
PDEs in Conformal Geometry

Matthew J. Gursky

1 Introduction

In these lectures I will discuss two kinds of problems from conformal geometry,
with the goal of showing an important connection between them in four
dimensions.

The first problem is a fully nonlinear version of the Yamabe problem,
known as the σk-Yamabe problem. This problem is, in general, not varia-
tional (or at least there is not a natural variational interpretation), and the
underlying equation is second order but possibly not elliptic. Moreover, in
contrast to the Yamabe problem, there is very little known (except for some
examples and counterexamples) when the underlying manifold is negatively
curved.

The second problem we will discuss involves the study of a fourth order
semilinear equation, and arose in the context of a natural variational prob-
lem from spectral theory. Despite their differences–higher order semilinear
versus second order fully nonlinear, variational versus non-variational–both
equations are invariant under the action of the conformal group, and we have
to address the phenomenon of “bubbling.” Therefore, in the first few sections
of the notes we will present the necessary background material, including a
careful explanation of the idea of a “standard bubble”.

After covering the introductory material, we give a description of the
σk-Yamabe problem, culminating in a sketch of the solution in the four-
dimensional case. Modulo some technical regularity estimates, the proof
is reduced to a global geometric result (Theorem 5.7) that is easy to
understand.
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In the last section of the notes we discuss the functional determinant of a
four-manifold, a variational problem which is based on a beautiful calculation
of Branson-Ørsted. We end with a sketch of the existence of extremals for the
determinant functional for manifolds of positive scalar curvature. Here, the
missing technical ingredient is a sharp functional inequality due to Adams
(Theorem 65), but the proof is again reduced to Theorem 5.7. Therefore, we
see the underlying unity of the two problems in a very concrete way.

In closing, I wish to express my gratitude to the Fondazione C.I.M.E.
for their invitation and their support. The success of the meeting Geomet-
ric Analysis and PDEs was a result of the considerable efforts of the local
organizers (especially Andrea Malchiodi), the scientific contributions of the
participants, and the hospitality of our hosts in Cetraro.

2 Some Background from Riemannian Geometry

In this section we review some of the basic notions from Riemannian geom-
etry, including the basic differential operators (gradient, Hessian, etc.) and
curvatures (scalar, Ricci, etc.) This is not so much an introduction to the
subject–which would be impossible in so short a space–but rather a summary
of definitions and formulas.

2.1 Some Differential Operators

1. The Hessian

Let (Mn, g) be an n-dimensional Riemannian manifold, and let ∇ denote the
Riemannian connection.

Definition 2.1. The Hessian of f : Mn → R is defined by

∇2f(X,Y ) = ∇Xdf(Y ). (1)

It is easy to see the Hessian is symmetric, bilinear form on the tangent
space of Mn at each point. In a local coordinate system {xi}, the Christoffel
symbols are defined by

∇ ∂

∂xi

∂

∂xj
=
∑

k

Γ kij
∂

∂xk
.
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Using (1), in local coordinates we have

(∇2f)ij = ∇i∇jf

=
∂2f

∂xi∂xj
−
∑

k

Γ kij
∂f

∂xk
.

2. The Laplacian and Gradient

Definition 2.2. The Laplacian is the trace of the Hessian: Let {e1, . . . , en}
be an orthonormal basis of the tangent space at a point; then

Δf =
∑

i

∇2f(ei, ei). (2)

In local coordinates {xi},

Δf = gij

(
∂2f

∂xi∂xj
−
∑

k

Γ kij
∂f

∂xk

)

,

where gij = (g−1)ij . Another useful formula is

Δf =
1
√
g

∂

∂xi

(

gij
√
g
∂f

∂xj

)

,

where g = det(gij).
The gradient vector field of f , denoted ∇f , is the vector field dual to the

1-form df ; i.e., for each vector field X ,

g(∇f,X) = df(X).

In local coordinates {xi},

∇jf =
∑

i

gij
∂f

∂xi
.

3. The Curvature Tensor

For vector fields X,Y, Z, the Riemannian curvature tensor of (M, g) is
defined by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [·, ·] is the Lie bracket. With respect to a local coordinate system {xi},
the curvature tensor is given by
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R

(
∂

∂xk
,
∂

∂xl

)
∂

∂xj
=
∑

i

Rijkl
∂

∂xi
.

Let Π ⊂ TpM
n be a tangent plane with orthonormal basis {E1, E2}. The

sectional curvature of Π is the number

K(Π) = 〈R(E1, E2)E1, E2〉.

(K(Π) does not depend on the choice of ON-basis.)

Example 1. For Rn with the Euclidean metric, all sectional curvatures
are zero.

Example 2. Let Sn = {x ∈ Rn+1 | ‖x‖ = 1} with the metric it inherits as
a subspace of Rn+1. Then all sectional curvatures are +1.

Example 3. Let Hn = {x ∈ Rn | ‖x‖ < 1}, endowed with the metric

g = 4
∑

i

(dxi)2

(1 − ‖x‖2)2
.

Then all sectional curvatures are −1.

The preceding examples are referred to as spaces of constant curvature, or
space forms. A theorem of Hopf says that any complete, simply connected
manifold of constant curvature is isometric to one of these examples (perhaps
after scaling). Thus, curvature determines the local geometry of a manifold.

Another way of thinking about curvature is that it measures the failure of
derivatives to commute:

Lemma 2.3. In local coordinates,

∇i∇j∇kf −∇j∇i∇kf =
∑

m

Rmkij∇mf.

So third derivatives do not commute unless R = 0, i.e., the manifold
is flat.

4. Ricci and Scalar Curvatures

Definition 2.4. The Ricci curvature tensor is the bilinear form Ric : TpM ×
TpM → R defined by

Ric(X,Y ) =
∑

i

〈R(X, ei)Y, ei〉,

where {e1, . . . , en} is an orthonormal basis of TpM .
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In local coordinates, the components of Ricci are given by

Rij =
∑

m

Rmijm.

For spaces of constant curvature, the Ricci tensor is just a constant multiple
of the metric:

Sn : Ric = (n− 1)g,
Rn : Ric = 0,
Hn : Ric = −(n− 1)g.

The Ricci tensor is symmetric: Ric(X,Y ) = Ric(Y,X). Therefore, at each
point p ∈ M we can diagonalize Ric with respect to an orthonormal basis
of TpM :

Ric =

(ρ1

ρ2

. . .
ρn

)

where (ρ1, . . . , ρn) are the eigenvalues of Ric. To say that (Mn, g) has positive
(negative) Ricci curvature means that all the eigenvalues of Ric are positive
(negative).

In two dimensions, the Ricci curvature is determined by the Gauss curva-
ture K:

Ric = Kg.

Definition 2.5. The scalar curvature is the trace of the Ricci curvature:

R =
∑

i

Ric(ei, ei),

where {e1, . . . , en} is an orthonormal basis.

If {ρ1, . . . , ρn} are the eigenvalues of the Ricci curvature at a point p ∈M ,
then the scalar curvature is given by

R = ρ1 + · · · + ρn.

For the spaces of constant curvature, the scalar curvature is a constant
function:

Sn : R = n(n− 1),
Rn : R = 0,
Hn : R = −n(n− 1).



6 M.J. Gursky

Furthermore, in two dimensions the scalar curvature is twice the Gauss
curvature:

R = 2K.

3 Some Background from Elliptic Theory

In this section we summarize some important results from functional analysis
and the theory of partial differential equations.

1. Sobolev Spaces

These are important for discussing some of the PDE topics in these lectures.
Let (M, g) be a compact Riemannian manifold. For 1≤ k <∞ and 1≤ p≤∞,
introduce the norms

‖u‖pk,p =
∑

0≤j≤k

∫

|∇ju|p dV,

where ∇ju denotes the iterated jth-covariant derivative.

Example. For k = 1, p = 2,

‖u‖2
1,2 =

∫

u2 dV +
∫

|du|2 dV.

The Sobolev space W k,p(M) is the completion of C∞(M) in the norm
‖ · ‖k,p.

Theorem 3.1. (Sobolev Embedding Theorems; see [GT83])
(i) If

1
r

=
1
m

− k

n
,

then W k,m(M) is continuously embedded in Lr(M):

‖u‖r ≤ C‖u‖k,m.

(ii) Suppose 0 < α < 1 and

1
m

≤ k − α

n
.

Then W k,m is continuously embedded in Cα.
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(iii) (Rellich-Kondrakov) If

1
r
>

1
m

− k

n
,

then the embedding W k,m ↪→ Lr is compact: i.e., a sequence which is bounded
in W k,m has a subsequence which converges in Lr.

2. Linear Operators

Consider the linear differential operator L:

Lu = aij(x)∂i∂ju+ bk(x)∂ku+ c(x)u,

where the coefficients aij , bk, c are defined in a domain Ω ⊂ Rn.

Definition 3.2. The operator L is elliptic in Ω if {aij(x)} is positive definite
at each point x ∈ Ω. If there is a constant λ > 0 such that

aij(x)ξiξj ≥ λ|ξ|2

for all ξ ∈ Rn and x ∈ Ω, then L is strictly elliptic in Ω. If, in addition, there
is another constant Λ > 0 such that

Λ|ξ|2 ≥ aij(x)ξiξj ≥ λ|ξ|2,

then we say that L is uniformly elliptic in Ω.

We can formulate a similar definition for operators defined on a Riemannian
manifold; e.g., by introducing local coordinates. Of course, the laplacian
L = Δ is an example of a linear, uniformly elliptic operator.

3. Weak Solutions

We say that u ∈W 1,2(M) is a weak solution of the equation

Δu = f(x) (3)

if for each ϕ ∈ W 1,2,
∫

−〈∇u,∇ϕ〉 dV =
∫

fϕ dV. (4)

Of course, a smooth solution of (3) satisfies (4) by virtue of Green’s Theo-
rem. Weak solutions of elliptic equations like (3) in fact satisfy much better
estimates, as we shall see.
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4. Elliptic Regularity

Theorem 3.3. (See [GT83]) Suppose u ∈W 1,2 is a weak solution of

Δu = f

on M .
(i) If f ∈ Lm, then

‖u‖2,m ≤ C
(
‖f‖m + ‖u‖m

)
. (5)

(ii) (Schauder estimates) If f ∈ C�,α then

‖u‖C�+2,α ≤ C
(
‖f‖C�,α + ‖u‖C�,α

)
. (6)

How are such estimates used?

• To prove the regularity of weak solutions.

Weak solutions are often easier to find, for example, by variational methods.

• To prove a priori estimates of solutions, that is, estimates which are
necessarily satisfied by any solution of a given equation.

Often a priori estimates can be combined with a topological argument to
establish existence.

Example. To illustrate some of these results we consider an equation that
will be an important model for much of the subsequent material.

Theorem 3.4. Suppose u ≥ 0 is a (weak) solution of

Δu+ c(x)u = K(x)up, (7)

where c,K are smooth functions, and

1 ≤ p <
n+ 2
n− 2

.

If ∫

u
2n

(n−2) dV ≤ B, (8)

then u satisfies

sup
M

u ≤ C(p,B).
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In fact, we can estimate u with respect to any Hölder norm, all in terms
of p and B. The main point here is that the assumption p < n+2

n−2 is crucial.

Proof. Using the preceding elliptic regularity theorem, we know that u
satisfies

‖u‖2,m ≤ C
(
‖Δu‖m + ‖u‖m

)

≤ C
(
‖up‖m + ‖u‖m

)

≤ C
(
‖u‖pmp + ‖u‖m

)
.

(9)

Denote

m0 =
2n

n− 2
,

and choose m so that
mp = m0.

It follows from (9) that

‖u‖2,m ≤ C(p,B).

We now use the Sobolev embedding theorem, which says

‖u‖r ≤ C‖u‖2,m

where

1
r

=
1
m

− 2
n

=
n− 2m
mn

,

or,

r =
mn

n− 2m
=

(m0
p )n

n− 2(m0
p )

.

So, we’ve passed from one Lebesgue-space estimate to another. Have things
improved?

The answer is yes, as long as

(m0
p )n

n− 2(m0
p )

> m0.

Solving this inequality, we see that it will hold provided p satisfies

p <
n+ 2
n− 2

.
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In this case, we iterate this process an arbitrary number of times, and
conclude that

‖u‖2,m ≤ C(m, p,B) ∀m >> 1.

Once m is large enough, though, we can once more appeal to the Sobolev
embedding theorem, part (ii), and conclude that u is Hölder continuous–in
particular, u is bounded as claimed.

Remarks.

1. For higher order regularity we turn to the Schauder estimates, since we
actually proved that u is Hölder continuous. Iterating the Schauder estimates,
we can prove the Hölder continuity of derivatives of all orders.

2. As we mentioned above, and will soon see by explicit example, the pre-
ceding result is false if p = (n + 2)/(n − 2). However, it can be “localized”:
that is, if

∫

B(x0,r)

u
2n

(n−2) dV ≤ ε0

for some ε0 > 0 small enough, then

sup
B(x0,r/2)

u ≤ C(r).

3. A Corollary of Theorem 3.4 is that weak solutions of (7) are regular, for
all 1 ≤ p ≤ (n+ 2)/(n− 2).

4 Background from Conformal Geometry

In this, the final section of the introductory material, we present some basic
ideas from conformal geometry.

Definition 4.1. Let (Mn, g) be a Riemannian manifold. A metric h is
pointwise conformal to g (or just conformal) if there is a function f such
that

h = efg.

The function ef is referred to as the conformal factor. We used the expo-
nential function to emphasize the fact that we need to multiply by a positive
function (since h must be positive definite). However, in some cases it will be
more convenient to write the conformal factor differently.
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We can introduce an equivalence relation on the set of metrics: h ∼ g iff h
is pointwise conformal to g. The equivalence class of a metric g is called its
conformal class, and will be denoted by [g]. Note that

[g] = {efg | f ∈ C∞(M)}.

Definition 4.2. Let (M, g) and (N, h) be two Riemannian manifolds. A
diffeomorphism ϕ : M → N is called conformal if

ϕ∗h = efg.

We say that (M, g) and (N, h) are conformally equivalent. Note h and g
are pointwise conformal if and only if the identity map is conformal.

Example 1. Let δλ(x) = λ−1x be the dilation map on Rn, where λ > 0.
Then δλ is easily seen to be conformal; in fact,

δ∗λds
2 = λ−2ds2,

where ds2 is the Euclidean metric.

Example 2. Let P = (0, . . . , 0, 1) be the north pole of Sn ⊂ Rn+1. Let
σ : Sn \ {P} → Rn+1 denote stereographic projection, defined by

σ(ζ1, . . . , ζn, ξ) =
( ζ1

1 − ξ
, . . . ,

ζn

1 − ξ
).

Then σ : (Sn \ {P}, g0) → (Rn+1, ds2) is conformal, where g0 is the standard
metric on Sn.

Since the composition of conformal maps is again conformal, we can use
σ to construct conformal maps of Sn to itself: for λ > 0, let

ϕλ = σ−1 ◦ δλ ◦ σ : Sn → Sn.

Then
ϕ∗
λg0 = Ψ2

λg0,

where

Ψλ(ζ, ξ) =
2λ

(1 + ξ) + λ2(1 − ξ)
.

Note

(ζ, ξ) = (0,1) ⇒ Ψλ → ∞ as λ→ ∞,

(ζ, ξ) �= (0,1) ⇒ Ψλ → 0 as λ → ∞.
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The set of conformal maps of a given Riemannian manifold is a Lie group;
the construction above shows that the conformal group of the sphere is non-
compact. This fact distinguishes the sphere:

Theorem 4.3. (Lelong-Ferrand) A compact Riemmanian manifold with non-
compact conformal group is conformally equivalent to the sphere with its
standard metric.

This fact is the source of many of the analytic difficulties we will encounter
in the PDEs we are about to describe.

1. Curvature and Conformal Changes of Metric

Let h = e−2ug be conformal metrics, and let Ric(h), R(h) denote the Ricci
and scalar curvatures of h, and Ric(g), R(g) denote the Ricci and scalar
curvatures of g. Then

Ric(h) = Ric(g) + (n− 2)∇2u+ Δug

+(n− 2)du⊗ du− (n− 2)|∇u|2g,
R(h) = e2u

{
R(g) + 2(n− 1)Δu

−(n− 1)(n− 2)|∇u|2
}
,

where ∇2u and Δu denote the Hessian and laplacian of u with respect to g.

2. The Uniformization Theorem and Yamabe Problem.

Let (M2, g) be a closed (no boundary), compact, two-dimensional Riemannian
manifold. Let K denotes its Gauss curvature.

Theorem 4.4. (The Uniformization Theorem) There is a conformal metric
h = e−2ug with constant Gauss curvature.

See ([Ber03], p. 254) for some historical background on the result. Let
Kh = const. denote the Gauss curvature of the metric h; then the sign of Kh

is determined by the Gauss-Bonnet formula:

2πχ(M2) =
∫

Kh dAh

= Kh ·Area(h).

Note the geometric/topological significance of the Uniformization Theo-
rem: Since h has constant curvature, by the Hopf theorem the universal cover
M̃ is isometric to either S2,R2, or H2, each case being determined by the
sign of the Euler characteristic.
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Now let (Mn, g) be a closed, compact, Riemannian manifold of dimension
n ≥ 3. In higher dimensions there are obstructions to being even locally
conformal to a constant curvature metric. This leads to

Question: How do we generalize the Uniformization Theorem to higher
dimensions?

A major theme of these lectures is the various ways one might answer
this question (there are yet others). The first attempt we will discuss is the
Yamabe Problem: Find a conformal metric h = e−2ug whose scalar curvature
is constant.

By the formulas above, solving the Yamabe problem is equivalent to
solving the semilinear PDE

2(n− 1)Δu− (n− 1)(n− 2)|∇u|2 +R(g) = μe−2u

for some constant μ. This formula can be simplified if we write h = v4/(n−2)g,
where v > 0. Then v should satisfy

−4(n− 1)
(n− 2)

Δv +R(g)v = λv
n+2
n−2 . (10)

Notice the exponent! This equation is of the form

Δv + c(x)v = K(x)vp,

where p = (n + 2)/(n − 2). This is the critical case of the equation we
considered in Theorem 3.4.

3. The Case of the Sphere

Recall the conformal maps of the sphere described above, ϕλ : Sn → Sn.
Then h = ϕ∗

λg0 = Ψ2
λg0 has the same scalar curvature as the standard metric.

Therefore, writing

h = v
4/(n−2)
λ g0,

where

vλ = Ψ
(n−2)

2
λ ,

we have a family {vλ} of solutions to

−4(n− 1)
(n− 2)

Δvλ + n(n− 1)vλ = n(n− 1)v
n+2
n−2
λ .

As we observed above, if P is the North pole, then
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vλ(P ) → ∞ as λ → ∞,

whereas if x �= P , then

vλ(x) → 0 as λ→ ∞.

To summarize, there is good news and bad. The good news is that there
are many solutions of the Yamabe equation. The bad news is that it will
be impossible to prove a priori estimates for solutions of (10). Of course,
the non-compactness of the set of solutions arises precisely because of the
influence of the conformal group. Thus, on manifolds other than the sphere,
one would expect that the set of solutions is compact. Put another way,
ideally we would like to show that non-compactness implies the underlying
manifold is (Sn, g0).

2. The Yamabe Problem: A variational Approach.

There is an approach to solving the Yamabe problem by the methods of the
calculus of variations. Define the functional Y : W 1,2 → R by

Y[v] =

∫ ( 4(n−1)
(n−2) |∇v|2 + R(g)v2

)
dV

( ∫
v

2n
(n−2) dV

)(n−2)/n
. (11)

Using the formulas above, one can check that

Y[v] = V ol(h)−(n−2)/n

∫

R(h) dV (h),

where h = v4/(n−2)g. The quantity on the right-hand side is called the total
scalar curvature of h.

Lemma 4.5. A function v ∈ W 1,2 is a critical point of Y iff v is a weak
solution of the Yamabe equation.

By critical point, we mean that

d

dt
Y(v + tϕ)

∣
∣
t=0

= 0

for all ϕ ∈W 1,2.
Recall that weak solutions of (10) are regular. Also, by the Sobolev

embedding theorem the number

Y (Mn, [g]) = inf
v∈W 1,2

Y(v) (12)

is > −∞. This number is called the Yamabe invariant of the conformal class
of g.
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Some historical notes: H. Yamabe claimed to have proved the existence of
a minimizer of Y, for all manifolds (Mn, g). However, N. Trudinger found a
serious gap in his proof, which he was able to fix provided Y (Mn, [g]) was
sufficiently small (for example, if Y (Mn, [g]) ≤ 0). Subsequently, T. Aubin
proved that for all n-dimensional manifolds

Y (Mn, [g]) ≤ Y (Sn, [g0]), (13)

and that whenever this inequality was strict, a minimizing sequence converges
(weakly) to a (smooth) solution of the Yamabe equation. Aubin also showed
that a strict inequality holds in (13) if (Mn, g) was of dimension n ≥ 6 and
not locally conformal to a flat metric.

Finally, the remaining cases were solved by Schoen: that is, he showed
that when Mn has dimension 3, 4, or 5, or if M is locally conformal to a
flat metric, then the inequality (13) is strict unless (Mn, g) is conformally
equivalent to (Sn, g0). An excellent survey of the Yamabe problem can be
found in [LP87].

5 A Fully Nonlinear Yamabe Problem

In this section we begin our discussion of the σk-Yamabe problem, a more
recent attempt to generalize the Uniformization Theorem to higher dimen-
sions. To do so, we need to introduce another notion of curvature:

Definition 5.1. The Schouten tensor of (M, g) is

A =
1

(n− 2)

(

Ric− 1
2(n− 1)

R · g
)

. (14)

Example. For spaces of constant curvature ±1 (e.g. the sphere or hyperbolic
space), the Schouten tensor is

A = diag
{

±1
2
, . . . ,±1

2

}

.

From the perspective of conformal geometry, the Schouten is actually more
natural than the Ricci tensor (but this takes some time to explain). Here’s
one indication: Suppose ĝ = e−2ug. Then the Schouten tensor of ĝ is given by

Â = A+ ∇2u+ du⊗ du− 1
2
|du|2g. (15)

A complicated formula; but just think of it as saying

Â = ∇2u+ · · ·
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where · · · indicates lower order terms. Contrast this with the more com-
plicated formulas for the Ricci tensor, which also involves the Laplace
operator.

The equations we will consider involve symmetric functions of the eigen-
values of A. Let λ1, . . . , λn denote the eigenvalues of A; suppose we choose a
local basis which diagonalizes A:

A =

(λ1

λ2

. . .
λn

)

.

Then define

σk(A) =
∑

i1<···<ik
λi1 · · ·λik , (16)

i.e., σk is the kth elementary symmetric polynomial in n variables. Note that

σ1(A) = trace(A) =
R

2(n− 1)
,

just a multiple of the scalar curvature. In general, the quantity σk(A) is called
the kth-scalar curvature, or σk-curvature, of the manifold.

Now, we can rephrase the Yamabe problem in the following way: Given
(Mn, g) find a conformal metric ĝ = e−2ug with constant σ1-curvature. This
naturally leads to the σk-Yamabe problem: Given (Mn, g), find a conformal
metric ĝ = e−2ug such that the σk-curvature is constant. By the formula
above, this is equivalent to solving the PDE

σk
(
A+ ∇2u+ du⊗ du− 1

2
|du|2g

)
= μe−2ku (17)

for some constant μ. Note the exponential weight on the right comes from
the fact that we are computing the eigenvalues of Â w.r.t. ĝ.

These equations are closely related to the Hessian equations covered in
Prof. Xu-Jia Wang’s C.I.M.E. course. The differences will come from (1) The
conformal invariance, and (2) The lower order (gradient) terms.

The σk-Yamabe problem was first formulated by J. Viaclovsky in his thesis
[Via00]. Viaclovsky is also the author of a recent survey article on the subject,
[Via06].
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5.1 Ellipticity

Recall from Professor Wang’s lectures that the Hessian equations

σk(∇2u) = f(x)

are elliptic provided u is admissible, or k-convex. That is, if

σj(∇2u) > 0, 1 ≤ j ≤ k.

In particular, a necessary condition is that f(x) > 0. We will need to impose
a similar ellipticity condition:

Definition 5.2. A metric g is admissible (or k-admissible) if the Schouten
tensor satisfies

σj(A) > 0, 1 ≤ j ≤ k

at each point of Mn.

What is the geometric meaning of admissibility? One can think of it as
a kind of “positivity” condition on the Schouten tensor. When k = n, it
means the Schouten tensor is positive definite; when k = 1, it means the
trace (i.e., the scalar curvature) is positive. Here is a more precise result, due
to Guan-Viaclovsky-Wang [GVW03]:

Theorem 5.3. If (Mn, g) is k-admissible then

Ric ≥ 2k − n

2n(k − 1)
R · g.

In particular, if k > n/2 then admissibility means positive Ricci curvature.
We can also define negative admissibility, which just means that (−A) is
k-convex.

As in the usual Yamabe problem, there is a non-compact family of solutions
to the σk-Yamabe problem on Sn:

gλ = ϕ∗
λg0 = Ψ2

λg0.

In particular, this gives an obstruction to proving a priori estimates (as it does
for the Yamabe problem). Thus, we are faced with some of the same technical
difficulties. However, there are some important technical differences between
the σk- and classical Yamabe problems. For example, equation (17) does
not have an easy variational description (though there are some important
geometric cases where it does).

A more mysterious contrast arises when studying manifolds of negative
curvature. If (Mn, g) has negative scalar curvature, the Yamabe problem is
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very easy to solve–indeed, the solution is unique. But for negative admissible
metrics there are at this time no general existence results for the σk-Yamabe
problem. In fact, Sheng-Trudinger-Wang showed by example that the local
estimates of Guan-Wang are false for solutions in the negative cone (see
[STW05]).

Finally, we remark that the condition of admissibility can be very restric-
tive: for example, the manifold X3 = S2 × S1 does not admit a k-admissible
metric for k = 2 or 3. Of course, one can consider the Yamabe problem for
any conformal class on X3.

5.2 From Lower to Higher Order Estimates

Our goal is to explain the main issues involved in solving the σk-Yamabe
problem, and sketch the proof of a particular case. As we shall see, the central
problem is establishing a priori estimates. Owing to a fundamental result of
Evans, Krylov ([Eva82], [Kry83]), plus the classical Schauder estimates, we
only need to worry about estimating derivatives up to order two. That is,

|u| + |∇u| + |∇2u| ≤ C2

⇓
|u| + |∇u| + · · · + |∇ku| ≤ C(k, C2).

Of course, even C2-estimates will fail without further assumptions, again
because of the sphere. However, let’s look closer: Let ϕλ : Sn → Sn be the
1-parameter family of conformal maps, and write

gλ = ϕ∗
λg0 = e−2uλg0.

Note that as λ → ∞, the conformal factor grows like

max e−2uλ ∼ λ2,

while the gradient and Hessian of u grow like

max |∇uλ|2 ∼ λ2, max |∇2uλ| ∼ λ2.

In particular, for this family we have

|∇u|2 + |∇2u| ≈ max e−2uλ .

So the optimal estimate one could hope for would be

max
(
2nd derivatives of u

)
≤ C max e−2u. (18)
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It turns out that such an estimate always holds:

Theorem 5.4. (See Guan-Wang, [GW03]) Assume u ∈ C4 is an admissible
solution of the σk-Yamabe equation on B(1). Then

max
B(1/2)

[
|∇u|2 + |∇2u|

]
≤ C(1 + max

B(1)
e−2u).

In view of this result, and the Evans and Krylov results, we see that

min
M

u ≥ C ⇒ ‖u‖Ck,α(M) ≤ C(k).

Therefore, if we can somehow rule out “bubbling”, we obtain estimates of
all orders. Once estimates are known, there are various topological methods
to prove the existence of solutions. This shows the geometric nature of the
problem: i.e., we need to detect the global geometry of the manifold in order
to get estimates, hence existence.

5.3 An Existence Result: Four Dimensions

To finish our discussion of the σk-Yamabe problem, we want to sketch its
solution in four dimensions. This case is special because, in 4-d, the integral

∫

σ2(A) dV

is conformally invariant. That is, if ĝ = e−2ug, then
∫

σ2(Â) dV̂ =
∫

σ2(A) dV.

You can check this by hand using the formulas above along with the fact that

dV̂ = e−4udV.

Eventually, you will find that

σ2(Â) dV̂ = σ2(A) dV + (divergence terms).

We will provide some details for the case k = 2; this was first treated
by Chang-Gursky-Yang [CGY02b], and later by Gursky-Viaclovsky [GV04].
For k = 3 or 4, the scheme of the proof is essentially the same. However,
the proof presented here is a simplified version of the original one, since we
will use the local estimates of Guan-Wang (which appeared several years
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after [CGY02b]). As we emphasized above, existence eventually boils down
to estimates: this is what we will prove.

To begin, let us write the equation in the case k = 2:

σ
1/2
2

(
A+ ∇2u+ du⊗ du − 1

2
|du|2g

)
= f(x)e−2u. (19)

where f ∈ C∞. Using the definition of σ2, this actually reads:

−|∇2u|2 + (Δu)2 + c1∇i∇ju∇iu∇ju

+ c2Δu|∇u|2 + c3|∇u|4 + · · · = f2(x)e−4u.

We will prove:

Theorem 5.5. Suppose (M4, g) is (i) admissible, and (ii) not conformally
equivalent to the round sphere. If u ∈ C4 is a solution of (19), then there is
a constant C = C(g, f) such that

min u ≥ −C.

Consequently,

‖u‖Ck ≤ C(k).

Proof. Suppose to the contrary there is a sequence of solutions {ui} of (19)
with minui → −∞. Let’s imagine that there is a point P with

min
M

ui = ui(P )

and by introducing local coordinates we can identify P with the origin in R4

and think of ui as being defined in a neighborhood Ω of 0. (In reality, the
location of the minimum point will vary, but this doesn’t affect the argument
in a significant way).

It is time to use conformal invariance. Recall the dilations on Euclidean
space are conformal. Define

wi(x) = u(εix) + log
1
εi
,

where εi > 0 is chosen so that

wi(0) = 0.

The wi’s are defined on 1
εi

Ω, and satisfy

σ
1/2
2

(
ε2iA+ ∇2wi + dwi ⊗ dwi −

1
2
|dwi|2g

)

= f(εix)e−2wi .
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After applying the local estimates of Guan-Wang, we can take a subsequence
{wi} which converges in Ck,αloc to a solution of

σ
1/2
2

(
∇2w + dw ⊗ dw − 1

2
|dw|2g

)
= μe−2w. (20)

with μ > 0.
We now appeal to the following uniqueness result

Lemma 5.6. (See Chang-Gursky-Yang, [CGY02a]) Up to scaling, the unique
solution of (20) is realized by

e2wds2 = (σ−1)∗g0, (21)

where σ is the stereographic projection map, ds2 the Euclidean metric, and
g0 is the round metric on the sphere.

It is easy to check that each solution given by (21) satisfies
∫

R4
σ2(Ã) dṼ = 4π2.

where g̃ = e2wds2. (Remember that A = diag{1/2, . . . , 1/2}, and Vol(S4) =
8π2/3). Also, since our solution w comes from blowing up a little piece of the
original manifold, for each ĝi = e−2uig we must have

∫

M4
σ2(Âi) dV̂i ≥ 4π2.

The proof now follows from the following global geometric result:

Theorem 5.7. (See Gursky, [Gur99]) If (M4, g) has positive scalar curva-
ture, then

∫

M4
σ2(A) dV ≤ 4π2,

and equality holds if and only if (M4, g) is conformally equivalent to the
sphere.

It follows that each (M4, gi) is conformally equivalent to the round sphere,
a contradiction. Therefore, assuming the manifold (M4, g) is not conformally
the sphere, any sequence of solutions remains bounded, as claimed.

Important Remark. The following remark is for the benefit of experts:
The proof of the preceding theorem does not use the Positive Mass Theorem!
(Or, to be precise, it uses an extremely weak form). Therefore, we are not
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solving the σk-Yamabe problem by somehow reducing it to the classical
Yamabe problem.

6 The Functional Determinant

In the final section we will introduce a higher order elliptic problem which has
its origins in spectral theory. Although this problem is semilinear and not fully
nonlinear, the structure of the Euler equation is related to the σ2-Yamabe
equation in 4-d. Moreover, for 4-manifolds of positive scalar curvature, the
same result (Theorem 5.7) plays a crucial role in the existence theory.

Suppose (Mn, g) is a closed Riemannian manifold, and let Δ denote the
Laplace-Beltrami operator associated to g. We can label the eigenvalues of
(−Δ) (counting multiplicities) as

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . (22)

The spectral zeta function of (M2, g) is defined by

ζ(s) =
∑

j≥1

λ−sj . (23)

By Weyl’s asymptotic law,

λj ∼ j2/n.

Consequently, (23) defines an analytic function for Re(s) > n/2. In fact, one
can meromorphically continue ζ in such a way that ζ becomes regular at
s = 0 (see [RS71]). Note that formally–that is, if we take the definition in
(23) literally–then

ζ′(0) = −
∑

j≥1

logλj

= − log
{∏

j≥1

λj
}

= − log det(−Δg).

(24)

In view of this ansatz, it is natural to define the regularized determinant of
(−Δg) as

det(−Δg) = e−ζ
′(0). (25)
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6.1 The Case of Surfaces

Clearly, the determinant is not a local quantity. Therefore, it is rather remark-
able that Polaykov ([Pol81a], [Pol81b]) was able to compute a closed formula
for the ratio of the determinants of the laplacians of two conformally related
surfaces:

Theorem 6.1. Let (Σ, g), (Σ, ĝ = e2wg) be conformal surfaces. Then

log
det(−Δĝ)
det(−Δg)

= − 1
12π

∫

Σ

[
|∇w|2 + 2Kw

]
dA, (26)

where K is the Gauss curvature and dA the surface measure associated to
(Σ2, g).

Remarks.

1. The formula (26) naturally defines a (relative) action on the space of
conformal metrics. That is, once we fix a metric g, we have the functional

ĝ ∈ [g] �→ log
det(−Δĝ)
det(−Δg)

.

However, since the determinant is not scale-invariant, we should consider the
normalized functional determinant

S[w] =
∫

Σ

[
|∇w|2 + 2Kw

]
dA−

(
∫

Σ

K dA
)
log
(
∫

Σ

e2w dA
)
, (27)

so that

S[w] = −12π log
det(−Δĝ)
det(−Δg)

+ 2πχ(Σ) log Area(ĝ),

while

S[w + c] = S[w].

2. A first variation shows that w is a critical point of S if and only if w
satisfies

Δw + ce2w = K, (28)

where c is a constant. Now, if ĝ = e2wg, then the Gauss curvature K̂ of ĝ is
related to the Gauss curvature of g via
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Δw + K̂e2w = K, (29)

this is called the Gauss curvature equation. Comparing (28) and (29), we
see that w is a critical point of S if and only if (Σ, ĝ) has constant Gauss
curvature. In particular, a metric extremizes the functional determinant if
and only if it uniformizes; i.e., it is a conformal metric of constant Gauss
curvature.

3. In a series of papers ([Osg88b], [Osg88a]) Osgood-Phillips-Sarnak gave a
proof of the Uniformization Theorem by showing that each conformal class on
a surface admits a metric that extermizes the determinant. Like the Yamabe
problem and its fully nonlinear version discussed earlier in the article, the
main difficulty is the invariance of the determinant under the action of the
conformal group. And like the analysis of the Yamabe problem, the solution
involves the study of sharp functional inequalities. A very nice overview of
the study of the functional determinant and related material can be found
in [Cha].

6.2 Four Dimensions

The key property of the Laplacian that Polyakov exploited in his calculation
was its conformal covariance:

Δe2wg = e−2wΔg. (30)

More generally, we say that the differential operator A = Ag : C∞(Mn) →
C∞(Mn) is conformally covariant of bi-degree (a, b) if

Ae2wgϕ = e−bwAg(eawϕ). (31)

In fact, this definition makes perfect sense for operators acting on smooth
sections of bundles (spinors, forms, etc.) as well as on functions. Two examples
of note are

Example 1. The conformal laplacian of (Mn, g), where n ≥ 3, is

L = −4(n− 1)
(n− 2)

Δ +R, (32)

where R is the scalar curvature. Then L is conformally covariant with

a =
n− 2

2
, b =

n+ 2
2

.
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Example 2. Let (M4, g) be a four-dimensional Riemannian manifold. The
Paneitz operator is

P = (Δ)2 + div{(2
3
Rg − 2Ric) ◦ d}. (33)

Then P is conformally covariant with

a = 4, b = 0.

An analogue of Polyakov’s formula for conformally covariant operators
defined on four-manifolds was computed by Branson-Ørsted in [Bra91]. To
explain the Branson-Ørsted formula we need to introduce three functionals
associated to a Riemannian 4-manifold (M4, g). Each functional is defined on
W 2,2, the Sobolev space of functions with derivatives up to order two in L2.

The first functional is zeroth order in w:

I[w] = 4
∫

w|W |2 dV −
(
∫

|W |2 dV
)
log
∫

e4w dV, (34)

where W is the Weyl curvature tensor and dV the volume form of g. If
w ∈W 2,2, The Moser-Trudinger inequality ([GT83]) implies that

ew ∈ Lp, all p ≥ 1.

Therefore, I : W 2,2 → R.
The second functional is analogous to the functional S defined in (27):

II[w] =
∫

wPw dV + 4
∫

Qw dV −
(
∫

Q dV
)
log
∫

e4w dV, (35)

where P is the Paneitz operator and Q is the Q-curvature:

Q =
1
12

(−ΔR +R2 − 3|Ric|2). (36)

Here we see the parallel between the Laplace-Beltrami operator/Gauss cur-
vature of a surface and the Paneitz operator/Q-curvature of a 4-manifold.

The third functional is

III[w] = 12
∫

(Δw + |∇w|2)2 dV − 4
∫

(wΔR +R|∇w|2) dV. (37)

The geometric meaning of this functional is apparent if we rewrite it in terms
of the scalar curvature Rĝ and volume form dV̂ of the conformal metric
ĝ = e2wg:

III[w] =
1
3
[
∫

R2
ĝ dV̂

]
−
∫

R2 dV
]
. (38)
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Therefore, III is the L2-version of the Yamambe functional in (11).
With these definitions, we can give the Branson-Ørsted formula: Suppose

A = Ag is a conformally covariant differential operator satisfying certain
“naturality” conditions (see [Bra91] for details). Then there are numbers,
γi = γi(A), 1 ≤ i ≤ 3, such that

FA[w] = log
detAe2wg

detAg
= γ1I[w] + γ2II[w] + γ3III[w]. (39)

We remark that the Branson-Ørsted formula is normalized; i.e., FA[w+ c] =
FA[w].

Example 1. For the conformal laplacian, Branson-Ørsted calculated

γ1(L) = 1, γ2(L) = −4, γ3(L) = −2
3
. (40)

Example 2. Later, in [Bra96], Branson calculated the coefficients for the
Paneitz operator:

γ1(L) = −1
4
, γ2(L) = −14, γ3(L) =

8
3
. (41)

Neglecting lower order terms, the log det functional is of the form

log
detAe2wg

detAg
= γ1

∫

(Δw)2 dV + γ3

∫

[Δw + |∇w|2]2 dV

+ κA log
∫

e4w dV + · · · ,
(42)

where κA is given by

κA = −γ1

∫

|W |2 dV − γ2

∫

Q dV, (43)

a conformal invariant. In particular, when γ2 and γ3 have the same sign (as
they do for the conformal laplacian), the main issue from the variational point
of view is the interaction of the highest order terms with the exponential term.
However, when the signs of γ2 and γ3 differ, then the highest order terms are
a non-convex combination of II and III, and the variational structure can
be quite complicated.
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6.3 The Euler Equation

As we observed above, critical points of the functional determinant on a sur-
face corresponds to metrics of constant Gauss curvature. In four dimensions
the geometric meaning of the Euler equation is less straightforward: Suppose
ĝ = e2wg is a critical point of FA; then the curvature of ĝ satisfies

γ1|Wĝ|2 + γ2Qĝ + γ3ΔĝRĝ = −κA · V ol(ĝ)−1. (44)

The geometric significance of this condition is, at first glance, difficult to
fathom. However, this equation in some sense includes all the significant
curvature conditions studied in four-dimensional conformal geometry, as can
be seen by considering special values of the γi’s:

• Taking γ1 = γ2 = 0 and γ1 = 1, equation (44) becomes

ΔĝRĝ = const. = 0, (45)

which is equivalent to the Yamabe equation

Rĝ = const.

• Taking γ1 = 0 and γ2 = −12γ3, equation (44) becomes

σ2(Aĝ) = const., (46)

that is, a critical point is a solution of the σ2-Yamabe problem.

• Taking γ1 = γ3 = 0 and γ2 = 1, then

Qĝ = const. (47)

Thus, critical points are solutions of the Q-curvature problem.

Geometric properties of critical metrics were used in [Gur98] to prove var-
ious vanishing theorems, and as a regularization of the σ2-Yamambe problem
in [CGY02b].

Turning to analytic aspects of the Euler equation, it is clear from (42) that
it is fourth order in w. A precise formula is

μe4w =(
1
2
γ2 + 6γ3)Δ2w + 6γ3Δ|∇w|2 − 12γ3∇i

[
(Δw + |∇w|2)∇iw

]
(48)

+ γ2Rij∇i∇jw + (2γ3 −
1
3
γ2)RΔw + (2γ3 +

1
6
γ2)〈∇R,∇w〉 (49)

+ (γ1|W |2 + γ2Q− γ3ΔR), (50)
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where Rij are the components of the Ricci curvature and

μ = − κA∫
e4w

. (51)

To simplify this expression we can divide both sides of (49) by 6γ3, then
rewrite the lower order terms to arrive at

(1 + α)Δ2w = f(x)e4w − Δ|∇w|2 + 2∇i
[
(Δw + |∇w|2)∇iw

]

+ aij∇i∇jw + bk∇kw + c(x),
(52)

where

α =
γ2

12γ3
. (53)

Although writing the equation in this form clearly reveals the divergence
structure, for some purposes it is better to expand the terms on the right
and write

(1 + α)Δ2w = f(x)e4w − 2|∇2w|2 + 2(Δw)2 + 2〈∇|∇w|2,∇w〉
+ 2Δw|∇w|2 + (lower order terms).

(54)

In particular, we see that the right-hand side does not involve any third
derivatives of the solution.

The regularity of extremal solutions of (49) was proved by Chang-Gursky-
Yang in [CGY99]), and for general solutions by Uhlenbeck-Viaclovsky in
[UV00]. Similar to the harmonic map equation in two dimensions, the main
difficulty is that the right-hand side of (54) is only in L1 when w ∈ W 2,2,
ruling out the possibility of using a naive bootstrap argument to prove
regularity.

6.4 Existence of Extremals

The most complete existence theory for extremals of the functional determi-
nant was done by Chang-Yang in [CY95]:

Theorem 6.2. Assume

γ2, γ3 < 0, (55)

and

κA < 8π2(−γ2). (56)

Then supW 2,2 FA is attained by some some w ∈W 2,2.
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Remarks.

1. Recall that

κA = −γ1

∫

|W |2 dV − γ2

∫

Q dV.

If γ1 > 0, then

κA ≤ −γ2

∫

Q dV.

Therefore, assuming γ2 < 0, then (56) holds provided
∫

Q dV < 8π2. (57)

By the definition of the Q-curvature,

Q = 2σ2(A) − 1
12

ΔR. (58)

Therefore,
∫

Q dV = 2
∫

σ2(A) dV.

In particular, for manifolds of positive scalar curvature, by Theorem 5.7 it
follows that

∫

Q dV ≤ 8π2, (59)

with equality if and only if (M4, g) is conformal to the round sphere. Thus,
combining the existence result of Chang-Yang with the sharp inequality of
Theorem 5.7, we conclude

Corollary 6.3. If (M4, g) has positive scalar curvature, then an extremal for
FL exists.

2. It is easy to construct examples of 4-manifold–necessarily with negative
scalar curvature–for which

∫

Q dV >> 8π2.

Thus, the existence theory for the functional determinant is quite incomplete.
This shows another parallel with the σk-Yamabe problem (and contrast with
the classical Yamabe problem): the case of negative curvature is much more
difficult than the positive case.
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3. Branson-Chang-Yang proved that on the sphere S4, the functionals II and
III are minimized by the round metric and its images under the conformal
group [Bra]. In particular, the round metric is the unique extremal (up to
conformal transformation) of FL. Later, in [Gur97], Gursky showed that the
round metric is the unique critical point.

6.5 Sketch of the Proof

In the following we give a sketch of the proof of Theorem 6.2. By Corollary
6.3, this will give the existence of extremals for FA on any 4-manifold of
positive scalar curvature.

To begin, we write the functional as

FA[w] = γ1I[w] + γ2II[w] + γ3III[w]

= γ1

∫

(Δw)2 + γ2

∫

(Δw + |∇w|2)2 + κA log
∫

e4(w−w̄ + (l.o.t.).

(60)

Next, divide by γ2, and denote F̃ = (1/γ2)FA:

F̃ [w] =
∫

(Δw)2 + β

∫

(Δw + |∇w|2)2 −
( κA
−γ2

)
log
∫

e4(w−w̄) + (l.o.t.),

(61)

where

β = γ3/γ2 > 0. (62)

Since γ2 < 0, we are trying to prove the existence of minimizers of F̃ .
Let us first consider the easy case, when κA ≤ 0. Then

−
( κA
−γ2

)
≥ 0.

Also, by Jensen’s inequality,

log
∫

e4(w−w̄) ≥ 0.

Therefore,

F̃ [w] ≥
∫

(Δw)2 + β

∫

(Δw + |∇w|2)2 + (l.o.t.) (63)

Now suppose {wk} is a minimizing sequence for F̃ ; from (63) we conclude
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C ≥
∫

(Δwk)2 + (l.o.t.),

which implies, for example by the Poincare inequality, that {wk} is bounded
in W 2,2. It follows that a subsequence converges weakly to a minimizer
w ∈W 2,2.

For the more difficult case when κA > 0, first observe that by hypothesis,
κA < 8π2(−γ2). Therefore,

κA
−γ2

= 8π2(1 − ε) (64)

for some ε > 0. The significance of the constant 8π2 is apparent from the
following sharp Moser-Trudinger inequality due to Adams:

Proposition 6.4. (See [Ada]) If (M4, g) is a smooth, closed 4-manifold, then
there is a constant C1 = C1(g) such that

log
∫

e4(w−w̄) ≤ 1
8π2

∫

(Δw)2 + C1. (65)

Using Adams’ inequality, we will show that the positive terms in F̃ domi-
nate the logarithmic term. To see why, we argue in the following way: by the
arithmetic-geometric mean,

2βxy ≥ −β(1 + δ)x2 − β(
1

1 + δ
)y2,

for any real numbers x, y, as long as β, δ > 0. From this inequality it follows
that
∫

(Δw)2 + β

∫

(Δw + |∇w|2)2 ≥
∫

(1 − δβ)(Δw)2 + β(
δ

1 + δ
)|∇w|4. (66)

Therefore, by (64) and (66),

F̃ [w] ≥
∫

(1−δβ)(Δw)2+β(
δ

1+δ
)
∫

|∇w|4−8π2(1−ε) log
∫

e4(w−w̄)+(l.o.t.).

By Adams’ inequality, the logarithmic term above can be estimated by

−8π2(1 − ε) log
∫

e4(w−w̄) ≥ −(1 − ε)
∫

(Δw)2 − C.

Substituting this above, we get

F̃ [w] ≥
∫

(ε− δβ)(Δw)2 + β(
δ

1 + δ
)
∫

|∇w|4 + (l.o.t.).

By choosing δ > 0 small enough, we conclude
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F̃ [w] ≥ δ′
∫
[
(Δw)2 + |∇w|4

]
− C.

Arguing as we did in the previous case, it follows that F̃ is bounded below,
and a minimizing sequence converges (weakly) to a smooth extremal.

Remarks.

1. The lower order terms that we neglected in the proof can actually dominate
the expression when γ3 = 0, e.g., when studying the Q-curvature problem. In
particular, there are known examples of manifolds for which the functional
II in not bounded below.

2. When γ2 and γ3 have different signs–for example, when A = P , the Paneitz
operator–the situation is even worse. In fact, FP is never bounded from below.
However, manifolds of constant negative curvature are always local extremals
of FP .
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