Skip to main content

Concentration of Solutions for Some Singularly Perturbed Neumann Problems

  • Chapter
  • First Online:
Geometric Analysis and PDEs

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1977))

Abstract

The purpose of these notes is to present some techniques for constructing solutions to a class of singularly perturbed problems with a precise asymptotic behavior when the perturbation parameter ε tends to zero. We first treat the case of concentration at points, and then the case of concentration at manifolds. One of the main motivations for the study of these equations arises from reaction-diffusion systems, concerning in particular the so-called Turing’s instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosetti, A., Badiale, M., Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), 285–300.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Felli, V., Malchiodi, A., Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), 117–144.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A., Perturbation Methods and Semilinear Elliptic Problems on \({\mathbb {R}}^n\), Birkhäuser, Progr. in Math. 240, (2005).

    Google Scholar 

  4. Ambrosetti, A., Malchiodi, A., Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Univ. Press, Cambridge Studies in Advanced Mathematics, No.104 (2007).

    Google Scholar 

  5. Ambrosetti, A., Malchiodi, A., Ni, W.M., Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427–466.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Malchiodi, A., Ni, W.M., Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J. 53 (2004), no. 2, 297–329.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosetti, A., Malchiodi, A., Ruiz, D., Bound states of Nonlinear Schrödinger Equations with Potentials Vanishing at Infinity, J. d'Analyse Math., 98 (2006), 317–348.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosetti, A., Malchiodi, A., Secchi, S., Multiplicity results for some nonlinear singularly perturbed elliptic problems on R n, Arch. Rat. Mech. Anal. 159 (2001) 3, 253–271.

    Article  MathSciNet  Google Scholar 

  9. Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  10. Arioli, G., Szulkin, A., A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170 (2003), 277–295.

    Article  MathSciNet  MATH  Google Scholar 

  11. Badiale, M., D'Aprile, T., Concentration around a sphere for a singularly perturbed Schrödinger equation. Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 947–985.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bartsch, T., Peng, S., Semiclassical symmetric Schrdinger equations: existence of solutions concentrating simultaneously on several spheres, Z Angew Math Phys, 58 (5) (2007), 778–804.

    Article  MathSciNet  MATH  Google Scholar 

  13. Benci, V., D'Aprile, T., The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. J. Differential Equations 184 (2002), no. 1, 109–138.

    Article  MathSciNet  MATH  Google Scholar 

  14. Berestycki, H., Lions, P.L. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.

    MathSciNet  MATH  Google Scholar 

  15. Berestycki, H., Lions, P.L. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82 (1983), no. 4, 347–375.

    MathSciNet  MATH  Google Scholar 

  16. Berezin, F.A., Shubin, M.A., The Schrdinger equation, Kluwer Academic Publishers Group, Dordrecht, 1991.

    Book  Google Scholar 

  17. Byeon, J., Wang, Z.Q., Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Rat. Mech. Anal. 165, 295–316 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. Casten, R.G., Holland, C.J., Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27 (1978), no. 2, 266–273.

    Article  MATH  Google Scholar 

  19. Cingolani, S., Pistoia, A., Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys. 55 (2004), no. 2, 201–215.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dancer, E.N., Stable and finite Morse index solutions on R n or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), no. 3, 1225–1243.

    Article  MathSciNet  MATH  Google Scholar 

  21. Dancer, E.N., Yan, S., Multipeak solutions for a singularly perturbed Neumann problem. Pacific J. Math. 189 (1999), no. 2, 241–262.

    Article  MathSciNet  MATH  Google Scholar 

  22. Dancer, E.N., Yan, S., A new type of concentration solutions for a singularly perturbed elliptic problem, Trans Amer Math Soc, 359(4) (2007), 1765–1790.

    Article  MathSciNet  MATH  Google Scholar 

  23. D'Aprile, T., On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations. Diff. Int. Equ. 16 (2003), no. 3, 349–384.

    MathSciNet  MATH  Google Scholar 

  24. Del Pino, M., Felmer, P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. 4 (1996), 121–137.

    Article  MATH  Google Scholar 

  25. Del Pino, M., Felmer, P., Semi-classcal states for nonlinear schrödinger equations, J. Funct. Anal. 149 (1997), 245–265.

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Pino, M., Felmer, P., Kowalczyk, M., Boundary spikes in the Gierer-Meinhardt system. Commun. Pure Appl. Anal. 1 (2002), no. 4, 437–456.

    Article  MATH  Google Scholar 

  27. Del Pino, M., Felmer, P., Wei, J., On the role of the mean curvature in some singularly perturbed Neumann problems, S.I.A.M. J. Math. Anal. 31 (1999), 63–79.

    MATH  Google Scholar 

  28. Del Pino, M., Kowalczyk, M., Wei, J., Multi-bump ground states of the Gierer-Meinhardt system in \({\mathbb {R}}^2\). Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, 53–85.

    Article  MATH  Google Scholar 

  29. Del Pino, M., Kowalczyk, M., Wei, J., Concentration at curves for Nonlinear Schrödinger Equations, Comm. Pure Appl. Math., 60 (2007), no. 1, 113–146.

    Article  MathSciNet  MATH  Google Scholar 

  30. Floer, A., Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69, (1986), 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gierer, A., Meinhardt, H., A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30–39.

    Google Scholar 

  32. Grossi, M. Some results on a class of nonlinear Schrödinger equations, Math. Zeit. 235 (2000), 687–705.

    Article  MathSciNet  MATH  Google Scholar 

  33. Grossi, M., Pistoia, A., Wei, J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. Calc. Var. Partial Differential Equations 11 (2000), no. 2, 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  34. Gui, C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739–769.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gui, C., Wei, J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J Math. 52 (2000), no. 3, 522–538.

    Article  MathSciNet  MATH  Google Scholar 

  36. Gui, C., Wei, J., Winter, M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 1, 47–82.

    Article  MathSciNet  MATH  Google Scholar 

  37. Iron, D., Ward, M., Wei, J., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Phys. D 150 (2001), no. 1–2, 25–62.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jeanjean, L., Tanaka, K., A positive solution for a nonlinear Schrödinger equation on \({\mathbb {R}}^N\). Indiana Univ. Math. J. 54 (2005), no. 2, 443–464.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kato, T., Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976.

    Google Scholar 

  40. Kawohl, B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  41. Kwong, M.K., Uniqueness of positive solutions of −Δu + u + u p = 0 in \({\mathbb {R}}^n\), Arch. Rational Mech. Anal. 105, (1989), 243–266.

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, Y.Y., On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations 23 (1998), 487–545.

    MathSciNet  MATH  Google Scholar 

  43. Li, Y.Y., Nirenberg, L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445–1490.

    Article  MathSciNet  MATH  Google Scholar 

  44. Lin, C.S., Ni, W.M., Takagi, I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin, F.H., Ni, W.M., Wei, J., On the number of interior peak solutions for a singularly perturbed Neumann problem, 60 (2007), no. 2, 252–281.

    MathSciNet  MATH  Google Scholar 

  46. Mahmoudi, F., Malchiodi, A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. in Math., 209-2 (2007), 460–525.

    Article  MathSciNet  Google Scholar 

  47. Mahmoudi, F., Malchiodi, A., Wei, J., Transition Layer for the Heterogeneous Allen-Cahn Equation, Annales IHP, Analyse non Lineaire, to appear.

    Google Scholar 

  48. Malchiodi, A., Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, G.A.F.A., 15-6 (2005), 1162–1222.

    MathSciNet  Google Scholar 

  49. Malchiodi, A., Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math, 15 (2002), 1507–1568.

    Article  MathSciNet  Google Scholar 

  50. Malchiodi, A., Montenegro, Multidimensional Boundary-layers for a singularly perturbed Neumann problem, Duke Math. J. 124 (2004), no. 1, 105–143.

    Article  MathSciNet  MATH  Google Scholar 

  51. Malchiodi, A., Ni, W.M., Wei, J., Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143–163.

    Article  MathSciNet  MATH  Google Scholar 

  52. Malchiodi, A., Wei, J., Boundary interface for the Allen-Cahn equation, J. Fixed Point Theory and Appl., 1 (2007), no. 2, 305–336.

    Article  MathSciNet  MATH  Google Scholar 

  53. Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979), no. 2, 401–454.

    Article  MathSciNet  MATH  Google Scholar 

  54. Molle, R., Passaseo, D., Concentration phenomena for solutions of superlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), no. 1, 63–84.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ni, W.M. Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45 (1998), no. 1, 9–18.

    MathSciNet  MATH  Google Scholar 

  56. Ni, W.M., Takagi, I., On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819–851.

    Article  MathSciNet  Google Scholar 

  57. Ni, W.M., Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70, (1993), 247–281.

    Article  MathSciNet  MATH  Google Scholar 

  58. Ni, W.M., Takagi, I., Yanagida, E., Stability of least energy patterns of the shadow system for an activator-inhibitor model. Recent topics in mathematics moving toward science and engineering. Japan J. Indust. Appl. Math. 18 (2001), no. 2, 259–272.

    Article  MathSciNet  MATH  Google Scholar 

  59. Oh, Y.G. On positive Multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Comm. Math. Phys. 131, (1990), 223–253.

    Article  MathSciNet  MATH  Google Scholar 

  60. Shi, J., Semilinear Neumann boundary value problems on a rectangle. Trans. Amer. Math. Soc. 354 (2002), no. 8, 3117–3154.

    Article  MathSciNet  MATH  Google Scholar 

  61. Strauss, W.A., Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), no. 2, 149–162.

    Article  MathSciNet  MATH  Google Scholar 

  62. Turing, A.M., The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37–72.

    Article  Google Scholar 

  63. Wang, Z.Q., On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal., 120 (1992), 375–399.

    Article  MathSciNet  MATH  Google Scholar 

  64. Wei, J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104–133.

    Article  MathSciNet  MATH  Google Scholar 

  65. Wei J., Yang J., Concentration on Lines for a Singularly Perturbed Neumann Problem in Two-Dimensional Domains, Indiana Univ. Math. J., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Malchiodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malchiodi, A. (2009). Concentration of Solutions for Some Singularly Perturbed Neumann Problems. In: Chang, SY., Ambrosetti, A., Malchiodi, A. (eds) Geometric Analysis and PDEs. Lecture Notes in Mathematics(), vol 1977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01674-5_3

Download citation

Publish with us

Policies and ethics