
Chapter 3
Some preliminaries for families
of cyclic covers

In this chapter we collect the remaining preparations for the computations
concerning the V HS of our families π : C → Pn of cyclic covering of P

1,
which we construct in this chapter.

Let V denote the V HS of the family X → Y of curves and Mon0(V)
denote the identity component of the Zariski closure of the monodromy group
of V. In Section 3.1 we introduce the generic Hodge group Hg(V), which is
the maximum of the Hodge groups of all occurring Hodge structures in V.
Moreover Hg(V) coincides with the Hodge groups of the Hodge structures in
V over the complement of a unification of countably many submanifolds of Y .
Our families π : C → Pn are constructed in Section 3.2. We will also make
some general remarks about the monodromy representation of V including
the fact that the Galois group action yields an eigenspace decomposition
in Section 3.2. In Section 3.3 we make some explicit computations of the
monodromy representations of these eigenspaces. These computations are
motivated from the fact that Mon0(V) is a normal subgroup of the derived
group Hgder(V) of the generic Hodge group! as we see in Section 3.1.

3.1 The generic Hodge group

We want to study the variations of Hodge structures (V HS) of the families
of cyclic covers of P

1, which will be constructed in the next section. Hence
let us first make some general observations about the relation between their
monodromy groups and Hodge groups resp., Mumford-Tate groups. These
observation lead to the definition of the generic Hodge group defined below.

Proposition 3.1.1. Let W be a connected complex manifold and V be a
polarized variation of rational Hodge structures of weight k over W . Then
there is a countable union W ′ ⊂ W of submanifolds such that all MT(Vp)
coincide (up to conjugation by integral matrices) for all p ∈ W \W ′. Moreover
one has MT(Vp′) ⊂ MT(Vp) for all p′ ∈ W ′ and p ∈ W \ W ′.
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Proof. (see [43], Subsection 1.2) ��

Remark 3.1.2. There exist the following versions of the previous
proposition:

If one replaces W by a connected complex algebraic manifold in the pre-
vious proposition, the submanifolds W ′ ⊂ W of the previous proposition are
algebraic, too (see also [43], Subsection 1.2).

Now let F be a totally real number field, W be a complex connected
algebraic manifold, A → W be a family of abelian varieties and V be its
polarized variation of F -Hodge structures of weight 1 over W . Then there
is a countable union W ′ ⊂ W of subvarieties such that all MT(Vp) coincide
(up to conjugation by integral matrices) for all closed p ∈ W \ W ′ (see [42],
Subsection 1.2).

The previous remark motivates the definition of the generic Mumford-Tate
group MTF (V) of a polarized variation V of F -Hodge structures of weight 1
of a family of abelian varieties over a connected complex algebraic manifold
W . Moreover the preceding proposition motivates the definition of the generic
Mumford-Tate group MT(V) of a polarized variation V of Q-Hodge structures
of weight k on a connected complex manifold. The generic Mumford-Tate
group is given by MTF (V) = MTF (Vp) resp., MT(V) = MT(Vp) for all
closed p ∈ W \ W ′.

Since the image of the embedding SL(VF,p) ↪→ GL(VF,p) is independent
with respect to the chosen coordinates on VF,p, Lemma 1.3.17 allows us to
define the generic Hodge group HgF (V) := (MTF (V) ∩ SLF (V))0 such that
HgF (V) = HgF (Vp) for all (closed) p ∈ W \ W ′.

Definition 3.1.3. Let Q ⊆ K ⊆ R be a field and V = (VK ,F•, Q) be a po-
larized variation of K Hodge structures on a connected complex manifold D.
Then Mon0

K(V)p denotes the connected component of identity of the Zariski
closure of the monodromy group in GL((VK)p) for some p ∈ D. For simplicity
we write Mon0(V)p instead of Mon0

Q(V)p.

Theorem 3.1.4. Keep the assumptions and notations of Proposition 3.1.1.
One has that Mon0

F (V)p is a subgroup of MTder
F (Vp) for all p ∈ W \ W ′.

Moreover for a variation of Q Hodge structures one has that Mon0(V)p is a
normal subgroup of MTder(Vp) and

Mon0(V)p = MTder(Vp)

for all p ∈ W \ W ′, if VQ has a CM point.

Proof. (see [43], Theorem 1.4 for the statement about the variations of Q

Hodge structures and [42], Properties 7.14 for the statement about the vari-
ations of F Hodge structures) ��

Corollary 3.1.5. Keep the assumptions of Proposition 3.1.1. Then the group
Mon0(V) is semisimple.
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Proof. By Theorem 3.1.4, the Lie subalgebra Lie(Mon0
Q(V)R) of

Lie(MTder
Q (V)R) is an ideal. Recall that MTder

Q (V)R is semisimple. Hence
the algebra Lie(Mon0

Q(V)R) consists of the direct sum of simple subalgebras
of Lie(MTder

Q (V)R). Thus Mon0
Q(V)R and Mon0(V) are semisimple. ��

3.2 Families of covers of the projective line

Let S be some C-scheme. Recall that the covers c1 : V1 → P
1
S and c2 :

V2 → P
1
S are equivalent, if there is a S-isomorphism j : V1 → V2 such that

c1 = c2 ◦ j.
In this section we construct a family of cyclic covers of P

1 such that all
equivalence classes of covers with a fixed number of branch points with fixed
branch indices are represented by some of its fibers. For us it is sufficient to
start with a space, which is not a moduli scheme, but whose closed points
“hit” all equivalence classes of covers of P

1 with Galois group G = (Z/m,+)
and a fixed number of branch points with fixed branch indices.

We start with the space

(P1)n+3 ⊃ Pn := (P1)n+3 \ {zi = zj |i �= j},

which parametrizes the injective maps φ : N → P
1, where N := {s1, . . . ,

sn+3}. Thus a point q ∈ Pn corresponds to an injective map φq : N → P
1.1

One can consider Pn as configuration space of n + 3 ordered points, too.
We endow the points sk ∈ N with some local monodromy data αk =

e2πiμk , where

μk ∈ Q, 0 < μk < 1 and
n+3∑
k=1

μk ∈ N.

Now we construct a family of covers of P
1 by these local monodromy data:

Construction 3.2.1. Let m be the smallest integer such that mμk ∈ N for
k = 1, . . . , n + 3, and Dk ⊂ PPn

:= P
1 × Pn be the prime divisor given by

Dk = {(ak, a1, . . . , ak, . . . , an+3)}.

1 The set N is some arbitrary finite set, where the set S of the preceding chapter is a
concrete set S ⊂ P1 given by S = φq(N) for some q ∈ Pn.
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Let D be the divisor

D :=
n+3∑
k=1

mμkDk ∼ mD0 with D0 := (
n+3∑
k=1

μk) · ({0} × Pn).

By the sheaf L := OPPn
(D0) and the divisor D, we obtain an irreducible

cyclic cover C of degree m onto PPn
as in [20], §3 (where irreducible means

that the covering variety is irreducible). By π : C → P
1 × Pn

pr2→ Pn, this
cyclic cover yields a family of irreducible cyclic covers of degree m onto P

1.
Suppose that r divides m. By taking the quotient of the subgroup of order

r of the Galois group of the cyclic cover C → P
1 × Pn, one gets a family

πr : Cr → Pn of cyclic covers of degree m
r onto P

1. Let φr : C → Cr denote
the quotient map. One has

π = πr ◦ φr.

Remark 3.2.2. Without loss of generality one may assume that q :=
(a1, . . . , an+3) ∈ Pn is contained in A

n+3, too. Thus the fiber Cq is given
by the equation

ym = (x − a1)d1 · . . . · (x − an+3)dn+3

with dk = mμk. By Remark 2.1.5, the local monodromy datum αk describes
the lifting of a path γk around ak ∈ P

1.2 One checks easily that each equiv-
alence class of cyclic covers of degree m with n + 3 branch points and fixed
branch indexes d1, . . . , dn+3 is represented by some fibers of C. Moreover for
C = Cq the quotient Cr of Remark 2.2.10 is given by the fiber (Cr)q.

A family of smooth algebraic curves over C determines a proper submersion
τ : X → Y in the category of differentiable manifolds ([61], Proposition 9.5).
By the Ehresmann theorem, we obtain that over any contractible submanifold
W of Y the family is diffeomorphic to X0 × W , where X0 is the fiber of
some point 0 ∈ W . This fact has some consequences for the monodromy
representation of the variation of integral Hodge structures.

Recall that R1τ∗(Z) is the sheaf associated to the presheaf given by

V → H1(τ−1(V ), Z|π−1(V ))

for all open subsets V ⊂ Pn. Moreover we have

H1(X0, Z) = H1(XW , Z) = (R1τ∗(Z))(W )

for some contractible W ⊂ Pn with 0 ∈ W , which implies that R1τ∗(Z) is a
local system (see [61], 9.2.1).

2 This circumstance explains the term “local monodromy datum”.
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By using these facts, one can easily ensure that the monodromy group
of the V HS of a family of curves can be calculated over any arbitrary field
Q ⊆ K ⊆ C:

Lemma 3.2.3. Let K be a field with char(K) = 0. Moreover let τ : X → Y
be a holomorphic family of curves. Then we obtain

R1τ∗(K) = R1τ∗(Z) ⊗Z K.

Proof. The sheaf R1τ∗(K) is given by the sheafification of the presheaf

V → H1(τ−1(V ),K|τ−1(V )).

Hence by the description of the cohomology by Čech complexes, this presheaf
is given by

V → H1(τ−1(V ), Z|τ−1(V )) ⊗Z K.

By the fact that a local section of Z or K on a connected component of V
resp., τ−1(V ) is constant, one does not need to differ between the locally
constant sheaves given by Z resp., K on X or Y for the computation of
R1τ∗(K). This yields the desired identification. ��

By the fact that the integral cohomology of a curve does not have torsion,
one concludes:

Corollary 3.2.4. Keep the assumptions of Lemma 3.2.3. Then the mon-
odromy representations of R1τ∗(Z) and R1τ∗(K) coincide.

Remark 3.2.5. Recall that we have an eigenspace decomposition of

H1(C0, C) = H1(C0, Z) ⊗ C

with respect to the Galois group action. By H1(C0, C) = (R1π∗(C))(W ) for
some contractible W ⊂ Pn with 0 ∈ W , we obtain an eigenspace decomposi-
tion of (R1π∗(C))(W ). Since we have this decomposition over all contractible
W ⊂ Pn, we can glue these eigenspaces, which yields a decomposition of
the whole sheaf R1π∗(C) into eigenspaces with respect to the Galois group
action.

Recall that we have an identification between the characters of the Galois
group of some fiber and the elements j ∈ Z/(m). This identification allows a
compatible identification between the characters of the Galois group of the
family and the elements j ∈ Z/(m). Let Lj denote the eigenspace of R1π∗(C)
with respect to the character j.

Remark 3.2.6. Let 0 ∈ Pn. We have a monodromy action ρC by diffeomor-
phisms on the fiber C0, which is induced by the gluing diffeomorphisms of the
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locally constant family of manifolds given by C. Since these gluing diffeomor-
phisms induce the gluing homomorphisms of R1π∗(Z) in the obvious natural
way, the monodromy representation ρ of R1π∗(Z) is given by

ρ(γ)(η) = (ρC(γ))∗(η) (∀ η ∈ H1(C0, Z)).

Remark 3.2.7. Since each gluing diffeomorphism of the locally constant
family of manifolds corresponding to C respects intersection form, Remark
3.2.6 implies that the monodromy group of R1π∗(C) respects the polariza-
tion of the Hodge structures. Assume that H1

j (Cq, C) = (Lj)q satisfies that
H1,0

j (Cq) = n1 and H0,1
j (Cq)2 = n2. This means that the polarized variation

of integral Hodge structure endows (Lj)q with an Hermitian form with sig-
nature (n1, n2). Hence the monodromy group of this eigenspace is contained
in U(n1, n2). In this sense we say that Lj is of type (n1, n2).

3.3 The homology and the monodromy representation

In this section we study the monodromy representation of π1(Pn) on the dual
of R1π∗(C) given by the complex homology. This will yield corresponding
statements for the monodromy representation of R1π∗(C).

In the case of the configuration space Pn of n+3 points, we make a differ-
ence between these different points. One says that the points are “colored”
by different “colors”. Moreover one can identify its fundamental group with
the subgroup of the braid group on n+3 strands in P

1, which is given by the
braids leaving the strands invariant (see [24], Chapter I. 3.). This subgroup
of the braid group is called the colored braid group. An element of this group
is for example given by the Dehn twist Tk1,k2 with 1 ≤ k1 < k2 ≤ n + 3. The
Dehn twist Tk1,k2 is given by leaving ak2 “run” counterclockwise around ak1 .

Now we consider a fiber C = Cq of C. Recall that C is a cyclic cover of P
1

described in Chapter 2. Let ψ denote the generator of the Galois group as in
Section 2.2. We keep the notation of Chapter 2.

Consider the eigenspace Lj , which can be extended from a local system on
P

1 \ S to a local system on P
1 \ Sj with Sj = {a1, . . . , anj+3}. For simplicity

one may without loss of generality assume that anj+3 = ∞ and ak ∈ R such
that ak < ak+1 for all k = 1, . . . , nj+2. Here we assume that δk is the oriented
path from ak to ak+1 given by the straight line.

Construction 3.3.1. Let ζ be a path on P
1. Assume without loss of gener-

ality that ζ((0, 1)) is contained in a simply connected open subset U of P
1\S.

Otherwise we decompose ζ into such paths. It has m liftings ζ(0), . . . , ζ(m−1)

to C such that ψ(ζ(	)) = ζ([	−1]m). By the tensorproduct of C with the free
abelian group generated by the paths on C, one obtains the vector space
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of C-valued paths on C. Now let c ∈ C and take the linear combination of
C-valued paths on C given by

ζ̂ = cζ(0) + . . . + ce2πi jr
m ζ(r) + . . . + ce2πi

j(m−1)
m ζ(m−1).

By the assumptions, one verifies easily that ψ(ζ̂) = e2πi j
m ζ̂. Moreover by the

local sections given by c, . . . , ce2πi jr
m , . . . , ce2πi

j(m−1)
m on the corresponding

sheets over U containing the different ζ(	)((0, 1)), one obtains a corresponding
section c̃ ∈ Lj(U). In this sense we have a Lj-valued path c̃ · ζ on P

1.

Remark 3.3.2. Consider the (oriented) path δk from the branch point ak

to the branch point ak+1. Let ek be a non-zero local section of Lj defined
over an open set containing δk((0, 1)). The Lj-valued path ek · δk yields an
element [ek · δk] of the homology group of H1(C, C), which is represented by
the corresponding linear combination of paths in C lying over δk. It has the
character j with respect to the Galois group representation. Let H1(C, C)j

denote the corresponding eigenspace.

Definition 3.3.3. A partition of Sj into some disjoint sets S(1)∪ . . .∪S(	) =
Sj is stable with respect to the local monodromy data μk of Lj , if

∑
ak∈S(1)

μk /∈ N, . . . ,
∑

ak∈S(�)

μk /∈ N.

Theorem 3.3.4. Assume that Sj = {ai : i = 1, . . . , nj + 3} has the stable
partition {a1, . . . , a	+1}, {a	+2, . . . , anj+3} for some 1 ≤ � ≤ nj +1. Then the
eigenspace H1(C, C)j of the complex homology group of C has a basis given by

B = {[ekδk] : k = 1, . . . , �} ∪ {[ekδk] : k = � + 2, . . . , nj + 2}.

Proof. By [36], Lemma 4.5, one has that {[ekδk] : k = 1, . . . , nj +1} is a basis
of H1(C, C)j . Hence {[ekδk] : k = 1, . . . , nj + 2} is not linearly independent.

One can compute a non-trivial linear combination, which yields 0, in the
following way: Choose a non-zero section of Lj over

U = P
1 \ (

nj+2⋃
k=1

δk).

This yields a linear combination of the sheets over U , on which ψ acts by j.
By the boundary operator ∂, one gets the desired non-trivial linear combi-
nation of Lj-valued paths, which is equal to 0. Now let αk denote the local
monodromy datum of Lj around ak ∈ Sj for all k = 1, . . . , nj + 3. By the
local monodromy data, one can easily compute this linear combination. This
computation yields that {δ1, . . . , δ	} ∪ {δ	+2, . . . , δnj+2} is linearly indepen-
dent, if and only if {a1, . . . , a	+1}, {a	+2, . . . , anj+3} is a stable partition. ��
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Let αk denote the local monodromy datum of Lj around ak ∈ Sj for
all k = 1, . . . , nj + 3. One has up to a certain normalization of the ba-
sis vectors [e1δ1], . . . [e1δnj+1] the following description of the monodromy
representation:

The Dehn twist Tk,k+1 leaves obviously δ	 invariant for all |k − �| > 1.
Moreover by following a path representing Tk,k+1, one sees that the mon-
odromy action of Tk,k+1 on H1(C, C)j (induced by push-forward) is given by

[ek−1δk−1] → [ek−1δk−1] + αk(1 − αk+1)[ekδk],
[ekδk] → αkαk+1[ekδk]

and [ek+1δk+1] → [ek+1δk+1] + (1 − αk)[ekδk].

Hence the monodromy representation is given by:

Proposition 3.3.5. The monodromy representation of T	,	+1 on H1(C, C)j

is given with respect to the basis {[ekδk]|k = 1, . . . nj +1} of H1(C, C)j by the
matrix with the entries:

M	,	+1(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : a = b and a �= �
α	α	+1 : a = b = �

α	(1 − α	+1) : a = � and b = � − 1
1 − α	 : a = � and b = � + 1

0 : elsewhere

Remark 3.3.6. The monodromy representation of Proposition 3.3.5 corre-
sponds to an eigenspace in the local system given by the direct image of the
complex homology. By integration over C-valued paths, this eigenspace is the
dual local system of Lm−j . By the polarization, Lj is the dual of Lm−j , too.
Hence Proposition 3.3.5 yields the monodromy representation of Lj .




