
For 0 < a < k, by stopping, p2 = f(Rnao,) 1S also a bounded martingale.
A Borel-Cantelli argument shows that the paths of R are a.s. unbounded;
hence liminf, o f(R,) = 0 and p% = f(a)1j,<qa- The martingale equality
F(@) P(Jy < a) = Blut,) = Elug] = £(k) vields P(Jo < a) = (a+ 1)/(k + 1),
so the law of Jy is uniform on {0, ..., k}.

Part 2 of Proposition [Il depends only on the law of the process R, so
we need not prove it for all 3-Bessel walks started at 0, it suffices to prove
it for some particular 3-Bessel walk started at 0. Given a standard random
walk Z' with Z) = 0 and its past maximum S; = sup,,<, Z,,, Pitman’s
theorem [Pit75] says that the process R = 25" — Z' is a 3-Bessel walk started
from 0, with future minimum J,, = inf,,>, R, given by J = S’. We shall
prove 2.a and 2.b for this particular 3-Bessel walk R.
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The process Z = 2J — R is also equal to 25’ — R = Z’, so it is a standard
random walk. Both J = S’ and R = 25" — Z' are adapted to the filtration
of Z; conversely, Z = 2J— R is adapted to the filtration generated by R and J.
This proves 2.a.

To show 2.b, let T' be Z-stopping time such that Ry = Jp. One has

Zy =2Jr — Ry = Jp = S

The process Z defined by Z,, = Zip .y — Zp is a standard random walk inde-
pendent of Zp, started from 0, with past maximum

S, = sup Zm:S’T+n7Z’T:S’T+nfS}.

m<n

By Pitman’s theorem, R =2S — Z is a 3-Bessel walk, and it is independent
of Z because so is Z. Now,

Ry = 2§n - Zn = 2<S’lT+n - Sp) - (Zéurn — Z1) = Rrin — Ry
thus 2.b holds and Proposition [Il is established. ]

4) The next step is the proof of point 3 in Theorem [Il We start with a
small computation:

Lemma 6. Let a r.v. U be uniformly distributed on {0,..,r}. Then
E[e(U)(r—U)+®(U)] =1

Proof. 1t suffices to write

DB - 8(0)] = 31~ #0) = Y el =3 3 ol
i=0 i=0 j=0 =0i=j+1
i?‘—j =(r+1)E[(r—U)eU)]. O

The next proposition proves the first half of point 3 in Theorem [I.

Proposition 2. Under Q%, the process (R,,n > 0) given by R, =25, — X
is a 3-Bessel started from 0.

Proof. According to Pitman’s theorem [Pit75], under the probability P, the
process (R,,n > 0) is a 3-Bessel walk with future infimum J,, = S,,. Call R
the natural filtration of R. By Proposition[Il1, the conditional law of S,, given
R, is uniform on {0,..., R,}; consequently Lemma [6] gives
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Now, let f be any bounded function on N**!. One has

E?"[f(Ro,...,Ry)] = E[f(Ro, ..., Rn) MY]
= ]E[f(RO, .. .,Rn)lE[MﬂRn]] =E[f(Ro,...,Rn)]

As n and f were arbitrary, R has the same law under Q¥ as under P, that is,
Q¥ also makes R a 3-Bessel walk. O

To finish proving point 3, it remains to establish that R is independent of
Seo under Q¥. This will easily follow from the next lemma, which decomposes
Q¥ as a sum of measures carried by the level sets of S,

Lemma 7. Call Q%) the probability Q¥ for ¢ = 6, that is, o(k) =1 and
o(x) =0 for x # k. Then QW) is supported by the event {Ss = k}, and, for
a general @ and for all A € Fy, one has

P(A) = olk) Q™

k>0

Q¥(A] See =k)=QW(A)  for all k such that o(k) > 0.

Proof. For A, € F,,, one can use formula ([@) twice and write

o B[y, oS /1 ﬂ{Sp—k})
Q (An)—hénw hmng S, . =0)
=D ol#) lim (]‘Q(S:{f’;of}) = ijwc) QM (4,),

where lim and Y’ commute by dominated convergence, owing to the majoration
in ([@). So the probabilities Q¥ and 3°, (k) Q¥ coincide on |J,, Fy; therefore
they also coincide on F.

Applying now equation () with ¢ = 5 gives Q) (So =k) = 1, that is,
Q™ is supported by {S. = k}.

Consequently, for any A € Fu, one has Q¥ (AN{Sa =k}) = o(k) QW (A)
because all other terms in the series vanish. Using (Il) again, one may replace
o(k) with Q¥(Ss =k); this proves Q?(A | So = k) = Q¥ (A) whenever
w(k) > 0. O

The proof of independence in Theorem [l3 is now a child’s play: Propo-
sition [2] says that the law of R under Q¥ is always the law of the 3-Bessel
walk, whatever the choice of ¢. We may in particular take ¢ = dy, so it is also
true under Q). Since Q¥ is also the conditioning of Q¥ by {S., =k}, under
Q¥ the law of R conditional on {S., =k} does not depend upon k, thus R is
independent of S,

5) So far, all of Theorem [Il has been established, except 2.b, to which
the rest of the proof will be devoted. Finiteness of T, is due to X being
integer-valued and its supremum S, being finite.
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Put U,, = X,ar,, and V,, = Soc — X7 +n. To prove 2.b.i and 2.b.iii we
have to show that under Q¥ the process V is a 3-Bessel walk independent of
the process U. Call v the law of the 3-Bessel walk. For bounded functionals
F and G, we must prove that

EQ7[FoU GoV] = B [FoU] [ G(v)v(dv).

Replacing now Q¥ by _, (k) Q™) (see Lemmal[D), it suffices to show it when
= 0. Similarly, 2.b.ii only refers to a conditional law given S..; by Lemma[7]
again, we may replace Q¥ by Q*). Finally, when proving 2.b, we may suppose
© =01, and Q¥ = Q™) for a fized k > 0. Hence the random time T, becomes
the stopping time T} = inf {n > 0, X,, = k}, and it remains to show that

o (X,a7,, n > 0) is a standard random walk stopped when it first hits the
level k;

e (2k— X1, 1y, n>0) is a 3-Bessel walk started at 0;

e These two processes are independent.

By point 3 of Theorem [Il we know that R = 25 — X is a 3-Bessel walk; and as
we are now working under Q). we have S, = k a.s. Put J,, = inf > Rin-

We shall first show that the processes J and S are equal on the interval
[0, Tx]. Given n, call 7 the first time p > n when X,, = S,,, and observe that on
the event {T}, > n}, 7 is finite because X,, < S, < k = Xp,. For all m > n,
one has R,, = S, + (S — Xin) = S, + 0, with equality for m = 7; thus
Jp = Sp on {7 < oo} and a fortiori on {T} > n}.

We shall now apply Proposition[[l2 to the 3-Bessel walk R = 25 — X and
its future infimum J. Part 2.a of this proposition says that Z = 2J — R is a
standard random walk. We just saw that J =S on the random time-interval
[0, Ty]; consequently, on this interval, Z = 25 — R = X. And as T} is the
first time when X = k, it is also the first time when Z = k. This proves that
(XnaT,, n = 0) is a standard random walk stopped at level k, and also that
the Z-stopping time T}, satisfies Zp, = Fr,, where Z is the filtration of Z.

Remarking that Ry, = Jr, = k, part 2.b of proposition [l can be ap-
plied to Ty; it says that (Rr,4+n—k, n > 0) is a 3-Bessel walk indepen-
dent of Fr,, and hence also of the process (Xpa7,, n = 0). But Ry 4pn =
287, 4n — X1y4n = 2k — X, 4 since S, = k = Su; so this 3-Bessel walk is
nothing but (k — X1, 1, n > 0). This concludes the proof of Theorem [1l

4 Penalisation by a Function of the Local Time: Proof
of Theorem

Definition 1. Recall that the 3-Bessel* walk is the Markov chain (R}, n > 0),
valued in N* = {1,2,...}, such that R*—1 is a 3-Bessel walk. So its transition
probabilities from x > 1 are

x—i—l' rz—1

" (z,x 4+ 1) = 52 7 (z,x —1) = 5y
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1) We now prove point 1 of Theorem 2. First, (M,}L‘+’h7,n > 0) is a posi-
tive martingale. Positivity is obvious from the definitions of h, h~ and 6.
To see that Mh' " is a martingale, we shall verify that the increment
Mﬁi’lh —M,’frvhi has the form (X,,11 — X,,) K,,, where K, is F,,-measurable
and |K,| < 1. There are three cases, depending on the value of X,.

If X,, >0, then X,,11 > 0,50 X;7 = X,,, X:H = Xpa1,and L1 = Ly,

Consequently, in that case, MM - MMRT = (Xpi1 — Xn) B (Ln).

n+1
Similarly, if X, <0, one has X = = X,,, X,y = = X,,41, Lpy1 = Ly
and M — MI0T = —(Xpy — Xo) b (L)

Last, if X,, =0, then L, 11 = L, + 1 and X,,4; = £1. In that case,

M:—T—ih7 - M7}LL+,h7 = ]I{Xn+1:1}h+([/n+1) + ]l{Xn+1:71}h_(Ln+1)
+O(Lot1) - 6(Ly)

1
= psenXnni=Xn) ([, 11) — 5(h+(Ln+1) +h™(Ln+1))

= (Xn+1 — Xn) = (hT (Lyn41) — A (Ln+1)).

1
2
This establishes the claim; consequently, M hThT g a martingale which

satisfies . N
ht h- R
|MPr — Myt [ <n

hthT T
and, as M, =1, one has E[Mn ) ] =1.
To finish the proof of point 1 in Theorem[2 it remains to show formula (3)).
This will use the following lemma.

Lemma 8. For each integer k such that 0 < k < [ ],
P(L,=k)
P(S,=0)

18 bounded above by 2 and tends to 1 when n — .

Remark 2. In the sequel, for h : N — R* such that Y, , h(k) < co, we put
MM = X Fh(L,) + O(Ly,) for n > 0. When > p- | h(k) = 1, this notation is
consistent with the one used so far; in general, M"° is a martingale too, for
dividing it by the constant ©(0) = >~ h(k) reduces it to the previous case.

Lemma 9. Let h : N — RT be such that Zh(k) < o00. Fora > 0 and
T €L, k=1

E.[h(Ln + a) 1x,>0]
P (S, =0)

is bounded above by 2(h(a)z™ + %Z,@aﬂ h(k)) and converges to h(a)x™ +
% Z,@aﬂ h(k) when n — oo.
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Proof of Lemma[8 Call v, = | {p < n, X, = 0}| the number of visits to 0 up
to time n. Clearly, v,, = L, 41 and

P(L, = k) = P(yn_1 = k).

We shall study the law of v,,. Define a sequence (V,,, n > 0) by

Ww =0
Vn_;,_]_ = ll’lf{k > O7 XVn-l—k = O}

and put (Xflk)),@o = (XVitn)p>o and Ti(k) = inf{n >0, x$¥ = i}
Owing to the symmetry of the random walk and the Markov property,

Vi1l PWVi=k) =PI Y =k-1).

SoVi>1,V; £ Tl(i_l) +1. Moreover, according to the strong Markov property,
(Xr(?)7 n > 0) is independent of Fy, and hence

i+ £+ 1V +2.
Wherefrom, by induction,
Vit Vot .+ Vi 210+ 10+ 41V 1k
So
Py, =k) =P(Vi+..+Vici <n < Vi+..+ V)
=PI +TY 4 4T 4 k—1<n<TO + 170 + 4+ TF D 4 g

=PIy 1+k—-1<n<Tp+k)=P(Sp—rt1=2k—1,5r <k)
:P(Sn_k+1 :k71)+IP(Tk :nfk+1).

Taking inspiration from the proof of Lemma[4] it is easy to see that

P(Sp_r=k—1)
P(S, =0)

is majorated by 1 and tends to 1 when n tends to infinity.
According to [Fel50] p. 89,

n

ntr /]
P(T,=n)==C7 (3) -
Appealing again to the proof of Lemma [ it is easy to show that
]P(Tk =n — k)
P(S,=0)
is majorated by 1 and tends to 0 when n goes to infinity. The proof is over.
O
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Remark 3. From the preceding result, one easily sees that

P, (L, =k, X, > 0)
P (S, =0)

is majorated by 1 and tends to % when n — oo.
Proof of Lemmal[d. Start from

Ey[h(Ln + a) 1x,50] = Ex[h(Ln + a)lx, >0 (L1y>n + Lry<n)]
One has

0 stx <0

h(Ln + (L) ]an>0]lTo>n = {h(a) ]lT N siz>0
o>n
According to Lemma [

h(a) ]1m>OIP93(TO > n)
P(S, = 0)

is majorated by x*h(a) and converges to zh(a).
Write

E.[h(L, +a) ]]-{Xn>O,T0§n}] B Z P, (L, =k, X, >0)
P(S, =0) B P (S, =0)

h(k +a)
k=1
By Lemma [Blthis sum is majorated by >, -, h(k + a) and converges to
%Ek>1 h(k 4+ a) when n — oco. O

We shall now prove point 1.a in Theorem 2l For each 0 < n < p, one has

Ly = Ly + Ly, where L is the local time at 0 of the standard random walk
(Xn+k)k>0 which, given X,,, is independent of F,,. So

E[h(Lp) Ix,>0 | ‘7:”] = fEXn [h(Ln + ip*n) ]lf(,,_n>0]

where E integrates only ip_n and Xp_n and where L, and X, are fixed.
Then, for all A,, € F,,

I~E)Xn [h(Ln + Ep—n) ]l)“(,,,n>0]
P(Sp—n =0)

E[h(Lp)1x,>0,4,]
P(S,_n = 0)

=E|1,,

When p — oo, Lemma [ says that the ratio in the right-hand side tends to
M0 and is dominated by 2M/° which is integrable. Consequently, when
p - OO)
E[n(Ly) 1x,>0,4,]
N

E[1, M"°
]P(Spfn:()) [ An n ]’
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and taking A,, = {2, one has

E[h(Lp) ]lXp>0]

— E[M}].
]P(Sp_n — O) [ n ]

Taking the ratio of these two limits yields

E[h(Ly) 1x,>0,4,] _ B[4, M,
E[h(Ly) Lx,>0] E[M"°]
To finalize the proof of point 1.a, it now sufﬁceb to use the symmetry of the
standard random walk and the fact that E[M} o =1

2) Let us now show point 2 in Theorem Pl Put 7, = inf {k > 0,7, = [}.
Then

QM (L=l =Q" " (m<n—1)
= B[l cn 1 M =01 - 1)P(n < n—1).

For fixed [, the sequence of events {L, >} is increasing and tends to
{Ls = 1}; s0

Q"M (Lo 1) =0(1— 1)P(r, < 00) = O(1 — 1).
Hence Lo is Q" " -a.s. finite, with

Q"M (Lo =1) =001 —~1)—O() = = (h (1) + A~ (1))

l\DI»—I

and 2.a is established.
To show that the P-a.s. limit Méf’hf of M P is null, it suffices to apply
the same method as for M¥, with L instead of S and M instead of M.
The study of the process (X,,, n > 0) under Qh+’h_ starts with the next
three lemmas.

Lemma 10. Under Py and conditional on the event {T,, < Ty}, the process
(Xn, 0<n<T),) is a 3-Bessel* walk started from 1 and stopped when it first

hits the level p (cf. [LeG8Y)).

For typographical simplicity, call T}, ,, := inf{k > n, X} = p} the time of
the first visit to p after n, and H; := {Tpm < TH_LXTZH:l}, the event that
the [-th excursion is positive and reaches level p.

Lemma 11. Under the law Qhﬂ’f and conditional on the event H;, the pro-
cess (Xptr, 1 <n < Ty, —7) is a 3-Bessel* walk started from 1 and stopped
when it first hits the level p.

Lemma 12. Put I't := {X,44 > 0,Vn > 0} and I'™ := {X,,4, < 0,Vn > 0}.
Then:

Qh+,h’(lﬂ+) —1_ Qh+ h™ Zh+



350 P. Debs

Proof of Lemma [I1. Let G be a functlon from Z" to RT. Then, according
to the definition of the probability Qh " and owing to Doob’s stopping
theorem,

K= Qh+7h7 [G(X‘rl+1u sy X’rl+n) ]ln+‘rl<Tp,.,.L | Hl]

+ -
o Qh oh [G(Xﬂ-‘rla cee ’XTH-n) ]lTl+n<Tp,7'l<TZ+I;XTL+1:1:|
Q"M (M)
+
- E[G(Xﬂ-‘rla e aXTl-‘rn) II~7’l-‘rn<Tp TL<TH’17X7'L+1 1M]-;+1h ]
- ht h— :
[]]'HLMTZ+1 ]

Replacing Mfl 1h by the constant @(l) and using the Markov property, one
gets

= E[G(Xn+17 s 7X‘rz+n) ]anrnng,Tl<r,+1,XTl+1:1]
P(H:)
B Ei[G(Xo,..., Xn-1) 1n—1<Tp<To]
Py (Tp < Tp)
:El[G(XOwHaanl)]lnflng | Tp <T0]. O

Remark 4. By letting p — oo, one deduces therefrom that, conditional on
{9 =711, X741 =1}, (Xp4g,n > 1) is a 3-Bessel* walk under Qhrn

Proof of Lemma[I2 As g is Qh+’h7—a.s. finite and as X,, # 0 for n > g, one
has
Q" (It) = lim Q"M (X, > 0). (10)

n—oo

Now,
Q"M (X, > 0) = E[lx, oM "] = B[l x,-00(L,) + X, h* (L,)).
Since 1x, 500 (Ly) < O(Ly) < 1, the dominated convergence theorem gives

E[lx, -00(L,)] == 0.

We already know that M R0 ig a martingale. Consequently,

E[Mh+’0] h+ o Z W (k
wherefrom
1 L, 1 %)
E[Xh*(La)] = §E[Z } S35 > ht
k=1 k=1
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By dominated convergence again,

lim E[X;h*(L Z ht(k
and so, according to (), Q" " (I't) = L 52, ht (k). ]

For F : Z™ — RT,

E?[F(Xg41,. ., Xgin) Ix, 1] = Y B [F(Xgq1. .. Xgrn) Lgor, x, 01 =1]

>1
ht ho
= ZEQ [F(Xg41, - Xgtn) | 9=71, Xr 51 =1] Q" " (9=7,, X541 =1)
>1
=E1[F(Xo0,---, Xn1) | To = ZQ" Mg =1, Xpp1 = 1)
>1

=By [F(X0,..-, Xn_1) | To = o0] Q"7 ().

This shows half of point 2.b.ii. The other half, when X,1; = —1, is easily
obtained using the symmetry of the walk.

To end of the proof of Theorem [2, we shall show that, conditional on
{Ls =1} and under the law Qhﬂhi the process (X,, u < g) is a standard
random walk stopped at its [-th passage at 0.

Let I be a function from Z" to R* and [ an element of N*. From the
definition of Qhﬂhi and the optional stopping theorem,

EC[F(X1,..., Xn) Lncr<oolr, —co]
QM (Los = 1)
EC[F(X1,...,Xn) Lncr<oo] = EC[F(X1,..., Xn) Lncrcr,, <o)

QMM (Lo = 1)
E[F(X1,...,Xn) Lner My | = EC[F(X1,...,Xn) Lner My, |
QMM (Lo = 1)

E[F(X1,...,Xn) Lncr] (O —1) —O(1))

B Lt () +h (1)) =E[F(X1,..., X)) Tner]. O

E?[F(X1,..., Xp) lner, | Lo = 1] =

5 Penalisation by the Length of the Excursions
5.1 Notation

Forn > 0, call g,, (respectively d,,) the last zero before n (respectively after n):

gn :=sup{k <n, X =0}
dy, = inf {k > n, X} =0}
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Thus d,, — g, is the duration of the excursion that straddles n. Put

Xy = sup{dk — gk, dr <n},
so X, is the longest excursion before g, ; remark that

Y =24, (11)
Define (4,,, n > 0), the “age process”, by
Ap=n—gp,

and call A, =0 (A,, n > 0) the filtration generated by A. Set

A} = sup Ay, (12)

k<n

and observe that
A, = -1V (n—gn),
wherefrom

A =8, —1. (13)

In the sequel, v; := ZZ:O 1{x,=0} is the number of passage times at 0 up to
time n, 7 = inf {n > 0, X,, = 0} is the first return time to 0 and a function
is defined by

E[| X, | 7> z] =: 0(x).

5.2 Proof of Theorem
1) We start with point 1 of Theorem [8l To show formula (), we need:

Proposition 3.

P(Z <) ~ (%)ée(;p).

k—o0
To establish this Proposition, we will use the following lemma:
Lemma 13. For every f : Z — RT, every n > 0 and every k > 0,
E[f(Xn) | An = k] = E[f(Xg) [ 7> k]
and a Tauberian Theorem:

Theorem 4 (Cf. [Fel71] p. 447). Given g, > 0, suppose that the series

S(s) = Z qns"
n=0

converges for 0 < s < 1. If 0 < p < oo and if the sequence {q,} is monotone,
then the two relations:
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and
nP~1C

05 T(p)
where 0 < C' < 0o, are equivalent.

Proof of Lemmal[13. By the Markov property,

E[f(Xn) | An = k] = E[f(X5) [n = gn = K]
=E[f(Xy) | Xnk =0,Xpp+1 #0,.... Xpn #0| =E[f(Xy) [T > k]. O

Proof of Proposition[3 Let dg be a geometric r.v. with parameter 3, where
0 < 8 < 1, and such that dg is independent of the walk X. Then

P (X5, < @) ZIP og=k) P Z BF AP (D) < ).
k

=1 k=1
Now, from () and (I3),

P(Xs, <x)= IP(Z'gJB <z)= ]P(AZJB <z)=P(T2 > gs,)
IP(5B dra) =1-P(ds > dra) = 1 — B[(1 - §)*#]
~EB[(1- ﬁ) - B)T°°9Tf‘]

~B[(1- 0 Bx,, [(1-5)"]

0
(14)

—

Definition 2. A stopping time T is said to be X-standard if T is a.s. finite
and if the stopped process (Xnar,n = 0) is uniformly integrable.

According to [ALR04], if T' is X-standard and if T is independent of X7, then
Yo € R E [ch(a)_T] = E[exp(aXr)] - (15)
Recall that Argch(a) =1In (a + va? —1). When cha = (1 - 8)7 1,

a—ArgCh( _ﬁ> :ln(liﬂﬂ/(l—lﬂ)? —1) =1n(1+1— Viﬂﬁ_m)

According to [ALR04], Ty, and T satisfy these properties, hence

e 0o =k 1 7] - (LZZE)

-p

Xpa
E[1-8"]=E <—1+ 1v2ﬁﬂ—ﬁ2>
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So, owing to the independence of Tgf et X7a and the above formulae,

7|XT;"
P (5, <2)=1-E|[1-9"|E (H— W)

12 ) 1eyzi |l
1-p 1-38

1+ Qﬁ—52 XT£4
1-8

k

B -

1
2

E

For all k € N,

1+ /26— 32

- ~+1+k\/2_,

B—0

and consequently P (25[3 < x) B:0+ E HXT;‘ |] V20.

Thus we have obtained

S U-AP (S <a) ~ )2 (1=B)E[[Xral].

k=1 g0t VP

In order to apply Theorem M, put o = 1 — 3. This gives

> & V2
a"P (XL <x) ~
; ( F )a—>1_ \/1—Ol

E |:|XTIA I] )

and now Theorem @ with p = % and C' = 2E [|XT;1 H gives

1. 2\?
P(Sp <a) ~. F(%)k% o= <%) E [|X7al] -

By Lemma [I3]

E [|XT;;|] = IE[|XT£4| | Apa = z] =E[|X,| | >z =60(z).
It is now possible to finalise the proof of point 1.a. Let Tp be the hitting time
of 0 by the walk (X,,1%)k>0, and £’ be the maximal length of the excursions

of the walk (X, .7 Jx>o0-

E (14, 5,<c] = E[LA, 5, <z 1006, >pn)

+E []lAn,zn<z,Tooen<(p—n)A(m—An),z’p,nfTooen <|=(1)+(2)
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Call P the measure associated to the walk (Xntk)k>0, Xy, and A, being fixed.

Then
2\
ILA'ruxngw (_> IXn|1
p

Ty being fixed.

(1) =1 {ﬂAn,EngwﬂsX” (TO >p—n>] ~ E
—00

p

Call also I’ the measure associated to the walk (X, 7 ),

Forp>n+z, (p—n)Ax— A, =x— A,; consequently

2 ~ E []1/1 s<ean<aPx, (To <z — A,)P! ( ! - < 33)}
p—oo ny=nxXbHaAn X n p—n—Ty
. 9\ 2
~ B, 5,<on,<Px, (To <z — Ay) <—> 0(x)| .
p—00 ™

One derives therefrom

E[la, 15, 5,) (Xnl | 5 5
lim ——2—=r=% — [ |1 Py (To<z—A)1a corls <ul.
pgrolo Els, > An 0(z) TEx (T ). s

Remark 5. These notations P et Tp, or similar ones, will frequently occur in the
sequel. We have not been completely rigorous when defining them; a rigorous
definition is possible as follows: P %, (To <z — A,) stands for f(X,,z — A,)
where f(y,z) = P, (T < 2).

We shall now see that (M, n > 0) is indeed a martingale. The parity of
n + 1 comes into play, so we shall consider two cases.

Suppose first that n+1 is odd. In that case, X, 11 = X, and A,, 11 = A, +1.
Recall that © — |z| is harmonic except at 0 for the symmetric random walk.
Hence, on the event {X,, # 0}, the only relevant term is

Cov1:=1qa,, <a5 <2 Px,yy (To <2 — Apya),

and on X,, = 0, it sufices to verify that, when conditioned by F,,, this quantity
equals (1 — %) Is, <a-
By the Markov property, if X,, # 0,

Elx,20Cnt1|Fn] = E[lx, 20(1x, ,,=x,+1 + 1x, =X, -1)Cnt1]Fn]
1 . . _ .
= ]anyéO,anm,Angz—lé[IPX,L+1(TO <z—A,—-1)+Px, 1(Th <z—A,—1)]

= lx, 20,5, <e.4,<a-1Px, (To <z — Ap)
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And, as Tx, 20 4,=2Px, (To <z — A,) =0, one has
E[]an;éO Cn+1|-7:n] = ﬂXT,,;éO Cn

It remains to show that

1
Elx,=0Cnt1Fn] = 1x,=0,5, < <1 - 5) : (16)

This will use the classical result ([Fel50] pp. 73-77)

1
P(X:>0,...,X0,-1>0,Xo, =2r) = 3 (P2n—1,2r—1 — P2n—1,2r41) - (17)

ntr

LC,7 .
271
Using formula (7)) with « = 2n, one can write

where p,, , =

P(r>2)0(z)=P((r>2)E[|X,| |7T>2]=FE [|X$|]l{7>$}}
= [XIE]I{T>9L’,XI>O}] - E [X$]1{T>I,XZ<O}:| =2E [Xz]l{'r>a:,XI>O}]

x

=2 Y kP(Xy=k7>az)=4> (P(Xy, =2(,7>2n)

k>0,k even >0
n 1 2n—2 n
=2 L(pan-1.20-1 — Pan—1.2041) = <§) doe(cptt—copty).
>0 >0
Now, S5, £ (Cortrt — o)) = S0, Caty = 227=2: 50 we obtain
O(z)P (r>z)=1. (18)

On the other hand,

1
Ellx,=0Ch+1|Fn] = 11Xn=0,2n<x§ (P, (To<z—-1)+P_, (Tp <z —1))
=1x,=05,<P(T<2)=1x,—0,5,<c (1 =P(r >2)); (19)

hence, considering ([[§)) and ([3), formula (I6) is established.

We now consider the case that n + 1 is even. In that case, {4, <z} =
{4, <z —1}. Indeed, A,, = n—g, is odd and z is even by hypothesm so the
event {4, =z} is null. Moreover, if | X,,| > 3, on a X,,;1 = X,.

Last, if | X,,| = 1, there are two cases. Either X,, .1 # 0 and one always has
Ynt1 = 2n, or X;,11 = 0 and we must see that in that case

{Zvpi<a}={X, <z,n+1l—-g, <z} ={¥, <z, A, <z—1}.

So, one is always on the event {X,, < z, A, <z — 1}, and the same argument
as when n + 1 was odd and X, ;é 0 shows that, conditional on F,,, M,
is equal to M,,. This shows that M is a martingale; positivity is immediate.
The proof that M is not uniformly integrable is postponed until later in this
section.
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2) We now start studying the process X under Q*. We shall first show

z _ P(r>x)
that, for all y <z, Q% (Yoo > y) =1 EemE

Put T, := inf {n > 0, X, > y}. Clearly, X7» = 0 and hence

@ (5% > 1) = Q" (T <p) = B[Lpe, My

|Xr=| .
=FE ILTngp W +PXTyE (TO < x —ATyz‘) IlATyz‘giE ILETngw
€T

Letting p go to infinity, we obtain that Q* (Yo >y) = ]P(ZTyz < z). For
y <, {ET;‘ < :c} is a full event; so
{Zrs <a}={Zpa <zjn{Toobps +y <z} ={Toobpa +y <z}
By the Markov property and Lemma [I3]
Q" (Toe > ) = BB |Lnan,yeo | Arp || = B [P, (To <2 —y)]
E [If’ (Tg > — y) ]lT>y]
P(r > vy)

E []ngoey>:zfy,T>y] 1 _ ]P(T > $)
IP(T>y) P(r>y)

On the other hand, for all n > 0, one has Q" (X, < z) = 1. According to the
definition of the probability @7,

:E[If’xy (Togx—y>|7>y}:1—

=1—-

z , )
< = .
Q" (En s )= lm =5 =1

3) We shall now describe several properties of g and (An, n > 0) under Q”.

a) We first show that g is Q*-a.s. finite; this implies that A, = oo Q*-a.s.

Lemma 14. For alln >0 and k >

. 1y
P(Azn = 2k) = P(Asni1 = 2k +1) = Ch Ok (5) -

Proof. According to [Fel50] p. 79, “Arcsin law for last visit”,

n— 1\~
(g2, = 2k) = an_kgk Cgk(é) :
Therefore
- N
P(Azn = 2K) = P(2n — g2 = 2K) = P(g20 = 20— 2k) = (3,755, Ch (5)

and as Ag,4+1 = Ag, + 1, the proof is over. O
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The next lemma is instrumental in the sequel.

Lemma 15. For each p > 0,

Qx(9>P|fp)=]13Xp(%<$—Ap)ﬁ~
P
Proof. Recall that Ty, := inf {n > p, X,, = 0} is the first zero after p, and
remark that X7, = X, V{A, + 7 00,}. Recall also that under Q*, the event
{X, <z} is almost sure. So, for every A, € F,,,
Q" ({Ap} N {g > p}) =Q" ({Ap} N {TO,p < OO})
= ]E[]]'ApMTU,p] = E[]lAp]lzTomgz] = E[]IAP,ZpézIPXp [7: <z — APH

Px [f <z — A . Px [Ff<z—A)
=E|1 - M,| =E? |1 - =
Ap Mp p Ap Mp )
and consequently one has
L 1
Q% (g>p|Fp) =Px,(F<w—4Ap) 7 O
P

We now suppose that p = 2] where [ > 0; when p = 2]+ 1 the computation
is similar, we won’t give it (see Lemma [[4]). According to Lemma [I5]

Q(g>p) = E [EQI Lg>p | -7:17]] = EY [E)XP (T<z—A4) L}

M,
Ing
- E[fPXP (F<z—4,)] = ZE[PX;)(% <o —Ap)La, -]
k=0

Ing
= ZE[PXP(% <z-— Ap) ’ A, = Qk] ]P(Ap = 2k)

k=0

Ing
= ZE[]PX%(% <z —2k) | T > 2k] P(A, = 2k)

k=0

INE
G B[Py, (F <z — 2k) Lo -
=X S 3A) P(4, = 2k)

k=0

Ing

- P(r > z)

- - =2k

];) [ P(r > 2]@)] (4p )
) INg o=k ok (1)1(1 ~ P(r>az) )

21-2k “2k\ 5 Pir>2k))
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This gives the law of g under Q*. Then, for p > 2, Q*(g > p) < E[l4, < z].
Now, A, tends to infinity PP-a.s.; consequently,

Q"(9 = 00) = lim Q° (9>p) < Jim. P(A, <z)=0,

and g is Q"-a.s. finite.

Remark 6. It is now easy to see that M is not uniformly integrable. Indeed,
as ¢ is finite, so is also L, and the argument given earlier for M¥ and S
immediately adapts to M and L.

b) To establish 2.d.i et 2.d.ii., we shall need:
Lemma 16. For all y < x, one has
E[Mr] = 1

Proof of Lemma [I0. Recall that the event {ET;x < J:} has probability 1. By
formula ([I8) and the proof of point 2.a,

Xra - -
E[MT;*] :E[% +IPXT§4 (T Sﬁﬂ—y)]
_0(y) N - _P(r>ux) P(r > x)
B R AR t yr Rl Tern Y

Let F be a positive functional and G : R — RT. Recall that after [ALR04],
XTA and .ATA are independent under P. On the other hand, as MTA is a
function of XTA one has

E? [F(A,, n < T;‘)G(XTA)] = E[F (4, n <T;') G(Xpa) M
E[F(4n, n < T}')| E[G (X7, )MTA] (20)

RS
\_/
~l;‘
>

So, taking G = 1 and using Lemma [IG one has
B9 [F (4, n < T3] = BIF(An, n < TJ)].

which shows that (A,, n < T;‘) has the same law under P and @Q*. Using
again formula (20), one obtains

BV [F(An, n < T7Y) G(Xpp)] = BY [F(An, n < TH]E [G(Xrp)];

this shows that (A,, n < T;‘) and X7 are independent under Q*.
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¢) The rest of the proof of point 2 is quite easy, taking into account what has
already been done:

Consequently, the law of XT; under Q7 satisfies
||
(z)

(The quantity P(X, =k | 7 > y) is explicitly given in [Fel50] p. 77).
We now compute Q% (g > T;‘):

Qw(XT;;:k):{e + Py (Ty xfy)}IP(Xy:k|T>y).

Q%(¢9>T,) =E? [E? [Lysps | Fral] =E [ yMTA

P (1> )

=E[Px,(F<z—y)] =E[Px, 7 <z—y)|7>y] =1- 5=

Last, we now show that (A,, n < T;') and {g > T;'} are independent under
Q"; we use again the independence of XTyA and ATyA under IP.

E? [F(An, n < T

=E¥ [F(A,, n < THE?[1 - | Aral]

F(An, n < TPy, (F <o —y)
Mra

)] EPx,, (F <z —y)]

T
=E¢ [F(Am n < TH)] Qx(g > T"‘)

— RQ°

=E[F (A,

4) To study the process (X,, n > 0) under Q*, we start with the law of
the process (X,,, n > g). Recall that I'" = {X,, > 0, n > g} and '~ =
{X, <0, n> g}; these events 't and '~ are symmetric under Q?:

Lemma 17.

Q@ () =Q (1) =5



Penalisation of the Random Walk on Z 361

Proof. First remark that

QY (I'*) = lim Q°(X, >0), Q%(I'")= lim Q°(X, <0).

By definition of Q%
T _ |XTL| D 2 o
Q" (X, >0)=E|lx, >0 _9(56‘) +IPX7L(T0<3;‘ An)]lAngz Is, <z
Owing to the symmetry of the walk under P, one has

Q% (X, > 0) = ]E[ILX”<O{% + Py, (Th < —Ay) ]1,4,"@}]12"@}
=Q"(X, <0).
One also has lim,,_,, Q% (X,, = 0) = 0 because g is Q%-a.s. finite; and as
Q" (X > 0)+ Q% (X, < 0)+ Q" (X, =0) = 2Q°(X,, > 0)+ Q% (X, =0) =1,
taking limits when n tends to infinity, on obtains
Q*(I') + Q*(I') = 2Q°(I") = 1. 0

We now describe the behavior of (X,,4+4, n > 0) under Q* on I'" (the
other case is completely similar). Take a € N* and p > z, and set ¢q,q+1 =
QXpi1=a+1|X, =a,n>g).

Qa,a+1 = Q(Xn+1 =a+ 1|Xn =a, Vi<p Xn+i > O)
o Q(XnJrl =a+1, Xn = a, Vi ngnJrz > 0)
B Q(Xn =a, Vi < p Xn+i > O)

E l:]an+1:a+1g Xn=a,Vi<p X, 4+i>0 Mern}

E [1x,=a,vi<p Xo1:>0 Mpin)

X ..
Here My, = @‘a; 1s, <»; hence we can condition the numerator (resp. the

denominator) by F,41 (resp. Fy,). The Markov property gives

E [1x,,1=a+1, Xp=a, Zn>aBat1 [Xplx,>0vi<p-1]]

et = ELx,-a, 552 Ba Xplx,>0vi<]]

Clearly, (X,1x,>0,vi<p)p>0 is a martingale, wherefrom

(a+1E [1x, ,=a+1, X,=a, 5, >]
a'IE []IXn=aa En>x] .

da,a+1 =

Last, conditioning the numerator by F,, one gets

_a+1
Qa,aJrl - 2& )

the transition probability of a 3-Bessel* walk.
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Recall the following notation:

Tn = |{k<n>Xk:0}| y Yoo 1= lim Tn
=Ty, Vn>2, 7, :=inf{k>7,_1, Xy =0}
It remains to show that, conditional on {vy,, =1}, (X, u < g) is a standard
random walk stopped at 7; and conditioned by X, < x.
Let F be a functional on Z".
EQ [F(X1,..., Xn) Lngr Ly =]
EQ [0 =]
B F(Xy, ., X)) Dpcricos] — B [F(X0, .0 X))l cnyy <oo)
EQ” (17, coolry, —o0]
B F(Xy, ., Xn) Dngricos) — B [F(X0, 0 X)) g cnyy <oo)
EQ [1coo] — B9 [11,,, <o)
]E[F(Xla s 7Xn) ﬂn<n<oo Mn] - IE[F(Xh cee 7Xn)]1n<n+1<oo MT[+1:|
E[]l7'1<00 MTJ - E[171+1<OO MTZ+1]

E? [F(X1,.... X0) Ingn | 100 = 1] =

Under P, {7, < oo} has probability 1, and so
M, — M7'1+1 = 1Erl<$(1 - ]1T1+1—7'L<$) = ]]‘Z‘rl ST, T41—TI>T
As 1541 — 7 is independent of F,, one gets

E [F(Xla e 7Xn) ]]'ngﬂ (M'rl - MTZ+1)}
E [Mr, — My, ]

EQT [F(XlayX’n) ]lng‘rl |FYOO :l} =

E[F(XL cee 7Xn) Il{né‘rl,zrl gx,rl+1—7l>z}]

B []1{27'[ <9€7ﬂ+1—7'l>90}]
E[F(X1,...,Xn) Lngn, 5, <o) B[ {n,, —n>a]
E [1271 éw] E[ﬂ7l+l_"'l>1}

E[F(X1, .., Xn) Lingr, 5, <a})

= E[]IE <I] = E[F(le..an) ]lng.,_l ‘Eﬂ < m]

T
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