
Chapter 8

Other topics related
with the Dirac spectrum

We outline the main topics in relation with the spectrum of Dirac operators
that have been left aside in this overview.

8.1 Other eigenvalue estimates

As we have seen in Section 2.2, the Dirac operator on homogeneous spaces
can be described as a family of matrices using the decomposition of the
space of L2-sections of ΣM into irreducible components. What happens if the
homogeneity assumption is slightly weakened? This question has first been
addressed by M. Kraus in the cases of isometric SOn-actions and warped
products over S

1 respectively. Although the explicit knowledge of the Dirac
spectrum becomes out of reach, the eigenvalues can still be approximated in
a reasonable way.

Theorem 8.1.1 (M. Kraus [165, 166]) For n ≥ 2, let g be any
Riemannian metric on S

n such that SOn acts isometrically on (Sn, g). Write
fn−1
max ·Vol(Sn−1, can) for the maximal volume of the orbits of the SOn-action.

Then the Dirac spectrum of (Sn, g) is symmetric about the origin,

λ1(D2
Sn,g) ≥

(n − 1)2

4f2
max

and there are at most 2[ n
2 ] ·
(

n − 1 + k
k

)

eigenvalues of D2
Sn,g in the interval

[ (
n−1

2 +k)2

f2
max

,
( n−1

2 +k+1)2

f2
max

[, for every nonnegative integer k.

The proof of Theorem 8.1.1 relies on the following arguments: the SOn-
action allows a dense part of (Sn, g) to be written as a warped product of
S

n−1 with an interval. On this dense part the eigenvalue problem on (Sn, g)
translates into a singular nonlinear differential equation of first order with
boundary conditions at both ends. The rest of the proof involves Sturm-
Liouville theory, we refer to [166] for details.
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114 8 Other topics related with the Dirac spectrum

Note that the inequality in Theorem 8.1.1 is not sharp for the standard
metric on S

n since λ1(D2
Sn,can) = n2

4 (see Theorem 2.1.3). However Theorem
8.1.1 provides sharp asymptotical eigenvalue estimates in the two follow-
ing situations. First consider the cylinder Cn(L) :=]0, L[×S

n−1 with half
n-dimensional spheres glued at both ends. Obviously Cn(L) admits an iso-
metric SOn-action for which fmax = 1, in particular Theorem 8.1.1 implies
that λ1(D2

Cn(L)) ≥ (n−1)2

4 . On the other hand, Cn(L) sits in R
n+1 by con-

struction; now C. Bär’s upper bound (5.19) in terms of the averaged total
squared mean curvature is not greater than

(n − 1)2LVol(Sn−1, can) + n2Vol(Sn, can)
4(LVol(Sn−1, can) + Vol(Sn, can))

,

so that [166]

lim
L→∞

λ1(D2
Cn(L)) =

(n − 1)2

4
.

For the 2-dimensional ellipsoid Ma := {x ∈ R
3 |x2

1 + x2
2 + x2

3
a2 = 1} (where

a > 0) the maximal length of S
1-orbits is 2π, so that by Theorem 8.1.1 the

inequality λ1(D2
Ma

) ≥ 1
4 holds. Combining this with the upper bound (5.8)

provides [165]

lim
a→∞

λ1(D2
Ma

) =
1
4
.

The technique of separation of variables used in the proof of Theorem 8.1.1
also provides a lower eigenvalue bound on warped product fibrations over
S

1 in terms of the Dirac eigenvalues of the fibres, see [167, Thm. 2]. As for
the case of higher dimensional fibres over arbitrary base manifolds, the only
family which has been considered so far is that of warped products with fibre
S

k with k ≥ 2, where decomposing the Dirac operator into block operator
matrices provides similar results to those of Theorem 8.1.1, see [169].

Another natural but completely different way to study the Dirac eigen-
values consists in comparing them with those of other geometric operators.
Hijazi’s inequality (3.18) is already of that kind since μ1 is the smallest eigen-
value of the conformal Laplace operator. As for spectral comparison results
between the Dirac and the scalar Laplace operators, the first ones were proved
by M. Bordoni. They rely on a very nice general comparison principle between
two operators satisfying some kind of Kato-type inequality. The estimate
which can be deduced reads as follows.

Theorem 8.1.2 (M. Bordoni [60]) Let 0 = λ0(Δ)< λ1(Δ)≤λ2(Δ)≤ . . .
be the spectrum of the scalar Laplace operator Δ on a closed n(≥ 2)-
dimensional Riemannian spin manifold (Mn, g). Then for any positive
integer N [60, Prop. 4.20]
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λ2N (D2) ≥ n

4(n − 1)

(
inf
M

(S) +
λk(Δ)

2(2[ n
2 ] + 1)2

)
, (8.1)

where k = [ N

2[ n
2 ]+1

].

In particular Bordoni’s inequality (8.1) implies Friedrich’s inequality (3.1)
as well as the presence of at most 2[ n

2 ] eigenvalues of D2 in the interval

[
n

4(n − 1)
inf
M

(S),
n

4(n − 1)

(
inf
M

(S) +
λ1(Δ)

2(2[ n
2 ] + 1)2

)
[,

see Section 8.2 for further results on the spectral gap.
Bordoni’s results were generalized by M. Bordoni and O. Hijazi in the

Kähler setting [61], where essentially the Friedrich-like term in the lower
bound must be replaced by the Kirchberg-type one of inequality (3.10) in
odd complex dimension.

Comparisons between Dirac and Laplace eigenvalues which go the other
way round can be obtained in particular situations. In the case of surfaces,
J.-F. Grosjean and E. Humbert proved the following.

Theorem 8.1.3 (J.-F. Grosjean and E. Humbert [113]) Let [g] be a
conformal class on a closed orientable surface M2 with fixed spin structure,
then [113, Cor. 1.2]

inf
g∈[g]

(λ1(D2
g )

λ1(Δg)

)
≤ 1

2
, (8.2)

where here λ1(D2
g ) denotes the smallest positive eigenvalue of D2

g .

Inequality (8.2) is optimal and sharp for M2 = S
2: indeed for any Rieman-

nian metric g one has λ1(D2
S2,g) ≥

λ1(ΔS2,g)

2 as a straightforward consequence
of Bär’s inequality (3.17) and Hersch’s inequality (3.22). Moreover, (8.2) com-
pletes [1] where I. Agricola, B. Ammann and T. Friedrich prove the existence
of a 1-parameter family (gt)t≥0 of S

1-invariant Riemannian metrics on T
2 for

which, in the same notations as just above, λ1(ΔT2,gt
) < λ1(D2

T2,gt
) for any

t ≥ 0, where T
2 is endowed with its trivial spin structure. The inequality

λk(ΔT2,g) ≥ λk(D2
T2,g) for k large enough and for particular metrics g on T

2

with trivial spin structure has been proved independently by M. Kraus [168].
In the case where the manifold sits as a hypersurface in some spaceform,

the best known result is the following.

Theorem 8.1.4 (C. Bär [40]) Let (Mn, g) be isometrically immersed into
R

n+1 or S
n+1 and carry the induced spin structure, then [40, Thm. 5.1]

λN (D2) ≤ n2

4

(
sup
M

(H2) + κ
)

+ λ[ N−1
2μ ](Δ) (8.3)
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for every positive N ∈ N, where κ ∈ {0, 1} denotes the sectional curvature of
the ambient space, H denotes the mean curvature of Mn and μ is the integer
defined by μ := [n+1

2 ] − nmod 2.

Inequality (8.3) follows from the min-max principle and from (5.16) where
one chooses f to be an eigenfunction of Δ and ψ to be the restriction of a
non-zero Killing spinor.

8.2 Spectral gap

Another method to obtain information on the eigenvalues consists in esti-
mating their difference, which is called the spectral gap. Initiated by H.C.
Yang (see reference in [76]) for the scalar Laplacian, this approach turns out
to provide similar results for the Dirac operator. The proof of the following
theorem relies on the min-max principle and a clever input of coordinate
functions of the immersion into the Rayleigh quotient, see [76] for details.

Theorem 8.2.1 (D. Chen [76]) Let (Mn, g) be any n-dimensional closed
immersed Riemannian spin submanifold of R

N for some N ≥ n + 1. Denote
the spectrum of D2 by {λj(D2)}j≥1 and set, for every j ≥ 1,

μj := λj(D2) +
1
4
(
n2 sup

M
(H2) − inf

M
(S)
)
,

where H and S are the mean and the scalar curvature of M respectively.
Then for any k ≥ 1

k∑

j=1

(μk+1 − μj)(μk+1 − (1 +
4
n

)μj) ≤ 0. (8.4)

Note that the codimension of M is arbitrary and that no compatibility
condition between the spin structure of M and that of R

N is required. Ele-
mentary computations show that inequality (8.4) implies

μk+1 ≤ 1
k

(1 +
4
n

)
k∑

j=1

μj ,

which itself provides

μk+1 − μk ≤ 4
nk

k∑

j=1

μj ,

which had been shown independently by N. Anghel [26]. In particular pre-
cise estimates on the growth rate of the Dirac eigenvalues can be deduced.
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Theorem 8.2.1 has been extended by D. Chen and H. Sun to holomorphically
immersed submanifolds of the complex projective space [77, Thm. 3.2].

8.3 Pinching Dirac eigenvalues

If Friedrich’s inequality (3.1) is an equality for the smallest eigenvalue λ1(D2),
then from Theorem 3.1.1 and Proposition A.4.1 the underlying Riemannian
manifold must be Einstein, which is a quite rigid geometric condition. Does
the manifold remain “near to” Einstein if λ1(D2) - or at least some lower
eigenvalue - is close enough to Friedrich’s lower bound? This kind of issue
is designed under the name eigenvalue pinching. It addresses the continuous
dependence of the geometry on the spectrum, in a sense that must be precised.
We denote in the rest of this section by Ksec, diam and S the sectional
curvature, diameter and scalar curvature of a given Riemannian manifold
respectively. We also call two spin manifolds spin diffeomorphic if there exists
a spin-structure-preserving diffeomorphism between them.

The first pinching result for Dirac eigenvalues is due to B. Ammann and
C. Sprouse. It deals with the case where the scalar curvature almost vanishes.
Tori with flat metric and trivial spin structure carry a maximal number of
linearly independent parallel (hence harmonic) spinors. Theorem 8.3.1 below
states that, under boundedness assumptions for the diameter and the sec-
tional and scalar curvatures, one stays near to a flat torus in case some lower
Dirac eigenvalue is not too far away from 0. Recall that a nilmanifold is the
(left or right) quotient of a nilpotent Lie group by a cocompact lattice. If a
(left or right) invariant metric is fixed on the nilmanifold, then the trivial lift
of the lattice to the spin group provides a spin structure called the trivial
one, see Proposition 1.4.2 for spin structures on coverings.

Theorem 8.3.1 (B. Ammann and C. Sprouse [25]) Let K, d be posi-
tive real constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and r := 2[ n

2 ]−1+1 if
n ≥ 4. Then there exists an ε = ε(n,K, d) > 0 such that every n-dimensional
closed Riemannian spin manifold (Mn, g) with

|Ksec(Mn, g)|<K, diam(Mn, g) < d, S(Mn, g) > −ε and λr(D2
Mn,g)<ε

is spin diffeomorphic to a nilmanifold with trivial spin structure.

Theorem 8.3.1 implies the existence of a uniform lower eigenvalue bound for
the Dirac operator in the following family: there exists an ε = ε(n,K, d) > 0
such that on every n-dimensional closed Riemannian spin manifold (Mn, g)
with |Ksec(Mn, g)| < K, diam(Mn, g) < d, S(Mn, g) > −ε and which is
not spin diffeomorphic to a nilmanifold with trivial spin structure the rth

eigenvalue of D2 satisfies
λr(D2) ≥ ε.
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The choice for r, which looks a priori curious, is actually optimal since the
product of a so-called K3-surface with a torus carries exactly r − 1 linearly
independent parallel spinors, see [25, Ex. (2) p.411]. The proof of Theorem
8.3.1 makes use of an approximation result by U. Abresch (see reference in
[25]) in an essential way, we refer to [25, Sec. 7] for details.

Under the supplementary assumption of a lower bound on the volume, the
metric can even be shown to stay near to some with parallel spinors.

Theorem 8.3.2 (B. Ammann and C. Sprouse [25]) Let K, d, V, δ be
positive real constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and
r := 2[ n

2 ]−1 + 1 if n ≥ 4. Then there exists an ε = ε(n,K, d, V, δ) > 0
such that for every n-dimensional closed Riemannian spin manifold (Mn, g)
with

|Ksec(Mn, g)| < K, diam(Mn, g) < d, S(Mn, g) > −ε, Vol(Mn, g) > V

and λr(D2
Mn,g) < ε, the metric g is at C1,α-distance at most δ to a metric

admitting a non-zero parallel spinor.

The proof of Theorem 8.3.2 relies on a similar general eigenvalue pinch-
ing valid for arbitrary rough Laplacians on arbitrary vector bundles due
to P. Petersen (see reference in [25]) and on the Schrödinger-Lichnerowicz
formula (3.2). Petersen’s method can also be applied to the rough Laplacian
associated to the deformed covariant derivative X → ∇X + ρX· and in this
case it provides the following:

Theorem 8.3.3 (B. Ammann and C. Sprouse [25]) Let K, d, V, ρ, δ be
positive real constants, n ≥ 2 be an integer, r := 1 if n = 2, 3 and r :=
2[ n

2 ]−1 + 1 if n ≥ 4. Then there exists an ε = ε(n,K, d, V, ρ, δ) > 0 such that
for every n-dimensional closed Riemannian spin manifold (Mn, g) with

|Ksec(Mn, g)|<K, diam(Mn, g) < d, Vol(Mn, g) > V, S(Mn, g)≥n(n−1)ρ2

and λr(D2
Mn,g) < n2ρ2

4 + ε, the metric g is at C1,α-distance at most δ to a
metric with constant sectional curvature ρ2.

Note that the bound on the sectional curvature is necessary because of
Bär-Dahl’s result [46] discussed in Section 3.2. However the minimal number
r necessary for the result to hold can be enhanced.

Theorem 8.3.4 (A. Vargas [231]) The conclusion of Theorem 8.3.3 holds
with

r :=
{

3 if n = 6 or n ≡ 1 (4)
n+9

4 if n ≡ 3 (4).
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8.4 Spectrum of other Dirac-type operators

Up to now we have concentrated onto the fundamental (or spin) Dirac opera-
tor on a spin manifold. As already mentioned at the beginning of Chapter 1,
Dirac-type operators may be defined in the more general context where a so-
called Clifford bundle [173, Sec. II.3] is at hand. Roughly speaking, a Clifford
bundle is given by a Hermitian vector bundle together with a covariant deriva-
tive and on which the tangent bundle acts by Clifford multiplication such that
all three objects (Hermitian metric, covariant derivative and Clifford multi-
plication) are compatible with each other in the sense of Definition 1.2.2 and
Proposition 1.2.3. The associated Dirac operator is defined as the Clifford
multiplication applied to the covariant derivative. One may add a zero-order
term and obtain a so-called Dirac-Schrödinger operator. In this section we dis-
cuss spectral results in relation with the spinc Dirac operator, with twisted
Dirac-Schrödinger operators, with Dirac operators associated to particular
geometrically relevant connections, with the basic Dirac operator and in the
pseudo-Riemannian setting.

First, the concept of spin structure may be weakened to that of spinc

structure, whose structure group is the spinc group Spinc
n := Spinn × S

1
/Z2

.
Such a structure comes along with a S

1-principal bundle, or equivalently
with a complex line bundle L. We do not want to define spinc structures
more precisely but mention that all spin manifolds are spinc and that all
almost-Hermitian manifolds have a canonical spinc structure [173, App. D].
Moreover the choice of a covariant derivative on the line bundle induces
a covariant derivative and hence a Dirac operator on the associated spinor
bundle over the underlying manifold. In that case it can be expected that most
of the results valid for the spin Dirac operator remain valid for the spinc one,
except that the curvature of the line bundle must in some situations be taken
into account. For example, M. Herzlich and A. Moroianu proved the analog
of Hijazi’s inequality (3.18) in the spinc context: denote by ω the curvature
form of the line bundle L and by μ1 the smallest eigenvalue of the scalar
operator Lω := 4n−1

n−2Δ + S − 2[n
2 ]

1
2 |ω|, then any eigenvalue λ of the spinc

Dirac operator satisfies [126, Thm. 1.2]

λ2 ≥ n

4(n − 1)
μ1.

We note however that little has been done in the spinc context in comparison
with the spin one.

If the underlying space is again our familiar spin manifold (Mn, g) and if we
choose an arbitrary Riemannian or Hermitian vector bundle E over M , then
the tensor product bundle ΣM ⊗E carries a canonical Clifford multiplication
(extend the Clifford multiplication by the identity on the second factor). If
we endow E with a metric covariant derivative, then we obtain a structure
of Clifford bundle and an associated Dirac operator called Dirac operator of
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M twisted with E. This operator is usually denoted by DE
M . For example,

the Euler operator d+ δ can be seen as the Dirac operator of M twisted with
ΣM : this follows essentially from (1.2) and may actually be stated without
any spin structure on M [173, Sec. II.6]. Another prominent example is the
Dirac operator of a spin submanifold twisted with the spinor bundle of its
normal bundle (where the latter is assumed to be spin). Various studies have
been devoted to the spectrum of twisted Dirac operators, therefore we restrict
ourselves to a few ones which we hope to be representative. We include all
that concerns Dirac-Schrödinger operators, since in that case the zero order
term mainly translates the upper or lower bounds by a constant.

Let first E be as above, M be closed and f be a smooth real function
on M . Denote by κ1 the smallest eigenvalue on M of the pointwise linear
operator

∑n
k,l=1 ek ·el ·RE

ek,el
, where RE is the curvature tensor of the chosen

covariant derivative on E (and (ek)1≤k≤n is a local o.n.b. of TM ). If the
inequalities n(S + κ1) > (n − 1)f2 > 0 hold on M , then any eigenvalue λ of
the Dirac-Schrödinger operator DE

M − f acting on Γ(ΣM ⊗E) satisfies [105,
Prop. 4.1]

λ2 ≥ 1
4

inf
M

(√ n

n − 1
(S + κ1) − |f |

)2

. (8.5)

Inequality (8.5), which can be deduced from a clever choice of modified covari-
ant derivative, stands for the analog of Friedrich’s inequality in this context,
see [105] for other kinds of estimates and references to earlier works on that
topic (such as [196]). In the particular case where n = 4, f = 0, E is ar-
bitrary and carries a selfdual covariant derivative, the estimate (8.5) can be
enhanced using the decomposition ΣM = Σ+M ⊕Σ−M and the vanishing of
one half of the auxiliary curvature term computed from RE : H. Baum proved
[52, Thm. 2] that

λ2 ≥ 1
3

inf
M

(S)

for any eigenvalue λ of DE
M , which is exactly Friedrich’s inequality (3.1) for

the eigenvalues of the spin Dirac operator.
Staying in dimension 4, if the spin manifold (M4, g) carries a Hermitian

structure J (i.e., an orthogonal complex structure on TM ) then one is led
to the Dirac operator twisted with E = ΣM = Λ0,∗TM which is nothing
else than the Dolbeault operator

√
2(∂ +∂). Although Kirchberg’s inequality

(3.10) does not apply, sharp lower bounds for the eigenvalues of the Dolbeault
operator are still available: B. Alexandrov, G. Grantcharov and S. Ivanov
proved [6, Thm. 2] that

λ2 ≥ 1
6

inf
M

(S)

for any eigenvalue λ of
√

2(∂ + ∂). Beware that equality cannot occur for a
non-flat Kähler metric because of (3.10). The proof of that inequality relies
on Weitzenböck formulas and the clever choice of twistor operators asso-
ciated to a canonical one-parameter-family of connections, we refer to [6]
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for details. Besides, we mention that upper eigenvalue bounds for particular
twisted Dirac operators have been obtained in [52], [40] and [101].

From the point of view of geometers investigating the integrability of par-
ticular G-structures, there exists another interesting family of Dirac-type
operators which are usually denoted by D

1
3 and defined by D

1
3 := Dg + T

4 ·,
where T is some given 3-form and Dg is the spin Dirac operator on the
Riemannian spin manifold (Mn, g). For example if (Mn, g) is a so-called re-
ductive homogeneous space then D

1
3 is the so-called Kostant Dirac operator

(see reference in [3]); if (Mn, g) is a Hermitian manifold then D
1
3 coincides

with the Dolbeault-operator defined just above. In case T is the charac-
teristic torsion of a 5-dimensional closed spin Sasaki manifold with scalar
curvature bounded from below, the use of suitable deformations of the con-
nection by polynomials of the torsion form allowed I. Agricola, T. Friedrich
and M. Kassuba to prove the following estimates of any eigenvalue λ of (D

1
3 )2

[3, Thm. 4.1]:

λ ≥

∣
∣
∣
∣
∣
∣

1
16 (1 + 1

4 infM (S))2 if − 4 < S ≤ 4(9 + 4
√

5)

5
16 infM (S) if S ≥ 4(9 + 4

√
5).

Equality holds if (M5, g) is η-Einstein (see [3] for a definition). Surprisingly
enough the first lower bound depends quadratically on the scalar curvature,
which makes the estimate better for small S. We refer to [3] for the proof.
We also note that in the context of contact metric manifolds (which have a
canonical spinc structure) Weitzenböck formulas for the Dirac operator asso-
ciated to the so-called Tanaka-Webster connection have also been produced
in order to prove vanishing theorems [205], however no study of the spectrum
is still available.

Sasaki manifolds can also be viewed as particular foliated Riemannian
manifolds. Spin structures can be defined on Riemannian foliations in much
the same way as on the tangent bundle and an associated covariant derivative
and Dirac operator may be defined which are called the transversal covariant
derivative and transversal Dirac operator respectively. The transversal Dirac
operator, which acts on the space of basic spinors (spinors whose transversal
covariant derivatives vanish along all directions normal to the leaves), is in
general not formally self-adjoint, therefore one considers the symmetrized
operator called basic Dirac operator of the foliation and denoted by Db. It is
a not-so-straightforward adaptation of the proof of Friedrich’s inequality by
G. Habib and K. Richardson to show that any eigenvalue λ of Db on a closed
underlying manifold (Mn, g) satisfies [123, Eq. (1.1)]

λ2 ≥ q

4(q − 1)
inf
M

(Str),

where q ≥ 2 stands for the codimension of the foliation and Str for its
transversal scalar curvature. In case the normal bundle of the foliation carries
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a Kähler or a quaternionic Kähler structure, analogs of Kirchberg’s inequality
(3.10) and of (3.15) can also be derived [151, 152, 121, 120, 119].

To close this section we mention the only result known to us about the
spectrum of the Dirac operator in the pseudo-Riemannian (non-Riemannian)
setting. First spin structures require the pseudo-Riemannian manifold to be
simultaneously space- and time-oriented in order to be well-defined, see [49]
or [53, Sec. 2]. In that case the choice of a maximal timelike subbundle
induces an L2-Hermitian inner product on the space of spinors. Unlike its
Riemannian version the associated (spin) Dirac operator is neither formally
self-adjoint w.r.t. that inner product nor elliptic. However H. Baum could
show with the help of suitable endomorphisms of the spinor bundle commut-
ing or anti-commuting with the Dirac operator that the point spectrum, the
continuous spectrum and the residual spectrum of the Dirac operator on any
even-dimensional pseudo-Riemannian manifold are symmetric w.r.t. the real
and imaginary axes. We refer to [53] for further statements and the proof.

8.5 Conformal spectral invariants

In this section we are interested in two invariants associated to the Dirac
spectrum. A good reference for the whole section is [149]. Given a closed spin
manifold Mn with fixed conformal class [g] and spin structure denoted by ε,
let λ1(D2

M,g) be the smallest eigenvalue of the square of the Dirac operator
of (Mn, g). The Bär-Hijazi-Lott invariant [13, eq. (2.4.1) p.12] of (Mn, [g], ε)
is the nonnegative real number λmin(Mn, [g], ε) defined by

λmin(Mn, [g], ε) := inf
g∈[g]

(√
λ1(D2

M,g) · Vol(M, g)
1
n

)
.

Of course the expression on the r.h.s. is chosen so as to remain scaling-
invariant. By definition λmin(Mn, [g], ε) is a conformal invariant. The Bär-
Hijazi-Lott invariant is tightly connected to and behaves much like the
Yamabe invariant. Indeed, it already follows from Bär’s inequality (3.17)
and from Hijazi’s inequality (3.20) that

λmin(M2, [g], ε)2 ≥ 2πχ(M2) and λmin(Mn, [g], ε)2 ≥ n

4(n − 1)
Y (M, [g])

(8.6)

for every n ≥ 3, where χ(M2) and Y (M, [g]) are the Euler characteristic
and the Yamabe invariant respectively. For M2 = S

2 this implies that the
Bär-Hijazi-Lott invariant is positive. More generally, as a consequence of
J. Lott’s estimate (3.21), the Bär-Hijazi-Lott invariant is positive as soon
as the Dirac operator is invertible for some - hence any - metric in the con-
formal class. In particular λmin(Mn, [g], ε) vanishes if and only if (Mn, g)
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admits non-zero harmonic spinors. Generalizing J. Lott’s Sobolev-embedding
techniques [181] to the case where the Dirac kernel is possibly non-trivial,
B. Ammann showed the positivity of inf

g∈[g]

(√
λ+(D2

M,g) · Vol(M, g)
1
n

)
to

hold true in general [12, Thm. 2.3], where λ+(D2
M,g) denotes the smallest

positive eigenvalue of D2
M,g. As an example, the Bär-Hijazi-Lott invariant of

S
n (n ≥ 2) with standard conformal class [can] and canonical spin structure

is given by n
2 ω

1
n
n , where ωn is the volume of S

n carrying the metric of sectional
curvature 1 (denoted by “can”): this follows from Corollaries 3.3.2 and 3.3.3

together with λ1(D2
Sn,can) = n2

4 and Y (Sn, [can]) = n(n − 1)ω
2
n
n if n ≥ 3.

In a similar way as for the Yamabe invariant, the Bär-Hijazi-Lott
invariant cannot be greater than that of the sphere: if n ≥ 3 or
M2 = S

2 then B. Ammann [12, Thm. 3.1 & 3.2] proved that inf
g∈[g](√

λ+(D2
M,g) · Vol(M, g)

1
n

)
≤ λmin(Sn, [can]), in particular

λmin(Mn, [g], ε) ≤ λmin(Sn, [can]). (8.7)

The proof relies on a suitable cut-off argument performed on Dirac eigen-
vectors on the gluing of a sphere with large radius to the manifold, see [12,
Sec. 3] for the details.

The next step would consist in showing that (8.7) is a strict inequality if
(Mn, [g]) is not conformally equivalent to (Sn, [can]). This has been done by
B. Ammann, E. Humbert and B. Morel in the conformally flat setting where
one introduces a further datum, namely the so-called mass endomorphism.
The mass endomorphism of a locally conformally flat Riemannian spin mani-
fold is a self-adjoint endomorphism field of its spinor bundle and can be locally
defined out of the difference between the Green’s operators for the Dirac op-
erators associated to the original metric and to the Euclidean one in suitable
coordinates, see [23, Def. 2.10] for a precise definition. The name comes from
the corresponding term for the Yamabe operator and which is known to pro-
vide the mass of an asymptotically flat Riemannian spin manifold. Moreover,
the mass endomorphism is “well-behaved” regarding conformal changes of
metric [23, Prop. 2.9]. In case the locally conformally flat manifold (Mn, [g])
has an invertible Dirac operator (for some hence any metric in the conformal
class) and if its mass endomorphism has a non-zero eigenvalue somewhere on
Mn, then [23, Thm. 1.2]

λmin(Mn, [g], ε) < λmin(Sn, [can]). (8.8)

At this point one should beware that the mass endomorphism of (Sn, [can])
vanishes and that this does not characterize the round sphere since flat tori
also have vanishing mass endomorphism. We refer to [23] for the details. For a
generalization of the Bär-Hijazi-Lott invariant to manifolds with non-empty
boundary we refer to [212, 214].
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We also mention that the Bär-Hijazi-Lott invariant has been generalized to
the noncompact setting, where it provides an obstruction to the existence of
conformal spin compactifications of the manifold [114]. More precisely, let Mn

be any n-dimensional manifold with conformal class [g] and spin structure ε
and define λ+

min(Mn, [g], ε) as in Section 7.3. If

lim
r→∞

λ+
min(Mn \ Br(p), [g], ε) < λmin(Sn, [can]),

where p ∈ M is arbitrary, then (Mn, [g]) is not conformal to a subdomain with
induced spin structure of a closed spin manifold [116, Thm. 3.0.1] (see also
[114, Thm. 1.4]). The vanishing of λ+

min(Mn, [g], ε) also prevents the existence
of conformal spin compactifications of M , since λ+

min(Mn, [g], ε) > 0 on closed
manifolds [12, Thm. 2.3] and a monotonicity principle holds for λ+

min [116,
Lemma 2.0.3], see [116, Rem. 3.0.4].

The Green’s operators for the Dirac operator have also revealed as a pow-
erful tool in general problems from geometric analysis such as the classical
Yamabe conjecture (“find a metric with constant scalar curvature in a fixed
conformal class”). As shown by R. Schoen, the Yamabe conjecture is implied
by the positive mass theorem through the fact that the constant term in the
asymptotic expansion in inverted normal coordinates of the Green’s operator
for the conformal Laplace operator is proportional to the mass of the confor-
mal blow-up. Furthermore but independently, E. Witten [235] showed that in
the spin setting the positive mass theorem is in turn implied by the existence
of spinor field which is harmonic and asymptotically constant on the con-
formal blow-up. Now it is a striking result by B. Ammann and E. Humbert
[21] that the Green’s operators for the Dirac operator provide such a spinor.
More precisely, if (Mn, g) is closed Riemannian spin manifold with positive
Yamabe invariant and which is locally conformally flat if n ≥ 6, then its
conformal blow-up has positive mass. For positive mass theorems we refer to
Section 8.8.

If one lets the conformal class vary on the closed manifold Mn, then one
is led to the so-called τ -invariant of Mn with spin structure ε and which is
defined by

τ(Mn, ε) := sup
[g]

(
λmin(Mn, [g], ε)

)
.

The introduction of the spinorial invariant τ is inspired from that of
R. Schoen’s σ-invariant which is defined in dimension 2 by σ(M2) :=
4πχ(M2) and in dimension n ≥ 3 by

σ(Mn) := sup
[g]

(
Y (Mn, [g])

)
,

where Y (Mn, [g]) denotes the Yamabe invariant on (Mn, [g]). There are at
least two motivations for the study of the τ -invariant. First, the τ -invariant
bounds the σ-invariant from above since it follows from (8.6) that, in every
dimension n ≥ 2,
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τ(Mn, ε)2 ≥ n

4(n − 1)
σ(Mn),

with equality for S
n. Therefore upper bounds for τ(Mn, ε) provide upper

bounds for σ(Mn), on which little is known. In an independent context,
the inequality λmin(M2, [g], ε) < 2

√
π = τ(S2) guarantees the existence of a

metric g ∈ [g] for which any simply-connected open subset of (M2, g) can be
isometrically embedded with constant mean curvature into R

3 [13, Sec. 5.4].
Hence it is of geometric interest to know when the inequality τ(M2, ε) < 2

√
π

holds. In case M2 = T
2 B. Ammann and E. Humbert have shown [22, Thm.

1.1] that
τ(T2, ε) = 2

√
π

for any of its non-trivial spin structures ε (obviously τ(T2, ε0) = 0 for the
trivial spin structure ε0). Note that this neither proves nor contradicts the
existence of immersed constant mean curvature tori in R

3. As a generaliza-
tion, the τ -invariant of S

n−1 × S
1 is equal to zero if n = 2 and S

1 carries the
trivial spin structure and to τ(Sn) otherwise [22, Thm. 1.2].

8.6 Convergence of eigenvalues

Given a converging sequence of closed Riemannian spin manifolds, does their
Dirac spectrum have to converge to that of the limit? Three very different
contexts have up to now been considered where this question can be given
sense and answered. The simplest and historically the first one deals with
the behaviour of the Dirac spectrum of S

1-bundles under collapse. In that
case the behaviour depends sensitively of the spin structure as shown by
B. Ammann and C. Bär [15]. Let M denote the total space of an S

1-bundle
which is simultaneously a Riemannian submersion with totally geodesic fibres
over a base manifold B. Two kinds of spin structures can be defined on M
according to whether the S

1-action can be lifted to the spin level or not; in
the former case the spin structure is called projectable and in the latter it is
called non-projectable. Projectable spin structures on M stand in one-to-one
correspondence with spin structures on B. The main result of [15] states the
following about the convergence of the Dirac spectrum of M as the fibre-
length goes to 0: either the spin structure of M is projectable and there exist
Dirac eigenvalues of M converging to those of B or it is non-projectable and
all Dirac eigenvalues of M tend to ∞ or −∞ [15, Thm. 4.1 & 4.5]. As an
interesting application, the Dirac spectrum of all complex odd-dimensional
complex projective spaces can be deduced from that of the Berger spheres
(Theorem 2.2.2). Parts of those results have been generalized by B. Ammann
to S

1-bundles with non-geodesic fibres [7, 8].
The second natural context deals with hyperbolic degenerations, i.e., with

sequences of closed hyperbolic spin manifolds (Mj)j∈N converging to a non-
compact complete hyperbolic spin manifold M (here a hyperbolic metric is
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a metric with constant sectional curvature −1). Those sequences only exist
in dimensions 2 and 3 and, provided the convergence respects the spin struc-
tures in some sense, the limit manifold must have discrete Dirac spectrum in
dimension 3 whereas it may have continuous spectrum in dimension 2, see
references in [208] where a precise description of hyperbolic degenerations is
recalled. In case the limit manifold M is assumed to have discrete Dirac spec-
trum, F. Pfäffle proved the convergence of the Dirac spectrum of (Mj)j∈N in
the following sense [208, Thm. 1.2] (see also [207]): For all ε > 0 and Λ ≥ 0,
there exists an N ∈ N such that for all j ≥ N the real number Λ lies neither
in the spectrum of D nor in that of DMj

, both Dirac operators DMj
and D

have only discrete eigenvalues and no other spectrum in [−Λ,Λ], they have
the same number m of eigenvalues in [−Λ,Λ] which can be ordered so that
|λ(j)

k − λk| ≤ ε holds for all 1 ≤ k ≤ m.
The diameter of the converging sequence of degenerating hyperbolic mani-

folds cannot be controlled since the limit-manifold must have a finite number
of so-called cusps, which by definition are unbounded. The third context to
have been considered precisely deals with the situation where both the diam-
eter and the sectional curvature of the converging sequence are assumed to
remain bounded. In that case J. Lott proved the following very general result
[183]. Consider a sequence (gj)j∈N of bundle metrics on the total space of a
spin fibre bundle M over a base spin manifold B. Assume the fibre length to
go to 0 as j tends to ∞ while both the diameter and the sectional curvature
of (M, gj) remain bounded. Then the Dirac spectrum of (M, gj) converges
in the sense just above to that of some differential operator of first order on
B which can be explicitly constructed. Since a precise formulation and the
discussion of the results would require too many details we recommend the
introduction of [183].

8.7 Eta-invariants

As we have seen in Theorem 1.3.7, the Dirac spectrum of any closed n-dimen-
sional Riemannian spin manifold is symmetric w.r.t. the origin in dimension
n �≡ 3 (4). To measure the asymmetry of the Dirac spectrum in case n ≡ 3 (4),
Atiyah, Patodi and Singer introduced [27] the so-called η-invariant of D which
is defined by η(D) := η(0,D), where, for every s ∈ C with �e(s) > n,

η(s,D) :=
∑

λj �=0

sgn(λj)
|λj |s

.

The λj ’s denote the eigenvalues of D. It is already a non-trivial statement
that s → η(s,D) can be meromorphically extended onto C and is regular
at s = 0, see [27]. Originally the η-invariant was introduced to describe
some boundary term in the Atiyah-Patodi-Singer index theorem [27]. In a
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simple-minded way, the η-invariant of D can be thought of as the difference
between the number of positive and that of negative Dirac eigenvalues (of
course this has no sense since both numbers are infinite). In particular the
η-invariant of D vanishes as soon as the Dirac spectrum is symmetric.

Few η-invariants are known explicitly. One of the first computations of
η-invariant goes back to Hitchin [148], where the explicit knowledge of the
Dirac spectrum on the Berger sphere S

3 allows the η-invariant to be ex-
plicited. This was generalized onto all Berger spheres by D. Koh [162]. In
the flat setting, the η-invariant can also be deduced from the Dirac spec-
trum in dimension n = 3 [206] and for particular holonomies in dimension
n ≥ 4 [188]. Theorem 2.2.3 provides the η-invariant on particular closed
3-dimensional hyperbolic manifolds [218]. The most general formula allow-
ing the determination of the η-invariant has been proved by S. Goette [108,
Thm. 2.33] on homogeneous spaces, where η(D) arises as the sum of three
terms: a representation-theoretical expression, an index-theoretical one and
so-called equivariant η-invariants, which can themselves be deduced from
finer representation-theoretical data [106, 107].

Though unknown in most cases, the η-invariant behaves nicely under
connected sums: roughly speaking, if a closed Riemannian spin manifold is
separated in two pieces M1,M2 by a closed hypersurface N , about which both
the metric and the Dirac operator split as on a Riemannian product, then
the η-invariant of D consists of the sum of the η-invariants of DM1 and DM2

plus the so-called Maslov-index of a pair of Lagrangian subspaces of Ker(DN )
making DMj

self-adjoint, plus some index-theoretical integers (U. Bunke [67,
Thm 1.9]). We refer to [67] for an overview of η-invariants of general Dirac-
type operators and numerous useful references.

We also mention that some kind of η-invariant can be defined in the non-
compact setting, see [118] and references therein.

8.8 Positive mass theorems

Although this section has more to do with physics as with the Dirac spectrum,
we include it because on the one hand the proofs of the results presented
involve simple spinorial techniques as already used above, and on the other
hand positive mass theorems nowadays play a central role in many other
topics of global analysis such as the Yamabe problem. A good but not up-to-
date reference for that topic is [125].

A positive mass theorem (sometimes called positive energy theorem) is a
two-fold statement reading roughly as follows: Let (Mn, g) be a Riemannian
manifold which is asymptotic to a model manifold (in a sense that must be
precised) and some of which curvature invariant satisfies a pointwise inequal-
ity, then some asymptotic geometric invariant called its mass also satisfies a
similar inequality and, if this latter inequality is an equality, then the whole
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manifold is globally isometric to the original model manifold. To fix the ideas
we concentrate from now on onto the original positive mass theorem as proved
by R. Schoen and S.-T. Yau [215, 216] and independently by E. Witten [235]
in the spinorial setting, in particular we leave aside all recent developments
in what has become a whole field of research at the intersection between
mathematics and general relativity, see e.g. [236] for references.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. Call it asymp-
totically flat of order τ ∈ R if there exists a compact subset K ⊂ M , a positive
real number R and a diffeomorphism M \ K −→ {x ∈ R

n, |x| > R} such
that the pushed-out metric fulfills: gij − δij = O(|x|−τ ), ∂gij

∂xk
= O(|x|−τ−1)

and ∂2gij

∂xk∂xl
= O(|x|−τ−2) as |x| → ∞, for all 1 ≤ i, j, k, l ≤ n. Given such a

manifold (Mn, g), set

m(g) :=
1

16π
· lim

r→∞

∫

Sr

n∑

i,j=1

(
∂gij

∂xi
− ∂gii

∂xj
)νjdA,

where Sr denotes the Euclidean sphere of radius r about 0 ∈ R
n with outside

unit normal ν and dA its canonical measure. Beware here that in general
m(g) does not make any sense: the integral need not converge, and even if
it converges it depends on the choice of asymptotic coordinates. If however
τ > n−2

2 and the scalar curvature of (Mn, g) is integrable, then a highly
non-trivial theorem of R. Bartnik (see reference in [125]) ensures m(g) to
be well-defined. In that case it is called the ADM-mass of (Mn, g). The
canonical example of asymptotically flat manifold (of any order) is (Rn, can),
whose ADM-mass vanishes. The positive mass theorem states that, with the
assumptions above and if the scalar curvature S of (Mn, g) is non-negative,
then m(g) ≥ 0 with equality if and only if (Mn, g) = (Rn, can). This is a very
deep statement since it establishes a direct relationship between the geometry
at infinity and the global geometry of M . For example, as a consequence, any
Riemannian metric on R

n with S ≥ 0 and which is flat outside a compact
subset must be flat. Surprisingly enough, the positive mass theorem follows
from relatively simple considerations involving some kind of boundary value
problem for the Dirac operator, at least in case M is spin, as shown by
E. Witten [235]. Let us sketch his idea.

The first and main step in Witten’s proof consists in choosing any non-
zero “constant” spinor field ψ0 at infinity and exhibiting a sufficiently regular
non-zero spinor field ψ lying in the kernel of D2 and being asymptotic to ψ0.
This can be done by showing the invertibility of D2 between suitable Hölder
spaces. Applying Schrödinger-Lichnerowicz’ formula (1.15), integrating on a
Euclidean ball of (sufficiently large) radius r and using (3.29) together with
Green’s formula one obtains

0 =
∫

Br

〈D2ψ,ψ〉vg =
∫

Br

(|∇ψ|2 +
S

4
|ψ|2)vg −

∫

Sr

〈∇νψ,ψ〉dA,
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where ν denotes here the outer unit normal to Sr = ∂Br. The miracle
in Witten’s proof happens here: it can be easily shown that the bound-
ary term

∫
Sr
〈∇νψ,ψ〉dA is asymptotic to m(g) times some finite positive

constant c as r goes to ∞. After passing to the limit one is left with
m(g) = c(

∫
M

(|∇ψ|2 + S
4 |ψ|2)vg, which implies m(g) ≥ 0. The equality

m(g) = 0 requires ψ to be parallel for any ψ constructed this way, in par-
ticular the spinor bundle of (Mn, g) must be trivialized by parallel spinors,
from which the identity (Mn, g) = (Rn, can) can be deduced. An alternative
spinorial proof but with supplementary assumptions on the dimension or the
Weyl tensor has been given by B. Ammann and E. Humbert [21] using the
Green’s operators associated to the Dirac operator, see Section 8.5.




