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Copolymers Near a Linear Selective Interface

A copolymer is a polymer consisting of different types of monomer. In this
chapter we consider a two-dimensional directed copolymer, consisting of a
random concatenation of hydrophobic and hydrophilic monomers, near a lin-
ear interface separating two immiscible solvents, oil and water (see Fig. 9.1).
We will be interested in the quenched path measure (of the type defined in
(1.3)). We will show that, as a function of the strength and the bias of the
interaction between the monomers and the solvents, this model has a phase
transition between a localized phase, where the copolymer stays near the in-
terface, and a delocalized phase, where the copolymer wanders away from the
interface. The critical curve separating the two phases has interesting proper-
ties, some of which remain to be clarified. The main techniques used are the
subadditive ergodic theorem, the method of excursions, large deviations and
partial annealing estimates.

In Section 9.1 we define the model, in Section 9.2 we study the free energy,
in Section 9.3 we prove the existence of the phase transition, in Section 9.4
we identify the qualitative properties of the critical curve, while in Section 9.5
we describe the qualitative properties of the two phases.

In Chapter 10 we will turn to a model where the linear interface is replaced
by a random interface, coming from large blocks of oil and water arranged in
a percolation-type fashion.

The order of the monomers is determined by the polymerization process
through which the copolymer is grown (see Section 1.1). Since the monomers
cannot reconfigure themselves without some chemical reaction occurring, a
copolymer is an example of a system with quenched disorder. Different copoly-
mers typically have different orderings of monomers. Therefore, in order to
determine the physical properties of a system of copolymers, an average must
be taken over the possible monomer orderings. This is why it is natural to con-
sider the monomers as being drawn randomly according to some appropriate
probability distribution, i.i.d. in our case.

Copolymers near liquid-liquid interfaces are of interest due to their exten-
sive application as surfactants, emulsifiers, and foaming or antifoaming agents.
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Water

Oil

Fig. 9.1. An undirected copolymer near a linear interface.

Many fats contain stretches of hydrophobic and hydrophilic monomers, ar-
ranged “in some sort of erratic manner”, and therefore are examples of random
copolymers. The transition between a localized and a delocalized phase has
been observed experimentally e.g. in neutron reflection studies of copolymers
consisting of blocks of ethylene oxide and propylene oxide near a hexane-water
interface (Phipps, Richardson, Cosgrove and Eaglesham [266]). Here, a thin
layer of hexane, approximately 10−5 m thick, is spread on water. In the lo-
calized phase, the copolymer is found to stretch itself along the interface in a
band of width approximately 20 Å.

Soteros and Whittington [283], Sections 2.2, 3.2.2 and 4.2.2, describes
a number of rigorous, approximate, numerical and heuristic results for
copolymers near linear interfaces. An earlier reference is Whittington [316].
Giacomin [116], Chapters 6–9, gives an overview of rigorous and numerical
results based on the method of excursions.

9.1 A Copolymer Interacting with Two Solvents

For n ∈ N0, let

Wn =
{
w = (i, wi)n

i=0 : w0 = 0, wi+1 − wi = ±1 ∀ 0 ≤ i < n
}

(9.1)

denote the set of all n-step directed paths in N0×Z that start from the origin
and at each step move either north-east or south-east (called ballot paths;
recall Fig. 1.4). This is the set of configurations of the copolymer. An example
of a path in Wn is drawn in Fig. 9.2. Let

ω = (ωi)i∈N be i.i.d. with P(ω1 = +1) = P(ω1 = −1) = 1
2 . (9.2)

This random sequence labels the order of the monomers along the copolymer
(see Fig. 9.2). Throughout the sequel, P denotes the law of ω. As Hamiltonian
we pick, for fixed ω,
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Fig. 9.2. A 14-step directed copolymer near a linear interface. Oil is above the
interface, water is below. The drawn edges are hydrophobic monomers, the dashed
edges are hydrophilic monomers.

Hω
n (w) = −λ

n∑
i=1

(ωi + h) sign(wi−1, wi), w ∈ Wn, (9.3)

with sign(wi−1, wi) = ±1 depending on whether the edge (wi−1, wi) lies above
or below the horizontal axis, and λ, h ∈ R. Without loss of generality we may
restrict the interaction parameters to the quadrant

QUA = {(λ, h) ∈ [0,∞)2}. (9.4)

The choice in (9.3) has the following interpretation. Think of w ∈ Wn as
a directed copolymer on N0 × Z, consisting of n monomers represented by
the edges in the path (rather than the sites). The lower halfplane is water,
the upper halfplane is oil. The monomers are labeled by ω, with ωi = +1
meaning that monomer i is hydrophobic and ωi = −1 that it is hydrophilic.
The term sign (wi−1, wi) equals +1 or −1 depending on whether monomer i
lies in the oil or in the water. Thus, the Hamiltonian rewards matches and
penalizes mismatches of the chemical affinities between the monomers and
the solvents. The parameter λ is the disorder strength. The parameter h plays
the role of an disorder bias: h = 0 corresponds to the hydrophobic and hy-
drophilic monomers interacting equally strongly, while h = 1 corresponds to
the hydrophilic monomers not interacting at all. Only the regime h ∈ [0, 1] is
of interest (because for h > 1 both types of monomers prefer to be in the oil
and the copolymer is always delocalized).

The law of the copolymer given ω is denoted by Pω
n and is defined as in

(1.3), i.e.,

Pω
n (w) =

1
Zω

n

e−Hω
n (w) Pn(w), w ∈ Wn, (9.5)

where Pn is the law of the n-step directed random walk, which is the uni-
form distribution on Wn. This law is the projection on Wn of the law P of
the infinite directed walk whose vertical steps are SRW. Note that we have
suppressed λ, h from the notation.
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In what follows we will consider the quenched free energy f(λ, h) of the
copolymer, i.e., the free energy conditioned on ω. We will first show that
f(λ, h) exists and is constant ω-a.s. We will then show that f(λ, h) is non-
analytic along a critical curve in the (λ, h)-plane, derive a number of properties
of this curve, and subsequently have a look at the typical behavior of the
copolymer in each of the two phases.

The model defined in (9.3) was introduced in Garel, Huse, Leibler and
Orland [111], where the existence of a phase transition was argued on the
basis of non-rigorous arguments. The first rigorous studies were carried out
in Sinai [274] and in Bolthausen and den Hollander [31]. The latter paper
proved the existence of a phase transition, derived a number of properties
of the critical curve, and raised a number of questions. Since then, several
papers have appeared in which these questions have been settled and various
aspects of the model have been further elucidated, leading not only to many
interesting results, but also to challenging open problems. We will refer to
these papers as we go along.

In Giacomin [116], Chapters 6–9, the more general situation is considered
where the ωi are R-valued with a finite moment generating function and the
wi+1 − wi are the increments of a random walk in the domain of attraction
of a stable law. We will comment on this extension in Section 9.6. The spe-
cial situation treated below (SRW and binary disorder) already collects the
main ideas.

A key observation is the following. The energy of a path is a sum of con-
tributions coming from its successive excursions away from the interface (see
Fig. 9.2). What is relevant for the energy of these excursions is when they start
and end, and whether they are above or below the interface. This simplifying
feature, together with the directed nature of the path, is of great help when
we want to do explicit calculations.

9.2 The Free Energy

Our starting point is the following self-averaging property, which is taken from
Bolthausen and den Hollander [31].

Theorem 9.1. For every λ, h ∈ QUA,

f(λ, h) = lim
n→∞

1
n

log Zω
n (9.6)

exists ω-a.s. and in P-mean, and is constant ω-a.s.

Proof. The proof consists of two parts. In Lemma 9.2 we prove that the claim
holds when the random walk is constrained to return to the origin at time 2n.
In Lemma 9.3 we show how to remove this constraint.

Fix λ, h ∈ QUA. Abbreviate

Δi = sign(Si−1, Si) (9.7)
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and define

Zω,0
2n = E

(
exp

[
λ

2n∑
i=1

(ωi + h)Δi

]
1{S2n=0}

)
, (9.8)

where we recall that P is the law of SRW, S = (Si)i∈N0 .

Lemma 9.2. limn→∞
1
2n log Zω,0

2n exists ω-a.s. and in P-mean, and is constant
ω-a.s.

Proof. We need the following three properties:

(I) Zω,0
2n ≥ Zω,0

2m ZT 2mω,0
2n−2m for all 0 ≤ m ≤ n, with T the left-shift acting on ω

as (Tω)i = ωi+1, i ∈ N.
(II) n→ 1

2n E(log Zω,0
2n ) is bounded from above.

(III) P(Tω ∈ · ) = P(ω ∈ · ).
Property (I) follows from (9.8) by inserting an extra indicator 1{S2m=0} and
using the Markov property of S at time 2m. Property (II) holds because

E

(
log Zω,0

2n

)
≤ log E

(
Zω,0

2n

)

= log E

(
(cosh λ)2n exp

[
λh

2n∑
i=1

Δi

]
1{S2n=0}

)

≤ 2n(log cosh λ + λh).

(9.9)

Property (III) is trivial. Thus, ω 
→ (log Zω,0
2n )n∈N0 is a superadditive random

process (which is the analogue of a superadditive deterministic sequence men-
tioned in Section 1.3). It therefore follows from the subadditive ergodic theorem
(Kingman [214]) that limn→∞

1
2n log Zω,0

2n converges ω-a.s. and in P-mean, and
is measurable w.r.t. the tail sigma-field of ω. Since the latter is trivial, i.e.,
all events not depending on finitely many coordinates have probability 0 or 1,
the limit is constant ω-a.s. ��

Our original partition sum at time 2n was

Zω
2n = E

(
exp

[
λ

2n∑
i=1

(ωi + h)Δi

])
, (9.10)

which is (9.8) but without the indicator. Thus, in order to prove Theorem 9.1
we must show that this indicator is harmless as n→∞. Since | log(Zω

2n/Zω
2n+1)|

≤ λ(1 + h), it will suffice to consider time 2n.

Lemma 9.3. There exists a C < ∞ such that Zω,0
2n ≤ Zω

2n ≤ CnZω,0
2n for all

n ∈ N and ω.
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Proof. The lower bound is obvious. The upper bound is proved as follows
(compare with the proof of Theorem 7.1). For 1 ≤ k ≤ n, consider the events

A+
2n,2k = {Si > 0 for 2n− 2k + 1 ≤ i ≤ 2n},

B+
2n,2k = {Si > 0 for 2n− 2k + 1 ≤ i < 2n, S2n = 0},

(9.11)

and similarly for A−
2n,2k, B−

2n,2k when the excursion is below the interface. By
conditioning on the last hitting time of 0 prior to time 2n, we may write

Zω
2n = Zω,0

2n +
n∑

k=1

Zω,0
2n−2k E

(
exp

[
λ

2n∑
i=2n−2k+1

(ωi + h)Δi

]

× 1{A+
2n,2k ∪A−

2n,2k} | S2n−2k = 0

)

= Zω,0
2n +

n∑
k=1

Zω,0
2n−2k

a(2k)
b(2k)

E

(
exp

[
λ

2n∑
i=2n−2k+1

(ωi + h)Δi

]

× 1{B+
2n,2k ∪B−

2n,2k} | S2n−2k = 0

)
.

(9.12)

The reason for the second equality in (9.12) is that Δi = +1 for all 2n−2k+1 ≤
i ≤ 2n on the events A+

2n,2k, B+
2n,2k and Δi = −1 for all 2n− 2k + 1 ≤ i ≤ 2n

on the events A−
2n,2k, B−

2n,2k (ω is fixed). We have

P (A+
2n,2k|S2n−2k = 0) = P (A−

n,k | S2n−2k = 0) = a(2k),

P (B+
2n,2k|S2n−2k = 0) = P (B−

n,k | S2n−2k = 0) = b(2k),
(9.13)

where (compare with (7.4))

a(2k) = P (Si > 0 for 1 ≤ i ≤ 2k | S0 = 0),
b(2k) = P (Si > 0 for 1 ≤ i < 2k, S2k = 0 | S0 = 0).

(9.14)

Moreover, there exist 0 < C1, C2 <∞ such that a(2k) ∼ C1/k1/2 and b(2k) ∼
C2/k3/2 as k → ∞ (see Spitzer [284], Section 1). Hence a(2k)/b(2k) ≤ Ck,
k ∈ N, for some C <∞. Finally, without the factor a(2k)/b(2k) the last sum
in (9.12) is precisely Zω,0

2n . Hence we get

Zω
2n ≤ (1 + Cn) Zω,0

2n , (9.15)

which proves the claim. ��

Lemmas 9.2–9.3 complete the proof of Theorem 9.1. ��
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9.3 The Critical Curve

Now that we have proved the existence of the quenched free energy, we pro-
ceed to study its properties, in particular, we proceed to look for a phase
transition in QUA. In Section 9.3.1 we define the localized and the delocalized
phases, while in Section 9.3.2 we prove the existence of a non-trivial critical
curve separating the two. Sections 9.4–9.5 will be devoted to establishing the
qualitative properties of the critical curve and the two phases.

Grosberg, Izrailev and Nechaev [133] and Sinai and Spohn [276] study
the annealed version of the model, in which Zω

n is averaged over ω. The free
energy and the critical curve can in this case be computed exactly, but they
provide little information on what the quenched model does. Nevertheless, in
Section 9.4.1 we will use the annealed model to obtain an upper bound on the
quenched critical curve.

9.3.1 The Localized and Delocalized Phases

The quenched free energy f(λ, h) is continuous, nondecreasing and convex
in each variable (convexity follows from Hölder’s inequality, as shown in
Section 1.3). Moreover, we have

f(λ, h) ≥ λh ∀ (λ, h) ∈ QUA. (9.16)

Indeed, since P (Δi = +1 ∀ 1 ≤ i ≤ n) ∼ C/n1/2 for some C > 0 as n → ∞
(see Spitzer [284], Section 7), it follows from (9.3–9.5) that

Zω
n = E

(
exp

[
λ

n∑
i=1

(ωi + h)Δi

])

≥
(

exp

[
λ

n∑
i=1

(ωi + h)Δi

]
1{Δi=+1 ∀ 1≤i≤n}

)

= exp

[
λ

n∑
i=1

(ωi + h)

]
P (Δi = +1 ∀ 1 ≤ i ≤ n)

= exp[λhn + o(n) = O(log n)] ω − a.s.,

(9.17)

where in the last line we use the strong law of large numbers for ω. Thus,
we see that the lower bound in (9.16) corresponds to the strategy where the
copolymer wanders away from the interface in the upward direction. This
leads us to the following definition (see Fig. 9.3).

Definition 9.4. We say that the copolymer is:
(i) localized if f(λ, h) > λh,
(ii) delocalized if f(λ, h) = λh.
We write
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localized delocalized

Fig. 9.3. Expected path behavior in the two phases.

L = {(λ, h) ∈ QUA : f(λ, h) > λh},
D = {(λ, h) ∈ QUA : f(λ, h) = λh},

(9.18)

to denote the localized, respectively, the delocalized region in QUA.

In case (i), the copolymer is able to beat on an exponential scale the trivial
strategy of moving upward. It is intuitively clear that this is only possible by
crossing the interface at a positive frequency, but a proof of the latter requires
work. In case (ii), the copolymer is not able to beat the trivial strategy on
an exponential scale. In principle it could do better on a smaller scale, but it
actually does not, which also requires work. Path properties are dealt with in
Section 9.5.1.

Albeverio and Zhou [1] prove that if λ > 0 and h = 0, then log Zω
n satisfies

a law of large numbers and a central limit theorem (as a random variable
in ω). This result readily extends to the entire localization regime.

9.3.2 Existence of a Non-trivial Critical Curve

The following theorem, taken from Bolthausen and den Hollander [31], shows
that L and D are separated by a non-trivial critical curve (see Fig. 9.4).

Theorem 9.5. For every λ ∈ [0,∞) there exists an hc(λ) ∈ [0, 1) such that
the copolymer is

localized if 0 ≤ h < hc(λ),
delocalized if h ≥ hc(λ). (9.19)

Moreover, λ 
→ hc(λ) is continuous and strictly increasing on [0,∞), with
hc(0) = 0 and limλ→∞ hc(λ) = 1.

Proof. Let

gω
n (λ, h) =

1
n

log E

(
exp

[
λ

n∑
i=1

(ωi + h)(Δi − 1)

])
. (9.20)

Then, because λ
∑n

i=1(ωi + h) = λh + o(n) ω-a.s., Theorem 9.1 says that

lim
n→∞

gω
n (λ, h) = g(λ, h) ω − a.s. (9.21)
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Fig. 9.4. Plot of λ �→ hc(λ).

with
g(λ, h) = f(λ, h)− λh (9.22)

the excess free energy. In terms of g, (9.18) becomes

L = {(λ, h) ∈ QUA : g(λ, h) > 0},
D = {(λ, h) ∈ QUA : g(λ, h) = 0}.

(9.23)

For λ ∈ [0,∞), define

hc(λ) = inf{h ∈ [0,∞) : (λ, h) ∈ D}. (9.24)

To study this function, it is expedient to change variables by putting

θ = λh, θc(λ) = λhc(λ), ḡ(λ, θ) = g(λ, h). (9.25)

Because λ and θ appear linearly in the Hamiltonian in (9.3), we know that
(λ, θ) 
→ ḡ(λ, θ) is convex (see Section 1.3). Moreover, since ḡ ≥ 0, we have
D = {(λ, θ) : ḡ(λ, θ) ≤ 0}, i.e., D is a level set of the function ḡ. Since ḡ is
a convex function, it follows that D is a convex set, implying in turn that L
and D are separated by a single critical curve

θc(λ) = inf{θ ∈ [0,∞) : (λ, θ) ∈ D} (9.26)

that is itself a convex function.
We know that hc(0) = 0. Now, Theorems 9.6–9.7 below will imply that

0 < lim inf
λ↓0

1
λ

hc(λ) ≤ lim sup
λ↓0

1
λ

hc(λ) <∞. (9.27)

Moreover, Theorem 9.7 will imply that limλ→∞ hc(λ) = 1. All that therefore
remains to be done is to show that hc is strictly increasing on [0,∞). To that
end, note that θc(0) = 0, while (9.27) shows that θc(λ) is of order λ2 near 0.
Consequently, λ 
→ θc(λ)/λ is strictly increasing [0,∞) (with limiting value 0
at λ = 0). ��
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The critical curve in Fig. 9.4 shows that at high temperature (small λ)
entropic effects dominate, causing the copolymer to wander away from the in-
terface, while at low temperature (large λ) energetic effects dominate, causing
the copolymer to stay close to the interface. The crossover value of λ depends
on the value of h.

9.4 Qualitative Properties of the Critical Curve

In Section 9.4.1 we derive an upper bound on the critical curve, in Section 9.4.2
a lower bound, while in Section 9.4.3 we indicate that it has a (positive and
finite) slope at 0.

9.4.1 Upper Bound

The next result, also taken from Bolthausen and den Hollander [31], provides
an upper bound on hc. This bound is the critical curve for the annealed model.

Theorem 9.6. hc(λ) ≤ (2λ)−1 log cosh(2λ) for all λ ∈ (0,∞).

Proof. Estimate (recall (9.20–9.22))

g(λ, h) = lim
n→∞

1
n

E

(
log E

(
exp

[
λ

n∑
i=1

(ωi + h)(Δi − 1)

]))

≤ lim
n→∞

1
n

log E

(
E

(
exp

[
λ

n∑
i=1

(ωi + h)(Δi − 1)

]))

= lim
n→∞

1
n

log E

(
n∏

i=1

[
1
2e−2λ(1+h) + 1

2e−2λ(−1+h)
]1{Δi=−1}

)
.

(9.28)

The first equality comes from the fact that Kingman’s subadditive ergodic
theorem holds in P-mean. The inequality follows from Jensen’s inequality and
Fubini’s theorem. The second equality uses (9.2). The right-hand side is ≤ 0
as soon as the term between square brackets is ≤ 1. Consequently,

(2λ)−1 log cosh(2λ) > h =⇒ g(λ, h) = 0, (9.29)

which yields the desired upper bound on hc(λ). ��
Note that the proof of Theorem 9.6 is a partial annealing estimate in

disguise, because to transform (9.18) into (9.23) we have used the law of large
numbers for ω.

9.4.2 Lower Bound

The following counterpart of Theorem 9.6, due to Bodineau and Giacomin [22],
provides a lower bound on hc(λ).
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Theorem 9.7. hc(λ) ≥ (4
3λ)−1 log cosh( 4

3λ) for all λ ∈ (0,∞).

Proof. As we will see, the lower bound comes from strategies where the copoly-
mer dips below the interface during rare long stretches in ω where the empir-
ical mean is sufficiently biased.

We begin with some notation. Pick l ∈ 2N. For j ∈ N, let

Ij = ((j − 1)l, jl] ∩ N, Ωj =
∑
i∈Ij

ωi. (9.30)

Pick δ ∈ (0, 1]. Define recursively

iω0 = 0, iωj = inf{k ≥ iωj−1 + 2: Ωk ≤ −δl}, j ∈ N, (9.31)

and abbreviate τω
j = iωj − iωj−1−1, j ∈ N. (In (9.31) we skip at least 2 to make

sure that τω
j ≥ 1, which is needed below.) For n ∈ N, put

tωn,l,δ = sup{j ∈ N : iωj ≤ �n/l�}, (9.32)

and consider the set of paths (see Fig. 9.5)

Wω
n,l,δ =

{
w ∈ Wn : wi ≤ 0 for i ∈ ∪tω

n,l,δ

j=1 Iiω
j
,

wi ≥ 0 for i ∈ {(0, n] ∩ N} \ ∪tω
n,l,δ

j=1 Iiω
j

}
.

(9.33)

By restricting the path to Wω
n,l,δ, we find that the quantity in (9.20) can

be bounded from below as

gω
n (λ, h) =

1
n

log E

(
exp

[
λ

n∑
i=1

(ωi + h)(Δi − 1)

])

≥ 1
n

log E

(
exp

[
λ

n∑
i=1

(ωi + h)(Δi − 1)

]
1Wω

n,l,δ

)

≥ 1
n

log

⎧⎨
⎩
⎛
⎝

tω
n,l,δ∏
j=1

b(τω
j l) b(l) e−2λ(−δ+h)l

⎞
⎠ a

(
n− itω

n,l,δ
l
)⎫⎬
⎭

≥ 1
n

tω
n,l,δ∑
j=1

log b(τω
j l) +

tωn,l,δ

n
[log b(l) + 2λ(δ − h)l] +

1
n

log a(n),

(9.34)

n

τω
1 l τω

2 l

Iiω
1

Iiω
2

Iitω
n,l,δ

�� ��

�� �� ��

Fig. 9.5. A path in Wω
n,l,δ.
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where a(k) and b(k) are defined in (9.13), the second inequality uses that
Ωj ≤ −δl for j = 1, . . . , tωn,l,δ, and the third inequality uses that k 
→ a(k) is
non-increasing. We need to compute the ω-a.s. limit of the right-hand side of
(9.34) as n→∞.

The last term vanishes as n → ∞, because a(n) � n−1/2. Furthermore,
since there exists a C > 0 such that b(k) ≥ Ck−3/2 for k ∈ 2N, we have

1
n

tω
n,l,δ∑
j=1

log b(τω
j l) ≥ 1

n

tω
n,l,δ∑
j=1

log
[
C(τω

j l)−3/2
]

≥ −
3tωn,l,δ

2n
log

⎡
⎣
∑tω

n,l,δ

j=1 τω
j l

tωn,l,δ

⎤
⎦ +

tωn,l,δ

n
log C,

(9.35)

where the second inequality uses Jensen’s inequality. Moreover, applying the
ergodic theorem to (Ωj)j∈N while recalling (9.31–9.32), we have

lim
n→∞

tωn,l,δ

n
= pl,δ ω − a.s., (9.36)

where
pl,δ =

1
l

ql,δ(1− ql,δ) with ql,δ = P(Ω1 ≤ −δl). (9.37)

Since
∑tω

n,l,δ

j=1 τω
j l ≤ n− tωn,l,δl, it follows from (9.36) that

lim sup
n→∞

∑tω
n,l,δ

j=1 τω
j l

tωn,l,δ

≤ lim
n→∞

n− tωn,l,δl

tn,l.δ
= p−1

l,δ − l ω − a.s. (9.38)

Combining (9.34–9.38) and recalling (9.21), we arrive at

g(λ, h) ≥ − 3
2 pl,δ log

(
p−1

l,δ − l
)

+ pl,δ

[
2 log C − 3

2 log l + 2λ(δ − h)l
]
. (9.39)

This inequality is valid for all l ∈ 2N and δ ∈ (0, 1].
Next, let

Σ(δ) = sup
λ>0

[
λδ − log E

(
e−λω1

)]
, δ ∈ (0, 1], (9.40)

denote the Legendre transform of the cumulant generating function of −ω1,
where we note that, by the symmetry of the distribution of ω1, the supremum
over λ ∈ R reduces to the supremum over λ > 0. Then, by Cramér’s theorem
of large deviation theory (see e.g. den Hollander [168], Chapter I), we have

lim
l→∞

1
l

log ql,δ = −Σ(δ) ∀ δ ∈ (0, 1]. (9.41)
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Hence, letting l→∞ in (9.39) and using (9.37), we obtain

∃ δ ∈ (0, 1] : − 3
2Σ(δ) + 2λ(δ − h) > 0 =⇒ g(λ, h) > 0. (9.42)

Taking the inverse Legendre transform in (9.40), we have

sup
δ∈(0,1]

[
4
3λ(δ − h)−Σ(δ)

]
= − 4

3λh + log E

(
e−

4
3λω1

)

= − 4
3λh + log cosh

(
4
3λ

)
, λ > 0.

(9.43)

Combining (9.42–9.43), we get

(
4
3λ

)−1 log cosh
(

4
3λ

)
> h =⇒ g(λ, h) > 0, (9.44)

which yields the desired lower bound on hc(λ). ��

9.4.3 Weak Interaction Limit

The upper and lower bounds in Theorems 9.6–9.7 are sketched in Fig. 9.6.
Numerical work in Caravenna, Giacomin and Gubinelli [55] indicates that
λ 
→ hc(λ) lies somewhere halfway between these bounds (see also Garel and
Monthus [244]).

The following weak interaction limit is proved in Bolthausen and den
Hollander [31].

Theorem 9.8. There exists a Kc ∈ (0,∞) such that

lim
λ↓0

1
λ

hc(λ) = Kc. (9.45)

Proof. The idea behind the proof is that, as λ, h ↓ 0, the excursions away from
the interface become longer and longer (i.e., entropy gradually takes over from
energy). As a result, both w and ω can be approximated by Brownian motions.
In essence, (9.45) follows from the scaling property

0
λ

h

1

Fig. 9.6. Upper and lower bounds on λ �→ hc(λ).
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lim
a↓0

a−2 f(aλ, ah) = f̃(λ, h), λ, h ≥ 0, (9.46)

where f̃(λ, h) is the free energy of a space-time continuous version of the
copolymer model, with Hamiltonian

Hb
t (B) = −λ

∫ t

0

(dbs + h ds) sign(Bs) (9.47)

replacing (9.3), and with path measure given by the Radon-Nikodym
derivative

dP b
t

dP
(B) =

1
Zb

t

e−Hb
t (B) (9.48)

replacing (9.5). Here, B = (Bs)s≥0 is a path drawn from Wiener space, replac-
ing (9.1), P is the Wiener measure (i.e., the law of standard Brownian motion
on Wiener space), and (bs)s≥0 is a standard Brownian motion, replacing (9.2),
playing the role of the quenched randomness. The proof of (9.46) is based on a
coarse-graining argument. Due to the presence of exponential weight factors,
(9.46) is a much more delicate property than the standard invariance prin-
ciple relating simple random walk and Brownian motion. Moreover, (9.45)
follows from (9.46) only after the latter has been shown to be “stable against
perturbations” in λ, h. For details we refer to [31].

In the continuum model, the quenched critical curve turns out to be linear
with slope Kc. The value of Kc is not known. ��

The proof of (9.45) shows that the same scaling property holds for the
model in which the h-dependence sits in the probability law of ω rather than
in the Hamiltonian, i.e., P(ωi = ±1) = 1

2 (1±h) and Hω
n (w) = λ

∑n
i=1 ωiΔi(w)

instead of (9.2–9.3). This describes a copolymer where the monomers occur
with different densities but interact equally strongly. Alternatively, we could
allow for more general ω, assuming values in R according to a symmetric
distribution with a finite exponential moment (see Section 9.6). Thus, Kc has
a certain degree of universality. See also Section 9.6, Extension (1).

The bounds in Theorems 9.6–9.7 give Kc ∈ [ 23 , 1]. There have been various
papers in the literature arguing in favor of Kc = 2

3 (Stepanow, Sommer and
Erukhimovich [285], Monthus [243]) and Kc = 1 (Trovato and Maritan [298]).
Toninelli [295] proves that Kc < 1 (see Section 9.6, Extension (2)). The numer-
ical work in Caravenna, Giacomin and Gubinelli [55] gives Kc ∈ [0.82, 0.84].

9.5 Qualitative Properties of the Phases

In Section 9.5.1 we look at the path properties in the two phases, in
Section 9.5.2 at the order of the phase transition, and in Section 9.5.3 at
the smoothness of the free energy in the localized phase.
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9.5.1 Path Properties

We next state two theorems identifying the path behavior in the two phases.
The first is due to Biskup and den Hollander [20], the second to Giacomin
and Toninelli [120]. These theorems confirm the naive view put forward in
Section 9.3 when we defined L and D (recall Fig. 9.3).

Theorem 9.9. ω-a.s. under Pω
n as n→∞:

(a) If (λ, h) ∈ L, then the path intersects the interface with a strictly positive
density, while the lengths and the heights of its excursions away from the
interface are exponentially tight.
(b) If (λ, h) ∈ int(D), then the path intersects the interface with a zero density.

Theorem 9.10. ω-a.s. under Pω
n as n→∞, if (λ, h) ∈ int(D), then the path

intersects the interface O(log n) times.

The idea behind Theorem 9.9 is that in the localized regime, where the excess
free energy g = g(λ, h) defined in (9.22) is strictly positive, the probability for
the copolymer to be away from the interface during a time l is roughly e−gl

as l→∞. This is because the copolymer contributes an amount gl to the free
energy when it stays near the interface, but contributes 0 when it moves away.
The idea behind Theorem 9.10 is that strictly inside the delocalized regime,
where the excess free energy is zero, the probability for the copolymer to
return to the interface a large number of times is small. This idea is exploited
with the help of concentration inequalities.

It is believed that strictly inside the delocalized regime the number of
intersections with the interface is in fact O(1). This has only been proved
deep inside the delocalized phase, namely, above the annealed upper bound
in Theorem 9.6, where ideas similar to those that went into the proof of
Theorem 7.3 can be exploited (Giacomin and Toninelli [120]). See Section 9.7,
Challenge (3).

9.5.2 Order of the Phase Transition

The next theorem, due to Giacomin and Toninelli [123], shows that the phase
transition is at least of second order.

Theorem 9.11. For every λ ∈ (0,∞),

0 ≤ g(λ, h) = O
(
[hc(λ)− h]2

)
as h ↑ hc(λ). (9.49)

Proof. We give the proof for the case where ω = (ωi)i∈N is an i.i.d. sequence
of standard normal random variables, rather than binary random variables as
in (9.2). At the end of the proof we indicate how to adapt the argument.

Recall the definitions in the proof of Theorem 9.7. Consider the set of
paths (see Fig. 9.7)
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n

τω
1 l τω

2 l

Iiω
1

Iiω
2

Iiω
tn.l,δ

�� ��

�� �� ��

Fig. 9.7. A path in Ŵω
n,l,δ.

Ŵω
n,l,δ =

{
w ∈ Wn : wi = 0 for i ∈ ∪tω

n,l,δ

j=1 ∂Iiω
j
,

wi ≥ 0 for i ∈ {(0, n] ∩ N} \ ∪tω
n,l,δ

j=1 Iiω
j

} (9.50)

with ∂Ij = {(j − 1)l, jl}, j ∈ N. By restricting the path to Ŵω
n,l,δ, we get

Z̃ω
n ≥

⎛
⎝

tω
n,l,δ∏
j=1

b(τω
j l) Z̃ T

iω
j

l
ω

l

⎞
⎠ a

(
n− itω

n,l,δ
l
)

, (9.51)

where T is the left-shift acting on ω, and the tilde is used to indicate
that the partition sums are taken with Δi − 1 instead of Δi, as in (9.20)
and (9.34). Letting n → ∞, using that k 
→ a(k) is non-increasing with
limn→∞

1
n log a(n) = 0, and noting that the convergence in (9.21) holds in

P-mean as well, we obtain

g(λ, h) ≥ lim inf
n→∞

1
n

E

⎛
⎝

tω
n,l,δ∑
j=1

log b(τω
j l)

⎞
⎠ + lim inf

n→∞

1
n

E

⎛
⎝

tω
n,l,δ∑
j=1

log Z̃ T
iω
j

l
ω

l

⎞
⎠ .

(9.52)

The first term in the right-hand side of (9.52) was computed in (9.35–9.38)
and equals − 3

2pl,δ log(p−1
l,δ − l). The expectation under the limit in the second

term equals (recall (9.31–9.32))

1
n

E

⎛
⎝

tω
n,l,δ∑
j=1

log Z̃T
iω
j

l
ω

l

⎞
⎠ = E

(
tωn,l,δ

n

)
E

(
log Z̃ω

l | Ω1 ≤ −δl
)
. (9.53)

Conditioning l i.i.d. normal random variables with mean 0 and variance 1 to
have sum equal to −δl is the same as taking l i.i.d. normal random variables
with mean −δ and variance 1. Hence, the effect of the conditioning in (9.53)
is that, in (9.20), ωi becomes ωi − δ, so that

E
(
log Z̃ω

l (λ, h) | Ω1 ≤ −δl
)

= E
(
log Z̃ω

l (λ, h− δ)
)
, (9.54)

where we add the parameters λ, h as arguments to exhibit the shift in h. Insert-
ing (9.54) into (9.53), picking h = hc(λ) in (9.52), noting that g(λ, hc(λ)) = 0,
and recalling (9.36), we arrive at
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0 ≥ − 3
2 pl,δ log

(
p−1

l,δ − l
)

+ pl,δ E
(
log Z̃ω

l (λ, hc(λ)− δ)
)
. (9.55)

This inequality is valid for all l ∈ 2N and δ ∈ (0, 1].
Dividing (9.55) by l, letting l→∞ and using (9.41), we obtain

0 ≥ − 3
2Σ(δ) + g

(
λ, hc(λ)− δ

)
, (9.56)

where Σ is the Cramér rate function for standard normal random variables,
i.e., Σ(δ) = 1

2δ2. Hence we conclude that

g
(
λ, hc(λ)− δ

)
≤ 3

4δ2, (9.57)

which proves the claim.
It is easy to extend the proof to binary ω. All that is needed is to show

that (9.54) holds asymptotically as l → ∞ and to use that Σ(δ) ∼ 1
2δ2 as

δ ↓ 0. ��

9.5.3 Smoothness of the Free Energy in the Localized Phase

We conclude with a theorem by Giacomin and Toninelli [124] showing that
the free energy is smooth throughout the localized phase. Consequently, our
critical curve is the only location where a phase transition of finite order
occurs.

Theorem 9.12. (λ, h) 
→ f(λ, h) is infinitely differentiable on L.

Proof. The main idea behind the proof is that, for (λ, h) ∈ L, the correlation
between any pair of events that depend on the values of the path w of the
copolymer in finite and disjoint subsets of {1, . . . , n} decays exponentially with
the distance between these sets. This is formulated in the following lemma.

Lemma 9.13. Let K be an arbitrary compact subset of L. Then there exist
0 < c1, c2 < ∞ (depending on K) such that, for all (λ, h) ∈ K, all n ∈ N, all
integers 1 ≤ a1 < b1 < a2 < b2 ≤ n, and all pairs of events A and B that
are measurable w.r.t. the sigma-fields generated by (wa1 , . . . , wb1), respectively,
(wa2 , . . . , wb2),

E
(∣∣Pω

n (A ∩B)− Pω
n (A)Pω

n (B)
∣∣) ≤ c1e−c2(a2−b1). (9.58)

Proof. The proof of Lemma 9.13 is based on the following lemma. For n ∈ N,
let Pω,⊗2

n be the joint law of two independent copies w1 and w2 of w of
length n.

Lemma 9.14. There exist 0 < c1, c2 <∞ (depending on K) such that for all
(λ, h) ∈ K, all n ∈ N, and all integers 1 ≤ a < b ≤ n,

E
(
Pω,⊗2

n (Ea,b)
)
≤ c1e−c2(b−a), (9.59)

where Ea,b = {� i ∈ {a + 1, . . . , b− 1} : w1
i = w2

i = 0}.
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Proof. The main idea is that, for (λ, h) ∈ L, the lengths of the excursions of
the copolymer away from the interface are exponentially tight. This forces w1

and w2 to hit the interface in a set of sites with a strictly positive density.
Therefore the probability that w1 and w2 hit the interface at the same site at
least once in {a + 1, . . . , b − 1} tends to 1 exponentially fast as b − a → ∞.
For details we refer the reader to Giacomin and Toninelli [124]. ��

Now note that the l.h.s. of (9.58) is equal to

E

( ∣∣∣Eω,⊗2
n

[{
1A(w1)1B(w1)− 1A(w1)1B(w2)

}
1E(w1, w2)

]∣∣∣
)
. (9.60)

Together with (9.59), this completes the proof of Lemma 9.13. ��

We use Lemma 9.13 to complete the proof of Theorem 9.12. This can be
done by appealing to the theorem of Arzela-Ascoli, according to which it is
enough to prove that for every k1, k2 ∈ N the partial derivative

∂k1+k2

∂λk1∂hk2

( 1
n

E log Zω
n

)
(9.61)

is bounded from above, uniformly in n ∈ N and (λ, h) ∈ K.
In order to achieve the latter, we define, for k ∈ N and for {f1, . . . , fk} any

family of bounded functions on the path space Wn whose supports are finite,

Eω
n [f1(w); . . . ; fk(w)] =

∑
P∈P

(−1)|P |−1(|P | − 1)!
|P |∏
p=1

Eω
n

[ ∏
l∈Pp

fl(w)
]
, (9.62)

where P denotes the set of all partitions P = (Pp)p∈|P | of {1, . . . , k}, with |P |
the number of sets in the partition P . We need the following lemma for this
quantity.

Lemma 9.15. For all k ∈ N there exist 0 < c1, c2 <∞ (depending on k and
K) such that, for all (λ, h) ∈ K,

E

[∣∣Eω
n [f1; . . . ; fk]

∣∣] ≤ c1 ||f1||∞ . . . ||fk||∞ e−c2(|I|−[|S(f1)|+···+|S(fk)|]), (9.63)

where S(f1), . . . ,S(fk) are the supports of f1, . . . , fk, and I is the smallest
interval containing S(f1), . . . ,S(fk).

Proof. The proof uses induction on k. We skip the details, noting only that
the case k = 1 is trivial, while the case k = 2 is a direct consequence of
Lemma 9.13 after we write bounded functions with finite support as linear
combinations of indicators of events. ��

The point of the notation introduced in (9.62) is that (9.61) can be written
in the form
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1
n

∑
1≤i1,...,ik1≤n

∑
1≤j1,...,jk2≤n

E

[
(ωi1 + h) . . . (ωik1

+ h)

×Eω
n

[
Δi1(w); . . . ;Δik1

(w);Δj1(w); . . . ;Δjk2
(w)

]]
.

(9.64)

Since the ωi’s are bounded, the proof will therefore be complete once we show
that

1
n

∑
1≤i1,...,ik≤n

E

[∣∣Eω
n

[
Δi1(w); . . . ;Δik

(w)
]∣∣], k = k1 + k2, (9.65)

is bounded uniformly in n ∈ N and (λ, h) ∈ K. For this we use Lemma 9.15,
to bound (9.65) from above by

1
n

n−1∑
m=1

∑
(i1,...,ik)∈T m

n

c1e
−c2(m−k), (9.66)

where
Tm

n =
{
(i1, . . . , ik) : 1 ≤ i1, . . . , ik ≤ n,

max{i1, . . . , ik} −min{i1, . . . , ik} = m
}
.

(9.67)

Since |Tm
n | ≤ nmk, (9.66) is at most c1ec2k

∑
m∈N

mk e−c2m <∞. ��

9.6 Extensions

(1) With the exception of Theorem 9.11, all the results described in
Sections 9.2–9.5 extend to the situation where the ωi are R-valued with
a finite moment generating function. For instance, define

h∗(λ) =
1
2λ

log E
(
e2λω1

)
, λ ∈ (0,∞), (9.68)

and assume that h∗ is finite on (0,∞). Then the proofs of Theorems 9.6–9.7
show that

h∗( 2
3λ) ≤ hc(λ) ≤ h∗(λ), λ ∈ (0,∞). (9.69)

Moreover, if the random walk is replaced by a renewal process whose return
times to the interface have distribution P (Si > 0 ∀ 0 < i < n, Sn = 0) ∼
n−1−aL(n) as n → ∞ for some a > 0 and some function L that is slowly
varying at infinity (as in (7.5)), then the same proofs yield

h∗( 1
1+aλ) ≤ hc(λ) ≤ h∗(λ), λ ∈ (0,∞). (9.70)

We refer the reader to Giacomin [116], Chapters 6–8, for a full account of
these extensions. The reason why the generalization from random walks to
renewal processes works is precisely that the Hamiltonian in (9.3) decomposes
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into contributions coming from single excursions away from the interface.
Therefore only the asymptotics of the law of these excursions matters. It
also allows for the inclusion of (1 + d)-dimensional excursions away from a
d-dimensional flat interface with d ≥ 2.

Theorem 9.11 has been extended to bounded disorder, and also to continuous
disorder subject to a mild entropy condition that is satisfied e.g. for Gaussian
disorder (see Giacomin and Toninelli [122], [123]).

(2) Toninelli [294] shows that the upper bound in Theorem 9.6 is strict for un-
bounded disorder and large λ. This result is extended by Bodineau, Giacomin,
Lacoin and Toninelli [23] to arbitrary disorder (subject to h∗ in (9.68) being
finite) and arbitrary λ. The proofs are based on fractional moment estimates
of the partition sum. Toninelli [295] further refines the latter technique to
show that Kc < 1 for arbitrary disorder, thereby ruling out Kc = 1 (recall
the discussion at the end of Section 9.4.3). Bodineau, Giacomin, Lacoin and
Toninelli [23] also show that the lower bound in Theorem 9.7 is strict for
arbitrary disorder and small λ, at least for a large subclass of excursion re-
turn time distributions. The proof is based on finding appropriate localization
strategies, in the spirit of the computation in Section 9.4.2.

(3) The difficulty behind improving the upper bound is that the typical length
of the excursions diverges as the critical curve is approached from below.
Consequently, any attempt to do a higher order partial annealing in the hope
to improve the first order partial annealing argument in (9.28) is doomed to
fail. This fact was observed in Orlandini, Rechnitzer and Whittington [253]
and in Iliev, Rechnitzer and Whittington [182], and was subsequently proved
for a large class of models in Caravenna and Giacomin [54]. In the latter paper,
the setting is an arbitrary Hamiltonian w 
→ Hω

n (w) with the property that
there exists a sequence (Dn)n∈N of subsets of Z

d such that

lim
n→∞

1
n

log P (wi ∈ Di ∀ 1 ≤ i ≤ n) = 0,

wi ∈ Di ∀ 1 ≤ i ≤ n =⇒ Hω
n (w) = 0 ∀ω,

(9.71)

where P is the reference path measure. Given an arbitrary local, bounded and
measurable function ω 
→ F (ω) with E(F (ω)) = 0, it is shown

lim inf
n→∞

1
n

log E
(
E
(
exp[−Hω

n (S)]
))

> 0

=⇒ lim inf
n→∞

1
n

log E

(
E
(

exp
[
−Hω

n (S)−
n∑

i=1

F (T iω)
]))

> 0,
(9.72)

where T is the left-shift acting on ω. What this says is that if the annealed free
energy is strictly positive, then it remains strictly positive after adding the
empirical average of a centered local function of the disorder. In other words,
the two annealed free energies have the same critical curve. Note that the
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centering implies that the quenched free energies associated with H and H+F
are the same: the term

∑n
i=1 F (T iω) does not depend on S. Thus, in order to

improve an annealed estimate of a critical curve one has to resort to adding
non-local functions of the disorder, which are computationally unattractive.

(4) Caravenna, Giacomin and Gubinelli [55] carry out a detailed numerical
analysis of the critical curve, with full statistical control on the errors. They
exploit the superadditivity property noted in the proof of Theorem 9.1, which
implies that

g(λ, h) = sup
n∈N

1
2n

log E(log Z∗,ω
2n ). (9.73)

Hence, for any given (λ, h), if E(log Z∗,ω
2n ) for some finite n, then (λ, h) ∈ L.

This leads to a sharp lower bound for the critical curve. It is much harder to get
a decent upper bound. Computations are carried out up to n = 2× 108, and
concentration inequalities are used to estimate the expectation E with only
relatively few samples of ω. Giacomin and Sohier (private communication)
have pushed the computation up to n = 1012, thereby improving the lower
bound for the critical curve even further.

Interestingly, the results show that to a remarkable degree of accuracy

hc(λ) ≈ h∗(Kcλ), λ ∈ (0,∞), (9.74)

with Kc the constant in (9.45), both for binary and standard normal disor-
der. Nevertheless, Bodineau, Giacomin, Lacoin and Toninelli [23] prove that
equality in (9.74) cannot hold for all λ, by showing that the critical curve
depends on the fine details of the excursion return time distribution and not
only on the universal constant Kc.

(5) The restriction to the quadrant in (9.4) can be trivially removed. Indeed,
because f(λ, h) is antisymmetric under the transformations λ → −λ and
h → −h (recall (9.2–9.3)), the full phase diagram consists of four critical
curves, one in each quadrant of R

2, which are images of the critical curve in
the first quadrant (drawn in Fig. 9.4) under reflection in the horizontal and
the vertical axes. For instance, below the critical curve in the fourth quadrant
(i.e., for h ≤ −hc(λ) and λ ≥ 0) the copolymer is delocalized into the water
rather than into the oil.

A further observation is the following. By subtracting λn + λh
∑n

i=1 ωi from
the Hamiltonian Hω

n in (9.3), we obtain a new Hamiltonian

Ĥω
n (w) = −2λ(1+h)

n∑
i=1

1 + ωi

2
1 + Δi

2
−2λ(1−h)

n∑
i=1

1− ωi

2
1−Δi

2
, (9.75)

where we recall (9.7). In terms of the reparameterization α = 2λ(1 + h) and
β = 2λ(1− h), this reads
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Ĥω
n (w) = −α

n∑
i=1

1{ωi=Δi=1} − β

n∑
i=1

1{ωi=Δi=−1}, (9.76)

in which energy −α is assigned to the hydrophobic monomers in the oil, −β to
the hydrophilic monomers in the water, and 0 to the other two combinations.
By the strong law of large numbers for ω, we have Hω

n − Ĥω
n = λn + o(n)

ω-a.s. Therefore the quenched free energies associated with Hω
n and Ĥω

n differ
by a term log λ, which allows for a direct link between the respective phase
diagrams. The form in (9.76) is used in a number of papers (see Extensions
(7–10) below), and also in Chapter 10, where we look at a copolymer near a
random selective interface.

In the (α, β)-model the quenched critical curve α 
→ βc(α) takes the form in
Fig. 9.8. This curve is continuous, strictly increasing and concave as a function
of α, with a finite asymptote as α → ∞, and with a curvature as α ↓ 0 that
tends to Kc, the universal constant in Theorem 9.8. The former comes from
the bound 1 − hc(λ) ≤ C/λ, λ → ∞, C < ∞, implied by Theorem 9.7. The
latter comes from the observation that, by (9.45), as λ, α ↓ 0,

α− βc(α) = 4λhc(λ) ∼ 4Kcλ
2 = 1

4Kc

(
α + βc(α)

)2 ∼ 1
4Kc(2α)2 = Kcα

2.
(9.77)

(6) Bolthausen and Giacomin [29] look at the version of the model where
the disorder is periodic (earlier work can be found in Grosberg, Izrailev and
Nechaev [133]). For this case the free energy can be expressed in terms of a
variational formula. However, it turns out to be delicate to deal with large
periods, since computations quickly become prohibitive. In particular, the fact
that random disorder arises from periodic disorder as the period tends to in-
finity seems hard to implement when probing the fine details of the critical
curve. Caravenna, Giacomin and Zambotti [57], [58] look at the path proper-
ties for periodic disorder, showing that under the law Pω

∞, i.e., the weak limit

0
α

β

β∗

βc(α)L

D

Fig. 9.8. Plot of α �→ βc(α).
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of the law Pω
n , the path is transient in the interior of D, null-recurrent at the

boundary ∂D, and positive recurrent in L. In each of the three cases they
identify the scaling limit of the path.

(7) Den Hollander and Wüthrich [173] consider a version of the copoly-
mer model with an infinite array of linear interfaces stacked on top of each
other, equally spaced at distance Ln with n the length of the copolymer. If
limn→∞ Ln =∞, then this model has the same free energy as the single inter-
face model, because the copolymer “sees only one interface at a time”. Under
the assumption that limn→∞ Ln/ log n = 0 and limn→∞ Ln/ log log n = ∞,
they show that the copolymer hops between neighboring interfaces on a time
scale of order exp[χLn], for some χ = χ(λ, h) > 0, when (λ, h) ∈ L. The
reason is that in the localized phase the excursions away from the interface
are exponentially unlikely in their length and height (recall Theorem 9.9(a)).
See also Extension (7) in Section 7.6.

(8) Martin, Causo and Whittington [236] consider a version of the single
interface model in which the path is self-avoiding, the sites (rather than the
edges) in the path represent the monomers, while the Hamiltonian is given
by (9.76). They identify the qualitative properties of the phase diagram in
the (α, β)-plane with the help of exact enumeration methods, series analysis
techniques and rigorous bounds. It turns out that there are two critical curves
(which are images of each other w.r.t. the line {α = β} when both monomer
types occur with density 1

2 ). Both curves lie in the first and in the third
quadrant, with horizontal and vertical asymptotes, and meet each other at
the origin. Below the lower curve the copolymer is delocalized into the water,
above the upper curve it is delocalized into the oil, while in between the
two curves it is localized near the interface. Madras and Whittington [233],
building on earlier work by Maritan, Riva and Trovato [235], prove that inside
the first quadrant the lower curve lies strictly inside the first octant except
at the origin, and is a continuous, non-decreasing and concave function of α
(and thus is similar to the one in Fig. 9.8, showing that the SAW-restriction
does not alter the qualitative properties of the phase diagram). Causo and
Whittington [64] analyze the phase diagram with the help of Monte Carlo
techniques, and their results suggest that the phase transition is second order
in the third quadrant but higher order in the first quadrant. If the latter were
true, then this would imply that the origin is a tricritical point, i.e., a point
where three phases meet. The results in [235], [236] and [233] apply to SAW’s
in dimensions d ≥ 2.

(9) James, Soteros and Whittington [198], [199] generalize the SAW-version
of the (α, β)-model by adding to the Hamiltonian an energy −γ for each
monomer that lies at the interface, irrespective of its type. It turns out that
the value of γ affects the phase diagram (see Fig. 9.9). Indeed, as later shown
in Madras and Whittington [233], for γ < 0 the phase diagram is qualitatively
like that for γ = 0, but not for γ > 0. Indeed, there are two critical values 0 ≤
γ1 ≤ γ2 < ∞ such that for γ ∈ (γ1, γ2) the two critical curves are separated,



152 9 Copolymers Near a Linear Selective Interface

α

β

α

β

Fig. 9.9. Phase diagrams for the (α, β, γ)-model. The first curve is for γ ∈ (−∞, γ1],
the second curve for γ ∈ (γ1, γ2). For γ ∈ [γ2,∞) both curves have moved out to
infinity.

i.e., they pass through the second and the fourth quadrant (resulting in a
single localized phase), while for γ ∈ [γ2,∞) the two critical curves have
“moved out to infinity”, i.e., the system is localized for all values of (α, λ). It
is shown that γ2 <∞. It is believed that γ1 = 0 and γ2 > 0, but this remains
open. For α = β = 0 the model reduces to the homogeneous pinning model
described in Section 7.1. Also the results in [198] and [199] apply to SAW’s in
dimensions d ≥ 2. Exact enumeration is done for d = 3.

Habibzadah, Iliev, Saguia and Whittington [140] analyze the (α, β, γ)-model
for generalized ballot paths rather than ballot paths (recall Fig. 1.4). The
qualitative properties of the phase diagram are the same as for self-avoiding
paths.

(10) Iliev, Orlandini and Whittington [181] study the effect of a force in the
(α, β)-model with α < 0 and β > 0, i.e., when the copolymer is delocalized
below the interface. The force is applied to the endpoint of the copolymer and
is perpendicular to the interface in the upward direction (in the spirit of the
models considered in Section 7.3). Both for ballot paths and for generalized
ballot paths the quenched free energy is computed in the first order Morita
approximation, i.e., Zω

n is averaged over ω conditioned on n−1
∑n

i=1 ωi = 0.
Even though the Morita free energy is only an upper bound for the quenched
free energy, it is argued that both free energies lead to the same critical force,
which can therefore be computed explicitly. The critical curve in the force-
temperature diagram is strictly increasing and so the phase transition is not
re-entrant (compare with Section 7.3).

The situation is different when β ≥ α > 0. In that case the phase transition is
re-entrant for β > α, with the critical curve in the force-temperature diagram
hitting 0 at some finite temperature, and not re-entrant for β = α, with the
critical curve being strictly increasing. This fits with the observations made
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in Extension (4), where the critical curve in the phase diagram of the (α, β)-
plane without force was found to touch the line {α = β} (see Fig. 9.8). It is
argued that the critical curve in the force-temperature diagram in the Morita
approximation is an upper bound for the one of the quenched model.

(11) For the directed version of the (α, β, γ)-model, Orlandini, Tesi and
Whittington [254] and Orlandini, Rechnitzer and Whittington [253] analyze
the phase diagram in the Morita approximation, i.e., they compute the an-
nealed free energy subject to restrictions on the first and second moments of ω.
This gives only limited rigorous information on the properties of the critical
curves, but it provides considerable insight into the mechanisms driving the
phase transition. The analysis was subsequently extended by Iliev, Rechnitzer
and Whittington [182], who found evidence that the lower critical curve is
non-analytic at the origin when γ = 0, at a point in the third quadrant when
γ < 0, and at a point in the first quadrant when γ > 0. The nature of these
tricritical points remains unclear.

(12) Brazhnyi and Stepanow [40] consider a model of a random copolymer in
R

3 where the Hamiltonian includes elasticity, self-repulsion and self-attraction,
thereby combining aspects from Chapters 3–6 and 9. Obviously, such models
display highly complex behavior, but they are worthwhile to investigate when
the aim is to model particular experimental situations. With a combination of
analytical and numerical techniques it is shown that localization is disfavored
by self-repulsion, favored by self-attraction, and can be re-entrant as a function
of the densities of the different monomer types.

9.7 Challenges

(1) Improve Theorem 9.11 by finding out whether the phase transition is sec-
ond order or higher order. Numerical analysis seems to indicate that the order
is higher (Trovato and Maritan [298], Causo and Whittington [64], Caravenna,
Giacomin and Gubinelli [55]). Monthus [243] suggests that the order is infinite.

(2) We know from Theorem 9.12 that the quenched free energy is infinitely
differentiable on L. Find out whether or not it is analytic. At points where this
fails the system is said to have a Griffiths-McCoy singularity (Griffiths [132],
McCoy [239]). Such singularities are known to occur is some disordered sys-
tems, e.g. the low-temperature dilute Ising model in zero magnetic field. The
singular behavior is due to the occurrence of rare but arbitrarily large re-
gions where the disorder is such that locally the system is almost at a phase
transition. Is the critical curve, i.e., the boundary of L, analytic?

(3) Improve Theorem 9.10 by showing that the path intersects the interface
only finitely often. This has been proved by Giacomin and Toninelli [120] deep
inside D, namely, for (λ, h) on or above the annealed critical curve that is the
upper bound in Theorem 9.6.
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(4) Identify the analogue of the weak interaction limit in (9.46–9.48) when
the reference random walk is not SRW (see Section 9.6, Extension (1)).

(5) The global properties of the copolymer do not depend on the fact that the
monomer types are drawn in an i.i.d. rather than a stationary ergodic fashion,
but the local properties do. Since in real polymers the order of the monomer
types is at best Markov (as a result of the underlying polymerization process),
it is interesting to try and extend the results in Sections 9.2–9.5 to the Markov
setting.

(6) Investigate whether or not the critical curve for the SAW-version of the
(α, β)-model defined in Section 9.6, Extension (8), has a positive and finite
curvature as α ↓ 0. Is this curvature equal to Kc, as in the directed version
of the (α, β)-model, or not? Prove that γ1 = 0 in the SAW-version of the
(α, β, γ)-model defined in Section 9.6, Extension (9).




