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Summary. Call (Ω,F∞,P, X,F) the canonical space for the standard random walk
on Z. Thus, Ω denotes the set of paths φ : N → Z such that |φ(n + 1) − φ(n)| = 1,
X = (Xn, n � 0) is the canonical coordinate process on Ω; F = (Fn, n � 0) is
the natural filtration of X, F∞ the σ-field

∨
n�0 Fn, and P0 the probabilitiy on

(Ω,F∞) such that under P0, X is the standard random walk started form 0, i.e.,
P0 (Xn+1 = j |Xn = i) = 1

2
when |j − i| = 1.

Let G : N × Ω → R
+ be a positive, adapted functional. For several types of

functionals G, we show the existence of a positive F-martingale (Mn, n � 0) such
that, for all n and all Λn ∈ Fn,

E0[1ΛnGp]

E0[Gp]
−→ E0[1ΛnMn] when p → ∞.

Thus, there exists a probability Q on (Ω,F∞) such that Q(Λn) = E0[1ΛnMn] for
all Λn ∈ Fn. We describe the behavior of the process (Ω, X,F) under Q.

The three sections of the article deal respectively with the three situations when
G is a function:

• of the one-sided maximum;
• of the sign of X and of the time spent at zero;
• of the length of the excursions of X.

1 Introduction

Let
{
Ω, (Xt,Ft)t�0,F∞,Px

}
be the canonical one-dimensional Brownian mo-

tion. For several types of positive functionals Γ : R
+ ×Ω → R

+, B. Roynette,
P. Vallois and M. Yor show in [RVY06] that, for fixed s and for all Λs ∈ Fs,

lim
t→∞

Ex[1Λs
Γt]

Ex[Γt]
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exists and has the form Ex[1Λs
Mx

s ], where (Mx
s , s � 0) is a positive martin-

gale. This enables them to define a probability Qx on (Ω,F∞) by:

∀Λs ∈ Fs Qx(Λs) = Ex[1Λs
Mx

s ];

moreover, they precisely describe the behavior of the canonical process X
under Qx. This they do for numerous functionals Γ , for instance a function
of the one-sided maximum, or of the local time, or of the age of the current
excursion (cf. [RVY06], [RVY]).

Our purpose is to study a discrete analogue of their results. More pre-
cisely, let Ω denote the set of all functions φ from N to Z such that
|φ(n + 1) − φ(n)| = 1, let X = (Xn, n � 0) be the process of coordinates on
that space, F = (Fn, n � 0) the canonical filtration, F∞ the σ-field

∨
n�0 Fn,

and Px (x ∈ N) the family of probabilities on (Ω,F∞) such that under Px

X is the standard random walk started at x. For notational simplicity, we
often write P for P0. Our aim is to establish that for several types of positive,
adapted functionals G : N × Ω → N,
i) for each n � 0 and each Λn ∈ Fn,

E0[1Λn
Gp]

E0[Gp]
,

tends to a limit when p tends to infinity;
ii) this limit is equal to E0[1Λn

Mn], for some F-martingale M such that
M0 = 1.

Call Q(Λn) this limit. Assuming i) and ii), Q is a probability on each σ-field
Fn; it extends in a unique way to a probability (still called Q) on the σ-field
F∞. This can be seen either by applying Kolmogorov’s theorem on projective
limits (knowing Q on the Fn amounts to knowing the finite marginal laws
of the process X), or directly, since every finitely additive probability on the
Boolean algebra A =

⋃
n Fn extends to a σ-additive probability on F∞ (a

Cantorian diagonal argument shows that every decreasing sequence (Ak) in A
with limit

⋂
k Ak = ∅ is stationary; hence every finitely additive probability

on A is σ-additive on A). In short, Q is the unique probability on (Ω,F∞)
such that

∀n ∈ N ∀Λn ∈ Fn Q(Λn) = E0 [1Λn
Mn] .

We will also study the process X under Q.
1) In the first section, G is a function of the one-sided maximum, i.e.,

Gp = ϕ (Sp)

where Sp = sup {Xk, k � p} and where ϕ is a function from N to R
+ satisfying

∞∑

k=0

ϕ(k) = 1
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We will also need the function Φ : N −→ R
+ given by

Φ(k) :=
∞∑

j=k

ϕ(j).

The results of Section 1 are summarized in the following statement:

Theorem 1. 1. a) For each n � 0 and each Λn ∈ Fn, one has

lim
p→∞

E[1Λn
ϕ(Sp)]

E[ϕ(Sp)]
= E[1Λn

Mϕ
n ],

where Mϕ
n := ϕ(Sn)(Sn − Xn) + Φ(Sn).

b) (Mϕ
n , n � 0) is a positive martingale, with Mϕ

0 = 1, non uniformly
integrable; in fact, Mϕ

n tends a.s. to 0 when n → ∞.

2. Call Qϕ the probability on (Ω,F∞) characterized by

∀n ∈ N, Λn ∈ Fn, Qϕ(Λn) = E[1Λn
Mϕ

n ].

Then

a) S∞ is finite Qϕ-a.s. and satisfies for every k ∈ N:

Qϕ(S∞ = k) = ϕ(k). (1)

b) Under Qϕ, the r.v. T∞ := inf {n � 0, Xn = S∞} (which is not a
stopping time in general) is a.s. finite and

i. (Xn∧T∞ , n � 0) and (S∞ − XT∞+n, n � 0) are two independent
processes;

ii. conditional on the r.v. S∞, the process (Xn∧T∞ , n � 0) is a stan-
dard random walk stopped when it first hits the level S∞;

iii. (S∞ − XT∞+n, n � 0) is a 3-Bessel walk started from 0.

3. Put Rn = 2Sn−Xn. Under Qϕ, (Rn, n � 0) is a 3-Bessel walk independent
of S∞.

The proofs of the second and third parts of this theorem rest largely
upon a theorem due to Pitman (cf. [Pit75]) and on the study of the large p
asymptotics of P (Λn|Sp = k) for Λn ∈ Fn.
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We must now explain the precise meaning of the ‘3-Bessel walk’ mentioned
in the theorem and further in this article. In fact, two processes, which we call
the 3-Bessel walk and the 3-Bessel* walk, will play a role in this work; they
are identical up to a one-step space shift.

The 3-Bessel walk is the Markov chain (Rn, n � 0), with values in N =
{0, 1, 2, . . .}, whose transition probabilities from x � 0 are given by

π(x, x + 1) =
x + 2
2x + 2

; π(x, x − 1) =
x

2x + 2
. (2)

The 3-Bessel* walk is the Markov chain (R∗
n, n � 0), valued in N

∗ =
{1, 2, . . .}, such that R∗ − 1 is a 3-Bessel walk. So its transition probabilities
from x � 1 are

π∗(x, x + 1) =
x + 1
2x

; π∗(x, x − 1) =
x − 1
2x

.

2) In the second section, the functional Gp will be a function of the local
time at 0 of the random walk. The local time is the process (Ln, n � 0) such
that Ln is the number of times that X was null strictly before time n. In other
words,

Ln =
∑

m�0

1m<n1Xm=0.

Observe that Ln is also the sum of the number of up-crossings from 0 to 1
and of the number of down-crossings from 0 to −1, up to time n. Given two
functions h+ and h− from N

∗ to R
+ such that

1
2

∞∑

k=1

(
h+(k) + h−(k)

)
= 1,

we consider the penalisation functional

Gp := h+(Lp)1Xp>0 + h−(Lp)1Xp<0.

Putting

Θ(x) =
1
2

∞∑

k=x+1

(
h+(k) + h−(k)

)
,

we obtain the following penalisation theorem.

Theorem 2. 1. a) For each n � 0 and each Λn ∈ Fn, one has

lim
p→∞

E[1Λn
Gp]

E[Gp]
= E[1Λn

Mh+,h−

n ], (3)

where Mh+,h−

n := X+
n h+(Ln) + X−

n h−(Ln) + Θ(Ln).
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b) Mh+,h−

n is a positive, non uniformly integrable martingale ; indeed, it
tends to 0 when n tends to infinity.

2. Call Qh+,h−
the probability on F∞ whose restriction to Fn is given by

∀Λn ∈ Fn, Qh+,h−
(Λn) = E[1Λn

Mh+,h−

n ].

This Qh+,h−
has the following properties:

a) L∞ is Qh+,h−
-a.s. finite and satisfies

∀k ∈ N
∗, Qh+,h−

(L∞ = k) =
1
2
(
h+(k) + h−(k)

)
.

b) The r.v. g := sup {n � 0,Xn = 0} is Qh+,h−
-a.s. finite and, under

Qh+,h−
,

i. The processes (Xg+u, u � 0) and (Xu∧g, u � 0) are independent.

ii. With probability 1
2

∑∞
k=1 h+(k), the process (Xg+u, u � 1) is a

3-Bessel* walk started from 1.
With probability 1

2

∑∞
k=1 h−(k), the process (−Xg+u, u � 1) is a

3-Bessel* walk started from 1.

iii. Conditional on L∞ = l, the process (Xu∧g, u � 0) is a standard
random walk stopped at its l-th passage at 0.

Our unusual choice for the definition of the local time at 0 will be helpful
when proving the first point. The second part of the proof of this theorem rests
essentially on an article by Le Gall (cf [LeG85]) which enables us to assess,
under specific conditions, that a 3-Bessel* walk for P is is still a 3-Bessel*
walk for Qh+,h−

.
3) In the third part, the penalisation functional Gp will be a function of

the longest excursion completed until time p. Set gn := sup {k � n, Xk = 0},
dn := inf {k � n, Xk = 0}, and Σn := sup {dk − gk, dk � n}; for n � 0,
Σn is the duration of the longest excursion completed until time n.

Fix an even integer x � 0, and consider the penalisation functional

Gp := 1Σp�x.

To study penalisation by this G, we must also introduce An := n− gn, which
is the age of the current excursion, and A∗

n := supk�n Ak, which is the longest
duration of a (complete or incomplete) excursion until n. We also call τ =
inf {n > 0, Xn = 0} the first return time to 0, and we put

θ(x) := E0

[
|Xx|

∣
∣ τ > x

]
.
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Theorem 3. 1. a) For each n � 0 and each Λn ∈ Fn:

lim
p→∞

E0[1Λn
1Σp�x]

P0[Σp � x]
= E0[1Λn

Mn], (4)

where

Mn :=
{ |Xn|

θ(x)
+ P̃Xn

(
T̃0 � x − An

)
1An�x

}
1Σn�x.

(In this expression and in similar ones, the meaning of P̃ and T̃0 is to
be interpreted as follows: P̃Xn

(
T̃0 � x−An

)
stands for f(Xn, x−An),

with f(y, z) = Py(T0 � z).)

b) Moreover, (Mn, n � 0) is a positive martingale, non uniformly inte-
grable; indeed, limn→∞ Mn = 0 P-a.s.

2. Call Qx the probability on F∞ whose restriction to Fn is defined by

∀Λn ∈ Fn, Qx (Λn) = E [1Λn
Mn] .

Under Qx, one has:

a) Σ∞ � x a.s. and satisfies for all y � x:

Qx (Σ∞ > y) = 1 − P (τ > x)
P (τ > y)

.

b) A∗
∞ = ∞ a.s.

c) The r.v. g := sup {n � 0,Xn = 0} is a.s. finite. Moreover, if p = 2l
or 2l + 1 with l � 0,

Qx (g > p) =
(1

2

)l l∧ x
2∑

k=0

Cl−k
2l−2kCk

2k

(
1 − P (τ > x)

P (τ > 2k)

)
.

d) For y such that 0 � y � x,

i.
(
An, n � TA

y

)
has the same law under P and Qx.

ii.
(
An, n � TA

y

)
and XT A

y
are independent under P and under Qx.

iii. Under Qx, the law of XT A
y

is given by

Qx
(
XT A

y
= k

)
=
{ |k|

θ(x)
+ Pk

(
T0 � x − y

)}
P (Xy = k | τ > y) .
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iv.

Qx
(
g > TA

y

)
= 1 − P (τ > x)

P (τ > y)
.

v. Under Qx,
(
An, n � TA

y

)
is independent of

{
g > TA

y

}
.

3. Under Qx,

a) The processes (Xn∧g, n � 0) and (Xg+n, n � 0) are independent.

b) With probability 1
2 , the process (Xg+n, n � 0) is a 3-Bessel* walk and

with probability 1
2 , the process (−Xg+n, n � 0) is a 3-Bessel* walk.

c) Conditional on L∞ = l, the process (Xn∧g, n � 0) is a standard
random walk stopped at its l-th return time to 0 and conditioned by
{Στl

� x}, where τl is the l-th return time to 0.

The proof of the first point of this theorem rests largely on a Tauberian
theorem (cf [Fel50]) which gives the large p asymptotics of P (Σp � x). And
the study of the process X under Qx rests on arguments similar to those used
in the proof of Theorem 2.

2 Principle of Penalisation

Penalisation can intuitively be interpreted as a generalisation of conditioning
by a null event.

Consider the event A∞ := {S∞ � a}, where a ∈ N. By recurrence of
the standard walk, A∞ is a P-null event. One way of conditioning by A∞,
which involves the filtration (Fn), is to consider the sequence of events Ap :=
{Sp � a} and to study the limit

lim
p→∞

E
[
1Λn∩{Sp�a}

]

E
[
1{Sp�a}

] , (5)

for each n ∈ N and each Λn ∈ Fn.
Simple arguments show that the limit in (5) exists and equals

E
[
1{Λn, Sn�a}

a + 1 − Xn

a + 1

]
.

Put Mn := 1{Sn�a}
a+1−Xn

a+1 . The process M is the martingale a+1−X
a+1 stopped

when S first hits a + 1; so it is a positive P0-martingale. Since M0 = 1 and
M∞ = 0 a.s., M is not uniformly integrable. But a probability Q(n) can be
defined on Fn by

dQ(n)

dP|Fn

= Mn;
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moreover, for m < n, Q(m) and Q(n) agree on Fm. By Kolmogorov’s exis-
tence theorem (cf [Bil] pp. 430-435), there exists a probability Q on (Ω, F∞)
whose restriction to each Fn is the corresponding Q(n); in other words, Q is
characterized by

Q (Λn) := E
[
1{Λn, Sn�a}

a + 1 − Xn

a + 1

]

for all n ∈ N and Λn ∈ Fn.
When studying the behavior of (Xn, n � 0) under the new probability Q,

one obtains that S∞ is a.s. finite and uniformly distributed on [0, a]. A more
detailed study shows that:
• (Xn∧T∞ , n � 0) and (S∞−XT∞+n, n � 0) are two independent processes.
• Conditional on {S∞ = k}, (Xn∧T∞ , n � 0) is a standard random walk

stopped when it reaches the value k.
• (S∞ −XT∞+n, n � 0) is a 3-Bessel walk started from 0, independent from

(S∞, T∞).
This raises several natural questions: What happens when 1{Sn�a} is re-

placed with a more complicated function of the supremum? In that case, what
does the limit (5) become? Can one still define a probability Q, and how is
the behavior of (Xn, n � 0) under Q influenced by this modification?

This simple idea of replacing the indicator by a more complex function is
the essence of penalisation. All this is evidently not limited to the case of the
one-sided maximum, but extends to many other increasing, adapted function-
als tending P-a.s. to +∞. There exist various examples of penalisation, and
also a general principle (cf [Deb07]) but this article is only devoted to three
examples of penalisation functionals: the one-sided maximum, the local time
at 0 and the maximal duration of the completed excursions.

3 Penalisation by a Function of the One-sided Maximum:
Proof of Theorem 1

1) We start by recalling a few facts.
The next result is classical (cf. [Fel50] p. 75):

Lemma 1. For k ∈ Z and n ∈ N,

P0(Xn = k) =
(1

2

)n

C
n+k

2
n .

Remark 1. In the sequel, we put

pn,k := P0(Xn = k);

observe that pn,k �= 0 if and only if n and k have the same parity and |k| � n.
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Lemma 2. For k in Z and n and r in N, one has

P0(Xn = k, Sn � r) =

{
P(Xn = k) if k > r;

P(Xn = 2r − k) if k � r.
(6)

Proof. This formula is trivial when k > r; when k � r, it is Désiré André’s
well-known reflection principle (see for instance [Fel50] p. 72 and pp. 88-89). ��

From Lemma 2 and Remark 1, one easily derives the law of S:

Lemma 3. For n and r in N, one has

P0(Sn = r) = pn,r + pn,r+1 = pn,r ∨ pn,r+1. (7)

Proof. Summing (6) over all k ∈ Z gives

P(Sn � r) =
∑

k>r

P(Xn = k)+
∑

k�r

P(Xn = 2r−k) = P(Xn > r)+P(Xn � r).

Consequently,

P(Sn = r) = P(Sn � r) − P(Sn � r+1) = P(Xn = r + 1) + P(Xn = r),

and (7) follows by definition of pn,k and by Remark 1. ��

2) We start showing point 1 of Theorem 1.

Lemma 4. For each k � 0, the ratio

P(Sn = k)
P(Sn = 0)

is majorized by 1 for all n � 0 and tends to 1 when n → +∞.

Proof. The denominator is minorated by P(X1 = . . . = Xn = −1) = 2−n;
so it does not vanish. Observe that, for even n and even k � 2,

P(Sn = k−1)
P(Sn = 0)

=
P(Sn = k)
P(Sn = 0)

=
pn,k

pn,0
=
(n−k+2

n+2

) (n−k+4
n+4

)
· · ·

( n

n+k

)
;

and for odd n and odd k � 1,

P(Sn = k−1)
P(Sn = 0)

=
P(Sn = k)
P(Sn = 0)

=
pn,k

pn,1
=
(n−k+2

n+1

) (n−k+4
n+3

)
· · ·

(n+1
n+k

)
.

Clearly, these products are smaller than 1 and tend to 1 when n goes to infinity.
��
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Lemma 5. For all x ∈ N and y ∈ Z such that y � x, the ratio

E
[
ϕ
(
x ∨ (y+Sn)

)]

P(Sn = 0)

is majorized for all n ∈ N by (x−y)ϕ(x)+Φ(x) and tends to (x−y)ϕ(x)+Φ(x)
when n tends to infinity.

Proof. Write

E
[
ϕ
(
x ∨ (y+Sn)

)]

P(Sn = 0)
= ϕ(x)

P(y + Sn < x)
P(Sn = 0)

+
∑

k�x

ϕ(k)
P(y + Sn = k)
P(Sn = 0)

= ϕ(x)
∑

k<x−y

P(Sn = k)
P(Sn = 0)

+
∑

k�x

ϕ(k)
P(Sn = k − y)
P(Sn = 0)

.

By Lemma 4, this sum is majorized by (x − y)ϕ(x) +
∑

k�x ϕ(k) and tends
to this value by dominated convergence. ��

To establish point 1 of Theorem 1, observe first that

Mϕ
n = ϕ(Sn)(Sn − Xn) + Φ(Sn)

is a positive martingale. Positivity is obvious: ϕ, Φ, and S − X are positive.
To see that Mϕ is a martingale, consider Mϕ

n+1 − Mϕ
n .

If Sn+1 = Sn, the only thing that varies in the expression of Mϕ when n
is changed to n + 1 is X; so, in that case,

Mϕ
n+1 − Mϕ

n = −ϕ(Sn)(Xn+1 − Xn).

On the other hand, if Sn+1 �= Sn, one has Sn+1 = Sn +1 because each step
of S is 0 or 1; one also has Xn+1 = Sn+1 because S can increase only when
pushed up by X, and Xn = Sn because Xn must simultaneously be � Sn and
at distance 1 from Xn+1. So Sn+1 − Xn+1 = Sn − Xn = 0, giving

Mϕ
n+1 − Mϕ

n = Φ(Sn+1) − Φ(Sn) = Φ(Sn + 1) − Φ(Sn)
= −ϕ(Sn) = −ϕ(Sn)(Xn+1 − Xn).

All in all, the equality Mϕ
n+1 − Mϕ

n = −ϕ(Sn)(Xn+1 − Xn) holds every-
where; this entails that Mϕ is a martingale, verifying

|Mϕ
n − Mϕ

0 | � n; (8)

and since Mϕ
0 = Φ(0) = 1, one has E[Mϕ

n ] = 1.
We now proceed to prove 1.a of Theorem 1. For 0 � n � p, one can write

Sp = Sn ∨ (Xn + S̃p−n), where S̃ is the maximal process of the standard
random walk (Xn+k − Xn)k�0, which is independent from Fn. Hence
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E[ϕ(Sp) | Fn ] = Ẽ
[
ϕ
(
Sn ∨ (Xn + S̃p−n)

)]
,

where Ẽ integrates over S̃p−n only, Sn and Xn being kept fixed. So, for
Λn ∈ Fn,

E[1Λn
ϕ(Sp)]

P(Sp−n = 0)
= E

[
1Λn

Ẽ
[
ϕ
(
Sn ∨ (Xn + S̃p−n)

)]

P̃(S̃p−n = 0)

]
.

When p tends to infinity, Lemma 5 says that the ratio in the right-hand
side tends to Mϕ

n and is dominated by Mϕ
n , which is integrable by (8).

Consequently,

E[1Λn
ϕ(Sp)]

P(Sp−n = 0)

{
is majorated by E[1Λn

Mϕ
n ] for all p � n

and tends to E[1Λn
Mϕ

n ] when p → ∞.
(9)

Taking in particular Λn = Ω, one also has

E[ϕ(Sp)]
P(Sp−n = 0)

→ E[Mϕ
n ] = 1 when p → ∞,

and to establish 1.a of Theorem 1, it suffices to take the ratio of these two
limits.

Half of 1.b is already proven: we have seen above that Mϕ is a positive
martingale, with Mϕ

0 = 1. The proof that Mϕ
n → 0 a.s. is postponed; we first

establish 2.a.
The set-function Qϕ defined on the Boolean algebra

⋃
n Fn by Qϕ(Λn) =

E[1Λn
Mϕ

n ] if Λn ∈ Fn, is a probability on each σ-field Fn. As recalled in the
introduction, Qϕ automatically extends to a probability (still called Qϕ) on
the σ-field F∞.

For k and n in N, the event {Sn � k} is equal to {Tk � n}, where
Tk = inf{m : Xm � k} = inf{m : Sm � k}. Now, by Doob’s stopping
theorem,

Qϕ(Sn � k) = Qϕ(Tk � n) = E[1Tk�n Mϕ
n ]

= E[1Tk�n Mϕ
n∧Tk

] = E[1Tk�n Mϕ
Tk

].

But P0-a.s., XTk
= STk

= k and Mϕ
Tk

= Φ(k); wherefrom

Qϕ(Sn � k) = Φ(k) P(Sn � k).

Fixing k, let now n tend to infinity. The events {Sn � k} form an increasing
sequence, with limit {S∞ � k}; hence

Qϕ(S∞ � k) = Φ(k) P(S∞ � k) = Φ(k).

This implies that S∞ is Qϕ-a.s. finite, with

Qϕ(S∞ = k) = Φ(k) − Φ(k + 1) = ϕ(k);

so 2.a is established.
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This also implies that the P-a.s. limit Mϕ
∞ of Mϕ is null, by the following

argument. Using Fatou’s lemma, one writes

E[1S∞�k Mϕ
∞] = E

[
lim
n

(1Sn�k Mϕ
n )
]

� lim inf
n

E[1Sn�k Mϕ
n ]

= lim inf
n

Qϕ(Sn � k) = Qϕ(S∞ � k) = Φ(k);

then, by dominated convergence, one has

E[1S∞=∞ Mϕ
∞] = E

[
lim

k
(1S∞�k Mϕ

∞)
]

= lim
k

E[1S∞�k Mϕ
∞] � lim

k
Φ(k) = 0,

and P(S∞ = ∞) = 1 now implies E[Mϕ
∞] = 0. Point 1.b is proven.

3) Here are now a few facts on 3-Bessel walks, which will play an important
role in the rest of the proof of Theorem 1.

Proposition 1. Let (Rn, n � 0) be a 3-Bessel walk; put Jn = infm�n Rm.
1. Conditional on FR

n , the law of Jn is uniform on {0, 1, . . . , Rn}.
2. Suppose now R0 = 0 (therefore J0 = 0 too).

a) The process (Zn, n � 0) defined by Zn = 2Jn − Rn is a standard
random walk, and its natural filtration Z is also the natural filtration
of the 2-dimensional process (R, J).

b) If T is a stopping time for Z such that RT = JT , then the process
(RT+n −RT , n � 0) is a 3-Bessel walk started from 0 and independent
of ZT .

Proof. 1. By the Markov property, it suffices to show that if R0 = k, the
r.v. J0 is uniformly distributed on {0, . . . , k}. The function f(x) = 1/(1 + x)
defined for x � 0 is bounded and verifies for x � 1

f(x) = π(x, x − 1) f(x − 1) + π(x, x + 1) f(x + 1),

where π is the transition kernel of the 3-Bessel walk, given by (2). Thus f is
π-harmonic except at x = 0, and f(Rn∧σ0) is a bounded martingale, where
σx denotes the hitting time of x by R. (This result is due to [LeG85] p. 449.)
For 0 � a � k, by stopping, μa

n = f(Rn∧σa
) is also a bounded martingale.

A Borel-Cantelli argument shows that the paths of R are a.s. unbounded;
hence lim infn→∞ f(Rn) = 0 and μa

∞ = f(a)1J0�a. The martingale equality
f(a)P(J0 � a) = E[μa

∞] = E[μa
0 ] = f(k) yields P(J0 � a) = (a + 1)/(k + 1),

so the law of J0 is uniform on {0, . . . , k}.
Part 2 of Proposition 1 depends only on the law of the process R, so

we need not prove it for all 3-Bessel walks started at 0, it suffices to prove
it for some particular 3-Bessel walk started at 0. Given a standard random
walk Z ′ with Z ′

0 = 0 and its past maximum S′
n = supm�n Z ′

m, Pitman’s
theorem [Pit75] says that the process R = 2S′ −Z ′ is a 3-Bessel walk started
from 0, with future minimum Jn = infm�n Rm given by J = S′. We shall
prove 2.a and 2.b for this particular 3-Bessel walk R.
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The process Z = 2J −R is also equal to 2S′ −R = Z ′, so it is a standard
random walk. Both J = S′ and R = 2S′ − Z ′ are adapted to the filtration
of Z; conversely, Z = 2J−R is adapted to the filtration generated by R and J .
This proves 2.a.

To show 2.b, let T be Z-stopping time such that RT = JT . One has

Z ′
T = 2JT − RT = JT = S′

T .

The process Z̃ defined by Z̃n = Z ′
T+n − Z ′

T is a standard random walk inde-
pendent of ZT , started from 0, with past maximum

S̃n = sup
m�n

Z̃m = S′
T+n − Z ′

T = S′
T+n − S′

T .

By Pitman’s theorem, R̃ = 2S̃ − Z̃ is a 3-Bessel walk, and it is independent
of ZT because so is Z̃. Now,

R̃n = 2S̃n − Z̃n = 2(S′
T+n − S′

T ) − (Z ′
T+n − Z ′

T ) = RT+n − RT ;

thus 2.b holds and Proposition 1 is established. ��

4) The next step is the proof of point 3 in Theorem 1. We start with a
small computation:

Lemma 6. Let a r.v. U be uniformly distributed on {0, .., r}. Then

E
[
ϕ(U)(r − U) + Φ(U)

]
= 1

Proof. It suffices to write

(r + 1)E
[
1 − Φ(U)

]
=

r∑

i=0

(
1 − Φ(i)

)
=

r∑

i=0

i−1∑

j=0

ϕ(j) =
r−1∑

j=0

r∑

i=j+1

ϕ(j)

=
r−1∑

j=0

(r − j)ϕ(j) = (r + 1)E
[
(r − U)ϕ(U)

]
. ��

The next proposition proves the first half of point 3 in Theorem 1.

Proposition 2. Under Qϕ, the process (Rn, n � 0) given by Rn = 2Sn − Xn

is a 3-Bessel started from 0.

Proof. According to Pitman’s theorem [Pit75], under the probability P, the
process (Rn, n � 0) is a 3-Bessel walk with future infimum Jn = Sn. Call R
the natural filtration of R. By Proposition 1.1, the conditional law of Sn given
Rn is uniform on {0, . . . , Rn}; consequently Lemma 6 gives

E[Mϕ
n |Rn] = E[ϕ(Sn)(Rn − Sn) + Φ(Sn) | Rn ] = 1.
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Now, let f be any bounded function on N
n+1. One has

EQϕ

[f(R0, . . . , Rn)] = E[f(R0, . . . , Rn)Mϕ
n ]

= E
[
f(R0, . . . , Rn)E[Mϕ

n |Rn]
]

= E[f(R0, . . . , Rn)].

As n and f were arbitrary, R has the same law under Qϕ as under P, that is,
Qϕ also makes R a 3-Bessel walk. ��

To finish proving point 3, it remains to establish that R is independent of
S∞ under Qϕ. This will easily follow from the next lemma, which decomposes
Qϕ as a sum of measures carried by the level sets of S∞.

Lemma 7. Call Q(k) the probability Qϕ for ϕ = δk, that is, ϕ(k) = 1 and
ϕ(x) = 0 for x �= k. Then Q(k) is supported by the event {S∞ = k}, and, for
a general ϕ and for all Λ ∈ F∞ one has

Qϕ(Λ) =
∑

k�0

ϕ(k)Q(k)(Λ);

Qϕ(Λ | S∞ = k ) = Q(k)(Λ) for all k such that ϕ(k) > 0.

Proof. For Λn ∈ Fn, one can use formula (9) twice and write

Qϕ(Λn) = lim
p

E[1Λn
ϕ(Sp)]

P(Sp−n = 0)
= lim

p

∑

k

ϕ(k)
P(Λn ∩{Sp = k})
P(Sp−n = 0)

=
∑

k

ϕ(k) lim
p

P(Λn ∩{Sp = k})
P(Sp−n = 0)

=
∑

k

ϕ(k)Q(k)(Λn),

where lim and Σ commute by dominated convergence, owing to the majoration
in (9). So the probabilities Qϕ and

∑
k ϕ(k)Q(k) coincide on

⋃
n Fn; therefore

they also coincide on F∞.
Applying now equation (1) with ϕ = δk gives Q(k)(S∞ = k) = 1, that is,

Q(k) is supported by {S∞ = k}.
Consequently, for any Λ ∈ F∞, one has Qϕ

(
Λ∩{S∞ = k}

)
= ϕ(k)Q(k)(Λ)

because all other terms in the series vanish. Using (1) again, one may replace
ϕ(k) with Qϕ(S∞ = k); this proves Qϕ(Λ | S∞ = k ) = Q(k)(Λ) whenever
ϕ(k) > 0. ��

The proof of independence in Theorem 1.3 is now a child’s play: Propo-
sition 2 says that the law of R under Qϕ is always the law of the 3-Bessel
walk, whatever the choice of ϕ. We may in particular take ϕ = δk, so it is also
true under Q(k). Since Q(k) is also the conditioning of Qϕ by {S∞ = k}, under
Qϕ the law of R conditional on {S∞ = k} does not depend upon k, thus R is
independent of S∞.

5) So far, all of Theorem 1 has been established, except 2.b, to which
the rest of the proof will be devoted. Finiteness of T∞ is due to X being
integer-valued and its supremum S∞ being finite.
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Put Un = Xn∧T∞ and Vn = S∞ − XT∞+n. To prove 2.b.i and 2.b.iii we
have to show that under Qϕ the process V is a 3-Bessel walk independent of
the process U . Call ν the law of the 3-Bessel walk. For bounded functionals
F and G, we must prove that

EQϕ

[F◦U G◦V ] = EQϕ

[F◦U ]
∫

G(v) ν(dv).

Replacing now Qϕ by
∑

k ϕ(k)Q(k) (see Lemma 7), it suffices to show it when
ϕ = δk. Similarly, 2.b.ii only refers to a conditional law given S∞; by Lemma 7
again, we may replace Qϕ by Q(k). Finally, when proving 2.b, we may suppose
ϕ = δk and Qϕ = Q(k) for a fixed k � 0. Hence the random time T∞ becomes
the stopping time Tk = inf {n � 0, Xn = k}, and it remains to show that

• (Xn∧Tk
, n � 0) is a standard random walk stopped when it first hits the

level k;
• (2k − XTk+n, n � 0) is a 3-Bessel walk started at 0;
• These two processes are independent.

By point 3 of Theorem 1, we know that R = 2S−X is a 3-Bessel walk; and as
we are now working under Q(k), we have S∞ = k a.s. Put Jn = infm�n Rm.

We shall first show that the processes J and S are equal on the interval
[0, Tk]. Given n, call τ the first time p � n when Xp = Sn, and observe that on
the event {Tk � n}, τ is finite because Xn � Sn � k = XTk

. For all m � n,
one has Rm = Sm + (Sm − Xm) � Sn + 0, with equality for m = τ ; thus
Jn = Sn on {τ < ∞} and a fortiori on {Tk � n}.

We shall now apply Proposition 1.2 to the 3-Bessel walk R = 2S −X and
its future infimum J . Part 2.a of this proposition says that Z = 2J − R is a
standard random walk. We just saw that J = S on the random time-interval
[0, Tk]; consequently, on this interval, Z = 2S − R = X. And as Tk is the
first time when X = k, it is also the first time when Z = k. This proves that
(Xn∧Tk

, n � 0) is a standard random walk stopped at level k, and also that
the Z-stopping time Tk satisfies ZTk

= FTk
, where Z is the filtration of Z.

Remarking that RTk
= JTk

= k, part 2.b of proposition 1 can be ap-
plied to Tk; it says that (RTk+n − k, n � 0) is a 3-Bessel walk indepen-
dent of FTk

, and hence also of the process (Xn∧Tk
, n � 0). But RTk+n =

2STk+n − XTk+n = 2k − XTk+n since STk
= k = S∞; so this 3-Bessel walk is

nothing but (k − XTk+n, n � 0). This concludes the proof of Theorem 1.

4 Penalisation by a Function of the Local Time: Proof
of Theorem 2

Definition 1. Recall that the 3-Bessel* walk is the Markov chain (R∗
n, n � 0),

valued in N
∗ = {1, 2, . . .}, such that R∗−1 is a 3-Bessel walk. So its transition

probabilities from x � 1 are

π∗(x, x + 1) =
x + 1
2x

; π∗(x, x − 1) =
x − 1
2x

.
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1) We now prove point 1 of Theorem 2. First, (Mh+,h−

n , n � 0) is a posi-
tive martingale. Positivity is obvious from the definitions of h, h− and Θ.
To see that Mh+,h−

is a martingale, we shall verify that the increment
Mh+,h−

n+1 −Mh+,h−

n has the form (Xn+1−Xn)Kn, where Kn is Fn-measurable
and |Kn| � 1. There are three cases, depending on the value of Xn.

If Xn > 0, then Xn+1 � 0, so X+
n = Xn, X+

n+1 = Xn+1, and Ln+1 = Ln.

Consequently, in that case, Mh+,h−

n+1 − Mh+,h−

n = (Xn+1 − Xn)h+(Ln).
Similarly, if Xn < 0, one has X−

n = −Xn, X−
n+1 = −Xn+1, Ln+1 = Ln

and Mh+,h−

n+1 − Mh+,h−

n = −(Xn+1 − Xn)h−(Ln).
Last, if Xn = 0, then Ln+1 = Ln + 1 and Xn+1 = ±1. In that case,

Mh+,h−

n+1 − Mh+,h−

n = 1{Xn+1=1}h
+(Ln+1) + 1{Xn+1=−1}h

−(Ln+1)
+Θ(Ln+1) − Θ(Ln)

= hsgn(Xn+1−Xn)(Ln+1) − 1
2
(
h+(Ln+1) + h−(Ln+1)

)

= (Xn+1 − Xn)
1
2
(
h+(Ln+1) − h−(Ln+1)

)
.

This establishes the claim; consequently, Mh+,h−
is a martingale which

satisfies ∣
∣Mh+,h−

n − Mh+,h−

0

∣
∣ � n

and, as Mh+,h−

0 = 1, one has E
[
Mh+,h−

n

]
= 1.

To finish the proof of point 1 in Theorem 2, it remains to show formula (3).
This will use the following lemma.

Lemma 8. For each integer k such that 0 < k < �n
2 
,

P (Ln = k)
P (Sn = 0)

is bounded above by 2 and tends to 1 when n → ∞.

Remark 2. In the sequel, for h : N → R
+ such that

∑∞
k=1 h(k) < ∞, we put

Mh,0
n = X+

n h(Ln) + Θ(Ln) for n � 0. When
∑∞

k=1 h(k) = 1, this notation is
consistent with the one used so far; in general, Mh,0 is a martingale too, for
dividing it by the constant Θ(0) =

∑∞
k=1 h(k) reduces it to the previous case.

Lemma 9. Let h : N −→ R
+ be such that

∞∑

k=1

h(k) < ∞. For a � 0 and
x ∈ Z,

Ex[h(Ln + a)1Xn>0]
P (Sn = 0)

is bounded above by 2(h(a)x+ + 1
2

∑
k�a+1 h(k)) and converges to h(a)x+ +

1
2

∑
k�a+1 h(k) when n → ∞.
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Proof of Lemma 8. Call γn = | {p � n,Xp = 0} | the number of visits to 0 up
to time n. Clearly, γn = Ln+1 and

P(Ln = k) = P(γn−1 = k).

We shall study the law of γn. Define a sequence (Vn, n � 0) by
{

V0 = 0
Vn+1 = inf {k > 0, XVn+k = 0}

and put (X(k)
n )n�0 = (XVk+n)n�0 and T

(k)
i = inf

{
n � 0, X

(k)
n = i

}
.

Owing to the symmetry of the random walk and the Markov property,

∀i � 1 P(Vi = k) = P(T (i−1)
1 = k − 1).

So ∀i � 1, Vi
L= T

(i−1)
1 +1. Moreover, according to the strong Markov property,

(X(2)
n , n � 0) is independent of FV1 and hence

V1 + V2
L= T

(0)
1 + T

(1)
1 + 2.

Wherefrom, by induction,

V1 + V2 + ... + Vk
L= T

(0)
1 + T

(1)
1 + ... + T

(k−1)
1 + k.

So

P(γn = k) = P(V1 + ... + Vk−1 � n < V1 + ... + Vk)

= P(T (0)
1 + T

(1)
1 + ... + T

(k−2)
1 + k − 1 � n < T

(0)
1 + T

(1)
1 + ... + T

(k−1)
1 + k)

= P(Tk−1 + k − 1 � n < Tk + k) = P(Sn−k+1 � k − 1, Sn−k < k)
= P(Sn−k+1 = k − 1) + P(Tk = n − k + 1).

Taking inspiration from the proof of Lemma 4, it is easy to see that

P(Sn−k = k − 1)
P(Sn = 0)

is majorated by 1 and tends to 1 when n tends to infinity.
According to [Fel50] p. 89,

P (Tr = n) =
r

n
C

n+r
2

n

(1
2

)n

.

Appealing again to the proof of Lemma 4, it is easy to show that

P(Tk = n − k)
P (Sn = 0)

is majorated by 1 and tends to 0 when n goes to infinity. The proof is over.
��
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Remark 3. From the preceding result, one easily sees that

Px (Ln = k,Xn > 0)
P (Sn = 0)

is majorated by 1 and tends to 1
2 when n → ∞.

Proof of Lemma 9. Start from

Ex[h(Ln + a)1Xn>0] = Ex[h(Ln + a)1Xn>0 (1T0>n + 1T0�n)]

One has

h(Ln + a)1Xn>01T0>n =
{

0 si x � 0
h(a)1T0>n si x > 0

According to Lemma 4,

h(a)1x>0Px(T0 > n)
P(Sn = 0)

is majorated by x+h(a) and converges to x+h(a).
Write

Ex[h(Ln + a)1{Xn>0,T0�n}]
P(Sn = 0)

=
∑

k�1

Px (Ln = k, Xn > 0)
P (Sn = 0)

h(k + a)

By Lemma 8,this sum is majorated by
∑

k�1 h(k + a) and converges to
1
2

∑
k�1 h(k + a) when n → ∞. ��

We shall now prove point 1.a in Theorem 2. For each 0 � n � p, one has
Lp = Ln + L̃p−n where L̃ is the local time at 0 of the standard random walk
(Xn+k)k�0 which, given Xn, is independent of Fn. So

E
[
h(Lp)1Xp>0

∣
∣ Fn

]
= ẼXn

[
h(Ln + L̃p−n)1X̃p−n>0

]

where Ẽ integrates only L̃p−n and X̃p−n and where Ln and Xn are fixed.
Then, for all Λn ∈ Fn,

E
[
h(Lp)1Xp>0,Λn

]

P(Sp−n = 0)
= E

[

1Λn

ẼXn

[
h(Ln + L̃p−n)1X̃p−n>0

]

P(Sp−n = 0)

]

When p → ∞, Lemma 9 says that the ratio in the right-hand side tends to
Mh,0

n and is dominated by 2Mh,0
n , which is integrable. Consequently, when

p → ∞,
E[h(Lp)1Xp>0,Λn

]
P (Sp−n = 0)

→ E[1Λn
Mh,0

n ],
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and taking Λn = Ω, one has

E[h(Lp)1Xp>0]
P(Sp−n = 0)

→ E[Mh,0
n ].

Taking the ratio of these two limits yields

E[h(Lp)1Xp>0,Λn
]

E[h(Lp)1Xp>0]
→ E[ΛnMh,0

n ]

E[Mh,0
n ]

.

To finalize the proof of point 1.a, it now suffices to use the symmetry of the
standard random walk and the fact that E[Mh+,h−

n ] = 1.
2) Let us now show point 2 in Theorem 2. Put τl = inf {k � 0, γk = l}.

Then

Qh+,h−
(Ln � l) = Qh+,h−

(τl � n − 1)

= E[1τl�n−1M
h+,h−

τl
] = Θ(l − 1)P(τl � n − 1).

For fixed l, the sequence of events {Ln � l} is increasing and tends to
{L∞ � l}; so

Qh+,h−
(L∞ � l) = Θ(l − 1)P(τl � ∞) = Θ(l − 1).

Hence L∞ is Qh+,h−
-a.s. finite, with

Qh+,h−
(L∞ = l) = Θ(l − 1) − Θ(l) =

1
2
(
h+(l) + h−(l)

)

and 2.a is established.
To show that the P-a.s. limit Mh+,h−

∞ of Mh+,h−
is null, it suffices to apply

the same method as for Mϕ, with L instead of S and Mh+,h−
instead of Mϕ.

The study of the process (Xn, n � 0) under Qh+,h−
starts with the next

three lemmas.

Lemma 10. Under P1 and conditional on the event {Tp < T0}, the process
(Xn, 0 � n � Tp) is a 3-Bessel* walk started from 1 and stopped when it first
hits the level p (cf. [LeG85]).

For typographical simplicity, call Tp,n := inf{k > n, Xk = p} the time of
the first visit to p after n, and Hl :=

{
Tp,τl

< τl+1, Xτl+1=1

}
, the event that

the l-th excursion is positive and reaches level p.

Lemma 11. Under the law Qh+,h−
and conditional on the event Hl, the pro-

cess (Xn+τl
, 1 � n � Tp,τl

− τl) is a 3-Bessel* walk started from 1 and stopped
when it first hits the level p.

Lemma 12. Put Γ+ := {Xn+g > 0,∀n > 0} and Γ− := {Xn+g < 0,∀n > 0}.
Then:

Qh+,h−
(Γ+) = 1 − Qh+,h−

(Γ−) =
1
2

∞∑

k=1

h+(k)
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Proof of Lemma 11. Let G be a function from Z
n to R

+. Then, according
to the definition of the probability Qh+,h−

and owing to Doob’s stopping
theorem,

K := Qh+,h−[
G(Xτl+1, . . . , Xτl+n)1n+τl�Tp,τl

∣
∣ Hl

]

=
Qh+,h−[

G(Xτl+1, . . . , Xτl+n)1τl+n�Tp,τl
<τl+1,Xτl+1=1

]

Qh+,h−(Hl)

=
E
[
G(Xτl+1, . . . , Xτl+n)1τl+n�Tp,τl

<τl+1,Xτl+1=1M
h+,h−

τl+1

]

E[1Hl
Mh+,h−

τl+1 ]
.

Replacing Mh+,h−

τl+1
by the constant Θ(l) and using the Markov property, one

gets

K =
E[G(Xτl+1, . . . , Xτl+n)1τl+n�Tp,τl

<τl+1,Xτl+1=1]
P(Hl)

=
E1[G(X0, . . . , Xn−1)1n−1�Tp<T0 ]

P1 (Tp < T0)
= E1[G(X0, . . . , Xn−1)1n−1�Tp

| Tp < T0]. ��

Remark 4. By letting p → ∞, one deduces therefrom that, conditional on
{g = τl,Xτl+1 = 1}, (Xn+g, n � 1) is a 3-Bessel* walk under Qh+,h−

.

Proof of Lemma 12. As g is Qh+,h−
-a.s. finite and as Xn �= 0 for n > g, one

has
Qh+,h−

(Γ+) = lim
n→∞

Qh+,h−
(Xn > 0). (10)

Now,

Qh+,h−
(Xn > 0) = E[1Xn>0M

h+,h−

n ] = E[1Xn>0Θ(Ln) + X+
n h+(Ln)].

Since 1Xn>0 Θ(Ln) � Θ(Ln) � 1, the dominated convergence theorem gives

E[1Xn>0Θ(Ln)] n→∞−→ 0.

We already know that Mh+,0 is a martingale. Consequently,

E[Mh+,0
n ] = E[Mh+,0

0 ] =
1
2

∞∑

k=1

h+(k),

wherefrom

E[X+
n h+(Ln)] =

1
2
E
[ Ln∑

k=1

h+(k)
]

� 1
2

∞∑

k=1

h+(k).
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By dominated convergence again,

lim
n→∞

E[X+
n h+(Ln)] =

1
2

∞∑

k=1

h+(k),

and so, according to (10), Qh+,h−
(Γ+) = 1

2

∑∞
k=1 h+(k). ��

For F : Z
n → R

+,

E
Q[F (Xg+1, . . . , Xg+n)1Xg+1=1

]
=
∑

l�1

E
Q[F (Xg+1, . . . , Xg+n)1g=τl,Xg+1=1

]

=
∑

l�1

E
Q[F (Xg+1, . . . , Xg+n)

∣
∣ g = τl, Xτl+1 = 1

]
Qh+,h−

(g = τl, Xτl+1 = 1)

= E1
[
F (X0, . . . , Xn−1)

∣
∣ T0 = ∞

] ∑

l�1

Qh+,h−
(g = τl, Xτl+1 = 1)

= E1
[
F (X0, . . . , Xn−1)

∣
∣ T0 = ∞

]
Qh+,h−

(Γ+).

This shows half of point 2.b.ii. The other half, when Xg+1 = −1, is easily
obtained using the symmetry of the walk.

To end of the proof of Theorem 2, we shall show that, conditional on
{L∞ = l} and under the law Qh+,h−

, the process (Xu, u < g) is a standard
random walk stopped at its l-th passage at 0.

Let F be a function from Z
n to R

+ and l an element of N
∗. From the

definition of Qh+,h−
and the optional stopping theorem,

E
Q[F (X1, . . . , Xn)1n<τl

∣
∣ L∞ = l

]
=

EQ
[
F (X1, . . . , Xn)1n<τl<∞1τl+1=∞

]

Qh+,h−(L∞ = l)

=
EQ

[
F (X1, . . . , Xn)1n<τl<∞

]
−EQ

[
F (X1, . . . , Xn)1n<τl<τl+1<∞

]

Qh+,h−(L∞ = l)

=
E
[
F (X1, . . . , Xn)1n<τlMτl

]
−EQ

[
F (X1, . . . , Xn)1n<τlMτl+1

]

Qh+,h−(L∞ = l)

=
E
[
F (X1, . . . , Xn)1n<τl

]
(Θ(l − 1) − Θ(l))

1
2
(h+(l) + h−(l))

= E
[
F (X1, . . . , Xn)1n<τl

]
. ��

5 Penalisation by the Length of the Excursions

5.1 Notation

For n � 0, call gn (respectively dn) the last zero before n (respectively after n):

gn := sup {k � n, Xk = 0}
dn := inf {k > n, Xk = 0}



352 P. Debs

Thus dn − gn is the duration of the excursion that straddles n. Put

Σn = sup {dk − gk, dk � n} ,

so Σn is the longest excursion before gn; remark that

Σn = Σgn
. (11)

Define (An, n � 0), the “age process”, by

An = n − gn,

and call An = σ (An, n � 0) the filtration generated by A. Set

A∗
n = sup

k�n
Ak, (12)

and observe that
A∗

n = (Σn − 1) ∨ (n − gn),

wherefrom
A∗

gn
= Σgn

− 1. (13)

In the sequel, γl :=
∑n

k=0 1{Xk=0} is the number of passage times at 0 up to
time n, τ = inf {n > 0, Xn = 0} is the first return time to 0 and a function θ
is defined by

E [|Xx| | τ > x] =: θ(x).

5.2 Proof of Theorem 3

1) We start with point 1 of Theorem 3. To show formula (4), we need:

Proposition 3.

P(Σk � x) ∼
k→∞

(
2
πk

) 1
2

θ(x).

To establish this Proposition, we will use the following lemma:

Lemma 13. For every f : Z → R
+, every n � 0 and every k > 0,

E [f(Xn) | An = k] = E [f(Xk) | τ > k] .

and a Tauberian Theorem:

Theorem 4 (Cf. [Fel71] p. 447). Given qn � 0, suppose that the series

S(s) =
∞∑

n=0

qnsn

converges for 0 � s < 1. If 0 < p < ∞ and if the sequence {qn} is monotone,
then the two relations:
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S(s) ∼
s→1−

1
(1 − s)p

C

and
qn ∼

n→∞

1
Γ (p)

np−1C

where 0 < C < ∞, are equivalent.

Proof of Lemma 13. By the Markov property,

E [f(Xn) | An = k] = E [f(Xn) | n − gn = k]
= E [f(Xn) | Xn−k = 0,Xn−k+1 �= 0, . . . , Xn �= 0] = E [f(Xk) | τ > k] . ��

Proof of Proposition 3. Let δβ be a geometric r.v. with parameter β, where
0 < β < 1, and such that δβ is independent of the walk X. Then

P
(
Σδβ

� x
)

=
∞∑

k=1

P (δβ = k) P (Σk � x) =
∞∑

k=1

(1 − β)k−1β P (Σk � x) .

Now, from (11) and (13),

P(Σδβ
� x) = P(Σgδβ

� x) = P(A∗
gδβ

� x) = P(TA
x � gδβ

)

= P(δβ � dT A
x

) = 1 − P(δβ > dT A
x

) = 1 − E
[
(1 − β)dT A

x

]

= 1 − E
[
(1 − β)T A

x (1 − β)T0◦θT A
x

]

= 1 − E
[
(1 − β)T A

x EXT A
x

[
(1 − β)T0

]]
. ��

(14)

Definition 2. A stopping time T is said to be X-standard if T is a.s. finite
and if the stopped process (Xn∧T , n � 0) is uniformly integrable.

According to [ALR04], if T is X-standard and if T is independent of XT , then

∀α ∈ R E
[
ch(α)−T

]
= E

[
exp(αXT )

]−1
. (15)

Recall that Arg ch(α) = ln
(
α +

√
α2 − 1

)
. When ch α = (1 − β)−1,

α = Arg ch
(

1
1 − β

)

= ln
(

1
1 − β

+

√
1

(1 − β)2
− 1

)

= ln
(1 +

√
2β − β2

1 − β

)
.

According to [ALR04], Tk and TA
x satisfy these properties, hence

Ek

[
(1 − β)T0

]
= E0

[
(1 − β)Tk

]
=

(
1 +

√
2β − β2

1 − β

)−k

E
[
(1 − β)T A

x

]
= E

⎡

⎣

(
1 +

√
2β − β2

1 − β

)XT A
x

⎤

⎦

−1
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So, owing to the independence of TA
x et XT A

x
and the above formulae,

P
(
Σδβ

� x
)

= 1 − E
[
(1 − β)T A

x

]
E

⎡

⎣

(
1 +

√
2β − β2

1 − β

)−|XT A
x

|⎤

⎦

=

1
2

[

E

[(
1+

√
2β−β2

1−β

)|XT A
x

|]

− E

[(
1+

√
2β−β2

1−β

)−|XT A
x

|]]

E

[(
1+

√
2β−β2

1−β

)XT A
x

] .

For all k ∈ N,

[
1 +

√
2β − β2

1 − β

]k

∼
β→0+

1 + k
√

2β,

and consequently P
(
Σδβ

� x
)

∼
β→0+

E
[
|XT A

x
|
]√

2β.

Thus we have obtained
∞∑

k=1

(1 − β)kP (Σk � x) ∼
β→0+

√
2
β

(1 − β) E
[
|XT A

x
|
]
.

In order to apply Theorem 4, put α = 1 − β. This gives

∞∑

k=1

αkP (Σk � x) ∼
α→1−

√
2√

1 − α
E
[
|XT A

x
|
]
,

and now Theorem 4 with p = 1
2 and C =

√
2E

[
|XT A

x
|
]

gives

P(Σk � x) ∼
α→1−

1
Γ
(

1
2

)k
1
2−1C =

(
2
πk

) 1
2

E
[
|XT A

x
|
]
.

By Lemma 13,

E
[
|XT A

x
|
]

= E
[
|XT A

x
|
∣
∣ AT A

x
= x

]
= E

[
|Xx|

∣
∣ τ > x

]
= θ(x).

It is now possible to finalise the proof of point 1.a. Let T̃0 be the hitting time
of 0 by the walk (Xn+k)k�0, and Σ′ be the maximal length of the excursions
of the walk (Xk+n+T̃0

)k�0.

E
[
1Λn,Σp�x

]
= E [1Λn,Σn�x,T0◦θn>p−n]

+ E
[
1Λn,Σn�x,T0◦θn�(p−n)∧(x−An),Σ′

p−n−T0◦θn�x

]
= (1) + (2)
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Call P̃ the measure associated to the walk (Xn+k)k�0, Xn and An being fixed.
Then

(1) = E
[
1Λn,Σn�xP̃Xn

(
T̃0 > p − n

)]
∼

p→∞
E

[

1Λn,Σn�x

(
2
πp

) 1
2

|Xn|
]

Call also P′ the measure associated to the walk (Xk+n+T̃0
)
k�0

, T̃0 being fixed.
For p > n + x, (p − n) ∧ x − An = x − An; consequently

(2) ∼
p→∞

E
[
1Λn,Σn�x,An�xP̃Xn

(T̃0 � x − An)P′
(
Σ′

p−n−T̃0
� x

)]

∼
p→∞

E

[

1Λn,Σn�x,An�xP̃Xn
(T̃0 � x − An)

(
2
πp

) 1
2

θ(x)

]

.

One derives therefrom

lim
p→∞

E[1Λn
1Σp�x]

E[1Σp�x]
= E

[

1Λn

{
|Xn|
θ(x)

+ P̃Xn
(T̃0 � x − An)1An�x

}

1Σn�x

]

.

Remark 5. These notations P̃ et T̃0, or similar ones, will frequently occur in the
sequel. We have not been completely rigorous when defining them; a rigorous
definition is possible as follows: P̃X̃n

(T̃0 � x − An) stands for f(Xn, x − An)
where f(y, z) = Py(T0 � z).

We shall now see that (Mn, n � 0) is indeed a martingale. The parity of
n + 1 comes into play, so we shall consider two cases.

Suppose first that n+1 is odd. In that case, Σn+1 = Σn and An+1 = An+1.
Recall that x → |x| is harmonic except at 0 for the symmetric random walk.
Hence, on the event {Xn �= 0}, the only relevant term is

Cn+1 := 1{An+1�x,Σn�x} P̃Xn+1(T̃0 � x − An+1),

and on Xn = 0, it sufices to verify that, when conditioned by Fn, this quantity
equals

(
1 − 1

θ

)
1Σn�x.

By the Markov property, if Xn �= 0,

P̃
Xn

(T̃0 � x − An) =
1
2
(P̃

Xn+1(T̃0 � x − An − 1) + P̃
Xn−1(T̃0 � x − An − 1)).

So

E[1Xn 	=0Cn+1|Fn] = E[1Xn 	=0(1Xn+1=Xn+1 + 1Xn+1=Xn−1)Cn+1|Fn]

= 1Xn 	=0,Σn�x,An�x−1
1
2
[P̃Xn+1(T̃0 � x−An −1)+ P̃Xn−1(T̃0 � x−An −1)]

= 1Xn 	=0,Σn�x,An�x−1P̃Xn
(T̃0 � x − An)



356 P. Debs

And, as 1Xn 	=0, An=xP̃Xn
(T̃0 � x − An) = 0, one has

E[1Xn 	=0 Cn+1|Fn] = 1Xn 	=0 Cn.

It remains to show that

E[1Xn=0Cn+1|Fn] = 1Xn=0,Σn�x

(

1 − 1
θ

)

. (16)

This will use the classical result ([Fel50] pp. 73-77)

P (X1 > 0, . . . , X2n−1 > 0,X2n = 2r) =
1
2

(p2n−1,2r−1 − p2n−1,2r+1) . (17)

where pn,r = 1
2n C

n+r
2

n .
Using formula (17) with x = 2n, one can write

P (τ > x) θ(x) = P (τ > x)E [|Xx| | τ > x] = E
[
|Xx|1{τ>x}

]

= E
[
Xx1{τ>x,Xx>0}

]
− E

[
Xx1{τ>x,Xx<0}

]
= 2E

[
Xx1{τ>x,Xx>0}

]

= 2
x∑

k>0,k even

kP (Xx = k, τ > x) = 4
n∑

�>0

�P (X2n = 2�, τ > 2n)

= 2
n∑

�>0

� (p2n−1,2�−1 − p2n−1,2�+1) =
(

1
2

)2n−2 n∑

�>0

�
(
Cn+�−1

2n−1 − Cn+�
2n−1

)
.

Now,
∑n

�=1 �
(
Cn+�−1

2n−1 − Cn+�
2n−1

)
=
∑n−1

�=0 Cn+�
2n−1 = 22n−2; so we obtain

θ(x)P (τ > x) = 1. (18)

On the other hand,

E[1Xn=0Cn+1|Fn] = 1Xn=0,Σn�x
1
2
(
P1 (T0 � x − 1) + P−1 (T0 � x − 1)

)

= 1Xn=0,Σn�xP(τ � x) = 1Xn=0,Σn�x (1 − P(τ > x)) ; (19)

hence, considering (18) and (19), formula (16) is established.
We now consider the case that n + 1 is even. In that case, {An � x} =

{An � x − 1}. Indeed, An = n− gn is odd and x is even by hypothesis, so the
event {An = x} is null. Moreover, if |Xn| � 3, on a Σn+1 = Σn.
Last, if |Xn| = 1, there are two cases. Either Xn+1 �= 0 and one always has
Σn+1 = Σn, or Xn+1 = 0 and we must see that in that case

{Σn+1 � x} = {Σn � x, n + 1 − gn � x} = {Σn � x,An � x − 1} .

So, one is always on the event {Σn � x,An � x − 1}, and the same argument
as when n + 1 was odd and Xn �= 0 shows that, conditional on Fn, Mn+1

is equal to Mn. This shows that M is a martingale; positivity is immediate.
The proof that M is not uniformly integrable is postponed until later in this
section.
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2) We now start studying the process Σ under Qx. We shall first show
that, for all y � x, Qx (Σ∞ > y) = 1 − P(τ>x)

P(τ>y) .
Put TΣ

y := inf {n � 0, Σn > y}. Clearly, XT Σ
y

= 0 and hence

Qx (Σp > y) = Qx
(
TΣ

y � p
)

= E
[
1T Σ

y �pMT Σ
y

]

= E

[

1T Σ
y �p

{
|XT Σ

y
|

θ(x)
+ P̃XT Σ

y

(
T̃0 � x − AT Σ

y

)
1AT Σ

y
�x

}

1ΣT Σ
y

�x

]

= P
[
TΣ

y � p,ΣT Σ
y

� x
]
.

Letting p go to infinity, we obtain that Qx (Σ∞ > y) = P(ΣT Σ
y

� x). For
y � x,

{
ΣT A

y
� x

}
is a full event; so

{
ΣT Σ

y
� x

}
=
{
ΣT A

y
� x

}
∩
{
T0 ◦ θT A

y
+ y � x

}
=
{
T0 ◦ θT A

y
+ y � x

}
.

By the Markov property and Lemma 13,

Qx (Σ∞ > y) = E
[
E
[
1T0◦θT A

y
+y�x | AT A

y

]]
= E

[
P̃XT A

y

(
T̃0 � x − y

)]

= E
[
P̃Xy

(
T̃0 � x − y

)
| τ > y

]
= 1 −

E
[
P̃Xy

(
T̃0 > x − y

)
1τ>y

]

P(τ > y)

= 1 −
E
[
1T0◦θy>x−y,τ>y

]

P(τ > y)
= 1 − P(τ > x)

P(τ > y)
.

On the other hand, for all n � 0, one has Qx (Σn � x) = 1. According to the
definition of the probability Qx,

Qx (Σn � x) = lim
p→∞

P (Σn � x,Σp � x)
P (Σp � x)

= lim
p→∞

P (Σp � x)
P (Σp � x)

= 1.

3) We shall now describe several properties of g and (An, n � 0) under Qx.

a) We first show that g is Qx-a.s. finite; this implies that A∞ = ∞ Qx-a.s.

Lemma 14. For all n � 0 and k � 0,

P(A2n = 2k) = P(A2n+1 = 2k + 1) = Cn−k
2n−2kCk

2k

(1
2

)n

.

Proof. According to [Fel50] p. 79, “Arcsin law for last visit”,

P(g2n = 2k) = Cn−k
2n−2k Ck

2k

(1
2

)n

.

Therefore

P(A2n = 2k) = P(2n − g2n = 2k) = P(g2n = 2n − 2k) = Cn−k
2n−2kCk

2k

(1
2

)n

;

and as A2n+1 = A2n + 1, the proof is over. ��
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The next lemma is instrumental in the sequel.

Lemma 15. For each p > 0,

Qx (g > p | Fp) = P̃Xp
(τ̃ � x − Ap)

1
Mp

.

Proof. Recall that T0,p := inf {n > p,Xn = 0} is the first zero after p, and
remark that ΣT0,p

= Σp ∨{Ap + τ ◦ θp}. Recall also that under Qx, the event
{Σp � x} is almost sure. So, for every Λp ∈ Fp,

Qx
(
{Λp} ∩ {g > p}

)
= Qx

(
{Λp} ∩ {T0,p < ∞}

)

= E
[
1Λp

MT0,p

]
= E

[
1Λp

1ΣT0,p�x

]
= E

[
1Λp, Σp�xP̃Xp

[τ̃ � x − Ap]
]

= E

[

1Λp

P̃Xp
[τ̃ � x − Ap]

Mp
Mp

]

= EQx

[

1Λp

P̃Xp
[τ̃ � x − Ap]

Mp

]

,

and consequently one has

Qx (g > p | Fp) = P̃Xp
(τ̃ � x − Ap)

1
Mp

. ��

We now suppose that p = 2l where l � 0; when p = 2l+1 the computation
is similar, we won’t give it (see Lemma 14). According to Lemma 15,

Qx(g > p) = EQx[
EQx

[1g>p | Fp]
]

= EQx
[
P̃Xp

(τ̃ � x − Ap)
1

Mp

]

= E
[
P̃Xp

(τ̃ � x − Ap)
]

=
l∧ x

2∑

k=0

E
[
P̃Xp

(τ̃ � x − Ap)1Ap=2k

]

=
l∧ x

2∑

k=0

E
[
P̃Xp

(τ̃ � x − Ap)
∣
∣ Ap = 2k

]
P(Ap = 2k)

=
l∧ x

2∑

k=0

E
[
P̃X2k

(τ̃ � x − 2k)
∣
∣ τ > 2k

]
P(Ap = 2k)

=
l∧ x

2∑

k=0

E
[
P̃X2k

(τ̃ � x − 2k)1τ>2k

]

P (τ > 2k)
P(Ap = 2k)

=
l∧ x

2∑

k=0

[
1 − P(τ > x)

P(τ > 2k)

]
P(Ap = 2k)

=
l∧ x

2∑

k=0

Cl−k
2l−2k Ck

2k

(1
2

)l(
1 − P(τ > x)

P(τ > 2k)

)
.



Penalisation of the Random Walk on Z 359

This gives the law of g under Qx. Then, for p > 2, Qx(g > p) � E[1Ap
� x].

Now, Ap tends to infinity P-a.s.; consequently,

Qx(g = ∞) = lim
p→∞

Qx(g > p) � lim
p→∞

P(Ap � x) = 0,

and g is Qx-a.s. finite.

Remark 6. It is now easy to see that M is not uniformly integrable. Indeed,
as g is finite, so is also L∞, and the argument given earlier for Mϕ and S
immediately adapts to M and L.

b) To establish 2.d.i et 2.d.ii., we shall need:

Lemma 16. For all y � x, one has

E
[
MT A

y

]
= 1

Proof of Lemma 16. Recall that the event
{
ΣT A

y
� x

}
has probability 1. By

formula (18) and the proof of point 2.a,

E
[
MT A

y

]
= E

[ |XT A
y
|

θ(x)
+ P̃XT A

y
(T̃0 � x − y)

]

=
θ(y)
θ(x)

+ E
[
P̃XT A

y
(T̃0 � x − y)

]
=

P (τ > x)
P (τ > y)

+ 1 − P(τ > x)
P(τ > y)

.

Let F be a positive functional and G : R → R
+. Recall that after [ALR04],

XT A
y

and AT A
y

are independent under P. On the other hand, as MT A
y

is a
function of XT A

y
, one has

EQx[
F
(
An, n � TA

y

)
G
(
XT A

y

)]
= E

[
F
(
An, n � TA

y

)
G
(
XT A

y

)
MT A

y

]

= E
[
F
(
An, n � TA

y

)]
E
[
G
(
XT A

y

)
MT A

y

]
. (20)

So, taking G ≡ 1 and using Lemma 16, one has

EQx [
F
(
An, n � TA

y

)]
= E

[
F
(
An, n � TA

y

)]
,

which shows that (An, n � TA
y ) has the same law under P and Qx. Using

again formula (20), one obtains

EQx[
F
(
An, n � TA

y

)
G
(
XT A

y

)]
= EQx[

F
(
An, n � TA

y

)]
EQx[

G
(
XT A

y

)]
;

this shows that (An, n � TA
y ) and XT A

y
are independent under Qx.
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c) The rest of the proof of point 2 is quite easy, taking into account what has
already been done:

EQx[
G
(
XT A

y

)]
= E

[
G
(
XT A

y

)
MT A

y

]
= E

[
E
[
G
(
XT A

y

)
MT A

y

∣
∣ AT A

y

]]

= E
[
E
[
G(Xy)

{ |Xy|
θ(x)

+ P̃Xy
(T̃0 � x − y)

} ∣
∣
∣ τ > y

]]

= E

[

G (Xy)
{
|Xy|
θ(x)

+ P̃Xy

(
T̃0 � x − y

)}

| τ > y

]

= E
[
G(Xy)

{ |Xy|
θ(x)

+ P̃Xy
(T̃0 � x − y)

} ∣
∣
∣ τ > y

]

=
∑

k

G(k)
{ |k|

θ(x)
+ Pk (T0 � x − y)

}
P(Xy = k | τ > y).

Consequently, the law of XT A
y

under Qx satisfies

Qx
(
XT A

y
= k

)
=
{ |k|

θ(x)
+ Pk (T0 � x − y)

}
P(Xy = k | τ > y).

(The quantity P(Xy = k | τ > y) is explicitly given in [Fel50] p. 77).
We now compute Qx(g > TA

y ):

Qx(g > TA
y ) = EQx[

EQx[
1g>T A

y

∣
∣ FT A

y

]]
= EQx

[ P̃XT A
y

(τ̃ � x − y)

MT A
y

]

= E
[
P̃XT A

y
(τ̃ � x − y)

]
= E

[
P̃Xy

(τ̃ � x − y)
∣
∣ τ > y

]
= 1 − P (τ > x)

P (τ > y)
.

Last, we now show that
(
An, n � TA

y

)
and

{
g > TA

y

}
are independent under

Qx; we use again the independence of XT A
y

and AT A
y

under P.

EQx[
F (An, n � TA

y )1
g>T A

y

]
= EQx[

F (An, n � TA
y )EQx[

1
g>T A

y

∣
∣ AT A

y

]]

= EQx

[F (An, n � TA
y ) P̃XT A

y
(τ̃ � x − y)

MT A
y

]

= E
[
F
(
An, n � TA

y

)]
E
[
P̃XT A

y
(τ̃ � x − y)

]

= EQx[
F (An, n � TA

y )
]
Qx(g > TA

y ).

4) To study the process (Xn, n � 0) under Qx, we start with the law of
the process (Xn, n � g). Recall that Γ+ = {Xn > 0, n > g} and Γ− =
{Xn < 0, n > g}; these events Γ+ and Γ− are symmetric under Qx

0 :

Lemma 17.
Qx

(
Γ+

)
= Qx

(
Γ−) =

1
2
.
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Proof. First remark that

Qx(Γ+) = lim
n→∞

Qx(Xn > 0), Qx(Γ−) = lim
n→∞

Qx(Xn < 0).

By definition of Qx,

Qx(Xn > 0) = E
[
1Xn>0

{ |Xn|
θ(x)

+ P̃Xn

(
T̃0 � x − An

)
1An�x

}
1Σn�x

]
.

Owing to the symmetry of the walk under P, one has

Qx(Xn > 0) = E
[
1Xn<0

{ |Xn|
θ(x)

+ P̃Xn

(
T̃0 � x − An

)
1An�x

}
1Σn�x

]

= Qx(Xn < 0).

One also has limn→∞ Qx(Xn = 0) = 0 because g is Qx-a.s. finite; and as

Qx(Xn > 0)+Qx(Xn < 0)+Qx(Xn = 0) = 2Qx(Xn > 0)+Qx(Xn = 0) = 1,

taking limits when n tends to infinity, on obtains

Qx(Γ+) + Qx(Γ−) = 2Qx(Γ+) = 1. ��

We now describe the behavior of (Xn+g, n > 0) under Qx on Γ+ (the
other case is completely similar). Take a ∈ N

∗ and p � x, and set qa,a+1 :=
Q(Xn+1 = a + 1|Xn = a, n > g).

qa,a+1 = Q(Xn+1 = a + 1|Xn = a, ∀i � p Xn+i > 0)

=
Q(Xn+1 = a + 1, Xn = a, ∀i � p Xn+i > 0)

Q(Xn = a, ∀i � p Xn+i > 0)

=
E
[
1Xn+1=a+1, Xn=a, ∀i�p Xn+i>0 Mp+n

]

E
[
1Xn=a,∀i�p Xn+i>0 Mp+n

] .

Here Mp+n = Xp+n

Θ(x) 1Σn�x; hence we can condition the numerator (resp. the
denominator) by Fn+1 (resp. Fn). The Markov property gives

qa,a+1 =
E
[
1Xn+1=a+1, Xn=a, Σn�xEa+1 [Xp1Xi>0,∀i�p−1]

]

E [1Xn=a, Σn�xEa [Xp1Xi>0,∀i�p]]
.

Clearly, (Xp1Xi>0,∀i�p)p�0 is a martingale, wherefrom

qa,a+1 =
(a + 1)E

[
1Xn+1=a+1, Xn=a, Σn�x

]

aE [1Xn=a, Σn�x]
.

Last, conditioning the numerator by Fn one gets

qa,a+1 =
a + 1
2a

,

the transition probability of a 3-Bessel* walk.
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Recall the following notation:

γn := | {k � n,Xk = 0} | , γ∞ := lim
n→∞

γn

τ1 := T0 , ∀n � 2, τn := inf {k > τn−1, Xk = 0}

It remains to show that, conditional on {γ∞ = l}, (Xu, u � g) is a standard
random walk stopped at τl and conditioned by Στl

� x.
Let F be a functional on Z

n.

EQx[
F (X1, . . . , Xn)1n�τl

∣
∣ γ∞ = l

]
=

EQx[
F (X1, . . . , Xn)1n�τl

1γ∞=l

]

EQx [γ∞ = l]

=
EQx[

F (X1, . . . , Xn)1n�τl<∞
]
− EQx[

F (X1, . . . , Xn)1n�τl<τl+1<∞
]

EQx
[
1τl<∞1τl+1=∞

]

=
EQx[

F (X1, . . . , Xn)1n�τl<∞
]
− EQx[

F (X1, . . . , Xn)1n�τl<τl+1<∞
]

EQx
[
1τl<∞

]
− EQx

[
1τl+1<∞

]

=
E
[
F (X1, . . . , Xn)1n�τl<∞ Mτl

]
− E

[
F (X1, . . . , Xn)1n<τl+1<∞ Mτl+1

]

E
[
1τl<∞ Mτl

]
− E

[
1τl+1<∞ Mτl+1

] .

Under P, {τl < ∞} has probability 1, and so

Mτl
− Mτl+1 = 1Στl

�x(1 − 1τl+1−τl�x) = 1Στl
�x, τl+1−τl>x.

As τl+1 − τl is independent of Fτl
, one gets

E
Qx [

F (X1, . . . , Xn)1n�τl
| γ∞ = l

]
=

E
[
F (X1, . . . , Xn)1n�τl

(
Mτl − Mτl+1

)]

E
[
Mτl − Mτl+1

]

=
E
[
F (X1, . . . , Xn)1{n�τl,Στl

�x,τl+1−τl>x}
]

E
[
1{Στl

�x,τl+1−τl>x}
]

=
E
[
F (X1, . . . , Xn)1n�τl,Στl

�x

]
E
[
1{τl+1−τl>x}

]

E
[
1Στl

�x

]
E
[
1τl+1−τl>x

]

=
E
[
F (X1, . . . , Xn)1{n�τl,Στl

�x}
]

E
[
1Στl

�x

] = E
[
F (X1, . . . , Xn)1n�τl

| Στl � x
]
.
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