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Proof of Theorem 1.3, Part (i)

This Chapter 8 and the next Chapter 9 are devoted to the proof of Theorem 1.3
and Theorem 1.4. In this chapter we prove part (i) of Theorem 1.3. In the
proof we make use of Sobolev’s imbedding theorems (Theorems 8.1 and 8.2)
and a λ-dependent localization argument due to Masuda [Ma] (cf. Lemma 8.4)
in order to adjust estimate

∥∥∥(Ap − λI)−1
∥∥∥ ≤

cp(ε)
|λ| for all λ ∈ Σp(ε) (1.4)

to obtain the desired estimate

‖(A− λI)−1‖ ≤ c(ε)
|λ| for all λ ∈ Σ(ε). (1.6)

Here we recall that

D(Ap) =
{
u ∈ H2,p(D) = W 2,p(D) : Lu = μ(x′)

∂u

∂n
+ γ(x′)u = 0

}
. (1.3)

D(A) =
{
u ∈ C0(D \M) : Au ∈ C0(D \M), Lu = 0

}
. (1.5)

8.1 The Space C0(D \ M)

First, we consider a one-point compactification K∂ = K ∪ {∂} of the space
K = D \M .

We say that two points x and y of D are equivalent modulo M if x = y or
x, y ∈M ; we then write x ∼ y. It is easy to verify that this relation ∼ enjoys
the so-called equivalence laws. We denote by D/M the totality of equivalence
classes modulo M . On the set D/M we define the quotient topology induced
by the projection
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q : D −→ D/M.

Namely, a subset O of D/M is defined to be open if and only if the inverse
image q−1(O) of O is open in D. It is easy to see that the topological space
D/M is a one-point compactification of the space D \M and that the point
at infinity ∂ corresponds to the set M (see Figure 8.1):

{
K∂ := D/M,
∂ := M.

∂

D D/M

∂D

M

q

Fig. 8.1.

Furthermore, we obtain the following two assertions:

(i) If ũ is a continuous function defined on K∂ , then the function ũ ◦ q is
continuous on D and constant on M .

(ii) Conversely, if u is a continuous function defined on D and constant on M ,
then it defines a continuous function ũ on K∂ .

In other words, we have the following isomorphism:

C(K∂) ∼=
{
u ∈ C(D) : u(x) is constant on M

}
. (8.1)

Now we introduce a closed subspace of C(K∂) as in Subsection 2.2.1:

C0(K) = {u ∈ C(K∂) : u(∂) = 0} .

Then we have, by assertion (8.1),

C0(K) ∼= C0(D \M) =
{
u ∈ C(D) : u(x) = 0 on M

}
. (8.2)

8.2 Sobolev’s Imbedding Theorems

It is the imbedding characteristics of Sobolev spaces of Lp type that render
these spaces so useful in the study of partial differential equations. We need
the following imbedding properties of Sobolev spaces:
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Theorem 8.1 (Sobolev). Let D be a bounded domain in the Euclidean space
RN with boundary ∂D of class C2. Then we have the following two assertions:

(i) If 1 ≤ p < N , we have the continuous injection

W 2,p(D) ⊂W 1,q(D) for 1
p −

1
N ≤

1
q ≤

1
p .

(ii) If N/2 < p <∞, p �= N , we have the continuous injection

W 2,p(D) ⊂ Cν(D) for 0 < ν ≤ 2− N
p .

Theorem 8.2 (Gagliardo–Nirenberg). Let D be a bounded domain in RN

with boundary of class C2, and 1 ≤ p, r ≤ ∞. Then we have the following
assertions:

(i) If p �= N and if

1
q

=
1
N

+ θ

(
1
p
− 2
N

)
+ (1 − θ)1

r
for 1

2 ≤ θ ≤ 1,

then we have, for all u ∈W 2,p(D) ∩ Lr(D),

‖u‖1,q ≤ C1‖u‖θ2,p‖u‖1−θ
r ,

with a positive constant C1 = C1(D, p, r, θ).
(ii) If N/2 < p <∞, p �= N and if

0 ≤ ν < θ

(
2− N

p

)
− (1− θ)N

r
,

then we have, for all u ∈W 2,p(D) ∩ Lr(D),

‖u‖Cν(D) ≤ C2‖u‖θ2,p‖u‖1−θ
r , (8.3)

with a positive constant C2 = C2(D, p, r, θ).

For a proof of Theorem 8.1, see Adams–Fournier [AF, Theorem 5.4] and
for a proof of Theorem 8.2, see Friedman [Fr1, Part I, Theorem 10.1], and also
Taira [Ta4].

8.3 Proof of Part (i) of Theorem 1.3

The proof is carried out in a chain of auxiliary lemmas.
Step (I): We begin with a version of estimate (7.1):

Lemma 8.3. Let N < p <∞. Assume that the following conditions (A) and
(B) are satisfied:
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(A) μ(x′) ≥ 0 on ∂D.
(B) γ(x′) < 0 on M = {x′ ∈ ∂D : μ(x′) = 0}.

Then, for every ε > 0, there exists a positive constant rp(ε) such that if
λ = r2eiθ with r ≥ rp(ε) and −π+ ε ≤ θ ≤ π− ε, we have, for all u ∈ D(Ap),

|λ|1/2|u|C1(D) + |λ| · |u|C(D) ≤ Cp(ε)|λ|N/2p‖(A− λ)u‖p, (8.4)

with a positive constant Cp(ε). Here

D(Ap) =
{
u ∈ H2,p(D) = W 2,p(D) : Lu = μ(x′)

∂u

∂n
+ γ(x′)u = 0

}
.

Proof. First, by applying Theorem 8.2 with p := r > N , θ := N/p and ν := 0
we obtain from the Gagliardo–Nirenberg inequality (8.3) that

|u|C(D) ≤ C|u|
N/p
1,p ‖u‖1−N/p

p . (8.5)

Here and in the following the letter C denotes a generic positive constant
depending on p and ε, but independent of u and λ.

Combining inequality (7.1) with inequality (8.5), we find that

|u|C(D) ≤ C
(
|λ|−1/2‖(A− λ)u‖p

)N/p (
|λ|−1‖(A− λ)u‖p

)1−N/p

= C|λ|−1+N/2p‖(A− λ)u‖p,

so that

|λ| · |u|C(D) ≤ C|λ|N/2p‖(A− λ)u‖p for all u ∈ D(Ap). (8.6)

Similarly, by applying inequality (8.5) to the functions Diu ∈ W 1,p(D),
1 ≤ i ≤ n, we obtain that

|Diu|C(D) ≤ C|Diu|N/p
1,p ‖Diu‖1−N/p

p

≤ C|u|N/p
2,p |u|

1−N/p
1,p

≤ C (‖(A− λ)u‖p)N/p
(
|λ|−1/2‖(A− λ)u‖p

)1−N/p

= C|λ|−1/2+N/2p‖(A− λ)u‖p.

This proves that

|λ|1/2|u|C1(D) ≤ C|λ|
N/2p‖(A− λ)u‖p for all u ∈ D(Ap). (8.7)

Therefore, the desired inequality (8.4) follows by combining inequalities
(8.6) and (8.7). �
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The next lemma proves estimate (1.6):

Lemma 8.4. Assume that conditions (A) and (B) are satisfied. Then, for
every ε > 0, there exists a positive constant r(ε) such that if λ = r2eiθ with
r ≥ r(ε) and −π + ε ≤ θ ≤ π − ε, we have, for all u ∈ D(A),

|λ|1/2|u|C1(D) + |λ| · |u|C(D) ≤ c(ε)|(A− λ)u|C(D), (8.8)

with a positive constant c(ε). Here

D(A) =
{
u ∈ C0(D \M) : Au ∈ C0(D \M), Lu = 0

}
.

Proof. We shall make use of a λ-dependent localization argument due to
Masuda [Ma] in order to adjust the term ‖(A − λ)u‖p in inequality (8.4)
to obtain inequality (8.8).

First, we remark that

A ⊂ Ap for all 1 < p <∞.

Indeed, since we have, for any u ∈ D(A),

u ∈ C(D) ⊂ Lp(D), Au ∈ C(D) ⊂ Lp(D) and Lu = 0,

it follows from an application of Theorem 4.9 and Lemma 5.1 that

u ∈W 2,p(D).

(1) Let x0 be an arbitrary point of the closure D = D ∪ ∂D.
If x′0 is a boundary point and if χ is a smooth coordinate transformation

such that χ maps B(x0, η0) ∩D into B(0, δ) ∩RN
+ and flattens a part of the

boundary ∂D into the plane xN = 0 (see Figure 8.2), then we let

G0 = B(x′0, η0) ∩D,
G′ = B(x′0, η) ∩D, 0 < η < η0,

G′′ = B(x′0, η/2) ∩D, 0 < η < η0.

Here B(x, η) denotes the open ball of radius η about x.
Similarly, if x0 is an interior point and if χ is a smooth coordinate trans-

formation such that χ maps B(x0, η0) into B(0, δ), then we let (see Figure 8.3)

G0 = B(x0, η0),
G′ = B(x0, η), 0 < η < η0,

G′′ = B(x0, η/2), 0 < η < η0.

(2) Now we take a function θ(t) in C∞
0 (R) such that θ(t) equals one near

the origin, and define

ϕ(x) = θ(|x′|2) θ(xN ), x = (x′, xN ).
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n

xN

x′= (x1; : : : ; xN−1)

D

∂D

B(x0,η 0)
B (0;±)

χ

Fig. 8.2.

D
∂D

G0 = B(x0; ´0)

x0

G′

G′′

Fig. 8.3.

Here we may assume that the function ϕ(x) is chosen so that
{

suppϕ ⊂ B(0, 1),
ϕ(x) = 1 on B(0, 1/2).

We introduce a localizing function

ϕ0(x, η) ≡ ϕ
(
x− x0

η

)
= θ

(
|x′ − x′0|2

η2

)
θ

(
xN − t
η

)
, x0 = (x′0, t) ∈ D.

We remark that {
suppϕ0 ⊂ B(x0, η),
ϕ0(x, η) = 1 on B(x0, η/2).

Then we have the following:

Claim 8.5. If u ∈ D(A), then it follows that ϕ0(x, η)u ∈ D(Ap) for all 1 <
p <∞.



8.3 Proof of Part (i) of Theorem 1.3 119

Proof. (i) First, we recall that

u ∈W 2,p(D) for all 1 < p <∞.

Hence we have the assertion

ϕ0(x, η)u ∈ W 2,p(D).

(ii) Secondly, it is easy to verify (see Figure 8.4) that the function ϕ0(x, η)u,
x ∈ D, satisfies the boundary condition

L(ϕ0(x, η)u) = 0 on ∂D.

D
@D

B(x ; ´)

B(x0; ´)
x0

x0

0

Fig. 8.4.

Indeed, this is obvious if we have the condition

supp (ϕ0(x, η)u) ⊂ B(x0, η), x0 ∈ D.

Moreover, if we have the condition

supp (ϕ0(x, η)u) ⊂ B(x0, η) ∩D, x0 ∈ ∂D,

then it follows that

∂

∂xN
(ϕ0(x, η))

∣∣∣∣
xN=0

=
1
η
θ′(0) · θ

(
|x′ − x′0|2

η2

)
= 0,

since θ′(0) = 0. This proves that

∂

∂n
(ϕ0(x, η)) = 0 on ∂D.
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Therefore, we have the assertion

L(ϕ0(x, η)u) = μ(x′)
∂

∂n
(ϕ0(x, η)u) + γ(x′)ϕ0(x, η)u

= ϕ0(x, η)(Lu) + μ(x′)
(
∂

∂n
(ϕ0(x, η))

)
u

= 0 on ∂D,

since Lu = 0 on ∂D.
Summing up, we have proved that

ϕ0(x, η)u ∈ D(Ap) for all 1 < p <∞.

The proof of Claim 8.5 is complete. �

(3) Now we take a positive number p such that

N < p <∞.

Then, by Claim 8.5 we can apply inequality (8.4) to the function ϕ0(x, η)u,
u ∈ D(A), to obtain that

|λ|1/2|u|C1(G′′) + |λ| · |u|C(G′′)

≤ |λ|1/2 |ϕ0(x, η)u|C1(G′) + |λ| · |ϕ0(x, η)u|C(G′)

= |λ|1/2 |ϕ0(x, η)u|C1(D) + |λ| · |ϕ0(x, η)u|C(D)

≤ C|λ|N/2p ‖(A− λ)(ϕ0(x, η)u)‖Lp(D)

= C|λ|N/2p ‖(A− λ)(ϕ0(x, η)u)‖Lp(G′) , 0 < η < η0, (8.9)

since we have the assertions
{
ϕ0(x, η) = 1 on G′′,
supp (ϕ0(x, η)u) ⊂ G′.

However, we have the formula

(A− λ)(ϕ0(x, η)u) = ϕ0(x, η) ((A− λ)u) + [A,ϕ0(x, η)]u, (8.10)

where [A,ϕ0(x, η)] is the commutator of A and ϕ0(x, η) defined by the formula

[A,ϕ0(x, η)]u = A(ϕ0(x, η)u) − ϕ0(x, η)Au

= 2
N∑

i,j=1

aij(x)
∂ϕ0

∂xi

∂u

∂xj

+

⎛

⎝
N∑

i,j=1

aij(x)
∂2ϕ0

∂xi∂xj
+

N∑

i=1

bi(x)
∂ϕ0

∂xi

⎞

⎠u. (8.11)
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Here we need the following elementary inequality:

Claim 8.6. We have, for all v ∈ Cj(G′), j = 0, 1, 2,

‖v‖W j,p(G′) ≤ |G′|1/p ‖v‖Cj(G′),

where |G′| denotes the measure of G′.

Proof. It suffices to note that we have, for all w ∈ C(G′),
∫

G′
|w(x)|pdx ≤ |G′| |w|p

C(G′)
.

This proves Claim 8.6. �

Since we have (see Figure 8.3), for some positive constant c,

|G′| ≤ |B(x0, η)| ≤ cηN ,

it follows from an application of Claim 8.6 that

‖ϕ0(x, η)((A − λ)u)‖Lp(G′) ≤ c1/pηN/p|(A− λ)u|C(G′), 0 < η < η0. (8.12)

Furthermore, we remark that

|Dαϕ0(x, η)| = O
(
η−|α|

)
as η ↓ 0.

Hence it follows from an application of Claim 8.6 that
∥∥∥∂ϕ0

∂xi

∂u
∂xj

∥∥∥
Lp(G′)

≤ C
η |u|1,p,G′ ≤ Cη−1+N/p|u|C1(G′), 0 < η < η0, (8.13)

∥∥∥ ∂2ϕ0
∂xi∂xj

u
∥∥∥

Lp(G′)
≤ C

η2 |u|Lp(G′) ≤ Cη−2+N/p|u|C(G′), 0 < η < η0, (8.14)
∥∥∥∂ϕ0

∂xi
u
∥∥∥

Lp(G′)
≤ C

η |u|Lp(G′) ≤ Cη−1+N/p|u|C(G′), 0 < η < η0. (8.15)

By using inequalities (8.13), (8.14) and (8.15), we obtain from formula (8.11)
that

‖[A,ϕ0(x, η)]u‖Lp(G′)

≤ C
(
η−1+N/p|u|C1(G′) + η−2+N/p|u|C(G′) + η−1+N/p|u|C(G′)

)

≤ C
(
η−1+N/p|u|C1(D) + η−2+N/p|u|C(D)

)
, 0 < η < η0. (8.16)

In view of formula (8.10), it follows from inequalities (8.12) and (8.16) that

‖(A− λ)(ϕ0(x, η)u)‖Lp(G′)

≤ ‖ϕ0(x, η)((A − λ)u)‖Lp(G′) + ‖[A,ϕ0(x, η)]u‖Lp(G′)

≤ CηN/p
(
|(A− λ)u|C(G′) + η−1|u|C1(D) + η−2|u|C(D)

)
,

0 < η < η0. (8.17)
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Therefore, by combining inequalities (8.9) and (8.17) we obtain that

|λ|1/2|u|C1(G′′) + |λ| · |u|C(G′′)

≤ C|λ|N/2p ‖(A − λ)(ϕ0(x, η)u)‖Lp(G′)

≤ C|λ|N/2p ηN/p
(
|(A − λ)u|C(G′) + η−1|u|C1(G′) + η−2|u|C(G′)

)

≤ C|λ|N/2p ηN/p
(
|(A − λ)u|C(D) + η−1|u|C1(D) + η−2|u|C(D)

)
,

0 < η < η0. (8.18)

We remark (see Figure 8.5) that the closure D = D ∪ ∂D can be covered
by a finite number of sets of the forms

B(x′0, η/2) ∩D, x′0 ∈ ∂D,

and
B(x0, η/2), x0 ∈ D.

D
@D

B(x0; ´ =2)

B(x′
0; ´ =2)

x0

x′
0

Fig. 8.5.

Hence, by taking the supremum of inequality (8.18) over x ∈ D we find
that

|λ|1/2|u|C1(D) + |λ| · |u|C(D)

≤ C|λ|N/2pηN/p
(
|(A− λ)u|C(D) + η−1|u|C1(D) + η−2|u|C(D)

)
,

0 < η < η0. (8.19)

(4) We now choose the localization parameter η. We let

η =
η0
|λ|1/2

K,
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where K is a positive constant (to be chosen later) satisfying the condition

0 < η =
η0
|λ|1/2

K < η0,

that is,
0 < K < |λ|1/2.

Then it follows from inequality (8.19) that

|λ|1/2|u|C1(D) + |λ| · |u|C(D)

≤ C η
N/p
0 KN/p|(A− λ)u|C(D) +

(
C η

N/p−1
0 K−1+N/p

)
|λ|1/2 · |u|C1(D)

+
(
C η

N/p−2
0 K−2+N/p

)
|λ| · |u|C(D) for all u ∈ D(A). (8.20)

However, since the exponents −1 +N/p and −2 +N/p are negative for N <
p <∞, we can choose the constant K so large that

C η
N/p−1
0 K−1+N/p < 1,

and
C η

N/p−2
0 K−2+N/p < 1.

Then the desired inequality (8.8) follows from inequality (8.20).
The proof of Lemma 8.4 is complete. �
Step (II): The next lemma, together with Lemma 8.4, proves that the

resolvent set of A contains the set

Σ(ε) =
{
λ = r2eiθ : r ≥ r(ε), −π + ε ≤ θ ≤ π − ε

}
,

that is, the resolvent (A− λI)−1 exists for all λ ∈ Σ(ε).

Lemma 8.7. If λ ∈ Σ(ε), then, for any f ∈ C0(D \M), there exists a unique
function u ∈ D(A) such that (A − λI)u = f .

Proof. Since we have the assertion

f ∈ C0(D \M) ⊂ Lp(D) for all 1 < p <∞,

it follows from an application of Theorem 1.2 that if λ ∈ Σ(ε) there exists a
unique function u ∈ W 2,p(D) such that

(A− λ)u = f in D, (8.21)

and
Lu = μ(x′)

∂u

∂n
+ γ(x′)u = 0 on ∂D. (8.22)
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However, part (ii) of Theorem 8.1 asserts that

u ∈W 2,p(D) ⊂ C2−N/p(D) ⊂ C1(D) if N < p <∞.

Hence we have, by formula (8.22) and condition (B),

u = 0 on M = {x′ ∈ ∂D : μ(x′) = 0},

so that
u ∈ C0(D \M).

Furthermore, in view of formula (8.21) it follows that

Au = f + λu ∈ C0(D \M).

Summing up, we have proved that
{
u ∈ D(A),
(A− λI)u = f.

Now the proof of part (i) of Theorem 1.3 is complete. �




