Skip to main content

Self-Similar Branching Markov Chains

  • Chapter
  • First Online:
Séminaire de Probabilités XLII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1979))

Abstract

The main purpose of this work is to study self-similar branching Markov chains. First we construct such a process. Using the theory of self-similar Markov processes, we show a limit theorem concerning a tagged individual. Finally, we get other results in particular a Lp(ℙ) limit theorem on the convergence of the empirical measure associated to the size of the fragment of the branching chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen S. and Kaplan N.: Branching random walks. I. Stochastic Process. Appl. 4, no. 1, 113 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  2. Asmussen S. and Kaplan N.: Branching random walks. II. Stochastic Process. Appl. 4, no. 1, 1531 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. Athreya K. B. and Ney P. E.: Branching processes. Springer-Verlag Berlin Heidelberg (1972).

    Book  MATH  Google Scholar 

  4. Bertoin J.: Random fragmentation and coagulation processes. Cambridge Univ. Pr. (2006).

    Book  MATH  Google Scholar 

  5. Bertoin J.: Different aspects of a random fragmentation model. Stochastic Process. Appl. 116, 345369, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoin J. and Gnedin A. V.: Asymptotic laws for nonconservative self-similar fragmentations. Electron. J. Probab. 9, No. 19, 575593, (2004).

    Article  MathSciNet  Google Scholar 

  7. Bertoin J. and Yor M.: The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Analysis 17 389400, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. Biggins J. D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, No. 1, 131151, (1992).

    Article  MathSciNet  Google Scholar 

  9. Brennan M. D. and Durrett R.: Splitting intervals. Ann. Probab. 14, No. 3, 10241036, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  10. Brennan M. D. and Durrett R.: Splitting intervals. II. Limit laws for lengths. Probab. Theory Related Fields. 75 No. 1, 109127, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. Caballero M.E. and Chaumont L.: Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34, No. 3, 10121034, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. Chauvin B.: Arbres et processus de Bellman-Harris. Ann. Inst. Henri Poincaré. 22, No. 2, 209232, (1986).

    MathSciNet  MATH  Google Scholar 

  13. Chauvin B.: Product martingales and stopping lines for branching Brownian motion. Ann. Probab. 19, No. 3, 11951205, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. Harris T. E.: The theory of branching processes. Springer (1963).

    Google Scholar 

  15. Jagers P.: General branching processes as Markov fields. Stochastic Process. Appl. 32, 183212, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  16. Kingman J. F. C.: Poisson processes. Oxford Studies in Probability, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press (1993).

    Google Scholar 

  17. Krell N.: Multifractal spectra and precise rates of decay in homogeneous fragmentations. To appear in Stochastic Process. Appl. (2008).

    Google Scholar 

  18. Kyprianou A. E.: A note on branching Lévy processes. Stochastic Process. Appl. 82, No. 1, 114, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. Kyprianou A. E.: Martingale convergence and the stopped branching random walk. Probab. Theory Related Fields 116, no. 3, 405419, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. Nerman O.: The growth and composition of supercritical branching populations on general type spaces. Technical report, Dept. Mathematics, Chalmers Univ. Technology and Goteborg Univ. (1984).

    Google Scholar 

  21. Neveu J.: Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist. 22, No. 2, 199207, (1986).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Krell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krell, N. (2009). Self-Similar Branching Markov Chains. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLII. Lecture Notes in Mathematics(), vol 1979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01763-6_10

Download citation

Publish with us

Policies and ethics