Penalisation of the Standard Random Walk by a Function of the One-sided Maximum, of the Local Time, or of the Duration of the Excursions

Pierre Debs

Institut Élie Cartan Nancy B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France E-mail: Pierre.Debs@iecn.u-nancy.fr

Summary. Call $(\Omega, \mathcal{F}_{\infty}, \mathbb{P}, X, \mathcal{F})$ the canonical space for the standard random walk on \mathbb{Z} . Thus, Ω denotes the set of paths $\phi : \mathbb{N} \to \mathbb{Z}$ such that $|\phi(n+1) - \phi(n)| = 1$, $X = (X_n, n \ge 0)$ is the canonical coordinate process on Ω ; $\mathcal{F} = (\mathcal{F}_n, n \ge 0)$ is the natural filtration of X, \mathcal{F}_{∞} the σ -field $\bigvee_{n \ge 0} \mathcal{F}_n$, and \mathbb{P}_0 the probability on $(\Omega, \mathcal{F}_{\infty})$ such that under \mathbb{P}_0 , X is the standard random walk started form 0, i.e., $\mathbb{P}_0(X_{n+1} = j \mid X_n = i) = \frac{1}{2}$ when |j - i| = 1.

Let $G: \mathbb{N} \times \Omega \to \mathbb{R}^+$ be a positive, adapted functional. For several types of functionals G, we show the existence of a positive \mathcal{F} -martingale $(M_n, n \ge 0)$ such that, for all n and all $\Lambda_n \in \mathcal{F}_n$,

$$\frac{\mathbb{E}_0[\mathbbm{1}_{A_n}G_p]}{\mathbb{E}_0[G_p]} \quad \longrightarrow \quad \mathbb{E}_0[\mathbbm{1}_{A_n}M_n] \qquad \text{when} \ \ p \to \infty.$$

Thus, there exists a probability Q on $(\Omega, \mathcal{F}_{\infty})$ such that $Q(\Lambda_n) = \mathbb{E}_0[\mathbb{1}_{\Lambda_n} M_n]$ for all $\Lambda_n \in \mathcal{F}_n$. We describe the behavior of the process (Ω, X, \mathcal{F}) under Q.

The three sections of the article deal respectively with the three situations when G is a function:

- of the one-sided maximum;
- of the sign of X and of the time spent at zero;
- \bullet of the length of the excursions of X.

1 Introduction

Let $\{\Omega, (X_t, \mathcal{F}_t)_{t \geq 0}, \mathcal{F}_{\infty}, \mathbb{P}_x\}$ be the canonical one-dimensional Brownian motion. For several types of positive functionals $\Gamma : \mathbb{R}^+ \times \Omega \to \mathbb{R}^+$, B. Roynette, P. Vallois and M. Yor show in [RVY06] that, for fixed s and for all $\Lambda_s \in \mathcal{F}_s$,

$$\lim_{t \to \infty} \frac{\mathbb{E}_x[\mathbb{1}_{\Lambda_s} \Gamma_t]}{\mathbb{E}_x[\Gamma_t]}$$

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLII, Lecture Notes in Mathematics 1979, DOI 10.1007/978-3-642-01763-6_12, exists and has the form $\mathbb{E}_x[\mathbb{1}_{A_s}M_s^x]$, where $(M_s^x, s \ge 0)$ is a positive martingale. This enables them to define a probability Q_x on $(\Omega, \mathcal{F}_{\infty})$ by:

$$\forall \Lambda_s \in \mathcal{F}_s \qquad Q_x(\Lambda_s) = \mathbb{E}_x[\mathbb{1}_{\Lambda_s} M_s^x];$$

moreover, they precisely describe the behavior of the canonical process X under Q_x . This they do for numerous functionals Γ , for instance a function of the one-sided maximum, or of the local time, or of the age of the current excursion (cf. [RVY06], [RVY]).

Our purpose is to study a discrete analogue of their results. More precisely, let Ω denote the set of all functions ϕ from $\mathbb N$ to $\mathbb Z$ such that $|\phi(n+1)-\phi(n)|=1$, let $X=(X_n,n\geqslant 0)$ be the process of coordinates on that space, $\mathcal F=(\mathcal F_n,n\geqslant 0)$ the canonical filtration, $\mathcal F_\infty$ the σ -field $\bigvee_{n\geqslant 0}\mathcal F_n$, and $\mathbb P_x$ $(x\in\mathbb N)$ the family of probabilities on $(\Omega,\mathcal F_\infty)$ such that under $\mathbb P_x$ X is the standard random walk started at x. For notational simplicity, we often write $\mathbb P$ for $\mathbb P_0$. Our aim is to establish that for several types of positive, adapted functionals $G:\mathbb N\times\Omega\to\mathbb N$,

i) for each $n \ge 0$ and each $\Lambda_n \in \mathcal{F}_n$,

$$\frac{\mathbb{E}_0[\mathbb{1}_{\Lambda_n}G_p]}{\mathbb{E}_0[G_p]},$$

tends to a limit when p tends to infinity;

ii) this limit is equal to $\mathbb{E}_0[\mathbb{1}_{\Lambda_n}M_n]$, for some \mathcal{F} -martingale M such that $M_0=1.$

Call $Q(\Lambda_n)$ this limit. Assuming i) and ii), Q is a probability on each σ -field \mathcal{F}_n ; it extends in a unique way to a probability (still called Q) on the σ -field \mathcal{F}_{∞} . This can be seen either by applying Kolmogorov's theorem on projective limits (knowing Q on the \mathcal{F}_n amounts to knowing the finite marginal laws of the process X), or directly, since every finitely additive probability on the Boolean algebra $\mathcal{A} = \bigcup_n \mathcal{F}_n$ extends to a σ -additive probability on \mathcal{F}_{∞} (a Cantorian diagonal argument shows that every decreasing sequence (A_k) in \mathcal{A} with limit $\bigcap_k A_k = \emptyset$ is stationary; hence every finitely additive probability on \mathcal{A} is σ -additive on \mathcal{A}). In short, Q is the unique probability on $(\Omega, \mathcal{F}_{\infty})$ such that

$$\forall n \in \mathbb{N} \quad \forall \Lambda_n \in \mathcal{F}_n \qquad Q(\Lambda_n) = \mathbb{E}_0 \left[\mathbb{1}_{\Lambda_n} M_n \right].$$

We will also study the process X under Q.

1) In the first section, G is a function of the one-sided maximum, i.e.,

$$G_p = \varphi\left(S_p\right)$$

where $S_p = \sup \{X_k, k \leq p\}$ and where φ is a function from \mathbb{N} to \mathbb{R}^+ satisfying

$$\sum_{k=0}^{\infty} \varphi(k) = 1$$

We will also need the function $\Phi : \mathbb{N} \longrightarrow \mathbb{R}^+$ given by

$$\Phi(k) := \sum_{j=k}^{\infty} \varphi(j).$$

The results of Section 1 are summarized in the following statement:

Theorem 1. 1. a) For each $n \ge 0$ and each $\Lambda_n \in \mathcal{F}_n$, one has

$$\lim_{p\to\infty}\frac{\mathbb{E}[\mathbb{1}_{A_n}\varphi(S_p)]}{\mathbb{E}[\varphi(S_p)]}=\mathbb{E}[\mathbb{1}_{A_n}M_n^{\varphi}],$$

where $M_n^{\varphi} := \varphi(S_n)(S_n - X_n) + \Phi(S_n)$.

- b) $(M_n^{\varphi}, n \geqslant 0)$ is a positive martingale, with $M_0^{\varphi} = 1$, non uniformly integrable; in fact, M_n^{φ} tends a.s. to 0 when $n \to \infty$.
- 2. Call Q^{φ} the probability on $(\Omega, \mathcal{F}_{\infty})$ characterized by

$$\forall n \in \mathbb{N}, \Lambda_n \in \mathcal{F}_n, \quad Q^{\varphi}(\Lambda_n) = \mathbb{E}[\mathbb{1}_{\Lambda_n} M_n^{\varphi}].$$

Then

a) S_{∞} is finite Q^{φ} -a.s. and satisfies for every $k \in \mathbb{N}$:

$$Q^{\varphi}(S_{\infty} = k) = \varphi(k). \tag{1}$$

- b) Under Q^{φ} , the r.v. $T_{\infty} := \inf\{n \geqslant 0, X_n = S_{\infty}\}$ (which is not a stopping time in general) is a.s. finite and
 - i. $(X_{n \wedge T_{\infty}}, n \ge 0)$ and $(S_{\infty} X_{T_{\infty}+n}, n \ge 0)$ are two independent processes;
 - ii. conditional on the r.v. S_{∞} , the process $(X_{n \wedge T_{\infty}}, n \geq 0)$ is a standard random walk stopped when it first hits the level S_{∞} ;
 - iii. $(S_{\infty} X_{T_{\infty}+n}, n \ge 0)$ is a 3-Bessel walk started from 0.
- 3. Put $R_n = 2S_n X_n$. Under Q^{φ} , $(R_n, n \ge 0)$ is a 3-Bessel walk independent of S_{∞} .

The proofs of the second and third parts of this theorem rest largely upon a theorem due to Pitman (cf. [Pit75]) and on the study of the large p asymptotics of $\mathbb{P}(\Lambda_n|S_p=k)$ for $\Lambda_n \in \mathcal{F}_n$.

We must now explain the precise meaning of the '3-Bessel walk' mentioned in the theorem and further in this article. In fact, two processes, which we call the 3-Bessel walk and the 3-Bessel* walk, will play a role in this work; they are identical up to a one-step space shift.

The 3-Bessel walk is the Markov chain $(R_n, n \ge 0)$, with values in $\mathbb{N} = \{0, 1, 2, \ldots\}$, whose transition probabilities from $x \ge 0$ are given by

$$\pi(x, x+1) = \frac{x+2}{2x+2}; \qquad \pi(x, x-1) = \frac{x}{2x+2}.$$
 (2)

The 3-Bessel* walk is the Markov chain $(R_n^*, n \ge 0)$, valued in $\mathbb{N}^* = \{1, 2, \ldots\}$, such that $R^* - 1$ is a 3-Bessel walk. So its transition probabilities from $x \ge 1$ are

$$\pi^*(x, x+1) = \frac{x+1}{2x}; \qquad \pi^*(x, x-1) = \frac{x-1}{2x}.$$

2) In the second section, the functional G_p will be a function of the local time at 0 of the random walk. The local time is the process $(L_n, n \ge 0)$ such that L_n is the number of times that X was null *strictly* before time n. In other words,

$$L_n = \sum_{m \ge 0} \mathbb{1}_{m < n} \mathbb{1}_{X_m = 0}.$$

Observe that L_n is also the sum of the number of up-crossings from 0 to 1 and of the number of down-crossings from 0 to -1, up to time n. Given two functions h^+ and h^- from \mathbb{N}^* to \mathbb{R}^+ such that

$$\frac{1}{2} \sum_{k=1}^{\infty} (h^{+}(k) + h^{-}(k)) = 1,$$

we consider the penalisation functional

$$G_p := h^+(L_p) \, \mathbb{1}_{X_p > 0} + h^-(L_p) \, \mathbb{1}_{X_p < 0}.$$

Putting

$$\Theta(x) = \frac{1}{2} \sum_{k=x+1}^{\infty} (h^{+}(k) + h^{-}(k)),$$

we obtain the following penalisation theorem.

Theorem 2. 1. a) For each $n \ge 0$ and each $\Lambda_n \in \mathcal{F}_n$, one has

$$\lim_{p \to \infty} \frac{\mathbb{E}[\mathbb{1}_{\Lambda_n} G_p]}{\mathbb{E}[G_p]} = \mathbb{E}[\mathbb{1}_{\Lambda_n} M_n^{h^+, h^-}], \tag{3}$$

where
$$M_n^{h^+,h^-} := X_n^+ h^+(L_n) + X_n^- h^-(L_n) + \Theta(L_n)$$
.

- b) $M_n^{h^+,h^-}$ is a positive, non uniformly integrable martingale; indeed, it tends to 0 when n tends to infinity.
- 2. Call Q^{h^+,h^-} the probability on \mathcal{F}_{∞} whose restriction to \mathcal{F}_n is given by

$$\forall \Lambda_n \in \mathcal{F}_n, \qquad Q^{h^+,h^-}(\Lambda_n) = \mathbb{E}[\mathbb{1}_{\Lambda_n} M_n^{h^+,h^-}].$$

This Q^{h^+,h^-} has the following properties:

a) L_{∞} is Q^{h^+,h^-} -a.s. finite and satisfies

$$\forall k \in \mathbb{N}^*, \quad Q^{h^+,h^-} (L_{\infty} = k) = \frac{1}{2} (h^+(k) + h^-(k)).$$

- b) The r.v. $g := \sup\{n \ge 0, X_n = 0\}$ is Q^{h^+,h^-} -a.s. finite and, under Q^{h^+,h^-} ,
 - i. The processes $(X_{q+u}, u \ge 0)$ and $(X_{u \land q}, u \ge 0)$ are independent.
 - ii. With probability $\frac{1}{2}\sum_{k=1}^{\infty}h^+(k)$, the process $(X_{g+u}, u \geqslant 1)$ is a 3-Bessel* walk started from 1. With probability $\frac{1}{2}\sum_{k=1}^{\infty}h^-(k)$, the process $(-X_{g+u}, u \geqslant 1)$ is a 3-Bessel* walk started from 1.
 - iii. Conditional on $L_{\infty} = l$, the process $(X_{u \wedge g}, u \geq 0)$ is a standard random walk stopped at its l-th passage at 0.

Our unusual choice for the definition of the local time at 0 will be helpful when proving the first point. The second part of the proof of this theorem rests essentially on an article by Le Gall (cf [LeG85]) which enables us to assess, under specific conditions, that a 3-Bessel* walk for \mathbb{P} is is still a 3-Bessel* walk for \mathbb{Q}^{h^+,h^-} .

3) In the third part, the penalisation functional G_p will be a function of the longest excursion completed until time p. Set $g_n := \sup\{k \leq n, X_k = 0\}$, $d_n := \inf\{k \geq n, X_k = 0\}$, and $\Sigma_n := \sup\{d_k - g_k, d_k \leq n\}$; for $n \geq 0$, Σ_n is the duration of the longest excursion completed until time n.

Fix an even integer $x \ge 0$, and consider the penalisation functional

$$G_p := \mathbb{1}_{\Sigma_p \leqslant x}.$$

To study penalisation by this G, we must also introduce $A_n := n - g_n$, which is the age of the current excursion, and $A_n^* := \sup_{k \leq n} A_k$, which is the longest duration of a (complete or incomplete) excursion until n. We also call $\tau = \inf\{n > 0, X_n = 0\}$ the first return time to 0, and we put

$$\theta(x) := \mathbb{E}_0 \big[|X_x| \mid \tau > x \big].$$

Theorem 3. 1. a) For each $n \ge 0$ and each $\Lambda_n \in \mathcal{F}_n$:

$$\lim_{p \to \infty} \frac{\mathbb{E}_0[\mathbb{1}_{\Lambda_n} \mathbb{1}_{\Sigma_p \leqslant x}]}{\mathbb{P}_0[\Sigma_p \leqslant x]} = \mathbb{E}_0[\mathbb{1}_{\Lambda_n} M_n],\tag{4}$$

where

$$M_n := \left\{ \frac{|X_n|}{\theta(x)} + \tilde{\mathbb{P}}_{X_n} \left(\tilde{T}_0 \leqslant x - A_n \right) \mathbb{1}_{A_n \leqslant x} \right\} \mathbb{1}_{\Sigma_n \leqslant x}.$$

(In this expression and in similar ones, the meaning of $\tilde{\mathbb{P}}$ and \tilde{T}_0 is to be interpreted as follows: $\tilde{\mathbb{P}}_{X_n}(\tilde{T}_0 \leqslant x - A_n)$ stands for $f(X_n, x - A_n)$, with $f(y, z) = \mathbb{P}_y(T_0 \leqslant z)$.)

- b) Moreover, $(M_n, n \ge 0)$ is a positive martingale, non uniformly integrable; indeed, $\lim_{n\to\infty} M_n = 0$ \mathbb{P} -a.s.
- 2. Call Q^x the probability on \mathcal{F}_{∞} whose restriction to \mathcal{F}_n is defined by

$$\forall \Lambda_n \in \mathcal{F}_n, \qquad Q^x \left(\Lambda_n \right) = \mathbb{E} \left[\mathbb{1}_{\Lambda_n} M_n \right].$$

Under Q^x , one has:

a) $\Sigma_{\infty} \leqslant x$ a.s. and satisfies for all $y \leqslant x$:

$$Q^{x} (\Sigma_{\infty} > y) = 1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > y)}.$$

- b) $A_{\infty}^* = \infty$ a.s.
- c) The r.v. $g := \sup\{n \ge 0, X_n = 0\}$ is a.s. finite. Moreover, if p = 2l or 2l + 1 with $l \ge 0$,

$$Q^{x}\left(g>p\right)=\left(\frac{1}{2}\right)^{l}\sum_{k=0}^{l\wedge\frac{x}{2}}C_{2l-2k}^{l-k}C_{2k}^{k}\left(1-\frac{\mathbb{P}\left(\tau>x\right)}{\mathbb{P}\left(\tau>2k\right)}\right).$$

- d) For y such that $0 \le y \le x$,
 - i. $(A_n, n \leq T_y^A)$ has the same law under \mathbb{P} and Q^x .
 - ii. $(A_n, n \leqslant T_y^A)$ and $X_{T_y^A}$ are independent under \mathbb{P} and under Q^x .
 - iii. Under Q^x , the law of $X_{T_y^A}$ is given by

$$Q^{x}(X_{T_{y}^{A}}=k) = \left\{\frac{|k|}{\theta(x)} + \mathbb{P}_{k}(T_{0} \leqslant x-y)\right\} \mathbb{P}(X_{y}=k \mid \tau > y).$$

iv.

$$Q^{x}(g > T_{y}^{A}) = 1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > y)}.$$

v. Under Q^x , $(A_n, n \leq T_y^A)$ is independent of $\{g > T_y^A\}$.

- 3. Under Q^x ,
 - a) The processes $(X_{n \wedge q}, n \ge 0)$ and $(X_{q+n}, n \ge 0)$ are independent.
 - b) With probability $\frac{1}{2}$, the process $(X_{g+n}, n \ge 0)$ is a 3-Bessel* walk and with probability $\frac{1}{2}$, the process $(-X_{g+n}, n \ge 0)$ is a 3-Bessel* walk.
 - c) Conditional on $L_{\infty} = l$, the process $(X_{n \wedge g}, n \geq 0)$ is a standard random walk stopped at its l-th return time to 0 and conditioned by $\{\Sigma_{\tau_l} \leq x\}$, where τ_l is the l-th return time to 0.

The proof of the first point of this theorem rests largely on a Tauberian theorem (cf [Fel50]) which gives the large p asymptotics of $\mathbb{P}(\Sigma_p \leq x)$. And the study of the process X under Q^x rests on arguments similar to those used in the proof of Theorem 2.

2 Principle of Penalisation

Penalisation can intuitively be interpreted as a generalisation of conditioning by a null event.

Consider the event $A_{\infty} := \{S_{\infty} \leq a\}$, where $a \in \mathbb{N}$. By recurrence of the standard walk, A_{∞} is a \mathbb{P} -null event. One way of conditioning by A_{∞} , which involves the filtration (\mathcal{F}_n) , is to consider the sequence of events $A_p := \{S_p \leq a\}$ and to study the limit

$$\lim_{p \to \infty} \frac{\mathbb{E}\left[\mathbb{1}_{\Lambda_n \cap \{S_p \leqslant a\}}\right]}{\mathbb{E}\left[\mathbb{1}_{\{S_p \leqslant a\}}\right]},\tag{5}$$

for each $n \in \mathbb{N}$ and each $\Lambda_n \in \mathcal{F}_n$.

Simple arguments show that the limit in (5) exists and equals

$$\mathbb{E}\Big[\mathbbm{1}_{\{\Lambda_n,\,S_n\leqslant a\}}\,\frac{a+1-X_n}{a+1}\Big].$$

Put $M_n := \mathbb{1}_{\{S_n \leq a\}} \frac{a+1-X_n}{a+1}$. The process M is the martingale $\frac{a+1-X}{a+1}$ stopped when S first hits a+1; so it is a positive \mathbb{P}_0 -martingale. Since $M_0=1$ and $M_{\infty}=0$ a.s., M is not uniformly integrable. But a probability $Q_{(n)}$ can be defined on \mathcal{F}_n by

$$\frac{dQ_{(n)}}{d\mathbb{P}_{|\mathcal{F}_n}} = M_n;$$

moreover, for m < n, $Q_{(m)}$ and $Q_{(n)}$ agree on \mathcal{F}_m . By Kolmogorov's existence theorem (cf [Bil] pp. 430-435), there exists a probability Q on $(\Omega, \mathcal{F}_{\infty})$ whose restriction to each \mathcal{F}_n is the corresponding $Q_{(n)}$; in other words, Q is characterized by

$$Q\left(\Lambda_{n}\right) := \mathbb{E}\left[\mathbb{1}_{\left\{\Lambda_{n}, S_{n} \leqslant a\right\}} \frac{a+1-X_{n}}{a+1}\right]$$

for all $n \in \mathbb{N}$ and $\Lambda_n \in \mathcal{F}_n$.

When studying the behavior of $(X_n, n \ge 0)$ under the new probability Q, one obtains that S_{∞} is a.s. finite and uniformly distributed on [0, a]. A more detailed study shows that:

- $(X_{n \wedge T_{\infty}}, n \ge 0)$ and $(S_{\infty} X_{T_{\infty} + n}, n \ge 0)$ are two independent processes.
- Conditional on $\{S_{\infty} = k\}$, $(X_{n \wedge T_{\infty}}, n \geq 0)$ is a standard random walk stopped when it reaches the value k.
- $(S_{\infty} X_{T_{\infty}+n}, n \ge 0)$ is a 3-Bessel walk started from 0, independent from (S_{∞}, T_{∞}) .

This raises several natural questions: What happens when $\mathbb{1}_{\{S_n \leq a\}}$ is replaced with a more complicated function of the supremum? In that case, what does the limit (5) become? Can one still define a probability Q, and how is the behavior of $(X_n, n \geq 0)$ under Q influenced by this modification?

This simple idea of replacing the indicator by a more complex function is the essence of penalisation. All this is evidently not limited to the case of the one-sided maximum, but extends to many other increasing, adapted functionals tending \mathbb{P} -a.s. to $+\infty$. There exist various examples of penalisation, and also a general principle (cf [Deb07]) but this article is only devoted to three examples of penalisation functionals: the one-sided maximum, the local time at 0 and the maximal duration of the completed excursions.

3 Penalisation by a Function of the One-sided Maximum: Proof of Theorem 1

1) We start by recalling a few facts. The next result is classical (cf. [Fel50] p. 75):

Lemma 1. For $k \in \mathbb{Z}$ and $n \in \mathbb{N}$,

$$\mathbb{P}_0(X_n = k) = \left(\frac{1}{2}\right)^n C_n^{\frac{n+k}{2}}.$$

Remark 1. In the sequel, we put

$$p_{n,k} := \mathbb{P}_0(X_n = k);$$

observe that $p_{n,k} \neq 0$ if and only if n and k have the same parity and $|k| \leq n$.

Lemma 2. For k in \mathbb{Z} and n and r in \mathbb{N} , one has

$$\mathbb{P}_0(X_n = k, \ S_n \geqslant r) = \begin{cases} \mathbb{P}(X_n = k) & \text{if } k > r; \\ \mathbb{P}(X_n = 2r - k) & \text{if } k \leqslant r. \end{cases}$$
 (6)

Proof. This formula is trivial when k > r; when $k \le r$, it is Désiré André's well-known reflection principle (see for instance [Fel50] p. 72 and pp. 88-89). \square

From Lemma 2 and Remark 1, one easily derives the law of S:

Lemma 3. For n and r in \mathbb{N} , one has

$$\mathbb{P}_0(S_n = r) = p_{n,r} + p_{n,r+1} = p_{n,r} \lor p_{n,r+1}. \tag{7}$$

Proof. Summing (6) over all $k \in \mathbb{Z}$ gives

$$\mathbb{P}(S_n \geqslant r) = \sum_{k > r} \mathbb{P}(X_n = k) + \sum_{k \leqslant r} \mathbb{P}(X_n = 2r - k) = \mathbb{P}(X_n > r) + \mathbb{P}(X_n \geqslant r).$$

Consequently,

$$\mathbb{P}(S_n = r) = \mathbb{P}(S_n \geqslant r) - \mathbb{P}(S_n \geqslant r+1) = \mathbb{P}(X_n = r+1) + \mathbb{P}(X_n = r),$$

and (7) follows by definition of $p_{n,k}$ and by Remark 1.

2) We start showing point 1 of Theorem 1.

Lemma 4. For each $k \ge 0$, the ratio

$$\frac{\mathbb{P}(S_n = k)}{\mathbb{P}(S_n = 0)}$$

is majorized by 1 for all $n \ge 0$ and tends to 1 when $n \to +\infty$.

Proof. The denominator is minorated by $\mathbb{P}(X_1 = \ldots = X_n = -1) = 2^{-n}$; so it does not vanish. Observe that, for even n and even $k \ge 2$,

$$\frac{\mathbb{P}(S_n = k - 1)}{\mathbb{P}(S_n = 0)} = \frac{\mathbb{P}(S_n = k)}{\mathbb{P}(S_n = 0)} = \frac{p_{n,k}}{p_{n,0}} = \left(\frac{n - k + 2}{n + 2}\right) \left(\frac{n - k + 4}{n + 4}\right) \cdots \left(\frac{n}{n + k}\right);$$

and for odd n and odd $k \ge 1$,

$$\frac{\mathbb{P}(S_n = k - 1)}{\mathbb{P}(S_n = 0)} = \frac{\mathbb{P}(S_n = k)}{\mathbb{P}(S_n = 0)} = \frac{p_{n,k}}{p_{n,1}} = \left(\frac{n - k + 2}{n + 1}\right) \left(\frac{n - k + 4}{n + 3}\right) \cdots \left(\frac{n + 1}{n + k}\right).$$

Clearly, these products are smaller than 1 and tend to 1 when n goes to infinity.

Lemma 5. For all $x \in \mathbb{N}$ and $y \in \mathbb{Z}$ such that $y \leqslant x$, the ratio

$$\frac{\mathbb{E}\left[\varphi(x\vee(y+S_n))\right]}{\mathbb{P}(S_n=0)}$$

is majorized for all $n \in \mathbb{N}$ by $(x-y)\varphi(x)+\Phi(x)$ and tends to $(x-y)\varphi(x)+\Phi(x)$ when n tends to infinity.

Proof. Write

$$\begin{split} \frac{\mathbb{E}\big[\varphi\big(x\vee(y+S_n)\big)\big]}{\mathbb{P}(S_n=0)} &= \varphi(x) \ \frac{\mathbb{P}(y+S_n < x)}{\mathbb{P}(S_n=0)} + \sum_{k\geqslant x} \varphi(k) \ \frac{\mathbb{P}(y+S_n=k)}{\mathbb{P}(S_n=0)} \\ &= \varphi(x) \sum_{k< x-y} \frac{\mathbb{P}(S_n=k)}{\mathbb{P}(S_n=0)} + \sum_{k\geqslant x} \varphi(k) \ \frac{\mathbb{P}(S_n=k-y)}{\mathbb{P}(S_n=0)}. \end{split}$$

By Lemma 4, this sum is majorized by $(x-y)\varphi(x) + \sum_{k\geqslant x} \varphi(k)$ and tends to this value by dominated convergence.

To establish point 1 of Theorem 1, observe first that

$$M_n^{\varphi} = \varphi(S_n)(S_n - X_n) + \Phi(S_n)$$

is a positive martingale. Positivity is obvious: φ , Φ , and S-X are positive. To see that M^{φ} is a martingale, consider $M_{n+1}^{\varphi}-M_n^{\varphi}$.

If $S_{n+1} = S_n$, the only thing that varies in the expression of M^{φ} when n is changed to n+1 is X; so, in that case,

$$M_{n+1}^{\varphi} - M_n^{\varphi} = -\varphi(S_n)(X_{n+1} - X_n).$$

On the other hand, if $S_{n+1} \neq S_n$, one has $S_{n+1} = S_n + 1$ because each step of S is 0 or 1; one also has $X_{n+1} = S_{n+1}$ because S can increase only when pushed up by X, and $X_n = S_n$ because X_n must simultaneously be $\leq S_n$ and at distance 1 from X_{n+1} . So $S_{n+1} - X_{n+1} = S_n - X_n = 0$, giving

$$M_{n+1}^{\varphi} - M_n^{\varphi} = \Phi(S_{n+1}) - \Phi(S_n) = \Phi(S_n + 1) - \Phi(S_n)$$

= $-\varphi(S_n) = -\varphi(S_n)(X_{n+1} - X_n).$

All in all, the equality $M_{n+1}^{\varphi} - M_n^{\varphi} = -\varphi(S_n)(X_{n+1} - X_n)$ holds everywhere; this entails that M^{φ} is a martingale, verifying

$$|M_n^{\varphi} - M_0^{\varphi}| \leqslant n; \tag{8}$$

and since $M_0^{\varphi} = \Phi(0) = 1$, one has $\mathbb{E}[M_n^{\varphi}] = 1$.

We now proceed to prove 1.a of Theorem 1. For $0 \le n \le p$, one can write $S_p = S_n \lor (X_n + \widetilde{S}_{p-n})$, where \widetilde{S} is the maximal process of the standard random walk $(X_{n+k} - X_n)_{k \ge 0}$, which is independent from \mathcal{F}_n . Hence

$$\mathbb{E}[\varphi(S_p) \mid \mathcal{F}_n] = \widetilde{\mathbb{E}}[\varphi(S_n \vee (X_n + \widetilde{S}_{p-n}))],$$

where $\widetilde{\mathbb{E}}$ integrates over \widetilde{S}_{p-n} only, S_n and X_n being kept fixed. So, for $\Lambda_n \in \mathcal{F}_n$,

$$\frac{\mathbb{E}[\mathbb{1}_{A_n}\,\varphi(S_p)]}{\mathbb{P}(S_{p-n}=0)} = \mathbb{E}\Big[\mathbb{1}_{A_n}\,\,\frac{\widetilde{\mathbb{E}}\big[\varphi\big(S_n\vee(X_n+\widetilde{S}_{p-n})\big)\big]}{\widetilde{\mathbb{P}}(\widetilde{S}_{p-n}=0)}\Big].$$

When p tends to infinity, Lemma 5 says that the ratio in the right-hand side tends to M_n^{φ} and is dominated by M_n^{φ} , which is integrable by (8). Consequently,

$$\frac{\mathbb{E}[\mathbbm{1}_{A_n}\,\varphi(S_p)]}{\mathbb{P}(S_{p-n}=0)} \quad \begin{cases} \text{is majorated by } \mathbb{E}[\mathbbm{1}_{A_n}\,M_n^\varphi] \text{ for all } p\geqslant n\\ \text{and tends to } \mathbb{E}[\mathbbm{1}_{A_n}\,M_n^\varphi] \text{ when } p\to\infty. \end{cases}$$

Taking in particular $\Lambda_n = \Omega$, one also has

$$\frac{\mathbb{E}[\varphi(S_p)]}{\mathbb{P}(S_{p-n}=0)} \to \mathbb{E}[M_n^{\varphi}] = 1 \quad \text{when } p \to \infty,$$

and to establish 1.a of Theorem 1, it suffices to take the ratio of these two limits.

Half of 1.b is already proven: we have seen above that M^{φ} is a positive martingale, with $M_0^{\varphi} = 1$. The proof that $M_n^{\varphi} \to 0$ a.s. is postponed; we first establish 2.a.

The set-function Q^{φ} defined on the Boolean algebra $\bigcup_n \mathcal{F}_n$ by $Q^{\varphi}(\Lambda_n) = \mathbb{E}[\mathbb{1}_{\Lambda_n} M_n^{\varphi}]$ if $\Lambda_n \in \mathcal{F}_n$, is a probability on each σ -field \mathcal{F}_n . As recalled in the introduction, Q^{φ} automatically extends to a probability (still called Q^{φ}) on the σ -field \mathcal{F}_{∞} .

For k and n in \mathbb{N} , the event $\{S_n \geq k\}$ is equal to $\{T_k \leq n\}$, where $T_k = \inf\{m: X_m \geq k\} = \inf\{m: S_m \geq k\}$. Now, by Doob's stopping theorem,

$$\begin{split} Q^{\varphi}(S_n \geqslant k) &= Q^{\varphi}(T_k \leqslant n) = \mathbb{E}[\mathbb{1}_{T_k \leqslant n} M_n^{\varphi}] \\ &= \mathbb{E}[\mathbb{1}_{T_k \leqslant n} M_{n \wedge T_k}^{\varphi}] = \mathbb{E}[\mathbb{1}_{T_k \leqslant n} M_{T_k}^{\varphi}]. \end{split}$$

But \mathbb{P}_0 -a.s., $X_{T_k} = S_{T_k} = k$ and $M_{T_k}^{\varphi} = \Phi(k)$; wherefrom

$$Q^{\varphi}(S_n \geqslant k) = \Phi(k) \mathbb{P}(S_n \geqslant k).$$

Fixing k, let now n tend to infinity. The events $\{S_n \ge k\}$ form an increasing sequence, with limit $\{S_\infty \ge k\}$; hence

$$Q^{\varphi}(S_{\infty} \geqslant k) = \Phi(k) \mathbb{P}(S_{\infty} \geqslant k) = \Phi(k).$$

This implies that S_{∞} is Q^{φ} -a.s. finite, with

$$Q^{\varphi}(S_{\infty} = k) = \Phi(k) - \Phi(k+1) = \varphi(k);$$

so 2.a is established.

This also implies that the \mathbb{P} -a.s. limit M^{φ}_{∞} of M^{φ} is null, by the following argument. Using Fatou's lemma, one writes

$$\begin{split} \mathbb{E}[\mathbb{1}_{S_{\infty}\geqslant k}\,M_{\infty}^{\varphi}] &= \mathbb{E}\big[\lim_{n}(\mathbb{1}_{S_{n}\geqslant k}\,M_{n}^{\varphi})\big] \\ &\leqslant \liminf_{n} \mathbb{E}[\mathbb{1}_{S_{n}\geqslant k}\,M_{n}^{\varphi}] \\ &= \liminf_{n} Q^{\varphi}(S_{n}\geqslant k) = Q^{\varphi}(S_{\infty}\geqslant k) = \varPhi(k); \end{split}$$

then, by dominated convergence, one has

$$\mathbb{E}[\mathbb{1}_{S_{\infty}=\infty} M_{\infty}^{\varphi}] = \mathbb{E}\left[\lim_{k} (\mathbb{1}_{S_{\infty}\geqslant k} M_{\infty}^{\varphi})\right] = \lim_{k} \mathbb{E}[\mathbb{1}_{S_{\infty}\geqslant k} M_{\infty}^{\varphi}] \leqslant \lim_{k} \Phi(k) = 0,$$

and $\mathbb{P}(S_{\infty} = \infty) = 1$ now implies $\mathbb{E}[M_{\infty}^{\varphi}] = 0$. Point 1.b is proven.

3) Here are now a few facts on 3-Bessel walks, which will play an important role in the rest of the proof of Theorem 1.

Proposition 1. Let $(R_n, n \ge 0)$ be a 3-Bessel walk; put $J_n = \inf_{m \ge n} R_m$.

- 1. Conditional on \mathcal{F}_n^R , the law of J_n is uniform on $\{0, 1, \dots, R_n\}$.
- 2. Suppose now $R_0 = 0$ (therefore $J_0 = 0$ too).
 - a) The process $(Z_n, n \ge 0)$ defined by $Z_n = 2J_n R_n$ is a standard random walk, and its natural filtration \mathcal{Z} is also the natural filtration of the 2-dimensional process (R, J).
 - b) If T is a stopping time for \mathcal{Z} such that $R_T = J_T$, then the process $(R_{T+n} R_T, n \ge 0)$ is a 3-Bessel walk started from 0 and independent of \mathcal{Z}_T .

Proof. 1. By the Markov property, it suffices to show that if $R_0 = k$, the r.v. J_0 is uniformly distributed on $\{0, \ldots, k\}$. The function f(x) = 1/(1+x) defined for $x \ge 0$ is bounded and verifies for $x \ge 1$

$$f(x) = \pi(x, x - 1) f(x - 1) + \pi(x, x + 1) f(x + 1),$$

where π is the transition kernel of the 3-Bessel walk, given by (2). Thus f is π -harmonic except at x=0, and $f(R_{n\wedge\sigma_0})$ is a bounded martingale, where σ_x denotes the hitting time of x by R. (This result is due to [LeG85] p. 449.) For $0 \leq a \leq k$, by stopping, $\mu_n^a = f(R_{n\wedge\sigma_a})$ is also a bounded martingale. A Borel-Cantelli argument shows that the paths of R are a.s. unbounded; hence $\lim\inf_{n\to\infty}f(R_n)=0$ and $\mu_\infty^a=f(a)\,\mathbbm{1}_{J_0\leqslant a}$. The martingale equality $f(a)\,\mathbb{P}(J_0\leqslant a)=\mathbb{E}[\mu_\infty^a]=\mathbb{E}[\mu_0^a]=f(k)$ yields $\mathbb{P}(J_0\leqslant a)=(a+1)/(k+1)$, so the law of J_0 is uniform on $\{0,\ldots,k\}$.

Part 2 of Proposition 1 depends only on the law of the process R, so we need not prove it for all 3-Bessel walks started at 0, it suffices to prove it for some particular 3-Bessel walk started at 0. Given a standard random walk Z' with $Z'_0 = 0$ and its past maximum $S'_n = \sup_{m \leq n} Z'_m$, Pitman's theorem [Pit75] says that the process R = 2S' - Z' is a 3-Bessel walk started from 0, with future minimum $J_n = \inf_{m \geq n} R_m$ given by J = S'. We shall prove 2.a and 2.b for this particular 3-Bessel walk R.

The process Z = 2J - R is also equal to 2S' - R = Z', so it is a standard random walk. Both J = S' and R = 2S' - Z' are adapted to the filtration of Z; conversely, Z = 2J - R is adapted to the filtration generated by R and J. This proves 2.a.

To show 2.b, let T be \mathcal{Z} -stopping time such that $R_T = J_T$. One has

$$Z_T' = 2J_T - R_T = J_T = S_T'.$$

The process \widetilde{Z} defined by $\widetilde{Z}_n = Z'_{T+n} - Z'_T$ is a standard random walk independent of \mathcal{Z}_T , started from 0, with past maximum

$$\widetilde{S}_n = \sup_{m \le n} \widetilde{Z}_m = S'_{T+n} - Z'_T = S'_{T+n} - S'_T.$$

By Pitman's theorem, $\widetilde{R} = 2\widetilde{S} - \widetilde{Z}$ is a 3-Bessel walk, and it is independent of \mathcal{Z}_T because so is \widetilde{Z} . Now,

$$\widetilde{R}_n = 2\widetilde{S}_n - \widetilde{Z}_n = 2(S'_{T+n} - S'_T) - (Z'_{T+n} - Z'_T) = R_{T+n} - R_T;$$

thus 2.b holds and Proposition 1 is established.

4) The next step is the proof of point 3 in Theorem 1. We start with a small computation:

Lemma 6. Let a r.v. U be uniformly distributed on $\{0,..,r\}$. Then

$$\mathbb{E}[\varphi(U)(r-U) + \Phi(U)] = 1$$

Proof. It suffices to write

$$(r+1)\mathbb{E}[1-\Phi(U)] = \sum_{i=0}^{r} (1-\Phi(i)) = \sum_{i=0}^{r} \sum_{j=0}^{i-1} \varphi(j) = \sum_{j=0}^{r-1} \sum_{i=j+1}^{r} \varphi(j)$$
$$= \sum_{j=0}^{r-1} (r-j)\varphi(j) = (r+1)\mathbb{E}[(r-U)\varphi(U)]. \quad \Box$$

The next proposition proves the first half of point 3 in Theorem 1.

Proposition 2. Under Q^{φ} , the process $(R_n, n \ge 0)$ given by $R_n = 2S_n - X_n$ is a 3-Bessel started from 0.

Proof. According to Pitman's theorem [Pit75], under the probability \mathbb{P} , the process $(R_n, n \geq 0)$ is a 3-Bessel walk with future infimum $J_n = S_n$. Call \mathcal{R} the natural filtration of R. By Proposition 1.1, the conditional law of S_n given \mathcal{R}_n is uniform on $\{0, \ldots, R_n\}$; consequently Lemma 6 gives

$$\mathbb{E}[M_n^{\varphi}|\mathcal{R}_n] = \mathbb{E}[\varphi(S_n)(R_n - S_n) + \Phi(S_n) \mid \mathcal{R}_n] = 1.$$

Now, let f be any bounded function on \mathbb{N}^{n+1} . One has

$$\mathbb{E}^{Q^{\varphi}}[f(R_0,\ldots,R_n)] = \mathbb{E}[f(R_0,\ldots,R_n)M_n^{\varphi}]$$

= $\mathbb{E}[f(R_0,\ldots,R_n)\,\mathbb{E}[M_n^{\varphi}|\mathcal{R}_n]] = \mathbb{E}[f(R_0,\ldots,R_n)].$

As n and f were arbitrary, R has the same law under Q^{φ} as under \mathbb{P} , that is, Q^{φ} also makes R a 3-Bessel walk.

To finish proving point 3, it remains to establish that R is independent of S_{∞} under Q^{φ} . This will easily follow from the next lemma, which decomposes Q^{φ} as a sum of measures carried by the level sets of S_{∞} .

Lemma 7. Call $Q^{(k)}$ the probability Q^{φ} for $\varphi = \delta_k$, that is, $\varphi(k) = 1$ and $\varphi(x) = 0$ for $x \neq k$. Then $Q^{(k)}$ is supported by the event $\{S_{\infty} = k\}$, and, for a general φ and for all $\Lambda \in \mathcal{F}_{\infty}$ one has

$$Q^{\varphi}(\Lambda) = \sum_{k \geqslant 0} \varphi(k) \, Q^{(k)}(\Lambda);$$

$$Q^{\varphi}(\Lambda \mid S_{\infty} = k) = Q^{(k)}(\Lambda) \quad \text{for all k such that $\varphi(k) > 0$.}$$

Proof. For $\Lambda_n \in \mathcal{F}_n$, one can use formula (9) twice and write

$$Q^{\varphi}(\Lambda_n) = \lim_{p} \frac{\mathbb{E}[\mathbb{1}_{\Lambda_n} \varphi(S_p)]}{\mathbb{P}(S_{p-n} = 0)} = \lim_{p} \sum_{k} \varphi(k) \frac{\mathbb{P}(\Lambda_n \cap \{S_p = k\})}{\mathbb{P}(S_{p-n} = 0)}$$
$$= \sum_{k} \varphi(k) \lim_{p} \frac{\mathbb{P}(\Lambda_n \cap \{S_p = k\})}{\mathbb{P}(S_{p-n} = 0)} = \sum_{k} \varphi(k) Q^{(k)}(\Lambda_n),$$

where \lim and Σ commute by dominated convergence, owing to the majoration in (9). So the probabilities Q^{φ} and $\sum_{k} \varphi(k) Q^{(k)}$ coincide on $\bigcup_{n} \mathcal{F}_{n}$; therefore they also coincide on \mathcal{F}_{∞} .

Applying now equation (1) with $\varphi = \delta_k$ gives $Q^{(k)}(S_\infty = k) = 1$, that is, $Q^{(k)}$ is supported by $\{S_\infty = k\}$.

Consequently, for any $\Lambda \in \mathcal{F}_{\infty}$, one has $Q^{\varphi}(\Lambda \cap \{S_{\infty} = k\}) = \varphi(k) Q^{(k)}(\Lambda)$ because all other terms in the series vanish. Using (1) again, one may replace $\varphi(k)$ with $Q^{\varphi}(S_{\infty} = k)$; this proves $Q^{\varphi}(\Lambda \mid S_{\infty} = k) = Q^{(k)}(\Lambda)$ whenever $\varphi(k) > 0$.

The proof of independence in Theorem 1.3 is now a child's play: Proposition 2 says that the law of R under Q^{φ} is always the law of the 3-Bessel walk, whatever the choice of φ . We may in particular take $\varphi = \delta_k$, so it is also true under $Q^{(k)}$. Since $Q^{(k)}$ is also the conditioning of Q^{φ} by $\{S_{\infty} = k\}$, under Q^{φ} the law of R conditional on $\{S_{\infty} = k\}$ does not depend upon k, thus R is independent of S_{∞} .

5) So far, all of Theorem 1 has been established, except 2.b, to which the rest of the proof will be devoted. Finiteness of T_{∞} is due to X being integer-valued and its supremum S_{∞} being finite.

Put $U_n = X_{n \wedge T_{\infty}}$ and $V_n = S_{\infty} - X_{T_{\infty}+n}$. To prove 2.b.i and 2.b.iii we have to show that under Q^{φ} the process V is a 3-Bessel walk independent of the process U. Call ν the law of the 3-Bessel walk. For bounded functionals F and G, we must prove that

$$\mathbb{E}^{Q^{\varphi}}[F \circ U \ G \circ V] = \mathbb{E}^{Q^{\varphi}}[F \circ U] \ \int G(v) \ \nu(\mathrm{d}v).$$

Replacing now Q^{φ} by $\sum_{k} \varphi(k) Q^{(k)}$ (see Lemma 7), it suffices to show it when $\varphi = \delta_k$. Similarly, 2.b.ii only refers to a conditional law given S_{∞} ; by Lemma 7 again, we may replace Q^{φ} by $Q^{(k)}$. Finally, when proving 2.b, we may suppose $\varphi = \delta_k$ and $Q^{\varphi} = Q^{(k)}$ for a fixed $k \ge 0$. Hence the random time T_{∞} becomes the stopping time $T_k = \inf\{n \ge 0, X_n = k\}$, and it remains to show that

- $(X_{n \wedge T_k}, n \ge 0)$ is a standard random walk stopped when it first hits the level k:
- $(2k X_{T_k+n}, n \ge 0)$ is a 3-Bessel walk started at 0;
- These two processes are independent.

By point 3 of Theorem 1, we know that R = 2S - X is a 3-Bessel walk; and as we are now working under $Q^{(k)}$, we have $S_{\infty} = k$ a.s. Put $J_n = \inf_{m \ge n} R_m$.

We shall first show that the processes J and S are equal on the interval $[0, T_k]$. Given n, call τ the first time $p \ge n$ when $X_p = S_n$, and observe that on the event $\{T_k \ge n\}$, τ is finite because $X_n \le S_n \le k = X_{T_k}$. For all $m \ge n$, one has $R_m = S_m + (S_m - X_m) \ge S_n + 0$, with equality for $m = \tau$; thus $J_n = S_n$ on $\{\tau < \infty\}$ and a fortiori on $\{T_k \ge n\}$.

We shall now apply Proposition 1.2 to the 3-Bessel walk R = 2S - X and its future infimum J. Part 2.a of this proposition says that Z = 2J - R is a standard random walk. We just saw that J = S on the random time-interval $[0, T_k]$; consequently, on this interval, Z = 2S - R = X. And as T_k is the first time when X = k, it is also the first time when Z = k. This proves that $(X_{n \wedge T_k}, n \geq 0)$ is a standard random walk stopped at level k, and also that the Z-stopping time T_k satisfies $Z_{T_k} = \mathcal{F}_{T_k}$, where Z is the filtration of Z.

Remarking that $R_{T_k}=J_{T_k}=k$, part 2.b of proposition 1 can be applied to T_k ; it says that $(R_{T_k+n}-k,\ n\geqslant 0)$ is a 3-Bessel walk independent of \mathcal{F}_{T_k} , and hence also of the process $(X_{n\wedge T_k},\ n\geqslant 0)$. But $R_{T_k+n}=2S_{T_k+n}-X_{T_k+n}=2k-X_{T_k+n}$ since $S_{T_k}=k=S_{\infty}$; so this 3-Bessel walk is nothing but $(k-X_{T_k+n},\ n\geqslant 0)$. This concludes the proof of Theorem 1.

4 Penalisation by a Function of the Local Time: Proof of Theorem 2

Definition 1. Recall that the 3-Bessel* walk is the Markov chain $(R_n^*, n \ge 0)$, valued in $\mathbb{N}^* = \{1, 2, \ldots\}$, such that $R^* - 1$ is a 3-Bessel walk. So its transition probabilities from $x \ge 1$ are

$$\pi^*(x, x+1) = \frac{x+1}{2x}; \qquad \pi^*(x, x-1) = \frac{x-1}{2x}.$$

1) We now prove point 1 of Theorem 2. First, $(M_n^{h^+,h^-}, n \geqslant 0)$ is a positive martingale. Positivity is obvious from the definitions of h, h^- and Θ . To see that M^{h^+,h^-} is a martingale, we shall verify that the increment $M_{n+1}^{h^+,h^-} - M_n^{h^+,h^-}$ has the form $(X_{n+1} - X_n) K_n$, where K_n is \mathcal{F}_n -measurable and $|K_n| \leqslant 1$. There are three cases, depending on the value of X_n .

If $X_n > 0$, then $X_{n+1} \ge 0$, so $X_n^+ = X_n$, $X_{n+1}^+ = X_{n+1}$, and $L_{n+1} = L_n$. Consequently, in that case, $M_{n+1}^{h^+,h^-} - M_n^{h^+,h^-} = (X_{n+1} - X_n) h^+(L_n)$.

Similarly, if $X_n < 0$, one has $X_n^- = -X_n$, $X_{n+1}^- = -X_{n+1}$, $L_{n+1} = L_n$ and $M_{n+1}^{h^+,h^-} - M_n^{h^+,h^-} = -(X_{n+1} - X_n) h^-(L_n)$.

Last, if $X_n = 0$, then $L_{n+1} = L_n + 1$ and $X_{n+1} = \pm 1$. In that case,

$$M_{n+1}^{h^+,h^-} - M_n^{h^+,h^-} = \mathbb{1}_{\{X_{n+1}=1\}} h^+(L_n+1) + \mathbb{1}_{\{X_{n+1}=-1\}} h^-(L_n+1) + \Theta(L_n+1) - \Theta(L_n)$$

$$= h^{\operatorname{sgn}(X_{n+1}-X_n)}(L_n+1) - \frac{1}{2} (h^+(L_n+1) + h^-(L_n+1))$$

$$= (X_{n+1} - X_n) \frac{1}{2} (h^+(L_n+1) - h^-(L_n+1)).$$

This establishes the claim; consequently, M^{h^+,h^-} is a martingale which satisfies

$$|M_n^{h^+,h^-} - M_0^{h^+,h^-}| \leqslant n$$

and, as $M_0^{h^+,h^-} = 1$, one has $\mathbb{E}[M_n^{h^+,h^-}] = 1$.

To finish the proof of point 1 in Theorem 2, it remains to show formula (3). This will use the following lemma.

Lemma 8. For each integer k such that $0 < k < \lfloor \frac{n}{2} \rfloor$,

$$\frac{\mathbb{P}\left(L_n = k\right)}{\mathbb{P}\left(S_n = 0\right)}$$

is bounded above by 2 and tends to 1 when $n \to \infty$.

Remark 2. In the sequel, for $h: \mathbb{N} \to \mathbb{R}^+$ such that $\sum_{k=1}^\infty h(k) < \infty$, we put $M_n^{h,0} = X_n^+ h(L_n) + \Theta(L_n)$ for $n \geqslant 0$. When $\sum_{k=1}^\infty h(k) = 1$, this notation is consistent with the one used so far; in general, $M^{h,0}$ is a martingale too, for dividing it by the constant $\Theta(0) = \sum_{k=1}^\infty h(k)$ reduces it to the previous case.

Lemma 9. Let $h: \mathbb{N} \longrightarrow \mathbb{R}^+$ be such that $\sum_{k=1}^{\infty} h(k) < \infty$. For $a \ge 0$ and $x \in \mathbb{Z}$,

$$\frac{\mathbb{E}_x[h(L_n+a)\,\mathbb{1}_{X_n>0}]}{\mathbb{P}\left(S_n=0\right)}$$

is bounded above by $2(h(a)x^+ + \frac{1}{2}\sum_{k\geqslant a+1}h(k))$ and converges to $h(a)x^+ + \frac{1}{2}\sum_{k\geqslant a+1}h(k)$ when $n\to\infty$.

Proof of Lemma 8. Call $\gamma_n = |\{p \leq n, X_p = 0\}|$ the number of visits to 0 up to time n. Clearly, $\gamma_n = L_{n+1}$ and

$$\mathbb{P}(L_n = k) = \mathbb{P}(\gamma_{n-1} = k).$$

We shall study the law of γ_n . Define a sequence $(V_n, n \ge 0)$ by

$$\begin{cases} V_0 = 0 \\ V_{n+1} = \inf \{ k > 0, \ X_{V_n+k} = 0 \} \end{cases}$$

and put $(X_n^{(k)})_{n\geqslant 0}=(X_{V_k+n})_{n\geqslant 0}$ and $T_i^{(k)}=\inf\{n\geqslant 0,\ X_n^{(k)}=i\}.$ Owing to the symmetry of the random walk and the Markov property,

$$\forall i \geqslant 1$$
 $\mathbb{P}(V_i = k) = \mathbb{P}(T_1^{(i-1)} = k - 1).$

So $\forall i \geq 1, V_i \stackrel{\mathcal{L}}{=} T_1^{(i-1)} + 1$. Moreover, according to the strong Markov property, $(X_n^{(2)}, n \geq 0)$ is independent of \mathcal{F}_{V_1} and hence

$$V_1 + V_2 \stackrel{\mathcal{L}}{=} T_1^{(0)} + T_1^{(1)} + 2.$$

Wherefrom, by induction,

$$V_1 + V_2 + \dots + V_k \stackrel{\mathcal{L}}{=} T_1^{(0)} + T_1^{(1)} + \dots + T_1^{(k-1)} + k.$$

So

$$\begin{split} \mathbb{P}(\gamma_n = k) &= \mathbb{P}(V_1 + \ldots + V_{k-1} \leqslant n < V_1 + \ldots + V_k) \\ &= \mathbb{P}(T_1^{(0)} + T_1^{(1)} + \ldots + T_1^{(k-2)} + k - 1 \leqslant n < T_1^{(0)} + T_1^{(1)} + \ldots + T_1^{(k-1)} + k) \\ &= \mathbb{P}(T_{k-1} + k - 1 \leqslant n < T_k + k) = \mathbb{P}(S_{n-k+1} \geqslant k - 1, S_{n-k} < k) \\ &= \mathbb{P}(S_{n-k+1} = k - 1) + \mathbb{P}(T_k = n - k + 1). \end{split}$$

Taking inspiration from the proof of Lemma 4, it is easy to see that

$$\frac{\mathbb{P}(S_{n-k} = k - 1)}{\mathbb{P}(S_n = 0)}$$

is majorated by 1 and tends to 1 when n tends to infinity.

According to [Fel50] p. 89,

$$\mathbb{P}\left(T_r = n\right) = \frac{r}{n} C_n^{\frac{n+r}{2}} \left(\frac{1}{2}\right)^n.$$

Appealing again to the proof of Lemma 4, it is easy to show that

$$\frac{\mathbb{P}(T_k = n - k)}{\mathbb{P}(S_n = 0)}$$

is majorated by 1 and tends to 0 when n goes to infinity. The proof is over.

Remark 3. From the preceding result, one easily sees that

$$\frac{\mathbb{P}_x \left(L_n = k, X_n > 0 \right)}{\mathbb{P} \left(S_n = 0 \right)}$$

is majorated by 1 and tends to $\frac{1}{2}$ when $n \to \infty$.

Proof of Lemma 9. Start from

$$\mathbb{E}_x[h(L_n+a)\,\mathbb{1}_{X_n>0}] = \mathbb{E}_x[h(L_n+a)\mathbb{1}_{X_n>0}\,(\mathbb{1}_{T_0>n}+\mathbb{1}_{T_0\leqslant n})]$$

One has

$$h(L_n + a) \, \mathbb{1}_{X_n > 0} \mathbb{1}_{T_0 > n} = \begin{cases} 0 & \text{si } x \le 0 \\ h(a) \, \mathbb{1}_{T_0 > n} & \text{si } x > 0 \end{cases}$$

According to Lemma 4,

$$\frac{h(a)\,\mathbb{1}_{x>0}\mathbb{P}_x(T_0>n)}{\mathbb{P}(S_n=0)}$$

is majorated by $x^+h(a)$ and converges to $x^+h(a)$.

Write

$$\frac{\mathbb{E}_x[h(L_n+a)\,\mathbb{1}_{\{X_n>0,T_0\leqslant n\}}]}{\mathbb{P}(S_n=0)} = \sum_{k>1} \frac{\mathbb{P}_x\,(L_n=k,\;X_n>0)}{\mathbb{P}\,(S_n=0)}\;h(k+a)$$

By Lemma 8,this sum is majorated by $\sum_{k\geqslant 1}h(k+a)$ and converges to $\frac{1}{2}\sum_{k\geqslant 1}h(k+a)$ when $n\to\infty$.

We shall now prove point 1.a in Theorem 2. For each $0 \le n \le p$, one has $L_p = L_n + \tilde{L}_{p-n}$ where \tilde{L} is the local time at 0 of the standard random walk $(X_{n+k})_{k\geqslant 0}$ which, given X_n , is independent of \mathcal{F}_n . So

$$\mathbb{E}\left[h(L_p)\,\mathbb{1}_{X_p>0}\mid\mathcal{F}_n\,\right]=\tilde{\mathbb{E}}_{X_n}\left[h(L_n+\tilde{L}_{p-n})\,\mathbb{1}_{\tilde{X}_{p-n}>0}\right]$$

where $\tilde{\mathbb{E}}$ integrates only \tilde{L}_{p-n} and \tilde{X}_{p-n} and where L_n and X_n are fixed. Then, for all $\Lambda_n \in \mathcal{F}_n$,

$$\frac{\mathbb{E}[h(L_p) \, \mathbb{1}_{X_p > 0, \Lambda_n}]}{\mathbb{P}(S_{p-n} = 0)} = \mathbb{E}\left[\mathbb{1}_{\Lambda_n} \frac{\tilde{\mathbb{E}}_{X_n}[h(L_n + \tilde{L}_{p-n}) \, \mathbb{1}_{\tilde{X}_{p-n} > 0}]}{\mathbb{P}(S_{p-n} = 0)}\right]$$

When $p\to\infty$, Lemma 9 says that the ratio in the right-hand side tends to $M_n^{h,0}$ and is dominated by $2M_n^{h,0}$, which is integrable. Consequently, when $p\to\infty$,

$$\frac{\mathbb{E}[h(L_p)\,\mathbb{1}_{X_p>0,A_n}]}{\mathbb{P}\,(S_{p-n}=0)}\to\mathbb{E}[\mathbb{1}_{A_n}M_n^{h,0}],$$

and taking $\Lambda_n = \Omega$, one has

$$\frac{\mathbb{E}[h(L_p)\,\mathbb{1}_{X_p>0}]}{\mathbb{P}(S_{p-n}=0)}\to\mathbb{E}[M_n^{h,0}].$$

Taking the ratio of these two limits yields

$$\frac{\mathbb{E}[h(L_p)\,\mathbbm{1}_{X_p>0,A_n}]}{\mathbb{E}[h(L_p)\,\mathbbm{1}_{X_p>0}]} \to \frac{\mathbb{E}[A_nM_n^{h,0}]}{\mathbb{E}[M_n^{h,0}]}.$$

To finalize the proof of point 1.a, it now suffices to use the symmetry of the standard random walk and the fact that $\mathbb{E}[M_n^{h^+,h^-}] = 1$.

2) Let us now show point 2 in Theorem 2. Put $\tau_l = \inf\{k \ge 0, \gamma_k = l\}$. Then

$$Q^{h^+,h^-}(L_n \geqslant l) = Q^{h^+,h^-}(\tau_l \leqslant n-1)$$

= $\mathbb{E}[\mathbb{1}_{\tau_l \leqslant n-1} M_{\tau_l}^{h^+,h^-}] = \Theta(l-1) \mathbb{P}(\tau_l \leqslant n-1).$

For fixed l, the sequence of events $\{L_n \ge l\}$ is increasing and tends to $\{L_\infty \ge l\}$; so

$$Q^{h^+,h^-}(L_{\infty} \geqslant l) = \Theta(l-1)\mathbb{P}(\tau_l \leqslant \infty) = \Theta(l-1).$$

Hence L_{∞} is Q^{h^+,h^-} -a.s. finite, with

$$Q^{h^+,h^-}(L_{\infty} = l) = \Theta(l-1) - \Theta(l) = \frac{1}{2} (h^+(l) + h^-(l))$$

and 2.a is established.

To show that the \mathbb{P} -a.s. limit $M_{\infty}^{h^+,h^-}$ of M^{h^+,h^-} is null, it suffices to apply the same method as for M^{φ} , with L instead of S and M^{h^+,h^-} instead of M^{φ} .

The study of the process $(X_n, n \ge 0)$ under Q^{h^+,h^-} starts with the next three lemmas.

Lemma 10. Under \mathbb{P}_1 and conditional on the event $\{T_p < T_0\}$, the process $(X_n, 0 \le n \le T_p)$ is a 3-Bessel* walk started from 1 and stopped when it first hits the level p (cf. [LeG85]).

For typographical simplicity, call $T_{p,n} := \inf\{k > n, X_k = p\}$ the time of the first visit to p after n, and $\mathcal{H}_l := \{T_{p,\tau_l} < \tau_{l+1, X_{\tau_l+1}=1}\}$, the event that the l-th excursion is positive and reaches level p.

Lemma 11. Under the law Q^{h^+,h^-} and conditional on the event \mathcal{H}_l , the process $(X_{n+\tau_l}, 1 \leq n \leq T_{p,\tau_l} - \tau_l)$ is a 3-Bessel* walk started from 1 and stopped when it first hits the level p.

Lemma 12. Put $\Gamma^+ := \{X_{n+g} > 0, \forall n > 0\}$ and $\Gamma^- := \{X_{n+g} < 0, \forall n > 0\}$. Then:

$$Q^{h^+,h^-}(\Gamma^+) = 1 - Q^{h^+,h^-}(\Gamma^-) = \frac{1}{2} \sum_{k=1}^{\infty} h^+(k)$$

Proof of Lemma 11. Let G be a function from \mathbb{Z}^n to \mathbb{R}^+ . Then, according to the definition of the probability Q^{h^+,h^-} and owing to Doob's stopping theorem,

$$\begin{split} \mathcal{K} &:= Q^{h^+,h^-} \left[G(X_{\tau_l+1},\dots,X_{\tau_l+n}) \, \mathbb{1}_{n+\tau_l \leqslant T_{p,\tau_l}} \, \middle| \, \mathcal{H}_l \right] \\ &= \frac{Q^{h^+,h^-} \left[G(X_{\tau_l+1},\dots,X_{\tau_l+n}) \, \mathbb{1}_{\tau_l+n \leqslant T_{p,\tau_l} < \tau_{l+1},X_{\tau_l+1} = 1} \right]}{Q^{h^+,h^-} (\mathcal{H}_l)} \\ &= \frac{\mathbb{E} \left[G(X_{\tau_l+1},\dots,X_{\tau_l+n}) \, \mathbb{1}_{\tau_l+n \leqslant T_{p,\tau_l} < \tau_{l+1},X_{\tau_l+1} = 1} M_{\tau_{l+1}}^{h^+,h^-} \right]}{\mathbb{E} \left[\mathbb{1}_{\mathcal{H}_l} M_{\tau_{l+1}}^{h^+,h^-} \right]}. \end{split}$$

Replacing $M_{\tau_{l+1}}^{h^+,h^-}$ by the constant $\Theta(l)$ and using the Markov property, one gets

$$\mathcal{K} = \frac{\mathbb{E}[G(X_{\tau_{l}+1}, \dots, X_{\tau_{l}+n}) \, \mathbb{1}_{\tau_{l}+n \leqslant T_{p,\tau_{l}} < \tau_{l+1}, X_{\tau_{l}+1} = 1}]}{\mathbb{P}(\mathcal{H}_{l})}$$

$$= \frac{\mathbb{E}_{1}[G(X_{0}, \dots, X_{n-1}) \, \mathbb{1}_{n-1 \leqslant T_{p} < T_{0}}]}{\mathbb{P}_{1}(T_{p} < T_{0})}$$

$$= \mathbb{E}_{1}[G(X_{0}, \dots, X_{n-1}) \, \mathbb{1}_{n-1 \leqslant T_{p}} \mid T_{p} < T_{0}]. \quad \square$$

Remark 4. By letting $p \to \infty$, one deduces therefrom that, conditional on $\{g = \tau_l, X_{\tau_l+1} = 1\}$, $(X_{n+g}, n \ge 1)$ is a 3-Bessel* walk under Q^{h^+, h^-} .

Proof of Lemma 12. As g is Q^{h^+,h^-} -a.s. finite and as $X_n \neq 0$ for n > g, one has

$$Q^{h^+,h^-}(\Gamma^+) = \lim_{n \to \infty} Q^{h^+,h^-}(X_n > 0). \tag{10}$$

Now.

$$Q^{h^+,h^-}(X_n > 0) = \mathbb{E}[\mathbb{1}_{X_n > 0} M_n^{h^+,h^-}] = \mathbb{E}[\mathbb{1}_{X_n > 0} \Theta(L_n) + X_n^+ h^+(L_n)].$$

Since $\mathbb{1}_{X_n>0} \Theta(L_n) \leqslant \Theta(L_n) \leqslant 1$, the dominated convergence theorem gives

$$\mathbb{E}[\mathbb{1}_{X_n > 0} \Theta(L_n)] \stackrel{n \to \infty}{\longrightarrow} 0.$$

We already know that $M^{h^+,0}$ is a martingale. Consequently,

$$\mathbb{E}[M_n^{h^+,0}] = \mathbb{E}[M_0^{h^+,0}] = \frac{1}{2} \sum_{k=1}^{\infty} h^+(k),$$

wherefrom

$$\mathbb{E}[X_n^+ h^+(L_n)] = \frac{1}{2} \mathbb{E}\Big[\sum_{k=1}^{L_n} h^+(k)\Big] \leqslant \frac{1}{2} \sum_{k=1}^{\infty} h^+(k).$$

By dominated convergence again,

$$\lim_{n \to \infty} \mathbb{E}[X_n^+ h^+(L_n)] = \frac{1}{2} \sum_{k=1}^{\infty} h^+(k),$$

and so, according to (10),
$$Q^{h^+,h^-}(\Gamma^+) = \frac{1}{2} \sum_{k=1}^{\infty} h^+(k)$$
.

$$\mathbb{E}^{Q} \left[F(X_{g+1}, \dots, X_{g+n}) \, \mathbb{1}_{X_{g+1}=1} \right] = \sum_{l \geqslant 1} \mathbb{E}^{Q} \left[F(X_{g+1}, \dots, X_{g+n}) \, \mathbb{1}_{g=\tau_{l}, X_{g+1}=1} \right]$$

$$= \sum_{l \geqslant 1} \mathbb{E}^{Q} \left[F(X_{g+1}, \dots, X_{g+n}) \mid g = \tau_{l}, X_{\tau_{l}+1} = 1 \right] \, Q^{h^{+}, h^{-}} (g = \tau_{l}, X_{\tau_{l}+1} = 1)$$

$$= \mathbb{E}_{1} \left[F(X_{0}, \dots, X_{n-1}) \mid T_{0} = \infty \right] \, \sum_{l \geqslant 1} Q^{h^{+}, h^{-}} (g = \tau_{l}, X_{\tau_{l}+1} = 1)$$

$$= \mathbb{E}_{1} \left[F(X_{0}, \dots, X_{n-1}) \mid T_{0} = \infty \right] \, Q^{h^{+}, h^{-}} (\Gamma^{+}).$$

This shows half of point 2.b.ii. The other half, when $X_{g+1} = -1$, is easily obtained using the symmetry of the walk.

To end of the proof of Theorem 2, we shall show that, conditional on $\{L_{\infty} = l\}$ and under the law Q^{h^+,h^-} , the process $(X_u, u < g)$ is a standard random walk stopped at its l-th passage at 0.

Let F be a function from \mathbb{Z}^n to \mathbb{R}^+ and l an element of \mathbb{N}^* . From the definition of Q^{h^+,h^-} and the optional stopping theorem,

$$\mathbb{E}^{Q} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l}} \, \Big| \, L_{\infty} = l \Big] = \frac{\mathbb{E}^{Q} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l} < \infty} \mathbb{1}_{\tau_{l+1} = \infty} \Big]}{Q^{h^{+}, h^{-}} (L_{\infty} = l)}$$

$$= \frac{\mathbb{E}^{Q} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l} < \infty} \Big] - \mathbb{E}^{Q} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l} < \tau_{l+1} < \infty} \Big]}{Q^{h^{+}, h^{-}} (L_{\infty} = l)}$$

$$= \frac{\mathbb{E} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l}} \, M_{\tau_{l}} \Big] - \mathbb{E}^{Q} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l}} \, M_{\tau_{l+1}} \Big]}{Q^{h^{+}, h^{-}} (L_{\infty} = l)}$$

$$= \frac{\mathbb{E} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l}} \Big] \, (\Theta(l - 1) - \Theta(l))}{\frac{1}{2} (h^{+}(l) + h^{-}(l))} = \mathbb{E} \Big[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n < \tau_{l}} \Big]. \quad \Box$$

5 Penalisation by the Length of the Excursions

5.1 Notation

For $n \ge 0$, call g_n (respectively d_n) the last zero before n (respectively after n):

$$g_n := \sup \{ k \le n, \ X_k = 0 \}$$

 $d_n := \inf \{ k > n, \ X_k = 0 \}$

Thus $d_n - g_n$ is the duration of the excursion that straddles n. Put

$$\Sigma_n = \sup \{d_k - g_k, d_k \leqslant n\},\$$

so Σ_n is the longest excursion before g_n ; remark that

$$\Sigma_n = \Sigma_{q_n}. (11)$$

Define $(A_n, n \ge 0)$, the "age process", by

$$A_n = n - q_n$$

and call $A_n = \sigma(A_n, n \ge 0)$ the filtration generated by A. Set

$$A_n^* = \sup_{k \le n} A_k,\tag{12}$$

and observe that

$$A_n^* = (\Sigma_n - 1) \vee (n - g_n),$$

wherefrom

$$A_{q_n}^* = \Sigma_{g_n} - 1. {13}$$

In the sequel, $\gamma_l := \sum_{k=0}^n \mathbbm{1}_{\{X_k=0\}}$ is the number of passage times at 0 up to time $n, \tau = \inf\{n > 0, X_n = 0\}$ is the first return time to 0 and a function θ is defined by

$$\mathbb{E}\left[|X_x| \mid \tau > x\right] =: \theta(x).$$

5.2 Proof of Theorem 3

1) We start with point 1 of Theorem 3. To show formula (4), we need:

Proposition 3.

$$\mathbb{P}(\Sigma_k \leqslant x) \underset{k \to \infty}{\sim} \left(\frac{2}{\pi k}\right)^{\frac{1}{2}} \theta(x).$$

To establish this Proposition, we will use the following lemma:

Lemma 13. For every $f: \mathbb{Z} \to \mathbb{R}^+$, every $n \geqslant 0$ and every k > 0,

$$\mathbb{E}\left[f(X_n) \mid A_n = k\right] = \mathbb{E}\left[f(X_k) \mid \tau > k\right].$$

and a Tauberian Theorem:

Theorem 4 (Cf. [Fel71] p. 447). Given $q_n \ge 0$, suppose that the series

$$S(s) = \sum_{n=0}^{\infty} q_n s^n$$

converges for $0 \le s < 1$. If $0 and if the sequence <math>\{q_n\}$ is monotone, then the two relations:

$$S(s) \underset{s \to 1^{-}}{\sim} \frac{1}{(1-s)^{p}} C$$

and

$$q_n \underset{n \to \infty}{\sim} \frac{1}{\Gamma(p)} n^{p-1} C$$

where $0 < C < \infty$, are equivalent.

Proof of Lemma 13. By the Markov property,

$$\mathbb{E}[f(X_n) \mid A_n = k] = \mathbb{E}[f(X_n) \mid n - g_n = k]$$

$$= \mathbb{E}[f(X_n) \mid X_{n-k} = 0, X_{n-k+1} \neq 0, \dots, X_n \neq 0] = \mathbb{E}[f(X_k) \mid \tau > k]. \quad \Box$$

Proof of Proposition 3. Let δ_{β} be a geometric r.v. with parameter β , where $0 < \beta < 1$, and such that δ_{β} is independent of the walk X. Then

$$\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right) = \sum_{k=1}^{\infty} \mathbb{P}\left(\delta_{\beta} = k\right) \, \mathbb{P}\left(\Sigma_{k} \leqslant x\right) = \sum_{k=1}^{\infty} (1 - \beta)^{k-1} \beta \, \mathbb{P}\left(\Sigma_{k} \leqslant x\right).$$

Now, from (11) and (13),

$$\mathbb{P}(\Sigma_{\delta_{\beta}} \leqslant x) = \mathbb{P}(\Sigma_{g_{\delta_{\beta}}} \leqslant x) = \mathbb{P}(A_{g_{\delta_{\beta}}}^* \leqslant x) = \mathbb{P}(T_x^A \geqslant g_{\delta_{\beta}})$$

$$= \mathbb{P}(\delta_{\beta} \leqslant d_{T_x^A}) = 1 - \mathbb{P}(\delta_{\beta} > d_{T_x^A}) = 1 - \mathbb{E}[(1 - \beta)^{d_{T_x^A}}]$$

$$= 1 - \mathbb{E}[(1 - \beta)^{T_x^A} (1 - \beta)^{T_0 \circ \theta_{T_x^A}}]$$

$$= 1 - \mathbb{E}[(1 - \beta)^{T_x^A} \mathbb{E}_{X_{T_x^A}}[(1 - \beta)^{T_0}]].$$
(14)

Definition 2. A stopping time T is said to be X-standard if T is a.s. finite and if the stopped process $(X_{n \wedge T}, n \ge 0)$ is uniformly integrable.

According to [ALR04], if T is X-standard and if T is independent of X_T , then

$$\forall \alpha \in \mathbb{R} \qquad \mathbb{E}\left[\operatorname{ch}(\alpha)^{-T}\right] = \mathbb{E}\left[\exp(\alpha X_T)\right]^{-1}.\tag{15}$$

Recall that $\operatorname{Argch}(\alpha) = \ln(\alpha + \sqrt{\alpha^2 - 1})$. When $\operatorname{ch} \alpha = (1 - \beta)^{-1}$,

$$\alpha = \operatorname{Arg}\operatorname{ch}\left(\frac{1}{1-\beta}\right) = \ln\left(\frac{1}{1-\beta} + \sqrt{\frac{1}{(1-\beta)^2} - 1}\right) = \ln\left(\frac{1+\sqrt{2\beta-\beta^2}}{1-\beta}\right).$$

According to [ALR04], T_k and T_x^A satisfy these properties, hence

$$\mathbb{E}_{k}\left[\left(1-\beta\right)^{T_{0}}\right] = \mathbb{E}_{0}\left[\left(1-\beta\right)^{T_{k}}\right] = \left(\frac{1+\sqrt{2\beta-\beta^{2}}}{1-\beta}\right)^{-k}$$

$$\mathbb{E}\left[\left(1-\beta\right)^{T_{x}^{A}}\right] = \mathbb{E}\left[\left(\frac{1+\sqrt{2\beta-\beta^{2}}}{1-\beta}\right)^{X_{T_{x}^{A}}}\right]^{-1}$$

So, owing to the independence of T_x^A et $X_{T_x^A}$ and the above formulae,

$$\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right) = 1 - \mathbb{E}\left[\left(1 - \beta\right)^{T_{x}^{A}}\right] \mathbb{E}\left[\left(\frac{1 + \sqrt{2\beta - \beta^{2}}}{1 - \beta}\right)^{-|X_{T_{x}^{A}}|}\right]$$

$$= \frac{\frac{1}{2}\left[\mathbb{E}\left[\left(\frac{1 + \sqrt{2\beta - \beta^{2}}}{1 - \beta}\right)^{|X_{T_{x}^{A}}|}\right] - \mathbb{E}\left[\left(\frac{1 + \sqrt{2\beta - \beta^{2}}}{1 - \beta}\right)^{-|X_{T_{x}^{A}}|}\right]\right]}{\mathbb{E}\left[\left(\frac{1 + \sqrt{2\beta - \beta^{2}}}{1 - \beta}\right)^{X_{T_{x}^{A}}}\right]}.$$

For all $k \in \mathbb{N}$,

$$\left\lceil \frac{1+\sqrt{2\beta-\beta^2}}{1-\beta} \right\rceil^k \underset{\beta \to 0^+}{\sim} 1 + k\sqrt{2\beta},$$

and consequently $\mathbb{P}\left(\Sigma_{\delta_{\beta}} \leqslant x\right) \underset{\beta \to 0^{+}}{\sim} \mathbb{E}\left[|X_{T_{x}^{A}}|\right] \sqrt{2\beta}$.

Thus we have obtained

$$\sum_{k=1}^{\infty} (1-\beta)^k \mathbb{P}\left(\Sigma_k \leqslant x\right) \underset{\beta \to 0^+}{\sim} \sqrt{\frac{2}{\beta}} \left(1-\beta\right) \mathbb{E}\left[|X_{T_x^A}|\right].$$

In order to apply Theorem 4, put $\alpha = 1 - \beta$. This gives

$$\sum_{k=1}^{\infty} \alpha^{k} \mathbb{P}\left(\Sigma_{k} \leqslant x\right) \underset{\alpha \to 1^{-}}{\sim} \frac{\sqrt{2}}{\sqrt{1-\alpha}} \mathbb{E}\left[\left|X_{T_{x}^{A}}\right|\right],$$

and now Theorem 4 with $p = \frac{1}{2}$ and $C = \sqrt{2}\mathbb{E}\left[|X_{T_x^A}|\right]$ gives

$$\mathbb{P}(\Sigma_k \leqslant x) \underset{\alpha \to 1^-}{\sim} \frac{1}{\Gamma\left(\frac{1}{2}\right)} k^{\frac{1}{2} - 1} C = \left(\frac{2}{\pi k}\right)^{\frac{1}{2}} \mathbb{E}\left[|X_{T_x^A}|\right].$$

By Lemma 13,

$$\mathbb{E}\left[|X_{T_x^A}|\right] = \mathbb{E}\left[|X_{T_x^A}| \mid A_{T_x^A} = x\right] = \mathbb{E}\left[|X_x| \mid \tau > x\right] = \theta(x).$$

It is now possible to finalise the proof of point 1.a. Let \tilde{T}_0 be the hitting time of 0 by the walk $(X_{n+k})_{k\geqslant 0}$, and Σ' be the maximal length of the excursions of the walk $(X_{k+n+\tilde{T}_0})_{k\geqslant 0}$.

$$\mathbb{E}\left[\mathbb{1}_{\Lambda_{n},\Sigma_{p}\leqslant x}\right] = \mathbb{E}\left[\mathbb{1}_{\Lambda_{n},\Sigma_{n}\leqslant x,T_{0}\circ\theta_{n}>p-n}\right] + \mathbb{E}\left[\mathbb{1}_{\Lambda_{n},\Sigma_{n}\leqslant x,T_{0}\circ\theta_{n}\leqslant (p-n)\wedge(x-A_{n}),\Sigma'_{p-n-T_{0}\circ\theta_{n}}\leqslant x}\right] = (1) + (2)$$

Call $\tilde{\mathbb{P}}$ the measure associated to the walk $(X_{n+k})_{k\geqslant 0}, X_n$ and A_n being fixed. Then

$$(1) = \mathbb{E}\left[\mathbb{1}_{\Lambda_n, \Sigma_n \leqslant x} \tilde{\mathbb{P}}_{X_n} \left(\tilde{T}_0 > p - n\right)\right] \underset{p \to \infty}{\sim} \mathbb{E}\left[\mathbb{1}_{\Lambda_n, \Sigma_n \leqslant x} \left(\frac{2}{\pi p}\right)^{\frac{1}{2}} |X_n|\right]$$

Call also \mathbb{P}' the measure associated to the walk $(X_{k+n+\tilde{T}_0})_{k\geqslant 0}$, \tilde{T}_0 being fixed. For p>n+x, $(p-n)\wedge x-A_n=x-A_n$; consequently

$$(2) \underset{p \to \infty}{\sim} \mathbb{E} \left[\mathbb{1}_{\Lambda_n, \Sigma_n \leqslant x, A_n \leqslant x} \tilde{\mathbb{P}}_{X_n} (\tilde{T}_0 \leqslant x - A_n) \mathbb{P}' \left(\Sigma'_{p-n-\tilde{T}_0} \leqslant x \right) \right]$$

$$\underset{p \to \infty}{\sim} \mathbb{E} \left[\mathbb{1}_{\Lambda_n, \Sigma_n \leqslant x, A_n \leqslant x} \tilde{\mathbb{P}}_{X_n} (\tilde{T}_0 \leqslant x - A_n) \left(\frac{2}{\pi p} \right)^{\frac{1}{2}} \theta(x) \right].$$

One derives therefrom

$$\lim_{p\to\infty}\frac{\mathbb{E}[\mathbbm{1}_{A_n}\mathbbm{1}_{\varSigma_p\geqslant x}]}{\mathbb{E}[\mathbbm{1}_{\varSigma_p\geqslant x}]}=\mathbb{E}\left[\mathbbm{1}_{A_n}\left\{\frac{|X_n|}{\theta(x)}+\tilde{\mathbb{P}}_{X_n}(\tilde{T}_0\leqslant x-A_n)\,\mathbbm{1}_{A_n\leqslant x}\right\}\mathbbm{1}_{\varSigma_n\leqslant x}\right].$$

Remark 5. These notations $\tilde{\mathbb{P}}$ et \tilde{T}_0 , or similar ones, will frequently occur in the sequel. We have not been completely rigorous when defining them; a rigorous definition is possible as follows: $\tilde{\mathbb{P}}_{\tilde{X}_n}(\tilde{T}_0 \leqslant x - A_n)$ stands for $f(X_n, x - A_n)$ where $f(y, z) = \mathbb{P}_y(T_0 \leqslant z)$.

We shall now see that $(M_n, n \ge 0)$ is indeed a martingale. The parity of n+1 comes into play, so we shall consider two cases.

Suppose first that n+1 is odd. In that case, $\Sigma_{n+1} = \Sigma_n$ and $A_{n+1} = A_n + 1$. Recall that $x \to |x|$ is harmonic except at 0 for the symmetric random walk. Hence, on the event $\{X_n \neq 0\}$, the only relevant term is

$$C_{n+1} := \mathbb{1}_{\{A_{n+1} \leqslant x, \Sigma_n \leqslant x\}} \tilde{\mathbb{P}}_{X_{n+1}} (\tilde{T}_0 \leqslant x - A_{n+1}),$$

and on $X_n = 0$, it suffices to verify that, when conditioned by \mathcal{F}_n , this quantity equals $\left(1 - \frac{1}{\theta}\right) \mathbb{1}_{\Sigma_n \leqslant x}$.

By the Markov property, if $X_n \neq 0$,

$$\tilde{\mathbb{P}}_{X_n}(\tilde{T}_0 \leqslant x - A_n) = \frac{1}{2} (\tilde{\mathbb{P}}_{X_{n+1}}(\tilde{T}_0 \leqslant x - A_n - 1) + \tilde{\mathbb{P}}_{X_{n-1}}(\tilde{T}_0 \leqslant x - A_n - 1)).$$

So

$$\begin{split} \mathbb{E}[\mathbb{1}_{X_n \neq 0} \mathcal{C}_{n+1} | \mathcal{F}_n] &= \mathbb{E}[\mathbb{1}_{X_n \neq 0} (\mathbb{1}_{X_{n+1} = X_n + 1} + \mathbb{1}_{X_{n+1} = X_n - 1}) \mathcal{C}_{n+1} | \mathcal{F}_n] \\ &= \mathbb{1}_{X_n \neq 0, \Sigma_n \leqslant x, A_n \leqslant x - 1} \frac{1}{2} [\tilde{\mathbb{P}}_{X_n + 1} (\tilde{T}_0 \leqslant x - A_n - 1) + \tilde{\mathbb{P}}_{X_n - 1} (\tilde{T}_0 \leqslant x - A_n - 1)] \\ &= \mathbb{1}_{X_n \neq 0, \Sigma_n \leqslant x, A_n \leqslant x - 1} \tilde{\mathbb{P}}_{X_n} (\tilde{T}_0 \leqslant x - A_n) \end{split}$$

And, as $\mathbb{1}_{X_n \neq 0, A_n = x} \tilde{\mathbb{P}}_{X_n} (\tilde{T}_0 \leqslant x - A_n) = 0$, one has

$$\mathbb{E}[\mathbb{1}_{X_n \neq 0} \, \mathcal{C}_{n+1} | \mathcal{F}_n] = \mathbb{1}_{X_n \neq 0} \, \mathcal{C}_n.$$

It remains to show that

$$\mathbb{E}[\mathbb{1}_{X_n=0}\mathcal{C}_{n+1}|\mathcal{F}_n] = \mathbb{1}_{X_n=0,\Sigma_n \leqslant x} \left(1 - \frac{1}{\theta}\right). \tag{16}$$

This will use the classical result ([Fel50] pp. 73-77)

$$\mathbb{P}\left(X_1 > 0, \dots, X_{2n-1} > 0, X_{2n} = 2r\right) = \frac{1}{2} \left(p_{2n-1, 2r-1} - p_{2n-1, 2r+1}\right). \tag{17}$$

where $p_{n,r} = \frac{1}{2^n} C_n^{\frac{n+r}{2}}$.

Using formula (17) with x = 2n, one can write

$$\mathbb{P}(\tau > x) \theta(x) = \mathbb{P}(\tau > x) \mathbb{E}[|X_x| \mid \tau > x] = \mathbb{E}[|X_x| \mathbb{1}_{\{\tau > x\}}]$$

$$= \mathbb{E}[X_x \mathbb{1}_{\{\tau > x, X_x > 0\}}] - \mathbb{E}[X_x \mathbb{1}_{\{\tau > x, X_x < 0\}}] = 2 \mathbb{E}[X_x \mathbb{1}_{\{\tau > x, X_x > 0\}}]$$

$$= 2 \sum_{k > 0, k \text{ even}}^{x} k \mathbb{P}(X_x = k, \tau > x) = 4 \sum_{\ell > 0}^{n} \ell \mathbb{P}(X_{2n} = 2\ell, \tau > 2n)$$

$$= 2 \sum_{\ell > 0}^{n} \ell (p_{2n-1, 2\ell-1} - p_{2n-1, 2\ell+1}) = \left(\frac{1}{2}\right)^{2n-2} \sum_{\ell > 0}^{n} \ell \left(C_{2n-1}^{n+\ell-1} - C_{2n-1}^{n+\ell}\right).$$

Now,
$$\sum_{\ell=1}^{n} \ell \left(C_{2n-1}^{n+\ell-1} - C_{2n-1}^{n+\ell} \right) = \sum_{\ell=0}^{n-1} C_{2n-1}^{n+\ell} = 2^{2n-2}$$
; so we obtain $\theta(x) \mathbb{P} (\tau > x) = 1.$ (18)

On the other hand,

$$\mathbb{E}[\mathbb{1}_{X_n=0}C_{n+1}|\mathcal{F}_n] = \mathbb{1}_{X_n=0,\Sigma_n \leqslant x} \frac{1}{2} \left(\mathbb{P}_1 \left(T_0 \leqslant x - 1 \right) + \mathbb{P}_{-1} \left(T_0 \leqslant x - 1 \right) \right)$$

$$= \mathbb{1}_{X_n=0,\Sigma_n \leqslant x} \mathbb{P}(\tau \leqslant x) = \mathbb{1}_{X_n=0,\Sigma_n \leqslant x} \left(1 - \mathbb{P}(\tau > x) \right); \quad (19)$$

hence, considering (18) and (19), formula (16) is established.

We now consider the case that n+1 is even. In that case, $\{A_n \leq x\} = \{A_n \leq x-1\}$. Indeed, $A_n = n-g_n$ is odd and x is even by hypothesis, so the event $\{A_n = x\}$ is null. Moreover, if $|X_n| \geq 3$, on a $\Sigma_{n+1} = \Sigma_n$. Last, if $|X_n| = 1$, there are two cases. Either $X_{n+1} \neq 0$ and one always has $\Sigma_{n+1} = \Sigma_n$, or $X_{n+1} = 0$ and we must see that in that case

$$\{\Sigma_{n+1}\leqslant x\}=\{\Sigma_n\leqslant x,n+1-g_n\leqslant x\}=\{\Sigma_n\leqslant x,A_n\leqslant x-1\}.$$

So, one is always on the event $\{\Sigma_n \leq x, A_n \leq x - 1\}$, and the same argument as when n+1 was odd and $X_n \neq 0$ shows that, conditional on \mathcal{F}_n , M_{n+1} is equal to M_n . This shows that M is a martingale; positivity is immediate. The proof that M is not uniformly integrable is postponed until later in this section.

2) We now start studying the process Σ under Q^x . We shall first show that, for all $y \leqslant x$, $Q^x (\Sigma_{\infty} > y) = 1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > y)}$.

Put $T_y^{\Sigma} := \inf \{ n \geqslant 0, \ \Sigma_n > y \}$. Clearly, $X_{T_y^{\Sigma}} = 0$ and hence

$$\begin{split} Q^{x}\left(\Sigma_{p} > y\right) &= Q^{x}\left(T_{y}^{\Sigma} \leqslant p\right) = \mathbb{E}\left[\mathbb{1}_{T_{y}^{\Sigma} \leqslant p} M_{T_{y}^{\Sigma}}\right] \\ &= \mathbb{E}\left[\mathbb{1}_{T_{y}^{\Sigma} \leqslant p} \left\{\frac{|X_{T_{y}^{\Sigma}}|}{\theta(x)} + \tilde{\mathbb{P}}_{X_{T_{y}^{\Sigma}}}\left(\tilde{T}_{0} \leqslant x - A_{T_{y}^{\Sigma}}\right) \mathbb{1}_{A_{T_{y}^{\Sigma}} \leqslant x}\right\} \mathbb{1}_{\Sigma_{T_{y}^{\Sigma}} \leqslant x}\right] \\ &= \mathbb{P}\left[T_{y}^{\Sigma} \leqslant p, \Sigma_{T_{y}^{\Sigma}} \leqslant x\right]. \end{split}$$

Letting p go to infinity, we obtain that $Q^x(\Sigma_{\infty} > y) = \mathbb{P}(\Sigma_{T_y^{\Sigma}} \leqslant x)$. For $y \leqslant x$, $\{\Sigma_{T_y} \leqslant x\}$ is a full event; so

$$\left\{ \varSigma_{T_y^{\Sigma}} \leqslant x \right\} = \left\{ \varSigma_{T_y^{A}} \leqslant x \right\} \cap \left\{ T_0 \circ \theta_{T_y^{A}} + y \leqslant x \right\} = \left\{ T_0 \circ \theta_{T_y^{A}} + y \leqslant x \right\}.$$

By the Markov property and Lemma 13,

$$\begin{split} Q^{x}\left(\Sigma_{\infty} > y\right) &= \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{T_{0} \circ \theta_{T_{y}^{A}} + y \leqslant x} \mid \mathcal{A}_{T_{y}^{A}}\right]\right] = \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{T_{y}^{A}}}\left(\tilde{T}_{0} \leqslant x - y\right)\right] \\ &= \mathbb{E}\left[\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} \leqslant x - y\right) \mid \tau > y\right] = 1 - \frac{\mathbb{E}\left[\tilde{\mathbb{P}}_{X_{y}}\left(\tilde{T}_{0} > x - y\right)\mathbb{1}_{\tau > y}\right]}{\mathbb{P}(\tau > y)} \\ &= 1 - \frac{\mathbb{E}\left[\mathbb{1}_{T_{0} \circ \theta_{y} > x - y, \tau > y}\right]}{\mathbb{P}(\tau > y)} = 1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > y)}. \end{split}$$

On the other hand, for all $n \ge 0$, one has $Q^x(\Sigma_n \le x) = 1$. According to the definition of the probability Q^x ,

$$Q^{x}\left(\Sigma_{n} \leqslant x\right) = \lim_{p \to \infty} \frac{\mathbb{P}\left(\Sigma_{n} \leqslant x, \Sigma_{p} \leqslant x\right)}{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)} = \lim_{p \to \infty} \frac{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)}{\mathbb{P}\left(\Sigma_{p} \leqslant x\right)} = 1.$$

- 3) We shall now describe several properties of g and $(A_n, n \ge 0)$ under Q^x .
- a) We first show that g is Q^x -a.s. finite; this implies that $A_{\infty} = \infty$ Q^x -a.s.

Lemma 14. For all $n \ge 0$ and $k \ge 0$,

$$\mathbb{P}(A_{2n} = 2k) = \mathbb{P}(A_{2n+1} = 2k+1) = C_{2n-2k}^{n-k} C_{2k}^k \left(\frac{1}{2}\right)^n.$$

Proof. According to [Fel50] p. 79, "Arcsin law for last visit",

$$\mathbb{P}(g_{2n} = 2k) = C_{2n-2k}^{n-k} C_{2k}^k \left(\frac{1}{2}\right)^n.$$

Therefore

$$\mathbb{P}(A_{2n} = 2k) = \mathbb{P}(2n - g_{2n} = 2k) = \mathbb{P}(g_{2n} = 2n - 2k) = C_{2n-2k}^{n-k} C_{2k}^{k} \left(\frac{1}{2}\right)^{n};$$
 and as $A_{2n+1} = A_{2n} + 1$, the proof is over.

The next lemma is instrumental in the sequel.

Lemma 15. For each p > 0,

$$Q^{x}\left(g > p \mid \mathcal{F}_{p}\right) = \tilde{\mathbb{P}}_{X_{p}}(\tilde{\tau} \leqslant x - A_{p}) \frac{1}{M_{p}}.$$

Proof. Recall that $T_{0,p} := \inf\{n > p, X_n = 0\}$ is the first zero after p, and remark that $\Sigma_{T_{0,p}} = \Sigma_p \vee \{A_p + \tau \circ \theta_p\}$. Recall also that under Q^x , the event $\{\Sigma_p \leqslant x\}$ is almost sure. So, for every $\Lambda_p \in \mathcal{F}_p$,

$$Q^{x}(\{\Lambda_{p}\} \cap \{g > p\}) = Q^{x}(\{\Lambda_{p}\} \cap \{T_{0,p} < \infty\})$$

$$= \mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} M_{T_{0,p}}\right] = \mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} \mathbb{1}_{\Sigma_{T_{0,p} \leqslant x}}\right] = \mathbb{E}\left[\mathbb{1}_{\Lambda_{p}, \Sigma_{p} \leqslant x} \tilde{\mathbb{P}}_{X_{p}} \left[\tilde{\tau} \leqslant x - A_{p}\right]\right]$$

$$= \mathbb{E}\left[\mathbb{1}_{\Lambda_{p}} \frac{\tilde{\mathbb{P}}_{X_{p}} \left[\tilde{\tau} \leqslant x - A_{p}\right]}{M_{p}} M_{p}\right] = \mathbb{E}^{Q^{x}}\left[\mathbb{1}_{\Lambda_{p}} \frac{\tilde{\mathbb{P}}_{X_{p}} \left[\tilde{\tau} \leqslant x - A_{p}\right]}{M_{p}}\right],$$

and consequently one has

$$Q^{x}\left(g > p \mid \mathcal{F}_{p}\right) = \tilde{\mathbb{P}}_{X_{p}}(\tilde{\tau} \leqslant x - A_{p}) \frac{1}{M_{p}}.$$

We now suppose that p = 2l where $l \ge 0$; when p = 2l + 1 the computation is similar, we won't give it (see Lemma 14). According to Lemma 15,

$$Q^{x}(g > p) = \mathbb{E}^{Q^{x}} \left[\mathbb{E}^{Q^{x}} \left[\mathbb{1}_{g > p} \mid \mathcal{F}_{p} \right] \right] = \mathbb{E}^{Q^{x}} \left[\tilde{\mathbb{P}}_{X_{p}} (\tilde{\tau} \leqslant x - A_{p}) \frac{1}{M_{p}} \right]$$

$$= \mathbb{E} \left[\tilde{\mathbb{P}}_{X_{p}} (\tilde{\tau} \leqslant x - A_{p}) \right] = \sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E} \left[\tilde{\mathbb{P}}_{X_{p}} (\tilde{\tau} \leqslant x - A_{p}) \mathbb{1}_{A_{p} = 2k} \right]$$

$$= \sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E} \left[\tilde{\mathbb{P}}_{X_{p}} (\tilde{\tau} \leqslant x - A_{p}) \mid A_{p} = 2k \right] \mathbb{P}(A_{p} = 2k)$$

$$= \sum_{k=0}^{l \wedge \frac{x}{2}} \mathbb{E} \left[\tilde{\mathbb{P}}_{X_{2k}} (\tilde{\tau} \leqslant x - 2k) \mid \tau > 2k \right] \mathbb{P}(A_{p} = 2k)$$

$$= \sum_{k=0}^{l \wedge \frac{x}{2}} \frac{\mathbb{E} \left[\tilde{\mathbb{P}}_{X_{2k}} (\tilde{\tau} \leqslant x - 2k) \mathbb{1}_{\tau > 2k} \right]}{\mathbb{P} (\tau > 2k)} \mathbb{P}(A_{p} = 2k)$$

$$= \sum_{k=0}^{l \wedge \frac{x}{2}} \left[1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > 2k)} \right] \mathbb{P}(A_{p} = 2k)$$

$$= \sum_{k=0}^{l \wedge \frac{x}{2}} C_{2l-2k}^{l-k} C_{2k}^{l} \left(\frac{1}{2} \right)^{l} \left(1 - \frac{\mathbb{P}(\tau > x)}{\mathbb{P}(\tau > 2k)} \right).$$

This gives the law of g under Q^x . Then, for p > 2, $Q^x(g > p) \leq \mathbb{E}[\mathbb{1}_{A_p} \leq x]$. Now, A_p tends to infinity \mathbb{P} -a.s.; consequently,

$$Q^{x}(g=\infty) = \lim_{p \to \infty} Q^{x}(g>p) \leqslant \lim_{p \to \infty} \mathbb{P}(A_{p} \leqslant x) = 0,$$

and g is Q^x -a.s. finite.

Remark 6. It is now easy to see that M is not uniformly integrable. Indeed, as g is finite, so is also L_{∞} , and the argument given earlier for M^{φ} and S immediately adapts to M and L.

b) To establish 2.d.i et 2.d.ii., we shall need:

Lemma 16. For all $y \leq x$, one has

$$\mathbb{E}\big[M_{T_u^A}\big] = 1$$

Proof of Lemma 16. Recall that the event $\{\Sigma_{T_y^A} \leq x\}$ has probability 1. By formula (18) and the proof of point 2.a,

$$\begin{split} \mathbb{E} \big[M_{T_y^A} \big] &= \mathbb{E} \Big[\frac{|X_{T_y^A}|}{\theta(x)} + \tilde{\mathbb{P}}_{X_{T_y^A}} \big(\tilde{T}_0 \leqslant x - y \big) \Big] \\ &= \frac{\theta(y)}{\theta(x)} + \mathbb{E} \big[\tilde{\mathbb{P}}_{X_{T_y^A}} \big(\tilde{T}_0 \leqslant x - y \big) \big] = \frac{\mathbb{P} \left(\tau > x \right)}{\mathbb{P} \left(\tau > y \right)} + 1 - \frac{\mathbb{P} (\tau > x)}{\mathbb{P} (\tau > y)}. \end{split}$$

Let F be a positive functional and $G: \mathbb{R} \to \mathbb{R}^+$. Recall that after [ALR04], $X_{T_y^A}$ and $\mathcal{A}_{T_y^A}$ are independent under \mathbb{P} . On the other hand, as $M_{T_y^A}$ is a function of $X_{T_x^A}$, one has

$$\mathbb{E}^{Q^x} \left[F\left(A_n, \, n \leqslant T_y^A \right) G\left(X_{T_y^A} \right) \right] = \mathbb{E} \left[F\left(A_n, \, n \leqslant T_y^A \right) G\left(X_{T_y^A} \right) M_{T_y^A} \right]$$
$$= \mathbb{E} \left[F\left(A_n, \, n \leqslant T_y^A \right) \right] \mathbb{E} \left[G\left(X_{T_y^A} \right) M_{T_y^A} \right]. \quad (20)$$

So, taking $G \equiv 1$ and using Lemma 16, one has

$$\mathbb{E}^{Q^x} \left[F \left(A_n, \, n \leqslant T_y^A \right) \right] = \mathbb{E} \left[F \left(A_n, \, n \leqslant T_y^A \right) \right],$$

which shows that $(A_n, n \leq T_y^A)$ has the same law under \mathbb{P} and Q^x . Using again formula (20), one obtains

$$\mathbb{E}^{Q^x}\left[F\left(A_n,\,n\leqslant T_y^A\right)G\left(X_{T_y^A}\right)\right] = \mathbb{E}^{Q^x}\left[F\left(A_n,\,n\leqslant T_y^A\right)\right]\mathbb{E}^{Q^x}\left[G\left(X_{T_y^A}\right)\right];$$

this shows that $(A_n, n \leq T_y^A)$ and $X_{T_y^A}$ are independent under Q^x .

c) The rest of the proof of point 2 is quite easy, taking into account what has already been done:

$$\begin{split} \mathbb{E}^{Q^x} \big[G\big(X_{T_y^A} \big) \big] &= \mathbb{E} \big[G\big(X_{T_y^A} \big) M_{T_y^A} \big] = \mathbb{E} \big[\mathbb{E} \big[G\big(X_{T_y^A} \big) M_{T_y^A} \big| \mathcal{A}_{T_y^A} \big] \big] \\ &= \mathbb{E} \Big[\mathbb{E} \Big[G\big(X_y \big) \left\{ \frac{|X_y|}{\theta(x)} + \tilde{\mathbb{P}}_{X_y} \big(\tilde{T}_0 \leqslant x - y \big) \right\} \big| \tau > y \Big] \Big] \\ &= \mathbb{E} \left[G\left(X_y \right) \left\{ \frac{|X_y|}{\theta(x)} + \tilde{\mathbb{P}}_{X_y} \left(\tilde{T}_0 \leqslant x - y \right) \right\} \big| \tau > y \right] \\ &= \mathbb{E} \Big[G(X_y) \left\{ \frac{|X_y|}{\theta(x)} + \tilde{\mathbb{P}}_{X_y} \big(\tilde{T}_0 \leqslant x - y \big) \right\} \big| \tau > y \Big] \\ &= \sum_{I} G(k) \Big\{ \frac{|k|}{\theta(x)} + \mathbb{P}_k \left(T_0 \leqslant x - y \right) \Big\} \, \mathbb{P}(X_y = k \mid \tau > y). \end{split}$$

Consequently, the law of $X_{T_{\alpha}^{A}}$ under Q^{x} satisfies

$$Q^{x}\left(X_{T_{y}^{A}}=k\right)=\left\{\frac{\left|k\right|}{\theta(x)}+\mathbb{P}_{k}\left(T_{0}\leqslant x-y\right)\right\}\mathbb{P}(X_{y}=k\mid\tau>y).$$

(The quantity $\mathbb{P}(X_y = k \mid \tau > y)$ is explicitly given in [Fel50] p. 77). We now compute $Q^x(g > T_y^A)$:

$$\begin{split} Q^x(g > T_y^A) &= \mathbb{E}^{Q^x} \left[\mathbb{E}^{Q^x} \left[\mathbb{1}_{g > T_y^A} \mid \mathcal{F}_{T_y^A} \right] \right] = \mathbb{E}^{Q^x} \left[\frac{\tilde{\mathbb{P}}_{X_{T_y^A}} (\tilde{\tau} \leqslant x - y)}{M_{T_y^A}} \right] \\ &= \mathbb{E} \left[\tilde{\mathbb{P}}_{X_{T_y^A}} (\tilde{\tau} \leqslant x - y) \right] = \mathbb{E} \left[\tilde{\mathbb{P}}_{X_y} (\tilde{\tau} \leqslant x - y) \mid \tau > y \right] = 1 - \frac{\mathbb{P} \left(\tau > x \right)}{\mathbb{P} \left(\tau > y \right)}. \end{split}$$

Last, we now show that $(A_n, n \leq T_y^A)$ and $\{g > T_y^A\}$ are independent under Q^x ; we use again the independence of $X_{T_y^A}$ and $A_{T_y^A}$ under \mathbb{P} .

$$\begin{split} \mathbb{E}^{Q^x} \big[F(A_n, \, n \leqslant T_y^A) \mathbb{1}_{g > T_y^A} \big] &= \mathbb{E}^{Q^x} \big[F(A_n, \, n \leqslant T_y^A) \, \mathbb{E}^{Q^x} \big[\mathbb{1}_{g > T_y^A} \, \big| \, \mathcal{A}_{T_y^A} \big] \big] \\ &= \mathbb{E}^{Q^x} \bigg[\frac{F(A_n, \, n \leqslant T_y^A) \, \tilde{\mathbb{P}}_{X_{T_y^A}} (\tilde{\tau} \leqslant x - y)}{M_{T_y^A}} \bigg] \\ &= \mathbb{E} \left[F \left(A_n, \, n \leqslant T_y^A \right) \right] \, \mathbb{E} \big[\tilde{\mathbb{P}}_{X_{T_y^A}} \left(\tilde{\tau} \leqslant x - y \right) \big] \\ &= \mathbb{E}^{Q^x} \left[F(A_n, \, n \leqslant T_y^A) \right] \, Q^x(g > T_y^A). \end{split}$$

4) To study the process $(X_n, n \ge 0)$ under Q^x , we start with the law of the process $(X_n, n \ge g)$. Recall that $\Gamma^+ = \{X_n > 0, n > g\}$ and $\Gamma^- = \{X_n < 0, n > g\}$; these events Γ^+ and Γ^- are symmetric under Q_0^x :

Lemma 17.

$$Q^{x}\left(\Gamma^{+}\right) = Q^{x}\left(\Gamma^{-}\right) = \frac{1}{2}.$$

Proof. First remark that

$$Q^{x}(\Gamma^{+}) = \lim_{n \to \infty} Q^{x}(X_{n} > 0), \qquad Q^{x}(\Gamma^{-}) = \lim_{n \to \infty} Q^{x}(X_{n} < 0).$$

By definition of Q^x ,

$$Q^{x}(X_{n} > 0) = \mathbb{E}\left[\mathbb{1}_{X_{n} > 0}\left\{\frac{|X_{n}|}{\theta(x)} + \tilde{\mathbb{P}}_{X_{n}}(\tilde{T}_{0} \leqslant x - A_{n})\,\mathbb{1}_{A_{n} \leqslant x}\right\}\mathbb{1}_{\Sigma_{n} \leqslant x}\right].$$

Owing to the symmetry of the walk under P, one has

$$Q^{x}(X_{n} > 0) = \mathbb{E}\left[\mathbb{1}_{X_{n} < 0} \left\{\frac{|X_{n}|}{\theta(x)} + \tilde{\mathbb{P}}_{X_{n}} \left(\tilde{T}_{0} \leqslant x - A_{n}\right) \mathbb{1}_{A_{n} \leqslant x}\right\} \mathbb{1}_{\Sigma_{n} \leqslant x}\right]$$
$$= Q^{x}(X_{n} < 0).$$

One also has $\lim_{n\to\infty} Q^x(X_n=0)=0$ because g is Q^x -a.s. finite; and as

$$Q^{x}(X_{n} > 0) + Q^{x}(X_{n} < 0) + Q^{x}(X_{n} = 0) = 2Q^{x}(X_{n} > 0) + Q^{x}(X_{n} = 0) = 1,$$

taking limits when n tends to infinity, on obtains

$$Q^x(\Gamma^+) + Q^x(\Gamma^-) = 2Q^x(\Gamma^+) = 1.$$

We now describe the behavior of $(X_{n+g}, n > 0)$ under Q^x on Γ^+ (the other case is completely similar). Take $a \in \mathbb{N}^*$ and $p \geqslant x$, and set $q_{a,a+1} := Q(X_{n+1} = a + 1 | X_n = a, n > g)$.

$$\begin{aligned} q_{a,a+1} &= Q(X_{n+1} = a + 1 | X_n = a, \ \forall i \leqslant p \ X_{n+i} > 0) \\ &= \frac{Q(X_{n+1} = a + 1, \ X_n = a, \ \forall i \leqslant p \ X_{n+i} > 0)}{Q(X_n = a, \ \forall i \leqslant p \ X_{n+i} > 0)} \\ &= \frac{\mathbb{E}\left[\mathbbm{1}_{X_{n+1} = a + 1, \ X_n = a, \ \forall i \leqslant p \ X_{n+i} > 0 \ M_{p+n}\right]}{\mathbb{E}\left[\mathbbm{1}_{X_n = a, \ \forall i \leqslant p \ X_{n+i} > 0 \ M_{p+n}\right]}. \end{aligned}$$

Here $M_{p+n} = \frac{X_{p+n}}{\Theta(x)} \mathbb{1}_{\Sigma_n \leq x}$; hence we can condition the numerator (resp. the denominator) by \mathcal{F}_{n+1} (resp. \mathcal{F}_n). The Markov property gives

$$q_{a,a+1} = \frac{\mathbb{E}\left[\mathbbm{1}_{X_{n+1}=a+1,\,X_n=a,\,\Sigma_n\geqslant x}\mathbb{E}_{a+1}\left[X_p\mathbbm{1}_{X_i>0,\forall i\leqslant p-1}\right]\right]}{\mathbb{E}\left[\mathbbm{1}_{X_n=a,\,\Sigma_n\geqslant x}\mathbb{E}_a\left[X_p\mathbbm{1}_{X_i>0,\forall i\leqslant p}\right]\right]}.$$

Clearly, $(X_p \mathbb{1}_{X_i>0, \forall i \leq p})_{p\geqslant 0}$ is a martingale, wherefrom

$$q_{a,a+1} = \frac{(a+1)\mathbb{E}\left[\mathbb{1}_{X_{n+1}=a+1, X_n=a, \Sigma_n \geqslant x}\right]}{a\mathbb{E}\left[\mathbb{1}_{X_n=a, \Sigma_n \geqslant x}\right]}.$$

Last, conditioning the numerator by \mathcal{F}_n one gets

$$q_{a,a+1} = \frac{a+1}{2a},$$

the transition probability of a 3-Bessel* walk.

Recall the following notation:

$$\begin{split} \gamma_n := | \left\{ k \leqslant n, X_k = 0 \right\} | \;,\; \gamma_\infty := \lim_{n \to \infty} \gamma_n \\ \tau_1 := T_0 \;,\; \forall n \geqslant 2, \; \tau_n := \inf \left\{ k > \tau_{n-1}, \; X_k = 0 \right\} \end{split}$$

It remains to show that, conditional on $\{\gamma_{\infty} = l\}$, $(X_u, u \leq g)$ is a standard random walk stopped at τ_l and conditioned by $\Sigma_{\tau_l} \leq x$.

Let F be a functional on \mathbb{Z}^n .

$$\begin{split} & \mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l} \, \big| \, \gamma_\infty = l \big] = \frac{\mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l} \, \mathbb{1}_{\gamma_\infty = l} \big]}{\mathbb{E}^{Q^x} \big[\gamma_\infty = l \big]} \\ & = \frac{\mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l < \infty} \big] - \mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l < \tau_{l+1} < \infty} \big]}{\mathbb{E}^{Q^x} \big[\mathbb{1}_{\tau_l < \infty} \, \mathbb{1}_{\tau_{l+1} = \infty} \big]} \\ & = \frac{\mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l < \infty} \big] - \mathbb{E}^{Q^x} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l < \tau_{l+1} < \infty} \big]}{\mathbb{E}^{Q^x} \big[\mathbb{1}_{\tau_l < \infty} \big] - \mathbb{E}^{Q^x} \big[\mathbb{1}_{\tau_{l+1} < \infty} \big]} \\ & = \frac{\mathbb{E} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n \leqslant \tau_l < \infty} \, M_{\tau_l} \big] - \mathbb{E} \big[F(X_1, \dots, X_n) \, \mathbb{1}_{n < \tau_{l+1} < \infty} \, M_{\tau_{l+1}} \big]}{\mathbb{E} \big[\mathbb{1}_{\tau_l < \infty} \, M_{\tau_l} \big] - \mathbb{E} \big[\mathbb{1}_{\tau_{l+1} < \infty} \, M_{\tau_{l+1}} \big]}. \end{split}$$

Under \mathbb{P} , $\{\tau_l < \infty\}$ has probability 1, and so

$$M_{\tau_l} - M_{\tau_{l+1}} = \mathbb{1}_{\Sigma_{\tau_l} \leqslant x} (1 - \mathbb{1}_{\tau_{l+1} - \tau_l \leqslant x}) = \mathbb{1}_{\Sigma_{\tau_l} \leqslant x, \, \tau_{l+1} - \tau_l > x}.$$

As $\tau_{l+1} - \tau_l$ is independent of \mathcal{F}_{τ_l} , one gets

$$\mathbb{E}^{Q^{x}} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n \leqslant \tau_{l}} \, | \, \gamma_{\infty} = l \right] = \frac{\mathbb{E} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n \leqslant \tau_{l}} \left(M_{\tau_{l}} - M_{\tau_{l+1}} \right) \right]}{\mathbb{E} \left[M_{\tau_{l}} - M_{\tau_{l+1}} \right]}$$

$$= \frac{\mathbb{E} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{\left\{ n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x, \tau_{l+1} - \tau_{l} > x \right\}} \right]}{\mathbb{E} \left[\mathbb{1}_{\left\{ \Sigma_{\tau_{l}} \leqslant x, \tau_{l+1} - \tau_{l} > x \right\}} \right]}$$

$$= \frac{\mathbb{E} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x} \right] \mathbb{E} \left[\mathbb{1}_{\left\{ \tau_{l+1} - \tau_{l} > x \right\}} \right]}{\mathbb{E} \left[\mathbb{1}_{\sum_{t_{l}} \leqslant x} \right] \mathbb{E} \left[\mathbb{1}_{\tau_{l+1} - \tau_{l}} > x \right]}$$

$$= \frac{\mathbb{E} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{\left\{ n \leqslant \tau_{l}, \Sigma_{\tau_{l}} \leqslant x \right\}} \right]}{\mathbb{E} \left[\mathbb{1}_{\sum_{t_{l}} \leqslant x} \right]} = \mathbb{E} \left[F(X_{1}, \dots, X_{n}) \, \mathbb{1}_{n \leqslant \tau_{l}} \, | \, \Sigma_{\tau_{l}} \leqslant x \right].$$

References

[ALR04] C. Ackermann, G. Lorang, and B. Roynette, Independence of time and position for a random walk, Revista Matematica Iberoamericana 20 (2004), no. 3, pp. 915–917.

[Bil] P. Billingsley, Probability measures.

[Deb07] Pierre Debs, *Pénalisations de marches aléatoires*, Thèse de Doctorat, Institut Élie Cartan, 2007.

- [Fel50] Feller, An Introduction to Probability Theory and its Applications, vol. 1, 1950
- [Fel71] _____, An Introduction to Probability Theory and its Applications, vol. 2, 1966-1971.
- [LeG85] J.F. LeGall, Une approche élémentaire des théorèmes de décomposition de Williams, Lecture Notes in Mathematics, Séminaire de Probabilités XX, 1984-1985, pp. 447-464.
- [Pit75] J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability, vol. 7, 1975, pp. p. 511–526.
- [RVY] B. Roynette, P. Vallois, and M. Yor, *Brownian penalisations related to excursion lengths*, submitted to Annales de l'Institut Henri Poincaré.
- [RVY06] _____, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, Studia sci. Hungarica Mathematica 43 (2006), no. 3.