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Introduction

1.1 The Sixth Problem of Hilbert

1.1.1 The Mathematical Treatment of the Axioms of Physics

The sixth problem asked by Hilbert in the occasion of the International
Congress of Mathematicians held in Paris in 1900 is concerned with the math-
ematical treatment of the axioms of Physics, by analogy with the axioms of
Geometry. Precisely, it states as follows :

“Quant aux principes de la Mécanique, nous possédons déjà au point de vue
physique des recherches d’une haute portée; je citerai, par exemple, les écrits
de MM. Mach [81], Hertz [64], Boltzmann [14] et Volkmann [107]. Il serait
aussi très désirable qu’un examen approfondi des principes de la Mécanique
fût alors tenté par les mathématiciens. Ainsi le Livre de M. Boltzmann sur les
Principes de la Mécanique nous incite à établir et à discuter au point de vue
mathématique d’une manière complète et rigoureuse les méthodes basées sur
l’idée de passage à la limite, et qui de la conception atomique nous conduisent
aux lois du mouvement des continua. Inversement on pourrait, au moyen de
méthodes basées sur l’idée de passage à la limite, chercher à déduire les lois
du mouvement des corps rigides d’un système d’axiomes reposant sur la no-
tion d’états d’une matière remplissant tout l’espace d’une manière continue,
variant d’une manière continue et que l’on devra définir paramétriquement.

Quoi qu’il en soit, c’est la question de l’équivalence des divers systèmes
d’axiomes qui présentera toujours l’intérêt le plus grand quant aux principes.”

The problem, suggested by Boltzmann’s work on the principles of mechan-
ics, is therefore to develop “mathematically the limiting processes [. . . ] which
lead from the atomistic view to the laws of motion of continua”, namely to
obtain a unified description of gas dynamics, including all levels of description.
In other words, the challenging question is whether macroscopic concepts such
as the viscosity or the nonlinearity can be understood microscopically.
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1.1.2 From Microscopic to Macroscopic Equations

Classical dynamics for systems constituted of identical particles are charac-
terized by a Hamiltonian

H(x, v) =
1
2

N∑
i=1

|vi|2 +
∑
i6=j

V (xi − xj)

with V a two-body potential.
The corresponding Liouville equation is

∂tfN (t, x, v) + LfN (t, x, v) = 0 (1.1)

where fN is the density with respect to the Lebesgue measure of the system
at time t, and the Liouville operator is given by

L =
N∑
i=1

[
∂H

∂vi

∂

∂xi
− ∂H

∂xi

∂

∂vi

]
.

For a given configuration ω(t) = (x(t), v(t)) the empirical density and
momentum (which rigorously speaking are measures) are then defined by

Rω(X) =
1
N

N∑
i=1

δ(X − xi)

Qω(X) =
1
N

N∑
i=1

viδ(X − xi)

Macroscopic equations such as the Euler equations or the Navier-Stokes equa-
tions (which have been historically derived through a continuum formulation
of conservation of mass, momentum and energy) are then expected to be
obtained as some asymptotics of the equations governing these observable
quantities.

1.2 Formal Study of the Transitions

The microscopic versions of density, velocity, and energy should actually as-
sume their macroscopic, deterministic values through the law of large num-
bers. Therefore, in order the equations describing the evolution of macroscopic
quantities to be exact, certain limits have to be taken, with suitably chosen
scalings of space, time, and other macroscopic parameters of the systems. So
the first step in the derivation of such equations is a choice of scaling.
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1.2.1 Scalings

Denote coordinates by (x, t) in the microscopic scale, and by (x̃, t̃) in the
macroscopic scale. Let ρ = N/L3 be the typical density in the microscopic
unit, i.e. the number of particles per microscopic unit volume. Then, if ε is
the ratio between the microscopic unit and the macroscopic unit, there are
typically three choices of scalings :

• the Grad limit ρ = ε, (x̃, t̃) = (εx, εt);
(The typical number of collisions per particle is finite.)

• the Euler limit ρ = 1, (x̃, t̃) = (εx, εt);
(The typical number of collisions per particle is ε−1.)

• the diffusive limit ρ = 1, (x̃, t̃) = (εx, ε2t);
(The typical number of collisions per particle is ε−2.)

The Euler and diffusive limits will be referred to as hydrodynamic limits.

Fig. 1.1. Transitions between the different levels of description

1.2.2 Hydrodynamic Limits

To obtain hydrodynamic equations, we then differentiate the scaled empirical
density and momentum and more precisely their integral agasinst any test
function ϕ :
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ϕ(x̃)Rω(t̃/ε),ε(x̃)dx̃ =

1
N

N∑
i=1

ϕ(εxi(t̃/ε)),

∫
ϕ(x̃)Qω(t̃/ε),ε(x̃)dx̃ =

1
N

N∑
i=1

vi(t̃/ε)ϕ(εxi(t̃/ε)).

We get for instance

d

dt̃

1
N

N∑
i=1

vi(t̃/ε)ϕ(εxi(t̃/ε)) = − 1
N

N∑
i=1

ε−1ϕ(εxi)
∂H

∂xi
+

1
N

N∑
i=1

vi∂iϕ(εxi)
∂H

∂vi

= − 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i6=j

xi − xj
ε
· ∇V

(
xi − xj

ε

)
+

1
N

N∑
i=1

vi ⊗ vi∇ϕ(εxi) +O(ε)

using Taylor’s formula for ϕ, and symmetries to discard the main term.
In order to obtain the conservation of momentum in the Euler equations

we then need to show that the microscopic current

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i 6=j

xi − xj
ε

· ∇V
(
xi − xj

ε

)

converges to some macroscopic current P = P (R,Q,E) depending on the
macroscopic density, momentum and internal energy, in the limit ε→ 0. This
convergence has to be understood in the sense of law of large numbers with
respect to the density fN (solution to the Liouville equation)

1
N

∫
fN (t, ω)

∣∣∣∣∣∣
∑
i

∇ϕ(εxi)

∑
i 6=j

xi − xj
ε

· ∇V
(
xi − xj

ε

)
− P (R,Q,E)

∣∣∣∣∣∣ dω→ 0

(1.2)

The key observation, due to Morrey [86], is that (1.2) holds if we replace
fN by any Gibbs measure with Hamiltonian H, or more generally if “locally”
fN is a Gibbs measure of the Hamiltonian H.

The point is therefore to establish that “locally” fN (t) is a equilibrium
measure with finite specific entropy. The conclusion follows then from the er-
godicity of the infinite system of interacting particles : the translation invariant
stationary measures of the dynamics such that the entropy per microscopic
unit of volume is finite are Gibbs (exp(−βH)).

The Navier-Stokes equations are the next order corrections to the Euler
equations. In order to derive them one needs to show that the microscopic
current is well approximated up to order ε by the sum of the macroscopic
current P = P (R,Q,E) and a viscosity term εν∇Q (in the sense of law of
large numbers).
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Since there is an ε appearing in the viscosity term, proving such an asymp-
totics requires to understand the next order correction to Boltzmann’s hy-
pothesis. This difficulty, recognized long time ago by Dobrushin, Lebowitz
and Spohn, has been overcome recently for simplified particle dynamics :
the mathematical interpretation is indeed given by the fluctuation-dissipation
equation which states

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i 6=j

xi − xj
2ε

· ∇V
(
xi − xj

ε

)
= P (Rω,ε, Qω,ε, Eω,ε) + εν∇Qω,ε + εLgω,ε + o(ε)

(1.3)

for some function gω,ε, where L is the Liouville operator. In other words,
the expected asymptotics is correct only up to a quotient of the image of
the Liouville operator. The image of the Liouville operator is understood as a
fluctuation, negligible in the relevant scale after time average : for any bounded
function g

ε

∫ t

0
dsfN (s, ω)(εLg)(ω)dω = ε2(fN (t, ω)− fN (s, ω))g(ω)dω = O(ε2)

and is thus negligible to the first order in ε.
In order to avoid the difficulties of the multiscale asymptotics, we may

turn to the incompressible Navier-Stokes equations which are invariant
under the incompressible scaling

(x, t, u, p) 7→ (λx, λ2t, λ−1u, λ2p)

under which the fluctuation-dissipation equation becomes

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i6=j

xi − xj
ε
· ∇V

(
xi − xj

ε

)
= P (Rω,ε, Qω,ε, Eω,ε) + ν∇Qω,ε + Lgω,ε + o(ε)

(1.4)

where both the viscosity ν and the functions g are unknown. Notice that
the solution to the fluctuation-dissipation equation requires inversion of the
Liouville operator.

In the following two sections, we intend to describe briefly the different
mathematical approaches which allow to obtain rigorous convergence results
for these asymptotics. These results will be stated in a rather unformal way in
order to avoid definitions and notations. We refer to the quoted publications
for precise statements and proofs.

1.3 The Probabilistic Approach

The most natural approach for the mathematical understanding of hydro-
dynamic limits consists in using probabilistic tools such as the law of large
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numbers and some large deviations principle. Nevertheless the complexity of
the problem is such that there is still no complete derivation of fluid models
starting from the full deterministic Hamiltonian dynamics.

1.3.1 The Euler Limit

Concerning the derivation of the Euler equations, what has been proved by
Olla, Varadhan and Yau [89] is the following result.

Theorem 1.3.1 Consider a general Hamiltonian system with superstable
pairwise potential, and the corresponding stochastic dynamics obtained by
adding a noise term which exchanges the momenta of nearby particles. Sup-
pose the Euler equation has a smooth solution in [0, T ]. Then the empirical
density, velocity and energy converge to the solution of the Euler equations in
[0, T ] with probability one.

The strength of the noise term is of course chosen to be very small so that
it disappears in the scaling limit.

The proof consists of two main ingredients. The first point is to establish
the ergodicity of the system, and more precisely the following statement : if,
under a stationary measure, the distribution of velocities conditioned to the
positions is a convex combinations of gaussians, then the stationary measure
is a convex combination of Gibbs. Noise is therefore added to the system in
order to guarantee such information on the distributions. The second point is
to prove that there is no spatial or temporal meso-scale fluctuation to prevent
the convergence (1.2).

It is based on the relative entropy method, so-called because the funda-
mental quantity to be considered is the relative entropy defined by

H(f |g) =
∫
f log(f/g)dω

for any two probability densities f and g.
If fN is the solution to the Liouville equation (1.1) and ψt is any density,

we have the following identity

∂tH(fN (t)|ψt) = −
∫
fN (t)

(
ψ−1
t (L− ∂t)ψt

)
dω .

From Jensen’s inequality, we then deduce that

∂tH(fN (t)|ψt) ≤ H(fN (t)|ψt) + log
∫
ψt
(
ψ−1
t (L− ∂t)ψt

)
dω .

Thus, if we have

1
N

log
∫
ψt
(
ψ−1
t (L− ∂t)ψt

)
dω → 0 (1.5)
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the relative entropy can be controlled on the relevant time scale. The remain-
ing argument can be summarized as showing that a weak version of (1.5) holds
if and only if ψt is a local Gibbs state with density, velocity and energy chosen
according to the Euler equations :

∂tR+∇x · (RU) = 0,
∂t(RU) +∇x · (RU ⊗ U + P ) = 0,
∂t(RE) +∇x · (REU − UP ) = 0.

This is therefore a dynamical variational approach because the problem is
solved by guessing a good test function.

1.3.2 The Incompressible Navier-Stokes Equations

Equation (1.4) is very difficult to solve as it requires inversion of the Liouville
operator. It has been first studied by Landim and Yau [68] for the asymmetric
exclusion process.

The rigorous derivation of the incompressible Navier-Stokes equations from
particle systems has then been obtained in the framework of stochastic lat-
tice models which are more manageable. Esposito, Marra and Yau [46] have
established the convergence when the target equations have smooth solutions :

Theorem 1.3.2 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties.
Suppose the incompressible Navier-Stokes equations have a smooth solution
u in [0, t∗]. Then the rescaled empirical velocity densities uε converge to that
solution u.

Quastel and Yau [91] have then been able to remove the regularity as-
sumption :

Theorem 1.3.3 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties. Let
uε be the distributions of the empirical velocity densities. Then uε are precom-
pact as a set of probability measures with respect to a suitable topology, and
any weak limit is entirely supported on weak solutions of the incompressible
Navier-Stokes equations satisfying the energy inequality.

The method used to prove this last result differs from the relative entropy
method, insofar as it considers more general solutions to the target equations,
but - as a counterpart - gives a weaker form of convergence. One main step
of the proof is to obtain the energy estimate for the incompressible Navier-
Stokes equations directly from the lattice gas dynamics by implementing a
renormalization group. A difficult point is to control the large fluctuation
using the entropy method and logarithmic Sobolev inequalities.

It is important to note that such a derivation fails if the dimension of the
physical space is less than three, meaning in particular that the 2D Navier-
Stokes equations should be relevant only for 3D flows having some translation
invariance.
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1.4 The Analytic Approach

Here we will adopt a slightly different approach since our starting point will
be the Boltzmann equation, which is the master equation of collisional kinetic
theory. In other words, we will focus on the transition from the mesoscopic
level of description to fluid mechanics indicated by the boldtype arrow in
Figure 1.1.

Note that this will give a partial answer to Hilbert’s problem insofar as
Lanford [69] has proved the convergence of the hard core billiards to the
Boltzmann equation in the Grad limit. Lanford’s result, which is the only
rigorous result on the scaling limits of many-body Hamiltonian systems with
no unproven assumption, is however restrictive as it considers only short times
(which will be not uniform in the hydrodynamic scalings) and perfect gases
(low density limit).

For the sake of simplicity, we will consider in this section the only case
when the microscopic interaction between particles is that of a hard sphere
gas. We refer to the next chapter for a discussion on collision cross-sections.

1.4.1 Formal Derivations

The first mathematical studies of hydrodynamic limits of the Boltzmnn equa-
tion are due to Hilbert [65] on the one hand, and to Chapman and Enskog
[33] on the other hand. Note that, in both cases, the derivations are purely
formal.

Hilbert’s method consists in seeking a formal solution to the scaled Boltz-
mann equation

∂tf + v · ∇xf =
1
ε
Q(f, f)

with small variable Knudsen number ε, in the form

f(t, x, v, ε) =
∞∑
n=0

εnfn(t, x, v).

Identifying the coefficients of the different powers of ε, we then obtain systems
of equations for the successive approximations f0, f0 + εf1, .....

Chapman-Enskog’s method is a variant of the previous asymptotic ex-
pansion, in which the coefficients fn are functions of the velocity v and of
the hydrodynamic fields, namely the macroscopic density R(t, x, ε), the bulk
velocity U(t, x, ε) and the temperature T (t, x, ε) associated to f . For details,
we refer to the next chapter.

Both methods allow to derive formally the Euler equations, as well as
the weakly viscous Navier-Stokes equations. Let us mention however that, at
higher order with respect to ε, one obtains systems of equations such as the
Burnett model, the physical relevance of which is not clear. Moreover, these
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asymptotic expansions do not converge in general for fixed ε, and thus can
represent only a very restricted class of solutions to the Boltzmann equation.

Grad [59] has proposed another, much simpler, method to derive formally
hydrodynamic limits of the Boltzmann equation. This method, also called mo-
ment method can be actually compared to Morrey’s analysis in the framework
of particle systems. The first step consists in writing the local conservation
laws for the hydrodynamic fields, namely the macroscopic density R(t, x, ε),
the bulk velocity U(t, x, ε) and the temperature T (t, x, ε) associated to f .
The problem is then to get a closure for this system of equations, i.e. a state
relation based on the hypothesis of local thermodynamic equilibrium.

1.4.2 Convergence Proofs Based on Asymptotic Expansions

Many of the early justifications of hydrodynamic limits of the Boltzmann
equation are based on truncated asymptotic expansions. For instance, Caflisch
[24] gave a rigorous justification of the compressible Euler limit up to the first
singular time for the solution of the Euler system, which is the counterpart of
the result in [89] for particle systems :

Theorem 1.4.1 Suppose the Euler equations have a smooth solution (R,U, T )
in [0, t∗]. Then there exists a sequence (fε) of Boltzmann solutions

∂tf + v · ∇xf =
1
ε
Q(f, f)

the moments (Rε, Uε, Tε) of which tend to (R,U, T ) as the mean free path ε
tends to zero.

Later Lachowicz [66] completed Caflisch’s analysis by including initial lay-
ers in the asymptotic expansion, thereby dealing with more general initial
data than in Caflish’s original paper.

By the same method, DeMasi, Esposito and Lebowitz [42] justified the
hydrodynamic limit of the Boltzmann equation leading to the incompressible
Navier-Stokes equations. Like Caflisch’s, their proof holds for as long as the
solution of the Navier-Stokes equations is smooth, which is also reminiscent
of the difficulty encountered in the framework of particle systems [46].

Theorem 1.4.2 Suppose the incompressible Navier-Stokes equations have a
smooth solution u in [0, t∗]. Then there exists a sequence (fε) of Boltzmann
solutions

∂tf +
1
ε
v · ∇xf =

1
ε2Q(f, f)

which is close to the Maxwellian M(1,εu,1) with unit density and temperature,
and bulk velocity εu, in some appropriate function space.

Besides the solution of the Boltzmann equation so constructed that con-
verges to a local equilibrium governed by the Navier-Stokes equation fail to be
nonnegative. It could be that this problem can be solved by the same method
as in Lachowicz’s paper; however there is no written account of this so far.
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1.4.3 Convergence Proofs Based on Spectral Results

Many other rigorous results have been obtained in a perturbative frame-
work, using the spectral properties of the linearized collision operator at some
Maxwellian equilibrium. Let us mention for instance the result by Nishida
[88] which was the first mathematical proof of the compressible Euler limit of
the Boltzmann equation. His argument used the description of the spectrum
of the linearized Boltzmann equation by Ellis and Pinski [45], together with
an abstract variant of the Cauchy-Kovalevski theorem due to Nirenberg and
Ovsyannikov.

The more striking result based on such a spectral analysis is probably the
one by Bardos and Ukai [7] concerning the incompressible Navier-Stokes limit
of the Boltzmann equation. Although in the same spirit as Nishida’s result,
it puts less severe restrictions on the regularity of the target hydrodynamic
solutions. Indeed Nishida’s analysis considered analytic solutions of the com-
pressible Euler system, and therefore was only local in time; on the contrary,
the work of Bardos and Ukai considered global solutions to the Navier-Stokes
equations, corresponding to initial velocity fields that are small in some ap-
propriate Sobolev norm.

Theorem 1.4.3 Let M be a global thermodynamic equilibrium (for instance
the reduced centered Gaussian), and g0 be some fluctuation of small norm in
some appropriate weighted Sobolev space.

Then, for any ε ∈]0, 1] there exists a unique global solution fε = M(1+εgε)
to the scaled Boltzmann equation

∂tfε +
1
ε
v · ∇xfε =

1
ε2Q(fε, fε),

fε|t=0 = M(1 + εg0) .

Furthermore the bulk velocity
∫
Mgεvdv converges uniformly to the unique

strong solution of the incompressible Navier-Stokes equations.

The perturbative method employed to prove that result uses the existence
of classical solutions for the incompressible Navier-Stokes equations in the
Sobolev space H l for l > 3

2 with initial data small enough. The main idea by
Ukai [103] is to prove that a similar theory holds for the Boltzmann equation
in diffusive regime. The derivation of the Navier-Stokes limit relies then on
a rigorous proof of the relation between these two theories. The point to
be stressed is that exactly the same type of assumptions are made on the
initial data. The Bardos-Ukai statement results then from sharp bounds on
the linearized collision operator.

1.4.4 A Program of Deriving Weak Solutions

The main restrictions in the previous results are the regularity and smallness
conditions on the initial data (the second assumption being possibly replaced
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by some restriction on the time interval on which one can prove the validity
of the approximation). Such assumptions are not expected to be necessary,
working with Leray solutions of the incompressible Navier-Stokes equations
and with renormalized solutions to the Boltzmann equation.

That is why Bardos, Golse and Levermore [4, 5] have proposed - at the be-
ginning of the nineties - a program of deriving weak solutions of fluid models
from the DiPerna-Lions solutions of the Boltzmann equation. Their ultimate
goal was to obtain a theorem of hydrodynamic limits that should need only
a priori estimates coming from physics, i.e. from mass, energy and entropy
bounds. In spite of significant difficulties linked to our poor understanding of
renormalized solutions, this program has achieved important successes, espe-
cially in the diffusive scaling limit for which a complete convergence result is
now established.

The goal of the present volume is to present an overview of these relatively
recent results, and some challenging questions that remain open in that field.




