Skip to main content

Random Knotting: Theorems, Simulations and Applications

  • Chapter
  • First Online:
Lectures on Topological Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1973))

Abstract

This article describes some of the theoretical and simulation results on random entanglement, and give a few scientific applications. I will prove that, on the simple cubic lattice Z3, the probability that a randomly chosen n-edge polygon in Z3 is knotted goes to one exponentially rapidly with length n (Murphy’s Law of entanglement); in other words, all but exponentially few polygons of length n in Z3 are knotted. Measures of entanglement complexity of random knots and random arcs are discussed as well as application of random knotting to viral DNA packing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ax1] Alexander, J.W.: An Example of a Simply Connected Surface Bounding a Region which is not Simply Connected. Proceedings of the National Academy of Sciences USA, 10, 8–10 (1924).

    Article  ADS  Google Scholar 

  2. [Ax2] Alexander, J.W.: On the Subdivision of 3-Space by a Polyhedron. Proceedings of the National Academy of Sciences USA, 10, 6–8 (1924).

    Article  ADS  Google Scholar 

  3. [Sv] Silver, D.S.: Knot Theory's Odd Origins. American Scientist, 94, 58–66 (2006).

    Article  Google Scholar 

  4. [Mof] Moffatt, H.K.: Knots and Fluid Dynamics. In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 223–233 (1999).

    Google Scholar 

  5. [Ric1] Ricca, R.L.: New Developments in Topological Fluid Mechanics: From Kelvin's Vortex Knots to Magnetic Knots. In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 255–273 (1999).

    Google Scholar 

  6. [Ric2] Ricca, R.L.: Tropicity and Complexity Measures for Vortex Tangles, Lecture Notes in Physics v. 571. Springer, Berlin Heidelberg New York, 366–372 (2001).

    Google Scholar 

  7. [LZC] Liu, Z, Zechiedrich, E.L., Chan, H.S.: Inferring global topology from local juxta-position geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J., 90, 2344–2355 (2006).

    Article  ADS  Google Scholar 

  8. [BZ] Buck, G, Zechiedrich, E.L.: DNA disentangling by type-2 topoisomerases. J. Mol Biol. Jul 23; 340(5): 933–9 (2004).

    Article  Google Scholar 

  9. [FW] Frisch, H.L., Wasserman, E.: Chemical Topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).

    Article  Google Scholar 

  10. [Was] Wasserman, E.: Chemical Topology. Scientific American 207, 94–102 (1962)

    ADS  Google Scholar 

  11. [Del] Delbruck, M: in Mathematical Problems in the Biological Sciences, Proceedings of Symposia in Applied Mathematics 14, 327– (1962).

    Google Scholar 

  12. [VLF] Vologodskii, A.V., Lukashin, A.V., Frank-Kemenetkii, M.D., Anshelevich, V.V.: The Knot Problem in Statistical Mechanics of Polymer Chains. Sov. Phys.-JETP 39, 1059– (1974).

    ADS  Google Scholar 

  13. [CM] des Cloizeaux, J., Mehta, M.L.: J. de Physique 40, 665– (1979).

    Article  Google Scholar 

  14. [MW] Michels, J.P.J., Wiegel, F.W.: Probability of Knots in a Polymer Ring. Phys. Lett. 90A, 381–384 (1984).

    ADS  Google Scholar 

  15. [SW] Sumners, D.W., Whittington, S.G.: Knots in Self-Avoiding Walks. J. Phys. A: Math. Gen. 21, 1689–1694 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. [Kes] Kesten, H.: On the Number of Self-Avoiding Walks. J. Math. Phys. 4, 960–969 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. [Pip] Pippenger, N.: Knots in Random Walks. Discrete Appl. Math. 25, 273–278 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  18. [Adm] Adams, C.C.: The Knot Book. W.H. Freeman and Co., New York (1991).

    Google Scholar 

  19. [RSW] van Rensburg, E.J.J., Sumners, D.W., Wasserman, E., Whittington, S.G.: Entanglement Complexity of Self-Avoiding Walks. J. Phys. A.: Math. Gen. 25, 6557–6566 (1992).

    Article  ADS  MATH  Google Scholar 

  20. [RBHS] Lacher R.C., Bryant J.L., Howard L., Sumners D.W. Linking phenomena in the amorphous phase of semicrystalline polymers. Macromolecules 19, 2639–2643 (1986).

    Article  ADS  Google Scholar 

  21. [DNS] Diao, Y.,Nardo, J.C., Sun Y.: Global Knotting in Equilateral Polygons. J. of Knot Theory and Its Ramifications 10, 597–607 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. [Do2] Diao, Y.: The Knotting of Equilateral Polygons in R 3. J. of Knot Theory and Its Ramifications 4, 189–196 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  23. [DPS] Diao, Y., Pippenger, N., Sumners, D.W.: On Random Knots. J. of Knot Theory and Its Ramifications 3, 419–424 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  24. [Do1] Diao, Y.: Minimal Knotted Polygons on the Simple Cubic Lattice. J. of Knot Theory and Its Ramifications 2, 413–425 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  25. [RW] van Rensburg, E.J.J., Whittington, S.G.: The Knot Probability in Lattice Polygons. J. Phys. A.: Math. Gen. 23, 3573–3590 (1990).

    Article  ADS  MATH  Google Scholar 

  26. [SSW] Soteros C., Sumners D.W., Whittington S.G.: Entanglement complexity of graphs in Z 3, Math. Proc Camb. Phil. Soc. 111, 75–91 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  27. [Jun] Jungreis, D.: Gaussian Random Polygons are Globally Knotted. J. of Knot Theory and Its Ramifications 4, 455–464 (1994).

    Article  MathSciNet  Google Scholar 

  28. [Ken] Kendall:The knotting of brownian motion in 3-space. J. Lon. Math. Soc. 19, 378–(1979).

    Article  MathSciNet  Google Scholar 

  29. [DT1] Deguchi, T., Tsurasaki, K.: Universality of Random Knotting. Phys. Rev. E. 55, 6245–6248 (1997).

    Article  ADS  Google Scholar 

  30. [Nak] Nakanishi, Y.: A Note on Unknotting Number. Math. Sem. Notes Kobe Univ. 9, 99–108 (1981).

    MATH  MathSciNet  Google Scholar 

  31. [Ful] Fuller, B.: The Writhing Number of a Space Curve. Proc. Nat. Acad. Sci. USA 68, 815–819 (1971).C

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. [LS] Lacher, R.C., Sumners D.W.: Data structures and algorithms for computation of topological invariants of entanglements: link, twist and writhe. In Computer Simulation of Polymers, Prentice-Hall, Roe, R.J., ed. Englewood Cliffs, NJ, 365–373 (1991).

    Google Scholar 

  33. [Cim] Cimasoni, D.: Computing the Writhe of a Knot. J. Knot Theory and Its Ramifications 10, 387–395 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  34. [LaS] Laing, C, Sumners D.W.: Computing the Writhe on Lattices. J. Phys A, Math. Gen. 39, 3535–3543 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. [ROS] van Rensburg, E.J.J., Orlandini, E., Sumners, D.W., Tesi. M.C., Whittington, S.G.: The writhe of a self-avoiding polygon. J. Phys. A Math. Gen. 26, L981–L986 (1993).

    Article  Google Scholar 

  36. Burde, G., Zieschang, H.: Knots. De Gruyter, Berlin, New York (1985).

    Google Scholar 

  37. Rolfsen, D.: Knots and Links. Publish or Perish (1976).

    Google Scholar 

  38. [RCV] Rybenkov, V. V., Cozzarelli, N. R. & Vologodskii, A. V.: Probability of DNA Knotting and the Effective Diameter of the DNA Double Helix. Proc. Natl. Acad. Sci. USA 90, 5307–5311 (1993).

    Article  ADS  Google Scholar 

  39. [ShW] Shaw, S. Y., Wang, J. C.: Knotting of a DNA chain during ring closure. Science 260, 533–536 (1993).

    Article  ADS  Google Scholar 

  40. [WC] Wasserman, S. A., Cozzarelli, N. R.: Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986).

    Article  ADS  Google Scholar 

  41. [SBS] Stark, W.M., Boocock, M.R., Sherratt, D. J.: Site-specific recombination by Tn3 resolvase. Trends Genet. 5, 304–309 (1989).

    Article  Google Scholar 

  42. [FLA] Frank-Kamenetskii, M.D., Lukashin, A.V., Anshelevich, V.V., Vologodskii, A.V.: Torsional and bending rigidity of the double helix from data on small DNA rings. J. Biomol. Struct. Dyn. 2, 1005–1012 (1985).

    Article  Google Scholar 

  43. [ES] Ernst, C., Sumners, D. W.: A Calculus for Rational Tangles: Applications to DNA Recombination. Math. Proc. Camb. Phil. Soc. 108, 489–515 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  44. [SKI] Shishido, K., Komiyama, N., Ikawa, S.: Increased production of a knotted form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants. J. Mol. Biol. 195, 215–218 (1987).

    Article  Google Scholar 

  45. [LDC] Liu, L. F., Davis, J. L., Calendar, R.: Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 9, 3979–3989 (1981).

    Article  Google Scholar 

  46. [LPC] Liu, L. F., Perkocha, L., Calendar, R.. Wang, J. C.: Knotted DNA from Bacteriophage Capsids. Proc. Natl. Acad. Sci. USA 78, 5498–5502 (1981).

    Article  ADS  Google Scholar 

  47. [MML] Menissier, J., de Murcia, G., Lebeurier, G., Hirth, L.: Electron microscopic studies of the different topological forms of the cauliflower mosaic virus DNA: knotted encapsidated DNA and nuclear minichromosome. EMBO J. 2, 1067–1071 (1983).

    Google Scholar 

  48. [Man] Mansfield, M. L.: Knots in Hamilton Cycles. Macromolecules 27, 5924–5926 (1994).

    Article  ADS  Google Scholar 

  49. [TRO] Tesi, M. C., van Resburg, J.J.E., Orlandini, E., Whittington, S. G.: Knot probability for lattice polygons in confined geometries. J. Phys. A: Math. Gen 27, 347–360 (1994).

    Article  ADS  MATH  Google Scholar 

  50. [MMO] C. Micheletti, C, Marenduzzo, D., Orlandini, E., Sumners, D.W.: Knotting of Random Ring Polymers in Confined Spaces. J. Chem. Phys. 124, 064903 (2006).

    Article  ADS  Google Scholar 

  51. [TAV] Trigueros, S, Arsuaga, J., Vazquez, M.E., Sumners, D.W., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Research 29, 67–71 (2001).

    Article  Google Scholar 

  52. [AVT] J. Arsuaga, M. Vazquez, S. Trigueros, D.W. Sumners and J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids, Proc. National Academy of Sciences USA 99, 5373–5377 (2002).

    Article  ADS  Google Scholar 

  53. [ArT]Arsuaga, J., R. Tan, K-Z, Vazquez, M.E., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packing using molecular mechanics models. Biophysical Chemistry 101–102, 475–484 (2002).

    Article  Google Scholar 

  54. [AVM] Arsuaga, J., Vazquez, M.E., McGuirk, P., Sumners, D.W., Roca, J.: DNA Knots Reveal Chiral Organization of DNA in Phage Capsids. Proc. National Academy of Sciences USA 102, 9165–9169 (2005).

    Article  ADS  Google Scholar 

  55. [EC] Earnshaw, W. C., Casjens, S. R.: DNA packaging by the double-stranded DNA bacteriophages. Cell 21, 319–331 (1980).

    Article  Google Scholar 

  56. [RHA] Rishov, S., Holzenburg, A., Johansen, B.V., Lindqvist, B.H.: Bacteriophage P2 and P4 Morphogenesis: Structure and Function of the Connector. Virology 245, 11–17 (1998).

    Article  Google Scholar 

  57. [STS] Smith, D.E., Tans, S.J., Smith, S.B., Grimes S., Anderson, D.L., Bustamante, C.: The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  ADS  Google Scholar 

  58. [KCS] Kellenberger, E., Carlemalm, E., Sechaud, J., Ryter, A., Haller, G.: Considerations on the condensation and the degree of compactness in non-eukaryotic DNA: in Bacterial Chromatin, eds. Gualerzi, C. & Pon, C. L. (Springer, Berlin), p. 11 (1986).

    Google Scholar 

  59. [SB] San Martin, C., Burnett, R.: Structural studies on adenoviruses. Curr. Top. Microbiol. Immunol. 272, 57–94 (2003).

    Google Scholar 

  60. [SDD] Schmutz, M., Durand, D., Debin, A., Palvadeau, Y., Eitienne, E.R., Thierry, A. R.: DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage. Proc. Natl. Acad. Sci. USA 96, 12293–12298 (1999).

    Article  ADS  Google Scholar 

  61. [ACT] Aubrey, K., Casjens, S., Thomas, G.: Secondary structure and interactions of the packaged dsDNA genome of bacteriophage P22 investigated by Raman difference spectroscopy. Biochemistry 31, 11835–11842 (1992).

    Article  Google Scholar 

  62. [EH] Earnshaw, W. C., Harrison, S.: DNA arrangement in isometric phage heads. Nature 268, 598–602 (1977).

    Article  ADS  Google Scholar 

  63. [LDB] Lepault, J., Dubochet, J., Baschong, W., Kellenberger, E.: Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J. 6, 1507–1512 (1987).

    Google Scholar 

  64. [HMC] Hass, R., Murphy, R.F., Cantor, C.R.: Testing models of the arrangement of DNA inside bacteriophage λ by crosslinking the packaged DNA. J. Mol. Biol. 159, 71–92 (1982).

    Article  Google Scholar 

  65. [Ser] Serwer, P.: Arrangement of double-stranded DNA packaged in bacteriophage capsids : An alternative model. J. Mol. Biol. 190, 509–512 (1986).

    Article  Google Scholar 

  66. [RWC] Richards, K., Williams, R., Calendar, R.: Mode of DNA packing within bacteriophage heads. J. Mol. Biol. 78, 255–259 (1973).

    Article  Google Scholar 

  67. [CCR] Cerritelli, M., Cheng, N., Rosenberg, A., McPherson, C., Booy, F., Steven, A.. Encapsidated Conformation of Bacteriophage T7 DNA. Cell 91, 271–280 (1997).

    Article  Google Scholar 

  68. [BNB] Black, L., Newcomb, W., Boring, J., Brown, J.: Ion Etching of Bacteriophage T4: Support for a Spiral-Fold Model of Packaged DNA. Proc. Natl. Acad. Sci. USA 82, 7960–7964 (1985).

    Article  ADS  Google Scholar 

  69. [Hud] Hud, N.: Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model. Biophys. J. 69, 1355–1362 (1995).

    Article  ADS  Google Scholar 

  70. [JCJ] Jiang, W., Chang, J., Jakana, J., Weigele, P., King, J., Chiu, W.: Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612–616 (2006).

    Article  ADS  Google Scholar 

  71. [WMC] Wang, J.C., Martin, K.V., Calendar, R.: Sequence similarity of the cohesive ends of coliphage P4, P2, and 186 deoxyribonucleic acid. Biochemistry 12, 2119–2123 (1973).

    Article  Google Scholar 

  72. [LDC] Liu, L.F., Davis, J.L., Calendar, R.: Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 9, 3979–3989 (1981).

    Article  Google Scholar 

  73. [WMH] Wolfson, J.S., McHugh, G.L., Hooper, D.C., Swartz, M.N.: Knotting of DNA molecules isolated from deletion mutants of intact bacteriophage P4. Nucleic Acids Res. 13, 6695–6702 (1985).

    Article  Google Scholar 

  74. [IJC] Isaken, M., Julien, B., Calendar, R., Lindgvist, B.H.: Isolation of knotted DNA from coliphage P4: in DNA Topoisomerase Protocols, DNA Topology, and Enzymes, eds. Bjornsti, M. A. & Osheroff, N. (Humana, Totowa, NJ), Vol. 94, pp. 69–74 (1999).

    Google Scholar 

  75. [RDM] Raimondi, A. Donghi, R., Montaguti, A., Pessina, A., Deho, G.: Analysis of spontaneous deletion mutants of satellite bacteriophage P4. J. Virol. 54, 233–235 (1985).

    Google Scholar 

  76. [RUV] Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V., Cozarelli, N.R.: Simplification of DNA Topology Below Equilibrium Values by Type II Topoisomerases. Science 277, 690–693 (1997).

    Article  Google Scholar 

  77. [MRR] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  Google Scholar 

  78. [Mil] Millet, K.: Knotting of Regular Polygons in 3-Space. In Series of Knots and Everything, eds. Sumners D.W. & Millet K.C. (World Scientific, Singapore), Vol. 7, pp. 31–46 (1994).

    Google Scholar 

  79. [MS] Madras, N., Slade, G.: The Self-Avoiding Walk, Birkhauser, Boston (1993).

    MATH  Google Scholar 

  80. [DT2] Deguchi, T., Tsurusaki, K.: A Statistical Study of Random Knotting Using the Vassiliev Invariants. J. Knot Theor. Ramifications 3, 321–353 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  81. [SKB] Stasiak, A., Katrich, V., Bednar, J., Michoud, D., Dubochet, J.: Electrophoretic mobility of DNA knots. Nature 384, 122 (1996).

    Article  ADS  Google Scholar 

  82. [VCL] Vologodskii, A.V., Crisona, N.J., Laurie, B., Pieranski, P., Katritch, V., Dubochet, J., Stasiak, A.: Sedimentation and electrophoretic migration of DNA knots and catenanes. J. Mol. Biol. 278, 1–3 (1998).

    Article  Google Scholar 

  83. [KKS] Kanaar, R., Klippel, A., Shekhtman, E., Dungan, J., Kahmann, R., Cozzarelli, N.R.: Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62, 353–366 (1990).

    Article  Google Scholar 

  84. [WSR] Weber, C., Stasiak, A., De Los Rios, P., Dietler, G.: Numerical Simulation of Gel Electrophoresis of DNA Knots in Weak and Strong Electric Fields. Biophys. J. 90, 3100–3105 (2006).

    Article  Google Scholar 

  85. [RSW] van Rensburg, J., Sumners, D.W., Whittington, S.G.: The Writhe of Knots and Links, In Ideal Knots, Series on Knots and Everything, eds. Stasiak, A., Katritch, V., Kauffman, L.H. (World Scientific, Singapore), Vol. 19, 70–87 (1999).

    Google Scholar 

  86. [MM] Marenduzzo, D., Micheletti, C.: Thermodynamics of DNA packaging inside a viral capsid: The role of DNA intrinsic thickness. J. Mol. Biol. 330, 485–492 (2003).

    Article  Google Scholar 

  87. [MMT] Maritan, A., Micheletti, C., Trovato, A., Banavar, J.: Optimal shapes of compact strings. Nature 406, 287–289 (2000).

    Article  ADS  Google Scholar 

  88. [TK] Tzil, S., Kindt, J.T., Gelbart, W., Ben-Shaul, A.: Nucleic acid packaging of DNA viruses. Biophys. J. 84, 1616–1627 (2003).

    Article  ADS  Google Scholar 

  89. [LL] LaMarque, J.C., Le, T.L., Harvey, S.C.: Packaging double-helical DNA into viral capsids. Biopolymers 73, 3480–355 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Witt Sumners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumners, D. (2009). Random Knotting: Theorems, Simulations and Applications. In: Ricca, R. (eds) Lectures on Topological Fluid Mechanics. Lecture Notes in Mathematics(), vol 1973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00837-5_7

Download citation

Publish with us

Policies and ethics