
Introduction

These lecture notes deal with construction methods of Calabi-Yau manifolds
with a special arithmetic property. In these methods we use curves with a
similar arithmetic property, namely, complex multiplication. In the case of
abelian varieties complex multiplication has been well studied by number
theorists. The first six chapters describe how this theory for abelian varieties
can be applied to the construction of curves with complex multiplication.
The remaining five chapters and the appendix are devoted to the construc-
tion methods of Calabi-Yau manifolds with a similarly defined arithmetic
property.

We give new examples of families of curves with dense sets of complex
multiplication fibers and new examples of families of Calabi-Yau manifolds
with a dense set of fibers with a similar arithmetic property. Moreover we will
acquaint the reader with Mumford-Tate groups, which we use as a main tool
for the study of Hodge structures and of variations of Hodge structures. The
generic Mumford-Tate groups of families of cyclic covers of the projective line
will be computed for a large class of examples.

Let us consider curves and Hodge structures on curves. In particular el-
liptic curves are both Calabi-Yau manifolds and abelian varieties. In general
the points on a curve C of genus g generate a commutative group, which can
be endowed with the structure of an abelian variety of dimension g, which
is the Jacobian Jac(C) of C. The curve C can be obtained from Jac(C) and
the principal polarization on Jac(C). In order to study the curve C and its
properties one can also study Jac(C). Abelian varieties and their arithmetic
properties have been well-studied by number theorists.

By Riemann’s theorem, a polarized abelian variety with symplectic basis
corresponds to a pure polarized integral Hodge structure of weight 1. Thus
curves are determined by their Hodge structures. Therefore curves satisfy
a Torelli Theorem. For Calabi-Yau manifolds one has also a local Torelli
theorem. Thus one can study curves and Calabi-Yau manifolds in terms of
their Hodge structures.
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Let Z ⊆ R ⊆ R be a ring. Recall that an R-Hodge structure on an
R-module V is given by a decomposition of VC into subvector spaces V p,q

with V p,q = V q,p. We will see that each R-Hodge structure on V can also be
given by a corresponding representation

h : S → GL(VR)

of the Deligne torus S, which is the algebraic subgroup of GL(R2) given by
the matrices

M(x, y) =
(

x y
−y x

)
.

If V and h yield a Q-Hodge structure, we use the representation h for the
definition of the Mumford-Tate group MT(V, h). The Mumford-Tate group
MT(V, h) is the smallest subgroup of GL(VR) defined over Q such that h(S)
is contained in MT(V, h). For a rational Hodge structure (V, h) of weight k
one can replace S by its subgroup S1 given by the matrices M(x, y) with

detM(x, y) = 1.

In this case one can also replace MT(V, h) by the analogously defined Hodge
group Hg(V, h). The Hodge group Hg(V, h) coincides with the Zariski con-
nected component of the identity in MT(V, h)∩ SL(V ). For any field F with
Q ⊆ F ⊆ R one can also consider F -Hodge structures (V, h) and define
MTF (V, h) and HgF (V, h) in an analogous way.

Let us consider the information which can be obtained from MT(V, h): for
example one says that an elliptic curve E has complex multiplication, if E
has a non-trivial endomorphism. This name is motivated by the fact that in
this case the endomorphism ring of E is a CM field. In general an abelian
variety X of dimension g is of CM type, if its endomorphism algebra contains
a commutative Q-algebra of dimension 2g. The Mumford-Tate group of the
Hodge structure on H1(X, Q) is a torus, if and only if X is of CM type. We
say that a rational Hodge structure (V, h) has complex multiplication (CM),
if MT(V, h) is a torus. For a curve C the Hodge structures on H1(C, Q) and
H1(Jac(C), Q) are isomorphic. Hence we say that a curve has CM , if the
Mumford-Tate group of the Hodge structure on H1(C, Q) is a torus algebraic
group.

Remark 1. One can also study families of compact Kähler manifolds and
their variations of Hodge structures in terms of Mumford-Tate groups. Let D
be a connected complex manifold and V be a polarized variation of Q-Hodge
structures of weight k over D. Then over a dense subset D0 of D the
Mumford-Tate groups of all Hodge structures coincide. Let MT(V) denote
the common Mumford-Tate group. The Hodge structures over the points of
the complement of D0 have a Mumford-Tate group contained in MT(V). The
group MT(V) is called the generic Mumford-Tate group.
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We will introduce Shimura data, which consist of a reductive Q-algebraic
group G and a representation h : S → GR satisfying certain conditions.
Again consider an abelian variety X. For example the pair consisting of the
Mumford-Tate group of the Hodge structure on H1(X, Q) and the represen-
tation h given by this Hodge structure yields a Shimura datum. By using the
conditions which a Shimura datum has to satisfy we obtain:

Theorem 2. Let (G,h) be a Shimura datum and W be a finite dimensional
real vector space. Then the conjugacy class of h in GR can be endowed
with the structure of a complex manifold D. Moreover each closed embed-
ding GR → GL(W ) yields a variation of Hodge structures over D such that
over a dense set of points p ∈ D one has Hodge structures with complex
multiplication.

Note that in the case of the Hodge structure on H1(X, Q) given by h and
the closed embedding

id : MT(H1(X, Q), h) ↪→ GL(H1(X, Q))

the assumptions of the previous Theorem are satisfied, if X is an abelian
variety.

We will give a definition of complex multiplication for arbitrary compact
Kähler manifolds. Due to their application in theoretical physics we are espe-
cially interested in Calabi-Yau 3-manifolds. In theoretical physics one is also
interested in complex multiplication (see [37], [38]).

Here a Calabi-Yau manifold X of dimension n is a compact Kähler mani-
fold of dimension n such that Γ(Ωi

X) = 0 for all i = 1, . . . , n−1 and ωX
∼= OX .

For odd dimensional compact Kähler manifolds one has the intermediate
Jacobians as a generalization of the Jacobians of curves. In general the in-
termediate Jacobian J is not an abelian variety, but only a complex torus.
In the case of an arbitrary complex torus complex multiplication is defined
as for an abelian variety. It can occur that the intermediate Jacobian J is
constant for a family of Calabi-Yau 3-manifolds (see Example 1.6.9). Hence
one intermediate Jacobian is not sufficient for an accurate description of
Calabi-Yau 3-manifolds and their Hodge structures. Nevertheless the inter-
mediate Jacobian of the manifold X of odd dimension k is of CM type, if
Hg(Hk(X, Q), h) is a torus. Moreover the endomorphism algebra of a Hodge
structure (V, h) contains a commutative subalgebra of dimension equal to
dim V , if MT(V, h) is a torus. Thus we say that a compact Kähler manifold X
of dimension n has CM over a totally real number field F , if HgF (Hn(X,F ))
is a torus. It would be very interesting to get mirror pairs of Calabi-Yau
3-manifolds with complex multiplication (see [23]).

One can also consider the Hodge groups of the Hodge structures Hk(X, Q)
for some k �= dimX. In the case of a Calabi-Yau manifold X of dimension
n > 3, it may occur that the Hodge structure on Hn(X, Q) has CM and the
Hodge structure on Hn−1(X, Q) has not CM for example. By considering
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the Hodge diamond of a Calabi-Yau manifold X of dimension n ≤ 3, one
concludes that this can not occur for dimX ≤ 3. In this case the condition of
complex multiplication is equivalent to the property that for all k the Hodge
group of Hk(X, C) is commutative. We will call any family of Calabi-Yau
n-manifolds, which has a dense set of fibers X satisfying the property that
for all k the Hodge group of the Hodge structure on Hk(X, Q) is commu-
tative, a CMCY family of n-manifolds. Here we will give some examples
of CMCY families of 3-manifolds and explain how to construct CMCY
families of n-manifolds in an arbitrarily high dimension. Moreover we will
explicitly determine some fibers with complex multiplication (see Example
7.3.1, Section 7.4, Remark 8.3.6, Remark 9.4.1 and Remark 11.3.13).

Example 3. The first example of a CMCY family of 3-manifolds was given
by C. Borcea [8]. This example uses the family E of elliptic curves given by

P
2 ⊃ V (y2x0 + x1(x1 − x0)(x1 − λx0)) → λ ∈ A

1 \ {0, 1}.

By y → −y, one has a global involution ι on E. Now let Ei with involution ιi
be a copy of E for i = 1, 2, 3. We construct the family

E1 × E2 × E3/〈(ι1, ι2), (ι2, ι3)〉 → (A1 \ {0, 1})3.

By blowing up the singular sections, we obtain a CMCY family of Calabi-Yau
3-manifolds.

In a similar way one can use n copies of E and construct a CMCY family of
n-manifolds (see [56]). Similar to the previous example, we will use involutions
on CMCY families to obtain new CMCY families of manifolds in higher
dimension. The other main tool of construction which we use is motivated
by the following example:

Example 4. Starting with a family of cyclic covers of P
1 with a dense set of

CM fibers, E. Viehweg and K. Zuo [58] have constructed a CMCY family
of 3-manifolds. This construction is given by a tower of projective algebraic
manifolds starting with a family F1 of cyclic covers of P

1 given by

P
2 ⊃ V (y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2,

which has a dense set of CM fibers. Since each of these covers given by the
fibers of the family can be embedded into P

2, the fibers of F1 are the branch
loci of the fibers of a family F2 of cyclic covers of P

2 of degree 5. Moreover
the fibers of F2, which can be embedded into P

3, are the branch loci of the
fibers of a family F3 of cyclic covers of P

3, which can be embedded into P
4.

The family F3 is given by

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2.

By the adjunction formula, the fibers of F3 are Calabi-Yau 3-manifolds.
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Let q ∈ M2. The fiber (F3)q has CM , if (F2)q has CM and (F2)q has
CM , if (F1)q has CM . Because of this argument, the family F3 has a dense
set of CM fibers which lie over the same points as the CM fibers of the family
of curves we have started with.

The previous example contains a deformation of the Fermat quintic in P
4,

which is a well-studied example of a Calabi-Yau manifold with complex multi-
plication (see [38]). In the appendix we will give some examples of Calabi-Yau
3-manifolds which are not necessarily a fiber of a family with infinitely many
CM fibers.

By the previous example, we are led to be interested in the examples of
families of curves with a dense set of CM fibers for our search for CMCY
families of n-manifolds. There is an other motivation given by an open ques-
tion in the theory of curves, too. In [11] R. Coleman formulated the following
conjecture:

Conjecture 5. Fix an integer g ≥ 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

Let Pn denote the configuration space of n+3 points in P
1. One can endow

these n + 3 points in P
1 with local monodromy data and use these data for

the construction of a family C → Pn of cyclic covers of P
1 (see Construction

3.2.1).
The action of PGL2(C) on P

1 yields a quotient Mn = Pn/PGL2(C). By
fixing 3 points on P

1, the quotient Mn can also be considered as a subspace
of Pn.

Remark 6. In [29] J. de Jong and R. Noot gave counterexamples for g = 4
and g = 6 to the conjecture above. In [58] E. Viehweg and K. Zuo gave
an additional counterexample for g = 6. The counterexamples are given by
families C → Pn of cyclic covers of P

1 with dense sets of CM fibers. Here we
will find additional families C → Pn of cyclic genus 5 and genus 7 covers of
P

1 with dense sets of complex multiplication fibers, too.

All new examples C → Pn of the preceding remark have a variation V of
Hodge structures similar to the examples of J. de Jong and R. Noot [29],
and of E. Viehweg and K. Zuo [58], which we call pure (1, n) − V HS. Let
Hg(V) denote the generic Hodge group of V and let K denote an arbitrary
maximal compact subgroup of Hgad(V)(R). In Section 4.4 we prove that a
pure (1, n) − V HS induces an open (multivalued) period map to the sym-
metric domain associated with Hgad(V)(R)/K, which yields the dense sets of
complex multiplication fibers. We obtain the following result in Chapter 6:

Theorem 7. There are exactly 19 families C → Pn of cyclic covers of P
1

which have a pure (1, n) − V HS (including all known and new examples).

We will use the fact that the monodromy group Mon0(V) is a subgroup of
the derived group Hgder(V) and we will study Mon0(V). Let ψ be a generator
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of the Galois group of C → Pn and C(ψ) be the centralizer of ψ in the
symplectic group with respect to the intersection pairing on an arbitrary
fiber of C. In Chapter 4 we obtain the result, which will be useful for our
study of Hgder(V) and Mon0(V):

Lemma 8. The monodromy group Mon0(V) and the Hodge group Hg(V) are
contained in C(ψ).

We will not be able to determine Mon0(V) for all families C → Pn of
cyclic covers of P

1. But we will obtain for example the following results in
Chapter 5:

Proposition 9. Let C → Pn be a family of cyclic covers of degree m onto
P

1. Then one has:

1. If the degree m is a prime number ≥ 3, the algebraic groups Cder(ψ),
Mon0(V) and Hgder(V) coincide.

2. If C → P2g+2 is a family of hyperelliptic curves, one obtains

Mon0(V) = Hg(V) ∼= SpQ(2g).

3. In the case of a family of covers of P
1 with 4 branch points, we need a

pure (1, 1)−V HS to obtain an open period map to the symmetric domain
associated with Hgad(V)(R)/K.

By our new examples of Viehweg-Zuo towers, we will only obtain CMCY
families of 2-manifolds. C. Voisin [60] has described a method to obtain
Calabi-Yau 3-manifolds by using involutions on K3 surfaces. C. Borcea [9]
has independently arrived at a more general version of the latter method,
which allows to construct Calabi-Yau manifolds in arbitrary dimension. By
using this method, we obtain in Section 7.2:

Proposition 10. For i = 1, 2 assume that C(i) → Vi is a CMCY family of
ni-manifolds endowed with the Vi-involution ιi such that for all p ∈ Vi the
ramification locus (Ri)p of C(i)

p → C(i)
p /ιi consists of smooth disjoint hyper-

surfaces. In addition assume that Vi has a dense set of points p ∈ Vi such that
for all k the Hodge groups Hg(Hk(C(i)

p , Q)) and Hg(Hk((Ri)p, Q)) are com-
mutative. By blowing up the singular locus of the family C(1) ×C(2)/〈(ι1, ι2)〉,
one obtains a CMCY family of n1 +n2-manifolds over V1×V2 endowed with
an involution satisfying the same assumptions as ι1 and ι2.

Remark 11. By the preceding proposition, one can apply the construction
of C. Borcea and C. Voisin for families to obtain an infinite tower of CMCY
families of n-manifolds, which we call a Borcea-Voisin tower.

Example 12. The family C → M1 given by

P
2 ⊃ V (y4

1 − x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1
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has a pure (1, 1)−V HS. Hence by the construction of Viehweg and Zuo [58],
one concludes that the family C2 given by

P
3 ⊃ V (y4

2 + y4
1 − x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1 (1)

is a CMCY family of 2-manifolds.
This family has many M1-automorphisms. The quotients by some of these

automorphisms yield new examples of CMCY families of 2-manifolds. More-
over there are some involutions on C2 which make this family and its quotient
families of K3-surfaces suitable for the construction of a Borcea-Voisin tower
(see Section 7.4 for the construction of C2, and for the automorphism group
and the quotient families of C2 see Section 9.3, Section 9.4 and Section 9.5).

Example 13. The family C → M3 given by

P(2, 1, 1) ⊃ V (y3
1−x1(x1−x0)(x1−ax0)(x1−bx0)(x1−cx0)x0) → (a, b, c) ∈M3

has a pure (1, 3) − V HS. The desingularization P̃(2, 2, 1, 1) of the weighted
projective space P(2, 2, 1, 1) is given by blowing up the singular locus. By a
modification of the construction of Viehweg and Zuo, the family W given by

P̃(2, 2, 1, 1) ⊃ Ṽ (y3
2 + y3

1 − x1(x1 − x0)(x1 − ax0)(x1 − bx0)(x1 − cx0)x0)
→ (a, b, c) ∈ M3 (2)

is a CMCY family of 2-manifolds. The family W has a degree 3 quotient,
which yields a CMCY family of 2-manifolds. Moreover it has an involution,
which makes it and its degree 3 quotient suitable for the construction of a
Borcea-Voisin tower (see Chapter 8 for the construction of W and Section
9.1 for its degree 3 quotient).

By using the preceding example, we will obtain (see Section 9.2 for the
construction and Section 10.3 for the maximality):

Theorem 14. Let F3 be the Fermat curve of degree 3 and αF3 denote a
generator of the Galois group of the degree 3 cover F3 → P

1. The family
W has two M3-automorphism α′ and α′′ of order 3 such that the quotients
W×F3/〈(α′, αF3)〉 and W×F3/〈(α′′, αF3)〉 have desingularizations, which are
CMCY families of 3-manifolds. Moreover one of these families is maximal.

By using the V. V. Nikulins classification of involutions on K3 surfaces
[51] and the construction of C. Voisin [60], we obtain in Chapter 11:

Theorem 15. For each integer 1 ≤ r ≤ 11 there exists a maximal holomor-
phic CMCY family of algebraic 3-manifolds with Hodge number h2,1 = r.

This book is organized as follows. The first three chapters explain well-
known facts and yield an introduction of the notations. Chapter 1 is an
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introduction to Hodge Theory and Shimura varieties with a special view
towards complex multiplication. We consider cyclic covers of P

1 in Chapter 2.
Moreover Chapter 3 introduces the remaining facts, which we need for the
description of families of cyclic covers of P

1 and their variations of Hodge
structures.

In Chapter 4 we consider the Galois group action of a cyclic cover of P
1 and

we state first results for the generic Hodge group of a family C → Pn. More-
over we will give a sufficient criterion for the existence of a dense set of CM
fibers given by the pure (1, n) − V HS. In Chapter 5 we compute Mon0(V),
which provides much information about Hg(V). We will see that Mon0(V)
coincides with Cder(ψ) in infinitely many cases. In Chapter 6 we classify the
examples of families of cyclic covers of P

1 providing a pure (1, n) − V HS.
The basic methods of the construction of CMCY -families in higher di-

mension are explained in Chapter 7. We introduce the Borcea-Voisin tower
and the Viehweg-Zuo tower and realize that only a small number of families
of cyclic covers of P

1 are suitable to start the construction of a Viehweg-
Zuo tower. We will also discuss some methods to find concrete CM fibers
at the end of this chapter. In Chapter 8 we will give a modified version of
the method of E. Viehweg and K. Zuo to construct the CMCY family of
2-manifolds given by (2). We consider the automorphism groups of our ex-
amples given by (1) and (2) in Chapter 9. This yields the further quotients of
the families given by (1) and (2) which are CMCY families of 2-manifolds.
We will see that these quotients are endowed with involutions, which make
them suitable for the construction of a Borcea-Voisin tower. Moreover we will
construct the families Q and R of Theorem 14 in Chapter 9. The next chapter
is devoted to the length of the Yukawa coupling of our examples families (mo-
tivated by the question of rigidity) and the Hodge numbers of their fibers. We
finish this chapter with an outlook onto the possibilities to construct CMCY
families of 3-manifolds by quotients of higher order. In Chapter 11 we use
directly the mirror construction of C. Voisin to obtain maximal holomorphic
CMCY families of 2-manifolds, which are suitable for the construction of a
holomorphic Borcea-Voisin tower.

Throughout this book we use the conventions of Algebraic Geometry as in
[26]. Most of the results and conventions about Hodge theory which we need
can be found in [61].

Acknowledgments

The text of this book has been revised at the Graduiertenkolleg “Analysis,
Geometrie und String Theorie” for publication. I am very grateful to Derek
Harland for many comments and the careful reading of the introduction.
Especially I would like to thank Klaus Hulek for several hints including his
hint to the essay [13] and stimulating discussions. Moreover, I would like to



Introduction 9

thank Remke Kloosterman for fruitful discussions about complex multiplica-
tion. I am very grateful to my former PhD adviser Eckart Viehweg for many
hints and discussions concerning the revision of this text.

The appendix is based on an article written at the beginning of 2008,
which was financially supported by the funds of the Leibniz-Preis of Hélène
Esnault and Eckart Viehweg.

This book is predicated on the authors doctoral thesis, which has been
supported by the funds of the DFG (“Graduiertenkolleg mathematische und
ingenieurswissenschaftliche Methoden für sichere Datenübertragung und In-
formationsvermittlung” and the Leibniz-Preis of Hélène Esnault and Eckart
Viehweg). I am very grateful to Eckart Viehweg for giving me the subject of
my thesis and his excellent guidance and support, not only during the work
on this topic, but from the beginning of my mathematical studies. Moreover,
I would like to thank especially Martin Möller for many fruitful and stimulat-
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