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1 Introduction

Phase transitions are one of the most fascinating, and also most
perplexing, phenomena in equilibrium statistical mechanics. On the
physics side, many approximate methods to explain or otherwise jus-
tify phase transitions are known but a complete mathematical under-
standing is available only in a handful of simplest of all cases. One
set of tractable systems consists of the so called lattice spin models.
Originally, these came to existence as simplified versions of (somewhat
more realistic) models of crystalline materials in solid state physics but
their versatile nature earned them a life of their own in many other
disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical ap-
proach to phase transitions in lattice spin models which is based on
the technique of reflection positivity. This technique was developed in
the late 1970s in the groundbreaking works of F. Dyson, J. Fröhlich,
R. Israel, E. Lieb, B. Simon and T. Spencer who used it to establish
phase transitions in a host of physically-interesting classical and quan-
tum lattice spin models; most notably, the classical Heisenberg ferro-
magnet and the quantum XY model and Heisenberg antiferromagnet.
Other powerful techniques — e.g., Pirogov-Sinai theory, lace expansion
or multiscale analysis in field theory — are available at present that
can serve a similar purpose in related contexts, but we will leave their
review to experts in those areas.

The most attractive feature of reflection positivity — especially,
compared to the alternative techniques — is the simplicity of the
resulting proofs. There are generally two types of arguments one can
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use: The first one is to derive the so called infrared bound, which states
in quantitative terms that the fluctuations of the spin variables are
dominated by those of a lattice Gaussian free field. In systems with an
internal symmetry, this yields a proof of a symmetry-breaking phase
transition by way of a spin-condensation argument. Another route goes
via the so called chessboard estimates, which allow one to implement
a Peierls-type argument regardless of whether the model exhibits an
internal symmetry or not.

Avid users of the alternative techniques are often quick to point
out that the simplicity of proofs has its price: As a rather restrictive
condition, reflection positivity applies only to a small (in a well defined
sense) class of systems. Fortunately for the technique and mathematical
physics in general, the models to which it does apply constitute a large
portion of what is interesting for physics, and to physicists. Thus, unless
one is exclusively after universal statements — i.e., those robust under
rather arbitrary perturbations — the route via reflection positivity is
often fairly satisfactory.

The spectacular success of reflection positivity from the late 1970s
was followed by many interesting developments. For instance, in var-
ious joint collaborations, R. Dobrushin, R. Kotecký and S. Shlosman
showed how chessboard estimates can be used to prove a phase transi-
tion in a class of systems with naturally-defined ordered and disordered
components; most prominently, the q-state Potts model for q � 1.
Another neat application came in the papers of M. Aizenman from
early 1980s in which he combined the infrared bound with his random-
current representation to conclude mean-field critical behavior in the
nearest-neighbor Ising ferromagnet above 4 dimensions. Yet another
example is the proof, by L. Chayes, R. Kotecký and S. Shlosman, that
the Fisher-renormalization scheme in annealed-diluted systems may be
substituted by the emergence of an intermediate phase.

These notes discuss also more recent results where their author had
a chance to contribute to the field. The common ground for some of
these is the use of reflection positivity to provide mathematical justifi-
cation of “well-known” conclusions from physics folklore. For instance,
in papers by N. Crawford, L. Chayes and the present author, the in-
frared bound was shown to imply that, once a model undergoes a field
or energy driven first-order transition in mean-field theory, a similar
transition will occur in the lattice model provided the spatial dimen-
sion is sufficiently high or the interaction is sufficiently spread-out (but
still reflection positive). Another result — due to L. Chayes, S. Starr
and the present author — asserts that if a reflection-positive quantum
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spin system undergoes a phase transition at intermediate temperatures
in its classical limit, a similar transition occurs in the quantum system
provided the magnitude of the quantum spin is sufficiently large.

There have also been recent cases where reflection positivity brought
a definite end to a controversy that physics arguments were not able to
resolve. One instance concerned certain non-linear vector and liquid-
crystal models; it was debated whether a transition can occur already
in 2 dimensions. This was settled in recent work of A. van Enter and
S. Shlosman. Another instance involved spin systems whose (infinite)
set of ground states had a much larger set of symmetries than the
Hamiltonian of the model; two competing physics reasonings argued
for, and against, the survival of these states at low temperatures. Here,
in papers of L. Chayes, S. Kivelson, Z. Nussinov and the present au-
thor, spin-wave free energy calculations were combined with chessboard
estimates to construct a rigorous proof of phase coexistence of only a
finite number of low-temperature states.

These recent activities show that the full potential of reflection posi-
tivity may not yet have been fully exhausted and that the technique will
continue to play an important role in mathematical statistical mechan-
ics. It is hoped that the present text will help newcomers to this field
learn the essentials of the subject before the need arises to plow through
the research papers where the original derivations first appeared.

Organization

This text began as class notes for nine hours of lectures on reflection
positivity at the 2006 Prague School and gradually grew into a survey
of (part of) this research area. The presentation opens with a review of
basic facts about lattice spin models and then proceeds to study two
applications of the infrared bound: a spin-condensation argument and a
link to mean-field theory. These are followed by the classical derivation
of the infrared bound from reflection positivity. The remainder of the
notes is spent on applications of a by-product of this derivation, the
chessboard estimate, to proofs of phase coexistence.

The emphasis of the notes is on a pedagogical introduction to re-
flection positivity; for this reason we often sacrifice on generality and
rather demonstrate the main ideas on the simplest case of interest. To
compensate for the inevitable loss of generality, each chapter is en-
dowed with a section “Literature remarks” where we attempt to list
the references deemed most relevant to the topic at hand. The notes
are closed with a short section on topics that are not covered as well
as some open problems that the author finds worthy of some thought.
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2 Lattice Spin Models: Crash Course

This section prepares the ground for the rest of the course by introduc-
ing the main concepts from the theory of Gibbs measures for lattice
spin models. The results introduced here are selected entirely for the
purpose of these notes; readers wishing a more comprehensive — and
in-depth — treatment should consult classic textbooks on the subject.

2.1 Basic Setup

Let us start discussing the setup of the models to which we will di-
rect our attention throughout this course. The basic ingredients are as
follows:

• Lattice: We will take the d-dimensional hypercubic lattice Z
d as our

underlying graph. This is the graph with vertices at all points in R
d

with integer coordinates and edges between any nearest neighbor
pair of vertices; i.e., those at Euclidean distance one. We will use
〈x, y〉 to denote an (unordered) nearest-neighbor pair.
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• Spins: At each x ∈ Z
d we will consider a spin Sx, by which we will

mean a random variable taking values in a closed subset Ω of R
ν ,

for some ν ≥ 1. We will use Sx · Sy to denote a scalar product
between Sx and Sy (Euclidean or otherwise).

• Spin configurations: For Λ ⊂ Z
d, we will refer to SΛ := (Sx)x∈Λ

as the spin configuration in Λ. We will be generically interested in
describing the statistical properties of such spin configurations with
respect to certain (canonical) measures.

• Boundary conditions: To describe the law of SΛ, we will not be
able to ignore that some spins are also outside Λ. We will refer
to the configuration SΛc of these spins as the boundary condition.
The latter will usually be fixed and may often even be considered a
parameter of the game. When both SΛ and SΛc are known, we will
write

S := (SΛ, SΛc) (2.1)

to denote their concatenation on all of Z
d.

The above setting incorporates rather varied physical contexts. The
spins may be thought of as describing magnetic moments of atoms in a
crystal, displacement of atoms from their equilibrium positions or even
orientation of grains in nearly-crystalline granular materials.

To define the dynamics of spin systems, we will need to specify the
energetics. This is conveniently done by prescribing the Hamiltonian
which is a function on the spin-configuration space ΩZ

d
that tells us

how much energy each spin configuration has. Of course, to have all
quantities well defined we need to fix a finite volume Λ ⊂ Z

d and
compute only the energy in Λ. The most general formula we will ever
need is

HΛ(S) :=
∑

A⊂Z
d finite

A∩Λ �=∅

ΦA(S) (2.2)

where ΦA is a function that depends only on SA. To make everything
well defined, we require, e.g., that ΦA is translation invariant and that∑
A�0 ‖ΦA‖∞ <∞. (The infinity norm may be replaced by some other

norm; in particular, should the need arise to talk about unbounded
spins.) It is often more convenient to write the above as a formal sum:

H(S) :=
∑

A

ΦA(S) (2.3)

with the above specific understanding whenever a precise definition is
desired.
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The energy is not sufficient on its own to define the statistical
mechanics of such spin systems; we also need to specify the a priori
measure on the spins. This will be achieved by prescribing a Borel mea-
sure μ0 on Ω (which may or may not be finite). Before the interaction is
“switched on,” the spin configurations will be “distributed” according
to the product measure, i.e., the a priori law of SΛ is

⊗
x∈Λ μ0(dSx).

The full statistical-mechanical law is then given by a Gibbs measure
which (in finite volume) takes the general form e−βH(S)

∏
x μ0(dSx); cf

Sect. 2.3 for more details.

2.2 Examples

Here are a few examples of spin systems:

(1) O(n)-model : Here Ω := S
n−1 = {z ∈ R

n : |z|2 = 1} with μ0 :=
surface measure on S

n−1. The Hamiltonian is

H(S) := −J
∑

〈x,y〉
Sx · Sy (2.4)

where the dot denotes the usual (Euclidean) dot-product in R
n and

J ≥ 0. (Note that this comes at no loss as the sign of J can be changed
by reversing the spins on the odd sublattice of Z

d.)
Note that if A ∈ O(n) — i.e., A is an n-dimensional orthogonal

matrix — then
ASx ·ASy = Sx · Sy (2.5)

and so H(AS) = H(S). Since also μ0 ◦ A−1 = μ0, the model possesses
a global rotation invariance — with respect to a simultaneous rotation
of all spins. (For n = 1 this reduces to the invariance under the flip
+1 ↔ −1.)

Two instances of this model are known by other names: n = 2 is the
rotor model while n = 3 is the (classical) Heisenberg ferromagnet.

(2) Ising model : Formally, this is the O(1)-model. Explicitly, the spin
variables σx take values in Ω := {−1,+1} with uniform a priori mea-
sure; the Hamiltonian is

H(σ) := −J
∑

〈x,y〉
σxσy (2.6)

Note that the energy is smaller when the spins at nearest neighbors
align and higher when they antialign. (A similar statement holds, of
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course, for all O(n) models.) This is due to the choice of the sign J ≥ 0
which makes these models ferromagnets.

(3) Potts model : This is a generalization of the Ising model beyond two
spin states. Explicitly, we fix q ∈ N and let σx take values in {1, . . . , q}
(with a uniform a priori measure). The Hamiltonian is

H(σ) := −J
∑

〈x,y〉
δσx,σy (2.7)

so the energy is −J when σx and σy “align” and zero otherwise. The
q = 2 case is the Ising model and q = 1 may be related to bond
percolation on Z

d (via the so called Fortuin-Kasteleyn representation
leading to the so called random-cluster model).

It turns out that the Hamiltonian (2.7) can be brought to the form
(2.4). Indeed, let Ω denote the set of q points uniformly spread on the
unit sphere in R

q−1; we may think of these as the vertices of a q-simplex
(or a regular q-hedron). The cases q = 2, 3, 4 are depicted in this figure:

More explicitly, the elements of Ω are vectors v̂α, α = 1, . . . , q, such
that

v̂α · v̂β =

{
1, if α = β,
− 1
q−1 , otherwise.

(2.8)

The existence of such vectors can be proved by induction on q. Clearly,
if Sx corresponds to σx and Sy to σy, then

Sx · Sy =
q

q − 1
δσx,σy −

1
q − 1

(2.9)

and so the Potts Hamiltonian is to within an additive constant of

H(S) := −J̃
∑

〈x,y〉
Sx · Sy (2.10)
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with J̃ := J q−1
q . This form, sometimes referred to as tetrahedral repre-

sentation, will be far more useful for our purposes than (2.7).

(4) Liquid-crystal model : There are many models that describe certain
granular materials known to many of us from digital displays: liquid
crystals. A distinguished feature of such materials is the presence of
orientational long-range order where a majority of the grains align with
one another despite the fact that the system as a whole is rotationally
invariant. One of the simplest models capturing this phenomenon is as
follows: Consider spins Sx ∈ S

n−1 with a uniform a priori measure.
The Hamiltonian is

H(S) := −J
∑

〈x,y〉
(Sx · Sy)2 (2.11)

The interaction features global rotation invariance and the square takes
care of the fact that reflection of any spin does not change the energy
(i.e., only the orientation rather than the direction of the spin matters).

As for the Potts model, the Hamiltonian can again be brought to
the form reminiscent of the O(n)-model. Indeed, given a spin S ∈ S

n−1

with Cartesian components S(α), α = 1, . . . , n, define an n× n matrix
Q by

Qαβ := S(α)S(β) − 1
n
δαβ (2.12)

(The subtraction of the identity is rather arbitrary and more or less
unnecessary; its goal is to achieve zero trace and thus reduce the number
of independent variables characterizing Q to n−1; i.e., as many degrees
of freedom as S has.) As is easy to check, if Q ↔ S and Q̃ ↔ S̃ are
related via the above formula, then

Tr(QQ̃) = (S · S̃)2 − 1
n

(2.13)

Since Q is symmetric, the trace evaluates to

Tr(QQ̃) =
∑

α,β

QαβQ̃αβ (2.14)

which is the canonical scalar product on n×nmatrices. In this language
the Hamiltonian takes again the form we saw in the O(n) model.
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At this point we pause to remark that all of the above Hamiltonians
are of the following rather general form:

H(S) = +
1
2

∑

x,y

Jx,y|Sx − Sy|2 (2.15)

where (Jxy) is a collection of suitable coupling constants and | · | de-
notes the Euclidean norm in R

n. This is possible because, in all cases,
the (corresponding) norm of Sx is constant and so adding it to the
Hamiltonian has no effect on the probability measure. The model thus
obtained bears striking similarity to our last example:

(5) Lattice Gaussian free field : Let Ω := R, μ0 := Lebesgue measure
and let P(x, y) be the transition kernel of a symmetric random walk
on Z

d; i.e., P(x, y) = P(0, y − x) = P(0, x − y). In this case we will
denote the variables by φx; the Hamiltonian is

H(φ) :=
1
2

∑

x,y

P(x, y)(φy − φx)2 (2.16)

This can be rewritten as

H(φ) =
(
φ, (1− P)φ

)
L2(Zd)

=: E1−P(φ, φ) (2.17)

where experts on harmonic analysis of Markov chains will recognize
E1−P(φ, φ) to be the Dirichlet form associated with the generator 1−P
of the above random walk. In the Gibbs measure, the law of the φx’s
will be Gaussian with grad-squared interactions; hence the name of the
model.

The sole difference between (2.15) and (2.16) is that, unlike the φx’s,
the spins Sx are generally confined to a subset of a Euclidean space
and/or their a priori measure is not Lebesgue — which will ultimately
mean their law is not Gaussian. One purpose of this course is to show
how this formal similarity can nevertheless be exploited to provide
information on the models (2.15).

2.3 Gibbs Formalism

Now we are ready to describe the statistical-mechanical properties
of the above models for which we resort to the formalism of Gibbs-
Boltzmann distributions. First we define these in finite volume: Given
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a finite set Λ ⊂ Z
d and a boundary condition SΛc we define the Gibbs

measure in Λ to be the probability measure on ΩΛ given by

μ
(SΛc )
Λ,β (dSΛ) :=

e−βHΛ(S)

ZΛ,β(SΛc)

∏

x∈Λ
μ0(dSx) (2.18)

Here β ≥ 0 is the inverse temperature — in physics terms, β := 1
kBT

where kB is the Boltzmann constant and T is the temperature measured
in Kelvins — and ZΛ,β(SΛc) is the normalization constant called the
partition function.

To extend this concept to infinite volume we have two options:

(1) Consider all possible weak cluster points of the family {μ(SΛc )
Λ,β }

as Λ ↑ Z
d (with the boundary condition possibly varying with Λ)

and all convex combinations thereof.
(2) Identify a distinguishing property of Gibbs measures and use it to

define infinite volume objects directly.

While approach (1) is ultimately very useful in practical problems,
option (2) is more elegant at this level of generality. The requisite “dis-
tinguishing property” is as follows:

Lemma 2.1 (DLR condition). Let Λ ⊂ Δ ⊂ Z
d be finite sets and

let SΔc ∈ ΩΔc
. Then (for μ(SΔc )

Δ,β -a.e. SΛc),

μ
(SΔc )
Δ,β

(
·
∣∣SΛc

)
= μ(SΛc )

Λ,β (·) (2.19)

In simple terms, conditioning the Gibbs measure in Δ on the configu-
ration in Δ \ Λ, we get the Gibbs measure in Λ with the corresponding
boundary condition.

This leads to:

Definition 2.2 (DLR Gibbs measures). A probability measure on
ΩZ

d
is called an infinite volume Gibbs measure for interaction H and

inverse temperature β if for all finite Λ ⊂ Z
d and μ-a.e. SΛc,

μ
(
·
∣∣SΛc

)
= μ(SΛc )

Λ,β (·) (2.20)

where μ(SΛc )
Λ,β is defined using the Hamiltonian HΛ.

We will use Gβ to denote the set of all infinite volume Gibbs mea-
sures at inverse temperature β (assuming the model is clear from the
context).
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Here are some straightforward, nonetheless important consequences
of these definitions:

(1) By Lemma 2.1, any weak cluster point of (μ(SΛc )
Λ,β ) belongs to Gβ .

(2) By the Backward Martingale Convergence Theorem, if Λn ↑ Z
d and

μ ∈ Gβ , then for μ-a.e. spin configuration S the sequence μ
(SΛc

n
)

Λn,β
has a weak limit, which then belongs to Gβ .

(3) Gβ is a convex set (and is closed in the topology of weak conver-

gence). Moreover, μ ∈ Gβ is extremal in Gβ iff μ
(SΛc

n
)

Λn,β
w−→ μ for

μ-almost every spin configuration S.

Similarly direct is the proof of the following “continuity” property:

(4) Let Hn be a sequence of Hamiltonians converging — in the sup-
norm on the potentials ΦA — to Hamiltonian H, and let βn be
a sequence with βn → β < ∞. Let μn be the sequence of the
corresponding Gibbs measures. Then every (weak) cluster point
of (μn) is an infinite-volume Gibbs measure for the Hamiltonian H
and inverse temperature β.

Note that the fact that Gβ is closed and convex ensures that each ele-
ment can be written as a unique convex combination of extreme points
(by the Krein-Millman theorem). The DLR condition permits to extract
the corresponding decomposition probabilistically by conditioning on
the σ-algebra of tail events.

Now we give a meaning to the terms that are frequently (though
sometimes vaguely) employed by physicists:

Definition 2.3 (Phase coexistence). We say that the model is at
phase coexistence (or undergoes a first-order phase transition) when-
ever the parameters are such that |Gβ | > 1.

The simplest example where this happens is the Ising model. Let

ΛL := {1, . . . , L}d (2.21)

and consider the Ising model in ΛL with all boundary spins set to +1.
(This is the so called plus boundary condition.) As a consequence of
stochastic domination — which we will not discuss here — μ+

ΛL,β
tends

weakly to a measure μ+ as L→∞. Similarly, for the minus boundary
condition, μ−ΛL,β

w−→ μ−. It turns out that, in dimensions d ≥ 2 there
exists βc(d) ∈ (0,∞) such that

β > βc(d) ⇒ μ+ �= μ− (2.22)
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i.e, the model is at phase coexistence, while for β < βc(d), the set of all
infinite volume Gibbs measures is a singleton — which means that the
model is in the uniqueness regime. One of our goals is to prove similar
statements in all of the models introduced above.

2.4 Torus Measures

In the above, we always put a boundary condition in the complement
of the finite set Λ. However, it is sometimes convenient to consider
other boundary conditions. One possibility is to ignore the existence
of Λc altogether — this leads to the so called free boundary condition.
Another possibility is to wrap Λ into a graph without a boundary
— typically a torus. This is the case of periodic or torus boundary
conditions.

Consider the torus TL, which we define as a graph with vertices
(Z/LZ)d, endowed with the corresponding (periodic) nearest-neighbor
relation. For nearest-neighbor interactions, the corresponding Hamil-
tonian is defined easily, but some care is needed for interactions that
can be of arbitrary range. If S ∈ ΩTL we define the torus Hamiltonian
HL(S) by

HL(S) := HΛL
(periodic extension of S to Z

d) (2.23)

where we recall ΛL := {1, . . . , L}d. For H(S) := −1
2

∑
x,y Jx,ySx · Sy

we get

HL(S) = −1
2

∑

x,y∈TL

J (L)
x,y Sx · Sy (2.24)

where J (L)
x,y are the periodized coupling constants

J (L)
x,y :=

∑

z∈Zd

Jx,y+Lz (2.25)

The Gibbs measure on ΩTL is then defined accordingly:

μL,β(dS) :=
e−βHL(S)

ZL,β

∏

x∈TL

μ0(dSx) (2.26)

where ZL,β is the torus partition function. The following holds:

Lemma 2.4. Every (weak) cluster point of (μL,β)L≥1 lies in Gβ.

Note that there is something to prove here because, due to (2.25),
the interaction depends on L.
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2.5 Some Thermodynamics

Statistical mechanics combines, in its historical development, molecular
theory with empirical thermodynamics. Many mathematically rigorous
accounts of statistical mechanics thus naturally start the exposition
with the notion of the free energy. We will need this notion only tangen-
tially — it suffices to think of the free energy as a cumulant generating
function — in the proofs of phase coexistence. The relevant statement
is as follows:

Theorem 2.5. For x ∈ Z
d let τx be the shift-by-x defined by (τxS)y :=

Sy−x. Let g : ΩZ
d → R be a bounded, local function — i.e., one that

depends only on a finite number of spins — and recall that μL,β denote
the torus Gibbs measures. Then:

(1) The limit

f(h) := lim
L→∞

1
Ld

logEμL,β

{
exp

(
h

∑

x∈TL

g ◦ τx
)}

(2.27)

exists for all h ∈ R and is convex in h.
(2) If μ ∈ Gβ is translation invariant, then

∂f

∂h−

∣∣∣
h=0
≤ Eμ(g) ≤

∂f

∂h+

∣∣∣
h=0

(2.28)

(3) There exist translation-invariant, ergodic measures μ± ∈ Gβ such
that

Eμ±(g) =
∂f

∂h±

∣∣∣
h=0

(2.29)

Proof of (1), main idea. For compact state-spaces and absolutely-
summable interactions, the existence of the limit follows by standard
subadditivity arguments. In fact, the limit will exist and will be the
same even if we replace μL,β in (2.27) by any sequence of Gibbs mea-
sures in ΛL with (even L-dependent) boundary conditions. The con-
vexity of f is a consequence of the Hölder inequality applied to the
expectation in (2.27). ��

Proof of (2). Let μ ∈ Gβ be translation invariant and abbreviate

ZL(h) := Eμ

{
exp

(
h

∑

x∈ΛL

g ◦ τx
)}

(2.30)
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Since logZL is convex in h (again, by Hölder) we have for any h > 0
that

logZL(h)− logZL(0) ≥ ∂

∂h
logZL(h)

∣∣∣
h=0

h

= hEμ
( ∑

x∈ΛL

g ◦ τx
)

= h|ΛL|Eμ(g)
(2.31)

Dividing by |ΛL|, passing to L → ∞ and using that f is independent
of the boundary condition, we get

f(h)− f(0) ≥ hEμ(g) (2.32)

Divide by h and let h ↓ 0 to get one half of (2.28). The other half is
proved analogously. ��

Proof of (3). Let Gβ,h be the set of Gibbs measures for the Hamiltonian
H−(h/β)

∑
x g◦τx. A variant of the proof of (2) shows that if μh ∈ Gβ,h

is translation-invariant, then

∂f

∂h−
≤ Eμh

(g) ≤ ∂f

∂h+
(2.33)

In particular, if h > 0 we have

Eμh
(g) ≥ ∂f

∂h−
≥
h>0

∂f

∂h+

∣∣∣
h=0

(2.34)

by the monotonicity of derivatives of convex functions. Taking h ↓ 0
and extracting a weak limit from μh, we get a Gibbs measure μ+ ∈ Gβ
such that

Eμ+(g) ≥ ∂f

∂h+

∣∣∣
h=0

(2.35)

(The expectations converge because g is a local — and thus continuous,
in the product topology — function.) Applying (2) we verify (2.29)
for μ+.

The measure μ+ is translation invariant and so it remains to show
that μ+ can actually be chosen ergodic. To that end let us first prove
that

1
|ΛL|

∑

x∈ΛL

g ◦ τx −→
L→∞

Eμ+(g), in μ+-probability (2.36)

The random variables on the left are bounded by the norm of g and
have expectation Eμ+(g) so it suffices to prove that the limsup is no
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larger than the expectation. However, if that were not the case, we
would have

μ+
( ∑

x∈ΛL

g ◦ τx >
(
Eμ+(g) + ε

)
|ΛL|

)
> ε (2.37)

for some ε > 0 and some sequence of L’s. But then for all h > 0,

Eμ+

{
exp

(
h

∑

x∈ΛL

g ◦ τx
)}

≥ εe|ΛL|h[Eμ+ (g)+ε] (2.38)

In light of the independence of the limit in (1) on the measure we use —
as discussed in the sketch of the proof of (1) — this would imply

f(h) ≥ h
(
Eμ+(g) + ε

)
(2.39)

which cannot hold for all h > 0 if the right-derivative of f at h = 0 is
to equal Eμ+(g). Hence (2.36) holds.

By the Pointwise Ergodic Theorem, the convergence in (2.36) actu-
ally occurs — and, by (2.36), the limit equals Eμ+(g) — for μ+-almost
every spin configuration. This implies that the same must be true for
any measure in the decomposition of μ+ into ergodic components. By
classic theorems from Gibbs-measure theory, every measure in this de-
composition is also in Gβ and so we can choose μ+ ergodic. ��

The above theorem is very useful for the proofs of phase coexistence.
Indeed, one can often prove some estimates that via (2.28) imply that
f is not differentiable at h = 0. Then one applies (2.29) to infer the
existence of two distinct, ergodic Gibbs measures saturating the bounds
in (2.28). Examples of this approach will be discussed throughout these
notes.

2.6 Literature Remarks

This section contains only the minimum necessary to understand the
rest of the course. For a comprehensive treatment of Gibbs-measure the-
ory, we refer to classic monographs by Ruelle [88], Israel [66], Simon [97]
and Georgii [57]. Further general background on statistical mechanics
of such systems can be found in Ruelle’s “blue” book [89]. The acronym
DLR derives from the initials of Dobrushin and the team of Lanford &
Ruelle who first introduced the idea of conditional definition of infinite
volume Gibbs measures; cf e.g. [32].
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The proof of Theorem 2.5 touches upon the subject of large devi-
ation theory which provides a mathematical framework for many em-
pirical principles underlying classical thermodynamics. The connection
of course appears in various disguises in the textbooks [66, 97, 57];
for expositions dealing more exclusively with large-deviation theory we
refer to the books by den Hollander [64], Dembo and Zeitouni [29],
and Deuschel and Stroock [30]. For the Pointwise Ergodic Theorem
and other facts from ergodic theory we refer to the textbooks by, e.g.,
Krengel [73] and Petersen [86].

Stochastic domination and the FKG inequality — dealing with par-
tial ordering of spin configurations, functions thereof and thus also
measures — are discussed in, e.g., Georgii [57] or Grimmett [61]. The
proof of (2.22) can alternatively be based on Griffiths’ correlation in-
equalities (Griffiths [60]). The phase coexistence in the Ising model at
large β was first proved by Peierls via a contour argument that now
bears his name (see Griffiths [59]).

Concerning the historical origin of the various model systems; the
O(n) model goes back to Heisenberg (who introduced its quantum ver-
sion), the Ising model was introduced by Lenz and given to Ising as
a thesis problem while the Potts model was introduced by Domb and
given to Potts as a thesis problem. Ironically, the O(1)-model bears
Ising’s name even though his conclusions about it were quite wrong!
Apparently, Potts was more deserving.

An excellent reference for mathematical physics of liquid crystals
is the monograph by de Gennes and Prost [56]; other, more combi-
natorial models have been considered by Heilmann and Lieb [62] and
Abraham and Heilmann [1]. The tetrahedral representation of the Potts
model can be found in Wu’s review article [106]; the matrix represen-
tation of the liquid-crystal model is an observation of Angelescu and
Zagrebnov [6]. Gradient fields — of which the GFF is the simplest ex-
ample — have enjoyed considerable attention in recent years; cf the
review articles by Funaki [52], Velenik [104] and Sheffield [92]. Another
name for the GFF is harmonic crystal.

3 Infrared Bound & Spin-wave Condensation

The goal of this section is to elucidate the significance of the infrared
bound — postponing its proof and connection with reflection posi-
tivity until Section 5 — and the use thereof in the proofs of sym-
metry breaking via the mechanism of spin-wave condensation. The
presence, and absence, of symmetry breaking in the O(n)-model with
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certain non-negative two-body interactions will be linked to recurrence
vs transience of a naturally induced random walk.

3.1 Random Walk Connections

Consider the model with the Hamiltonian

H = −1
2

∑

x,y

Jxy Sx · Sy (3.1)

where the spins Sx are a priori independent and distributed according
to a measure μ0 which is supported in a compact set Ω ⊂ R

ν . Assume
that the interaction constants satisfy the following requirements:

(I1) Jxx = 0 and Jx,y = J0,y−x
(I2)

∑
x |J0,x| <∞ and

∑
x J0,x = 1

i.e., the coupling constants are translation invariant, absolutely summ-
able and, for convenience, normalized to have unit strength. We will
actually always restrict our attention to the following specific examples:

• Nearest-neighbor interactions:

Jx,y =

{
1
2d , if |x− y| = 1,
0, otherwise.

(3.2)

• Yukawa potentials:
Jx,y = Ce−μ|x−y|1 (3.3)

with μ > 0 and C > 0.
• Power-law decaying potentials:

Jx,y =
C

|x− y|s1
(3.4)

with s > d and C > 0.

On top of these, we will also permit:

• Any convex combination of the three interactions above (with, of
course, positive coefficients).

Note that we are using the �1-distance (rather than the more natural
�2-distance). This is dictated by our methods of proof (see Lemma 5.5).
Also note that the Yukawa potential is in the class of Kac models where
the coupling constants take the form Jx,y = γdf(γ(x − y)) for some
rapidly decaying function f : R

d → [0,∞) with unit L1-norm.
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A unifying feature of all three interactions is that Jxy ≥ 0 which
allows us to interpret the coupling constants as the transition probabil-
ities of a random walk on Z

d. Explicitly, consider a Markov chain (Xn)
on Z

d with
Pz(Xn+1 = y|Xn = x) := Jxy (3.5)

where Pz is the law of the chain started at site z. Of particular interest
will be the question whether this random walk is recurrent or transient
— i.e., whether a walk started at the origin returns there infinitely, or
only finitely many times. Here is a criterion to this matter:

Lemma 3.1. Let Ĵ(k) :=
∑
x J0,xeik·x, k ∈ [−π, π]d. Then (Xn) is

transient if and only if
∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

<∞ (3.6)

Proof. Recall that a random walk is transient if and only if the first
return time to the origin, τ0 := inf{n > 0: Xn = 0}, is infinite with
a positive probability, i.e., P0(τ0 < ∞) < 1. By the formula E0N =
[1 − P0(τ0 < ∞)]−1 — where E0 is the expectation with respect to P0

— we thus get that transience is equivalent E0N <∞. To compute the
expectation, we note

1{Xn=0} =
∫

[−π,π]d

dk
(2π)d

eik·Xn (3.7)

which via E0eik·Xn = [E0eik·X1 ]n = [
∑
x J0,xeik·x]n = Ĵ(k)n implies

P0(Xn = 0) =
∫

[−π,π]d

dk
(2π)d

Ĵ(k)n (3.8)

Summing over n ≥ 0 yields

E0N =
∑

n≥0

∫

[−π,π]d

dk
(2π)d

Ĵ(k)n =
∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.9)

whereby the claim follows. (A careful proof of the latter identity re-
quires justification of the exchange of the integral with the infinite
sum; one has to represent the LHS as a power series, perform the sum
and justify limits via appropriate convergence theorems.) ��
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As to the above examples, we have:

• n.n. & Yukawa potentials: As k → 0,

1− Ĵ(k) ∼ C|k|2 (3.10)

and so (Xn) is transient iff d ≥ 3.
• Power-law potentials: Here as k → 0,

1− Ĵ(k) ∼ C

⎧
⎪⎨

⎪⎩

|k|s−d, if s < d+ 2,
|k|2 log 1

|k| , if s = d+ 2,

|k|2, if s > d+ 2.
(3.11)

Hence (Xn) is transient iff d ≥ 3 OR s < min{d+ 2, 2d}.
(Note that the walk with s < d + 2 has a stable-law tail with index
of stability α = s − d.) A convex combination of the three coupling
constants will lead to a transient walk provided at least one of the
interactions involved therein (with non-zero coefficients) is transient.

3.2 Infrared Bound

The principal claim of this section is that the finiteness of the integral
in (3.6) is sufficient for the existence of a symmetry-breaking phase
transition in many spin systems of the kind (3.1). The reason is the
connection of the above random walk to the Gaussian free field (2.16)
(GFF) with P(x, y) := Jxy. Indeed, consider the field in a square box
Λ with, say, zero boundary condition. It turns out that

CovΛ(φx, φy) =
∑

n≥0

Px(Xn = y, τΛc = y) =: GΛ(x, y) (3.12)

where τΛc is the first exit time of the walk from Λ and GΛ denotes the
so called Green’s function in Λ. In particular, we have

VarΛ(φ0) = GΛ(0, 0) (3.13)

which, as we will see, tends to the integral (3.6) as Λ ↑ Z
d. Since

EΛ(φ0) = 0 due to our choice of the boundary condition, we conclude
{
Law(φ0) : Λ ⊂ Z

d
}

is tight iff (Xn) is transient (3.14)

Physicists actually prefer to think of this in terms of symmetry break-
ing: Formally, the Hamiltonian of the GFF is invariant under the
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transformation φx → φx + c, i.e., the model possesses a global spin-
translation symmetry. The symmetry group is not compact and so, to
define the model even in finite volume, the symmetry needs to be bro-
ken by boundary conditions. The existence of a limit law for φ0 can
be interpreted as the survival of the symmetry breaking in the ther-
modynamic limit — while non-existence means that the invariance is
restored in this limit.

Our goal is to show that qualitatively the same conclusions hold
also for the O(n)-spin system. Explicitly, we will prove:

Theorem 3.2. Let (Jxy) be one of the 3 interactions above. Then:

Global rotation symmetry
of O(n)-model is broken
at low temperatures

⇐⇒
Random walk driven
by (Jxy) is transient

We begin with the proof of the implication ⇐=. The principal tool
will be our next theorem which, for technical reasons, is formulated for
torus boundary conditions:

Theorem 3.3 (Infrared Bound). Let L be an even integer and
consider the model (3.1) on torus TL with Gibbs measure μL,β. Sup-
pose (Jxy) is one of the three interactions above and let

cL,β(x) := EμL,β
(S0 · Sx) (3.15)

Define ĉL,β(k) :=
∑
x∈TL

cL,β(x)eik·x. Then

ĉL,β(k) ≤
ν

2β
1

1− Ĵ(k)
, k ∈ T



L \ {0} (3.16)

where ν is the dimension of the spin vectors and T


L is the reciprocal

torus, T


L := {2π

L (n1, . . . , nd) : ni = 0, . . . , L− 1}.

The proof will require developing the technique of reflection posi-
tivity and is therefore postponed to Section 5.

Note that cL,β(x) is the spin-spin correlation function which, in
light of translation invariance of μL,β is a function of only the spatial
displacement of the two spins. The result has the following equivalent
formulation: For all (vx) ∈ C

TL with
∑
x vx = 0,

∑

x,y∈TL

vxv̄yEμL,β
(S0 · Sx) ≤

ν

2β

∑

x,y∈TL

vxv̄yGL(x, y) (3.17)
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where

GL(x, y) :=
1
Ld

∑

k∈T
�
L\{0}

eik·(x−y)

1− Ĵ(k)
(3.18)

Observe that the latter is the covariance matrix of the GFF on TL,
projected on the set of configurations with total integral zero (i.e., on
the orthogonal complement of constant functions). This is a meaningful
object because while the φx are not really well defined — due to the ab-
sence of the boundary — the differences φy−φx are. (These differences
are orthogonal to constant functions, of course.) A short formulation
of the infrared bound is thus:

The correlation of the spins in models (3.1) with one of the three
interactions above is dominated — as a matrix on the orthogonal
complement of constant functions in L2(TL) — by the covariance
of a GFF.

This fact is often referred to as Gaussian domination.

3.3 Spin-wave Condensation in O(n)-model

Having temporarily dispensed with the IRB, we will continue in our
original line of thought. Theorem 3.3 implies:

Corollary 3.4 (Spin-wave Condensation). Suppose |Sx| = 1. Then

EμL,β

( ∣∣∣
1
Ld

∑

x∈TL

Sx

∣∣∣
2
)
≥ 1− ν

2β
GL(0, 0) (3.19)

Proof. Let Ŝk :=
∑
x∈TL

Sxeik·x be the Fourier coefficient of the decom-
position of (Sx) into the so called spin waves. The IRB yields

EμL,β
|Ŝk|2 ≤

ν

2β
Ld

1− Ĵ(k)
, k ∈ T



L \ {0} (3.20)

On the other hand, Parseval’s identity along with |Sx| = 1 implies
∑

k∈T
�
L

|Ŝk|2 = Ld
∑

x∈TL

|Sx|2 = L2d (3.21)

The IRB makes no statement about Ŝ0 so we split it from the rest of
the sum:

1
L2d

|Ŝ0|2 = 1− 1
L2d

∑

k∈T
�
L\{0}

|Ŝk|2 (3.22)
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Now take expectation and apply (3.20):

EμL,β

( 1
L2d

|Ŝ0|2
)
≥ 1− ν

2β
1
Ld

∑

k∈T
�
L\{0}

1
1− Ĵ(k)

(3.23)

In light of (3.18), this is (3.19). ��
With (3.19) in the hand we can apply the same reasoning as for the

GFF: In the transient cases, GL(0, 0) converges to the integral (3.6) and
so the right-hand side has a finite limit. By taking β sufficiently large,
the limit is actually strictly positive. This in turn implies that the zero
mode of the spin-wave decomposition is macroscopically populated —
very much like the free Bose gas at Bose-Einstein condensation. Here
is how we pull the corresponding conclusions from TL onto Z

d:

Theorem 3.5 (Phase Coexistence in O(n)-model). Consider the
O(n)-model with n ≥ 1 and one of the three interactions above. Let

β0 :=
n

2

∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.24)

Then for any β > β0 and any θ ∈ S
n−1 there exists μθ ∈ Gβ which is

translation invariant and ergodic such that

1
|ΛL|

∑

x∈ΛL

Sx −→
L→∞

m
 θ, μθ-a.s. (3.25)

for some m
 = m
(β) > 0.

Note that (3.25) implies that the measures μθ are mutually singular
with respect to one another. Note also that β0 is finite — and the
statement is not vacuous — if and only if the associated random walk
is transient.
Proof. Suppose, without loss of generality, that we are in the transient
case, i.e., β0 <∞. The idea of the proof is quite simple: We use (3.19)
to show that the free energy is not differentiable in an appropriately-
chosen external field when this field is set to zero. Then we apply
Theorem 2.5 to conclude the existence of the required distinct, ergodic
Gibbs measures.

Fix θ ∈ S
n−1 and define

f(h) := lim
L→∞

1
Ld

logEμL,β

(
ehθ·Ŝ0

)
(3.26)
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(The limit exists by Theorem 2.5.) We want to show that ∂
∂h+ f(0) > 0

(and thus, by symmetry, ∂
∂h− f(0) < 0). Corollary 3.4 yields

EμL,β

(
L−2d|Ŝ0|2

)
≥ β − β0

β
+ o(1) (3.27)

Since |Ŝ0| ≤ Ld, for any 0 < ε < 1 we have

EμL,β

(
L−2d|Ŝ0|2

)
≤ ε+ μL,β

(
|Ŝ0| ≥ εLd

)
(3.28)

and so

μL,β

(
|Ŝ0| ≥

1
2
β − β0

β
Ld

)
≥ 1

2
β − β0

β
+ o(1) (3.29)

By the O(n) symmetry of the torus measures μL,β , the law of Ŝ0/L
d is

rotationally invariant with non-degenerate “radius” distribution. This
implies

μL,β

(
θ · Ŝ0 ≥

1
4
β − β0

β
Ld

)
≥ Cn

β − β0

β
+ o(1) (3.30)

where C2 := 1/6 and, in general, Cn > 0 is an explicitly obtainable
constant. But this means that the exponent in the definition of f is at
least 1

4
β−β0
β Ld with uniformly positive probability and so

∂f

∂h+

∣∣∣
h=0
≥ β − β0

4β
(3.31)

Applying Theorem 2.5, for β > β0 and any θ ∈ S1 there exists a
translation invariant, ergodic Gibbs state μθ ∈ Gβ such that

Eμθ
(θ · Sx) =

∂f

∂h+

∣∣∣
h=0
> 0 (3.32)

Next we need to show that the states μθ are actually distinct. The
Ergodic Theorem implies

1
|ΛL|

∑

x∈ΛL

Sx −→
L→∞

m
θ̃, μθ-a.s. (3.33)

where θ̃ ∈ S
n−1 and where m
 > 0 is the magnitude of the derivative.

Note that, in light of (3.32) and the translation invariance of μθ,

m
 θ · θ̃ =
∂f

∂h+

∣∣∣
h=0

(3.34)
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The distinctness of μθ will follow once we prove (3.25), i.e., θ = θ̃. (This
is, of course, intuitively obvious because the way we constructed μθ
indicates that the law of Sx under μθ should be biased in the direction
of θ.)

Suppose θ̃ �= θ. Find a rotation A ∈ O(n) such that Aθ̃ = θ.
Let μ̃ be the measure such that Eμ̃(f(S)) := Eμθ

(f(AS)) for all lo-
cal functions f . (The existence of such a measure follows from the
Kolmogorov Extension Theorem.) Since both the Hamiltonian and the
a priori measure are O(n)-invariant, we have μ̃ ∈ Gβ . But (3.33) im-
plies Eμθ

(Sx) = m
 θ̃, and so from (3.34) we have

Eμ̃(θ · Sx) = Eμθ
(θ ·ASx) = m
 |θ|2 >

θ̃ �=θ
m
 θ · θ̃ =

∂f

∂h+

∣∣∣
h=0

(3.35)

As μ̃ is a Gibbs measure, this contradicts the general bounds in
Theorem 2.5. Hence, we must have θ = θ̃ after all. ��

The above statement and proof are formulated for the specific case of
the O(n) model. A similar proof will apply the existence of a symmetry-
breaking phase transition at low temperatures in the Ising, Potts and
the liquid-crystal models in all transient dimensions. As the Ising and
Potts model have only a discrete set of spin states, a symmetry-breaking
transition will occur generally in all dimensions d ≥ 2. However, this
has to be proved by different methods than those employed above (e.g.,
by invoking chessboard estimates).

Our next goal is to establish the complementary part of Theorem 3.2,
i.e., the implication =⇒, which asserts the absence of symmetry break-
ing in the recurrent cases. This argument predates the other direction
by 20 years and bears the name of its discoverers:

Theorem 3.6 (Mermin-Wagner Theorem). Let n ≥ 2 and con-
sider the O(n)-model with non-negative interactions constants (Jx,y)
satisfying the conditions (I1,I2) from Sect. 3.1. Suppose the cor-
responding random walk is recurrent. Then every μ ∈ Gβ is in-
variant under any simultaneous (i.e., homogeneous) rotation of all
spins.

Proof. We will show that the spins can be arbitrarily rotated at an
arbitrary small cost of the total energy. (This is why we need n ≥ 2.)
We will have to work with inhomogeneous rotations to achieve this, so
let ϕx be a collection of numbers with {x : ϕx �= 0} finite and let iR be
a unit element of the Lie algebra o(n), i.e., eiRα is a rigid rotation of
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the unit sphere by angle α about a particular axis. Let ωϕ be the map
on configuration space acting on individual spins via

ωϕ(Sx) := eiϕxRSx, x ∈ Z
d (3.36)

To investigate the effect of such an inhomogeneous rotation on the
Hamiltonian, note that

ωϕ(Sx) · ωϕ(Sy) = Sx · ei(ϕy−ϕx)RSy

= Sx · Sy − Sx · [1− ei(ϕy−ϕx)R]Sy
(3.37)

Hence the energy of a configuration in any block Λ ⊃ {x : ϕx �= 0}
transforms as

HΛ(ωϕ(S)) = HΛ(S) +�H (3.38)

where
�H :=

1
2

∑

x,y

Jxy Sx · [1− ei(ϕy−ϕx)R]Sy (3.39)

Using that �H depends only on the portion of the spin configuration
in Λ, a simple application of the DLR condition shows that, for any
local function f ,

Eμ(f ◦ ωϕ) = Eμ(fe−β�H) (3.40)

We will now let ϕx → α in a specific way that ensures �H → 0; this
will permit us to extract the desired conclusion by limiting arguments.

First we will need to control the ϕ-dependence of�H, so we expand
the exponential:

�H =− i
2

∑

x,y

Jxy (Sx ·RSy)(ϕy − ϕx)

+
1
4

∑

x,y

Jxy (RSx ·RSy)(ϕy − ϕx)2 + · · ·
(3.41)

In the first term we note that the self-adjointness of R — valid by the
choice of iR as an element of the Lie algebra — implies that Jxy (Sx ·
RSy) is symmetric under the exchange of x and y. Since (ϕy − ϕx) is
antisymmetric and finitely supported, the sum is zero. Estimating the
remainder by the quadratic term, we thus get

|�H| ≤ C
∑

x,y

Jxy(ϕy − ϕx)2 = 2CE1−J(ϕ,ϕ) (3.42)

for some constant C < ∞. Here we used that (RSx · RSy) is bounded
and recalled the definition of the Dirichlet form E1−J(·, ·) of the random
walk driven by the (Jx,y)’s.
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Our next task will be to control the Dirichlet form under the condi-
tion that ϕ tends to α in every finite set. To that end we fix 0 < R <∞
and set

ϕx := αPx(τ0 < τΛc
R
) (3.43)

This function equals α at x = 0, zero on Λc
R and is harmonic (with

respect to the generator of the random walk) in ΛR \{0}. A calculation
shows

E1−J(ϕ,ϕ) =
∑

x

ϕx
∑

y

Jx,y(ϕx − ϕy)

=
harmonic or
zero in {0}c

α
∑

y

J0,y(α− ϕy)
(3.44)

But the recurrence of the associated random walk implies that ϕy → α
as R → ∞ for every y and since the Jxy’s are summable, the right-
hand side tends to zero by the Dominated Convergence Theorem. Thus
�H → 0 as R→∞ and so applying R→∞ to (3.40) with the choice
(3.43) yields

Eμ(f ◦ ωα) = Eμ(f) (3.45)

for every continuous local function f . Thereby we conclude that μ is
invariant under simultaneous rotation of all spins. ��

3.4 Literature Remarks

The content of the entire section is very classical. The Infrared Bound
(and its proof based on reflection positivity) was discovered in the sem-
inal work of Fröhlich, Simon and Spencer [50] from 1976 where it was
also applied to prove a phase transition in the O(n)-model (as well as
the isotropic Heisenberg and other models). Dyson, Lieb and Simon [38]
showed how to adapt the method to a (somewhat more limited) class
of quantum spin models. The technique was further developed and
its applications extended in two papers of Fröhlich, Israel, Lieb and
Simon [46, 47].

Thanks to the representation (2.12), the proof of a long-range order
in the liquid-crystal model, derived by Angelescu and Zagrebnov [6],
follows the same route as for the O(n) model. However, the type of long-
range order that is concluded for the actual spin system is different.
Indeed, let μ be a (weak) cluster point of the torus states. Then

lim
L→∞

1
|ΛL|

∑

x∈ΛL

[
(S0 · Sx)2 − 1/n

]
> 0 (3.46)
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with a positive probability under μ. (The limit exists by the Pointwise
Ergodic Theorem.) As μ is O(n)-invariant, if Sx were asymptotically
independent of S0 for large x, we would expect Eμ(S0 · Sx)2 → 1/n

as |x| → ∞. Apparently, this is not the case, the direction of Sx remains
heavily correlated with the direction of S0 for arbitrary x, i.e., there is
an orientational long range order.

Whether or not the O(n) symmetry of the law of Sx is broken is an
open (and important) question. (The law of each individual Sx is in-
variant under the flip Sx ↔ −Sx and so the magnetization is zero in all
states.) As noted before, other models of liquid crystals based on dimers
on Z

2 were considered by Heilmann and Lieb [62] and Abraham and
Heilmann [1] prior to the work [6]. There an orientational long-range
order was proved using chessboard estimates; the question of absence
of complete translational ordering (i.e., breakdown of translation in-
variance) remained open.

The Mermin-Wagner theorem goes back to 1966 [82]. Various inter-
esting mathematical treatments and extensions followed [34, 87, 49];
the argument presented here is inspired by the exposition in Simon’s
book [97]. A fully probabilistic approach to this result, discovered by
Dobrushin and Shlosman [34], has the advantage that no regularity
conditions need to be posed on the spin-spin interaction provided it
takes the form V (Sx − Sy); cf the recent paper by Ioffe, Shlosman and
Velenik [65]. Finally, we remark that a beautiful and more in-depth
exposition of this material — including quantum systems — was pre-
sented at the Prague School in 1996 by Bálint Tóth; his handwritten
lecture notes should be available online [103].

The basis of the Mermin-Wagner theorem, as well as its extension,
is the continuum nature of the spin space. Indeed, in the Ising (and
also Potts) model, a low-temperature symmetry breaking occurs even
in some recurrent dimensions; e.g., in d = 2 for the nearest-neighbor
interactions. For what determines the presence and absence of symme-
try breaking in d = 1, see the work of Aizenman, Chayes, Chayes and
Newman [3] and references therein.

The connection with random walk is, of course, made possible
by our choice to work with non-negative couplings. However, most
of the quantitative conclusions of this section hold without reference
to random walks. For detailed expositions of the theory of random
walks we recommend the monographs by Spitzer [100] and Lawler [76];
the material naturally appears in most graduate probability textbooks
(e.g., Durrett [36]).

It is interesting to note that even in d = 2, the nearest-neighbor
O(n) model exhibits a phase transition when n = 2. Namely, while
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the Gibbs state is unique at all β < ∞, for large β it exhibits power
law decay of correlations with β-dependent exponents. This regime
is (again, after its discoverers) referred to as the Kosterlitz-Thouless
phase [70]. A rigorous treatment exits, based on renormalization the-
ory and connection with Coulomb gas, thanks to the pioneering work of
Fröhlich and Spencer [51]; see also more recent papers by Dimock and
Hurd [31]. This is of much interest in light of recent discovery of new
conformally-invariant planar processes — the Schramm-Loewner evolu-
tion (a.k.a. SLE). No such phenomenon is expected when n ≥ 3 though
there is a minor opposition to this (e.g., Patrasciou and Seiler [85]).

4 Infrared Bound & Mean-field Theory

In this chapter we will discuss how the infrared bound can be used
to control the error in so-called mean-field approximation. Unlike the
spin-wave condensation, which is concerned primarily with the infrared
— i.e., small-k or large spatial scale — content of the IRB, here will
make the predominant use of the finite-k — i.e., short range — part of
the IRB. (Notwithstanding, the finiteness of the integral (3.6) is still a
prerequisite.)

4.1 Mean-field Theory

Mean-field theory is a versatile approximation technique frequently
used by physicists to analyze realistic physical models. We begin by
a simple derivation that underscores the strengths, and the shortcom-
ings, of this approach.

Consider a lattice spin model with the usual Hamiltonian (3.1).
Pick a translation invariant Gibbs measure μ ∈ Gβ and consider the
expectation of the spin at the origin. The conditional definition of Gibbs
measures (the DLR condition) allows us to compute this expectation
by first conditioning on all spins outside the origin. Indeed, the one-spin
Gibbs measure is determined by the (one-spin) Hamiltonian

H{0}(S) = −
∑

x

J0,x S0 · Sx = −S0 ·
∑

x

J0,xSx = −S0 ·M0 (4.1)

where we introduced the shorthand

M0 :=
∑

x

J0,xSx (4.2)
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Thus, by the DLR,

Eμ(S0) = Eμ

(
Eμ0(S0 eβS0·M0)
Eμ0(eβS0·M0)

)
(4.3)

where, abusing the notation slightly, the “inner” expectations are only
over S0 — M0 acts as a constant here — and the outer expectation is
over the spins in Z

d \ {0}, and thus over M0.
So far the derivation has been completely rigorous but now comes

an ad hoc step: We suppose that the random variable M0 is strongly
concentrated about its average so that we can replace it by this average.
Denoting

m := Eμ(S0) (4.4)

we thus get that m should be an approximate solution to

m =
Eμ0(S eβS·m)
Eμ0(eβS·m)

(4.5)

This is the so called mean-field equation for the magnetization.
Besides the unjustified step in the derivation, a serious practical

problem with (4.5) is that it often has multiple solutions. Indeed, for
the set of points (β,m) that obey this equation, one typically gets a
picture like this:

β

m

β0

Here, for β < β0, the only solution is m = 0 — this is always a solution
whenever Eμ0(S) = 0 — but at β = β0, two new branches appear and
coexist over an interval of β’s. It is clear that as β varies, the “physical”
solution must undergo some sort of jump, but it is not possible to tell
where this jump occurs on the basis of equation (4.5) alone. For that
one has to go beyond the heuristic derivation presented above.
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As is standard, one comes up with an additional “selection” principle
that determines which solution is “physical.” At the level of classical
thermodynamics, this is done by postulating that the solution must
minimize an appropriate free energy function. In the choice of this
function we will be guided by the fact that there is a proper statistical-
mechanical system for which the above derivations can be explicitly
validated by way of large-deviation theory. This system is the corre-
sponding model on the complete graph.

Consider a graph on N vertices with each pair of vertices joined by
an undirected edge. At each vertex x = 1, . . . , N we have a spin Sx
with i.i.d. a priori law μ0. Each spin interacts with every other spin;
the interaction Hamiltonian is given by

HN (S) := − 1
2N

N∑

x,y=1

Sx · Sy (4.6)

The normalization by 1/N ensures that the energy grows proportionally
to N ; the “2” in the denominator compensates for counting each pair
of spins twice.

To derive the formula for the free energy function, consider first the
cumulant generating function of the measure μ0,

G(h) := logEμ0

(
eh·S

)
, h ∈ R

ν (4.7)

Its Legendre transform,

S (m) := inf
h∈Rν

[
G(h)− h ·m

]
(4.8)

defines the entropy which, according to Cramér’s theorem, is the rate
of large-deviation decay in

μ0

( N∑

x=1

Sx ≈ mN
)

= e−NS (m)+o(N) (4.9)

(The function is infinite outside Conv(Ω), the convex hull of Ω and
the set of possible values of the magnetization.) Next we inject the
energy into the mix and look at the Gibbs measure. To describe what
configurations dominate the partition function, and thus the Gibbs
measure, we identify the decay rate of the probability

μ0

(
e

β
2N

∑N
x,y=1 Sx·Sy1{∑x Sx ≈mN}

)
= e−NΦβ(m)+o(N) (4.10)
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Here the rate function

Φβ(m) := −β
2
|m|2 −S (m) (4.11)

is the desired mean-field free-energy function. The physical solutions
are clearly obtained as the absolute minima of m �→ Φβ(m). This is
actually completely consistent with (4.5):

Lemma 4.1. We have

∇Φβ(m) = 0 ⇔ m = ∇G(βm) (4.12)

Explicitly, the solutions to (4.5) are in bijection with the extreme points
of m �→ Φβ(m).

Proof. This is a simple exercise on the Legendre transform. First we note
that ∇Φβ(m) = 0 is equivalent to βm = −∇S (m). The convexity of G
implies that there is a unique hm such that S (m) = G(hm)−m · hm.
Furthermore, hm depends smoothly on m and we have ∇G(hm) = m.
It is easy to check that then ∇S (m) = −hm. Putting this together
with our previous observations, we get that

∇Φβ(m) = 0 ⇔ βm = hm ⇔ m = ∇G(βm) (4.13)

It remains to observe thatm = ∇G(βm) is a concise way to write (4.5).
��

Lemma 4.1 shows that the appearance of multiple solutions to (4.5)
coincides with the emergence of secondary local maxima/minima.

4.2 Example: The Potts Model

It is worthwhile to demonstrate the above general formalism on the
explicit example of the Potts model. We will work with the tetrahedral
representation, i.e., on the spin space Ω := {v̂1, . . . , v̂q}. The mean-field
free energy function is best expressed in the parametrization using the
mole fractions, x1, . . . , xq, which on the complete graph represent the
fractions of all vertices with spins pointing in the directions v̂1, . . . , v̂q,
respectively. Clearly,

q∑

i=1

xi = 1 (4.14)

The corresponding magnetization vector is

m = x1v̂1 + · · ·+ xqv̂q. (4.15)
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In this notation we have

Φβ(m) =
q∑

k=1

(
−β

2
x2
k + xk log xk

)
. (4.16)

It is not surprising, but somewhat non-trivial to prove (see [9,
Lemma 4.4]) that all interesting behavior of Φβ occurs “on-axes”
that is, the absolute minimizers — and, in fact, all local extrema — of
Φβ occur in the directions of one of the spin states. (Which direction we
choose is immaterial as they are related by symmetry.) The following
picture shows the qualitative look of the function m �→ Φβ(mv̂1) at four
increasing values of β:

Here the function first starts convex and, as β increases, develops a
secondary local minimum (plus an inevitable local maximum). For β
even larger, the secondary minimum becomes degenerate with the one
at m = 0 and eventually takes over the role of the global minimum.
With these new distinctions, the plot of solutions to the mean-field
equation for the magnetization becomes:

β

m

local min

local max

βt

Note that the local maximum eventually merges with the local mini-
mum at zero — at which point zero becomes a local maximum. The
jump in the position of the global minimum occurs at some βt, which is
strictly larger than the point β0 where the secondary minima/maxima
first appear.
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4.3 Approximation Theorem & Applications

The goal of this section is to show that, with the help of the IRB,
the conclusions of mean-field theory can be given a quantitative form.
Throughout we restrict ourselves to interactions of the form (3.1) and
the coupling constants being one of the 3 types above.

Definition 4.2. We say that a measure μ ∈ Gβ is a torus state if it is
either a (weak) cluster point of measures μL,β or can be obtained from
such cluster points by perturbing either β or μ0 or the inner product
between spins.

The reason for the second half of this definition is that the “opera-
tions” thus specified preserve the validity of the IRB. For such states
we prove:

Theorem 4.3. Suppose |Sx| ≤ 1. Let μ ∈ Gβ be a translation-
invariant, ergodic, torus state and define

m
 := Eμ(S0). (4.17)

Let Φβ be the mean-field free energy function corresponding to this
model. Then

Φβ(m
) ≤ inf
m∈Conv(Ω)

Φβ(m) +
νβ

2
Id (4.18)

where

Id :=
∫

[−π,π]d

dk
(2π)d

Ĵ(k)2

1− Ĵ(k)
(4.19)

Note that the integral is finite iff the random walk corresponding
to (Jxy) is transient. However, unlike for Green’s function, Id represents
the expected number of returns back to the origin after the walk has
left the origin. Thus, in strongly transient situations one should expect
that Id is fairly small. And, indeed, we have the following asymptotics:

• n.n. interactions:

Id ∼
1
2d
, d→∞. (4.20)

• Yukawa potentials : If d ≥ 3,

Id ≤ Cμd. (4.21)
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• Power-law potentials: If d ≥ 3 OR s < min{d+ 2, 2d},

Id ≤ C(s− d). (4.22)

Of course, one is able to make the integral small for interactions with
power law tails even when s is not too close to d: Just take a mix-
ture of Yukawa and power-law with positive coefficients and let μ be
sufficiently small. Within the class of above models, we can rephrase
Theorem 4.3 as:

Physical magnetizations nearly minimize
the mean-field free energy function

This is justified because, as it turns out, all relevant magnetizations
can be achieved in ergodic torus states. Let us again demonstrate the
conclusion on the example of the q-state Potts model:

Theorem 4.4. Let q ≥ 3 and suppose that Id � 1/q. Then there is βt ∈
(0,∞) and translation-invariant, ergodic measures ν0, ν1, . . . νq ∈ Gβt
such that

|Eν0(Sx)| � 1 (4.23)

and
Eνj (Sx) = m
 v̂j , j = 1, . . . , q, (4.24)

where m
 ≥ 1/2. In particular, the 3-state Potts model undergoes a
first-order phase transition provided the spatial dimension is sufficiently
large.

This result is pretty much the consequence of the pictures in
Sect. 4.1. Indeed, including the error bound (4.18), the physical mag-
netization is confined to the shaded regions:

Thus, once the error is smaller than the “hump” separating the two
local minima, there is no way that the physical magnetization can
change continuously as the temperature varies. This is seen even more
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dramatically once we mark directly into the mean-field magnetization
plot the set of values of the magnetization allowed by the inequality
(4.18):

β

m

βt

(To emphasize the effect, the plots are done for the q = 10 state Potts
model rather than the most interesting case of q = 3.) Notice that the
transition is bound to occur rather sharply and very near the mean-
field value of βt; explicit error bounds can be derived, but there is no
need to state them here.

An additional argument is actually needed to provide a full proof of
(4.24). Indeed, we claim that the symmetry breaking happens exactly
in the direction of one of the spin states while the approximation by
mean-field theory only guarantees that the expectation is near one of
these directions.
Proof of (4.24), sketch. Consider an ergodic Gibbs state μ with m
 :=
Eμ(Sx) �= 0 at inverse temperature β. Given a sample σ = (σx) from μ,
at each unordered pair 〈x, y〉 of vertices from Z

d let

ηxy := 1{σx=σy}Zxy (4.25)

where (Zxy) are a priori independent, zero-one valued random variables
with

P(Zxy = 1) = 1− P(Zxy = 0) := 1− e−βJxy (4.26)

This defines a coupling of μ with a random cluster measure — the
distribution of the η’s — which, by the fact that the extension comes
from i.i.d. random variables, is also ergodic.

When m
 �= 0, the η-marginal features a unique infinite connected
component of edges 〈x, y〉 with ηxy = 1 whose (site) density is propor-
tional to |m
|. By the construction, the spin variables take a (constant)
value on each connected component, which is a.s. unique (by ergodic-
ity) on the infinite one and uniform on the finite ones. Thus, the bias
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of the spin distribution comes only from the infinite component and so
it points in one of the q spin directions. The claim thus follows. ��

4.4 Ideas from the Proofs

A fundamental technical ingredient of the proof is again provided by
the IRB, so throughout we will assume one of the three interactions
discussed above. However, we will need the following enhanced version:

Lemma 4.5 (IRB Enhanced). Suppose the random walk driven by
the (Jxy) is transient and let G(x, y) denote the corresponding Green’s
function on Z

d. Let μ ∈ Gβ be a translation-invariant, ergodic, torus
state and let us denote m
 := Eμ(S0). Then for all (vx)x∈Zd ∈ C

Z
d

with
finite support,

∑

x,y

vxv̄y Eμ
(
(Sx −m
) · (Sy −m
)

)
≤ ν

2β

∑

x,y

vxv̄yG(x, y). (4.27)

Proof. The IRB on torus survives weak limits and so we know that, for
every (wx) with finite support and

∑
xwx = 0,

∑

x,y

wxw̄y Eμ
(
Sx · Sy

)
≤ ν

2β

∑

x,y

wxw̄yG(x, y) (4.28)

where

G(x, y) := lim
L→∞

GL(x, y) =
∫

[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
(4.29)

What separates (4.28) from (4.27) are the m
 terms in the expectation
on the left and the absence of the restriction on the sum of vx. The
former is remedied easily; indeed, the restriction

∑
xwx = 0 allows us

to put the m
 terms at no additional cost.
To address the latter issue, suppose (vx) has finite support but let

now
∑
x vx be arbitrary. Let ΛL ⊂ Z

d contain the support of (vx). To
convert to the previous argument, let

aL :=
1
|ΛL|

∑

x

vx (4.30)

and
wx := vx − aL1ΛL

(x) (4.31)
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Note that
∑
xwx = 0. Then

∑

x,y

wxw̄y Eμ
(
(Sx−m
)·(Sy−m
)

)
=
∑

x,y

vxv̄y Eμ
(
(Sx−m
)·(Sy−m
)

)

− 2Eμ

([
aL

∑

x∈ΛL

(Sx −m
)
]
·
[∑

y

vy(Sy −m
)
])

+ Eμ

(∣∣∣aL
∑

x∈ΛL

(Sx −m
)
∣∣∣
2
)

(4.32)

But ergodicity of μ implies that

Eμ

(∣∣∣
1
|ΛL|

∑

x∈ΛL

(Sx −m
)
∣∣∣
2
)
−→
L→∞

0 (4.33)

and so, by Cauchy-Schwarz, the last two terms in (4.32) converge to
zero as L→∞. Now apply (4.28) and pass to the limit L→∞ there.
A direct calculation (and the Riemann-Lebesgue lemma) shows that

1
|ΛL|

∑

x∈ΛL

G(x, y) −→
L→∞

0 (4.34)

and so the terms involving aL on the right-hand side of (4.27) suffer
a similar fate. This means that the left-hand sides of (4.27–4.28) tend
to each other, and same for the right-hand sides. The desired bound
(4.27) is thus a limiting version of (4.28). ��

Clearly, the restriction to finitely-supported (vx) is not necessary;
instead, one can consider completions of this set in various reasonable
norms. The above formulation has an immediate, but rather fundamen-
tal, consequence:

Corollary 4.6 (Key Estimate). Let μ ∈ Gβ be an ergodic torus state
and let m
 := Eμ(Sx). Then we have

Eμ

( ∣∣∣
∑

x

J0,x Sx −m

∣∣∣
2
)
≤ ν

2β
Id. (4.35)

Proof. Choose vx := J0,x and note that with this choice the left-hand
side of (4.27) becomes the left-hand side of (4.35). As to the right-hand
side of (4.27), we get

ν

2β

∑

x,y

∫

[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
J0,xJ0,y (4.36)

Recalling the definition of Ĵ(k), this yields the desired error term. ��
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This corollary provides a justification of the ad hoc step in the
derivation of mean-field theory: Indeed, once Id is small, the variance
of M0 is small and so M0 is with high probability close to its average.

The rest of the proof of Theorem 4.3 is based on inequalities linking
the mean-field free energy with the actual magnetization of the system;
this part of the proof works for general non-negative coupling constants
satisfying conditions (I1-I2) from Sect. 3.1. The relevant observations
are as follows:

Proposition 4.7. Let μ ∈ Gβ be translation invariant and let m
 :=
Eμ(Sx).
(1) We have

Φβ(m
) ≤ inf
m∈Conv(Ω)

Φβ(m) +
β

2

∑

x∈Zd

J0,x

[
Eμ(S0 · Sx)− |m
|2

]
(4.37)

(2) Suppose also J0,x ≥ 0 and |Sx| ≤ 1. Then

∑

x∈Zd

J0,x

[
Eμ(S0 · Sx)− |m
|2

]
≤ β Eμ

( ∣∣∣
∑

x

J0,x Sx −m

∣∣∣
2
)

(4.38)

Proof of (1). The proof is based on convexity inequalities linking the
mean-field free energy and the characteristics of the actual system.
Fix Λ ⊂ Z

d and let ZΛ be the partition function in Λ. A standard
example of such convexity inequality is

ZΛ ≥ exp
{
−|Λ| inf

m∈Conv(Ω)
Φβ(m) +O(∂Λ)

}
. (4.39)

To prove this we pick m in the (relative) interior of Conv(Ω) and define
a tilted measure

μh(dS) := eh·S−G(h)μ0(dS) (4.40)

with h adjusted so that Eμh
(S) = m. (Such h exists for each m in the

relative interior of Conv(Ω), by standard arguments for the Legendre
transform.) We then get

ZΛ = E⊗μh

(
e−βHΛ(S)−h·MΛ+|Λ|G(h)

)
(4.41)

where we introduced the shorthand

MΛ :=
∑

x∈Λ
Sx (4.42)
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Now apply Jensen to get the expectation into the exponent; the product
nature of ⊗μh implies that E⊗μh

(HΛ(S)) = −|Λ|12 |m|2 +O(∂Λ) and so
(4.39) follows by noting that G(h) − h ·m = S (m) due to our choice
of h, and subsequently optimizing over all admissible m.

Now fix a general h ∈ R
ν and let μ be a Gibbs measure as specified

in the claim. First we note that the DLR condition implies

Eμ(e+βHΛ+h·MΛZΛ) = E⊗μ0

(
eh·MΛ

)
= e|Λ|G(h) (4.43)

The ZΛ term can be bounded away via (4.39); Jensen’s inequality then
gives

β Eμ(HΛ)+ |Λ|h ·m
−|Λ| inf
m∈Conv(Ω)

Φβ(m)+O(∂Λ) ≤ |Λ|G(h) (4.44)

Next, translation invariance of μ yields

Eμ(HΛ) = −|Λ|1
2

∑

x

J0,xEμ(S0 · Sx) +O(∂Λ) (4.45)

and so dividing by Λ and taking Λ ↑ Z
d along cubes gets us

−β
2

∑

x

J0,xEμ(S0 · Sx) − inf
m∈Conv(Ω)

Φβ(m) ≤ G(h)− h ·m
 (4.46)

Optimizing over h turns the right-hand side into S (m
). Adding 1
2 |m
|2

on both sides and invoking (4.11) now proves the claim. ��

Proof of (2). Let us return to the notation M0 :=
∑
x J0,xSx. The

left-hand side of (4.38) can then be written as Eμ(S0 ·M0) − |m
|2.
Since J0,0 = 0, an application of the DLR condition yields

Eμ(M0 · S0) = Eμ
(
M0 · ∇G(βM0)

)
(4.47)

The DLR condition also implies

m
 = Eμ(M0) = Eμ[∇G(βM0)] (4.48)

and so we have

Eμ(S0 ·M0)− |m
|2

= Eμ
(
(M0 −m
) ·

(
∇G(βM0)−∇G(βm
)

))
(4.49)

But |Sx| ≤ 1 implies that the Hessian of G is dominated by the identity,
∇∇G(m) ≤ id at any m ∈ Conv(Ω) — assuming Jx,y ≥ 0 — and so
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(M0 −m
) ·
(
∇G(βM0)−∇G(βm
)

)
≤ β|M0 −m
|2 (4.50)

by the Mean-Value Theorem. Taking expectations proves (4.38). ��
Theorem 4.3 now follows by combining Proposition 4.7 with

Corollary 4.6. Interestingly, (4.37) gives
∑

x∈Zd

J0,xEμ(S0 · Sx) ≥ |m
|2 (4.51)

i.e., the actual energy density always exceeds the mean-field energy
density.

4.5 Literature Remarks

The inception of mean-field theory goes back to Curie [28] and Weiss
[105]. One of the early connections to the models on the complete graph
appears in Ellis’ textbook on large-deviation theory [40]. Most of this
section is based on the papers of Biskup and Chayes [9] and Biskup,
Chayes and Crawford [10]. The Key Estimate had been used before in
some specific cases; e.g., for the Ising model in the paper by Bricmont,
Kesten, Lebowitz and Schonmann [22] and for the q-state Potts model
in the paper by Kesten and Schonmann [69]. Both these works deal with
the limit of the magnetization as d→∞; notwithstanding, no conclu-
sions were extracted for the presence of first-order phase transitions in
finite-dimensional systems.

The first-order phase transition in the q-state Potts model has first
been proved by Kotecký and Shlosman [69] but the technique works
only for extremely large q. The case of small q has been open. The
upshot of the present technique is that it replaces q by d or interac-
tion range in its role of a “large parameter.” The price to pay is the
lack of explicit control over symmetry: We expect that the measure ν0
in Theorem 4.4 is actually “disordered” and Eν0(Sx) = 0. This would
follow if we knew that the magnetization in the Potts model can be
discontinuous only at the percolation threshold — for the Ising model
this was recently proved by Bodineau [19] — but this is so far known
only in d = 2 (or for q very large). The coupling in the proof of (4.24) is
due to Edwards and Sokal [39]; for further properties see Grimmett [61]
or Biskup, Borgs, Chayes and Kotecky [8]. The uniqueness of the infi-
nite connected component is well known in the nearest-neighbor case
from a beautiful argument of Burton and Keane [23]; for the long-range
models it has to be supplied by a percolation bound dominating the
number of edges connecting a box of side L to its complement.



42 M. Biskup

The requirement Id � 1/q is actually an embarrassment of the theory
as the transition should become more pronounced, and thus easier to
control, with increasing q. Thus, even for nearest-neighbor case, we
still do not have a dimension in which all q ≥ 3 state Potts models go
first order. (It is expected that this happens already in d = 3.) The
restriction to transient dimensions is actually not absolutely necessary;
cf recent work Chayes [24].

It is natural to ask whether one can say anything about the
continuum-q extension of the Potts model, the random cluster model;
see Grimmett [61]. Unfortunately, the main condition for proving the
IRB, reflection positivity, holds if and only if q is integer (Biskup [7]).

Another model for which this method yields a novel result is
the liquid-crystal model discussed in Sect. 2.2. Here Angelescu and
Zagrebnov [6] proved that symmetry breaking (for the order param-
eter maxαEμ[S

(α)
x ]2 − 1/n) occurs at low temperatures by exhibiting

spin-wave condensation; cf remarks at the end of Chapter 3. In [9]
it has been shown that, for n ≥ 3, the order parameter undergoes a
discontinuous transition at intermediate temperatures; van Enter and
Shlosman [41, 42] later proved such transitions in highly non-linear
cases. Similar “mean-field driven” first order phase transitions have also
been proved for the cubic model [9] and the Blume-Capel model [10].

Once the general theory is in place, the proof of a phase transition
for a specific model boils down to the analysis of the mean-field free
energy function. While in principle always doable, in practice this may
be quite a challenge even in some relatively simple examples. See, e.g.,
[9, Sect. 4.4] what this requires in the context of the liquid-crystal
model.

Finally, we note that the IRB has been connected to mean-field the-
ory before; namely, in the work of Aizenman [2] (cf also Fröhlich [45]
and Sokal [98]) in the context of lattice field theories and that of Aizen-
man and Fernández in the context of Ising systems in either high spatial
dimensions [4] or for spread-out interactions [5]. A representative re-
sult from these papers is that the critical exponents in the Ising model
take mean-field values above 4 dimensions. The IRB enters as a tool to
derive a one-way bound on the critical exponents. Unfortunately, the
full conclusions are restricted to interactions that are reflection posi-
tive; a non-trivial extension was obtained recently by Sakai [90] who
proved the IRB — and the corresponding conclusions about the critical
exponents — directly via a version of the lace expansion.
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5 Reflection Positivity

In the last two sections we have made extensive use of the infrared
bound. Now is the time to prove it. This will require introducing the
technique of reflection positivity which, somewhat undesirably, links
long-range correlation properties of the spin models under considera-
tion to the explicit structure of the underlying graph. Apart from the
infrared bound, reflection positivity yields also the so called chessboard
estimate which we will use extensively in Chapter 6.

5.1 Reflection Positive Measures

We begin by introducing the basic setup for the definition of reflection
positivity: Consider the torus TL of side L with L even. The torus has
a natural reflection symmetry along planes orthogonal to one of the
lattice directions. (For that purpose we may think of TL as embedded
into a continuum torus.) The corresponding “plane of reflection” P has
two components, one at the “front” of the torus and the other at the
“back.” The plane either passes through the sites of TL or bisects bonds;
we speak of reflections through sites or through bonds, respectively. The
plane splits the torus into two halves, T

+
L and T

−
L , which are disjoint

for reflections through bonds and obey T
+
L ∩ T

−
L = P for reflections

through sites.
Let A± denote the set of all functions f : ΩTL → R that depend only

on the spins in T
±
L . Let ϑ denote the reflection operator, ϑ : A± → A∓,

which acts on spins via
ϑ(Sx) := Sϑ(x) (5.1)

Clearly, ϑ is a morphism of algebra A+ onto A− and ϑ2 = id.

Definition 5.1 (Reflection Positivity). A measure μ on ΩTL is
reflection positive (RP) with respect to ϑ if

(1) For all f, g ∈ A+,
Eμ(f ϑg) = Eμ(g ϑf) (5.2)

(2) For all f ∈ A+,
Eμ(f ϑf) ≥ 0 (5.3)

Note that the above implies that f, g �→ Eμ(f ϑg) is a positive-
semindefinite symmetric bilinear form. Condition (5.2) is usually auto-
matically true — it requires only ϑ-invariance of μ— so it is the second
condition that makes this concept non-trivial (hence also the name).
Here we first note that the concept is not entirely vacuous:
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Lemma 5.2. The product measure, μ =
⊗
μ0, is RP with respect to

all reflections.

Proof. First consider reflections through bonds. Let f, g ∈ A+. Since
T

+
L ∩T

−
L = ∅, the random variables f and ϑg are independent under μ.

Hence,
Eμ(f ϑg) = Eμ(f)Eμ(ϑg) = Eμ(f)Eμ(g) (5.4)

whereby both conditions in Definition 5.1 follow.
For reflections through sites, we note that f and ϑg are independent

conditional on SP . Invoking the reflection symmetry of μ(·|SP ), we get

Eμ(f ϑg|SP ) = Eμ(f |SP )Eμ(ϑg|SP ) = Eμ(f |SP )Eμ(g|SP ) (5.5)

Again the conditions of RP follow by inspection. ��
A fundamental consequence of reflection positivity is the Cauchy-

Schwarz inequality
[
Eμ(f ϑg)

]2 ≤ Eμ(f ϑf)Eμ(g ϑg) (5.6)

Here is an enhanced, but extremely useful, version of this inequality:

Lemma 5.3. Let μ be RP with respect to ϑ and let A,B,Cα, Dα ∈ A+.
Then

[
Eμ(eA+ϑB+

∑
α Cα ϑDα)

]2

≤
[
Eμ(eA+ϑA+

∑
α Cα ϑCα)

] [
Eμ(eB+ϑB+

∑
αDα ϑDα)

]
(5.7)

Proof. Clearly, in the absence of the Cα ϑDα terms, this simply reduces
to (5.6). To include these terms we use expansion into Taylor series:

Eμ(eA+ϑB+
∑

α Cα ϑDα)

=
∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eACα1 . . . Cαn)ϑ(eBDα1 . . . Dαn)

)
(5.8)

Now we apply (5.6) to the expectation on the right-hand side and then
one more time to the resulting sum:
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Eμ(eA+ϑB+
∑

α Cα ϑDα)

≤
∑

n≥0

1
n!

∑

α1,...,αn

[
Eμ

(
(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)

)1/2

× Eμ
(
(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)

)1/2
]

≤
(∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)

))1/2

×
(∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)

))1/2

(5.9)
Resummation via (5.8) now yields the desired expression. ��

The argument we just saw yields a fundamental criterion for proving
reflection positivity:

Corollary 5.4. Fix a plane of reflection P and let ϑ be the correspond-
ing reflection operator. Suppose that the torus Hamiltonian takes the
form

−HL = A+ ϑA+
∑

α

Cα ϑCα (5.10)

with A,Cα ∈ A+. Then for all β ≥ 0 the torus Gibbs measure, μL,β, is
RP with respect to ϑ.

Proof. The proof is a simple modification of the argument in Lemma 5.3:
Fix f, g ∈ A+. Expansion of the exponential term in

∑
αCα ϑCα yields

EμL,β
(fϑg) =

1
ZL
E⊗μ0

(
f(ϑg) e β(A+ϑA+

∑
α Cα ϑCα)

)

=
1
ZL

∑

n≥0

1
n!

∑

α1,...,αn

E⊗μ0

(
(fe βACα1 · · ·Cαn)ϑ(ge βACα1 · · ·Cαn)

)

(5.11)
The conditions of RP for μL,β are now direct consequences of the fact
that the product measure,

⊗
μ0, is itself RP (cf Lemma 5.3). ��

Now we are ready to check that all 3 interactions that we focused
our attention on in previous lectures are of the form in Lemma 5.3 and
thus lead to RP torus Gibbs measures:

Lemma 5.5. For any plane P , the n.n. (ferromagnet) interaction,
Yukawa potentials and the power-law decaying potentials, the torus
Hamiltonian can be written in the form (5.10) for some A,Cα ∈ A+.



46 M. Biskup

Proof. We focus on reflections through bonds; the case of reflections
through sites is analogous. Given P , the terms in the Hamiltonian can
naturally be decomposed into three groups: those between the sites
in T

+
L , those between the sites in T

−
L and those involving both halves

of the torus:

−HL=
1
2

∑

x,y∈T
+
L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
A

+
1
2

∑

x,y∈T
−
L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
ϑA

+
d∑

i=1

∑

x∈T
+
L

y∈T
−
L

J (L)
xy S

(i)
x S

(i)
y

︸ ︷︷ ︸
Ri

(5.12)

where we used the reflection symmetry of the J (L)
xy to absorb the 1/2

into the sum at the cost of confining x to T
+
L and y to T

−
L . The first

two terms identify A and ϑA; it remains to show that the Ri-term can
be written as

∑
αCα ϑCα. We proceed on a case-by-case basis:

Nearest-neighbor interactions: Here

Ri =
1
2d

∑

〈x,y〉
x∈T

+
L

y∈T
−
L

S(i)
x S

(i)
y (5.13)

which is of the desired form since Sy = ϑ(Sx) whenever x and y con-
tribute to the above sum.

Yukawa potentials : We will only prove this in d = 1; the higher
dimensions are harder but similar. Note that if P passes through the
origin and x ∈ T

+
L and y ∈ T

−
L ,

J (L)
xy = C

∑

n≥0

e−μ(|x|+|y|+nL) (5.14)

Hence,

Ri = C
∑

n≥0

e−μnL
( ∑

x∈T
+
L

e−μ|x|S(i)
x

)( ∑

y∈T
−
L

e−μ|y|S(i)
y

)
(5.15)

which is of the desired form.
Power-law potentials: Here we note

1
|x− y|s1

=
∫ ∞

0
dμμs−1e−μ|x−y|1 (5.16)

which reduces the problem to the Yukawa case. ��
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We remark that Corollary 5.3 allows a minor generalization: if a
torus measure μ is RP, and a torus Hamiltonian HL takes the form
(5.10), then also the measure e−βHLdμ is RP. This may seem to be
a useful tool for constructing RP measures; unfortunately, we do not
know any natural measures other than product measures for which RP
can be shown directly.

5.2 Gaussian Domination

Now we are in a position to start proving the infrared bound. First we
introduce its integral version known under the name Gaussian domi-
nation:

Theorem 5.6 (Gaussian Domination). Let (Jxy) be one of the three
interactions above. Fix β ≥ 0 and for h = (hx)x∈TL

∈ (Rν)TL define

ZL(h) := E⊗
μ0

(
exp

{
−β

∑

x,y∈TL

J (L)
xy |Sx − Sy + hx − hy|2

})
(5.17)

Then
ZL(h) ≤ ZL(0) (5.18)

Proof. Let HL denote the sum in the exponent. It is easy to check
that HL is of the form

−HL = A+ ϑB +
∑

α

Cα ϑDα (5.19)

Indeed, for h ≡ 0 this is simply Lemma 5.5 as the diagonal terms
can always by absorbed into the a priori measure. To get h �≡ 0 we
replace Sx by Sx + hx at each x. This changes the meaning of the
original terms A and Cα — and makes them different on the two halves
of the torus — but preserves the overall structure of the expression.

A fundamental ingredient is provided by Lemma 5.3 which yields

ZL(h)2 ≤ ZL(h+)ZL(h−) (5.20)

where h+ := h on T
+
L and h+ := ϑh on T

−
L , and similarly for h−. Now

let us show how this yields (5.18): Noting that ZL(h) → 0 whenever
any component of h tends to ±∞, the maximum of ZL(h) is achieved
at some finite h. Let h
 be a maximizer for which

N(h) := #
{
〈x, y〉 : hx �= hy

}
(5.21)
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is the smallest among all maximizers. We claim that N(h
) = 0. Indeed,
if N(h
) > 0 then there exists a plane of reflection P through bonds
such that P intersects at least one bond 〈x, y〉 with h
x �= h
y. Observe
that then

min
{
N(h
+), N(h
−)

}
< N(h
) (5.22)

Suppose without loss of generality that N(h
+) < N(h
). Then the fact
that h
 was a maximizer implies

ZL(h
)2 ≤ ZL(h
+)ZL(h
−) ≤ ZL(h
+)ZL(h
) (5.23)

which means
ZL(h
) ≤ ZL(h
+) (5.24)

i.e., h
+ is also a maximizer. But that contradicts the choice of h
 by
which N(h
) was already minimal possible. It follows that N(h
) = 0,
i.e., h
 is a constant. Since Z(h+ c) = Z(h) for any constant c, (5.18)
follows. ��

Now we can finally pay an old debt and prove the infrared bound:
Proof of Theorem 3.3. To ease the notation, we will write throughout

〈η, ζ〉 :=
∑

x∈TL

ηxζx (5.25)

to denote the natural inner product on L2(TL). First we note that for
any (ηx) ∈ (Rν)TL ,

∑

x,y∈TL

J (L)
xy |ηx − ηy|2 = 〈η,G−1

L η〉 (5.26)

where GL is as in (3.18). (Indeed, in Fourier components, Ĝ−1
L (k) =

1− Ĵ(k).) As is easy to check,

ZL(h) = E⊗
μ0

(
e−β〈S+h,G−1

L (S+h)〉)

= ZL(0)EμL,β

(
e−2β〈h,G−1

L S〉−β〈h,G−1
L h〉) (5.27)

where μL,β is the torus Gibbs measure. The statement of Gaussian
domination (5.18) is thus equivalent to

EμL,β

(
e−2β〈h,G−1

L S〉) ≤ eβ〈h,G
−1
L h〉 (5.28)

We will now use invertibility of GL to replace G−1
L h by h. This yields
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EμL,β

(
e−2β〈h,S〉) ≤ eβ〈h,GLh〉 whenever

∑

x∈TL

hx = 0 (5.29)

where the latter condition comes from the fact that G−1
L annihilates

constant functions. Next we expand both sides to quadratic order in h:

1− 2βEμL,β

(
〈h, S〉

)
+

4β2

2
EμL,β

(
〈h, S〉2

)
+ · · ·

≤ 1 + β〈h,GLh〉+ · · · (5.30)

Since EμL,β
(S) is constant, EμL,β

(〈h, S〉) = 〈h,EμL,β
(S)〉 = 0 and we

thus get

EμL,β

(
〈h, S〉2

)
≤ 1

2β
〈h,GLh〉 (5.31)

Finally, choose hx := vxêi, for some orthonormal basis vectors êi in R
ν .

This singles out the i-th components of the spins on the left-hand side
and has no noticeable effect on the right-hand side (beyond replacing
vectors hx by scalars vx). Summing the result over i = 1, . . . , ν we get
the dot product of the spins on the left and an extra factor ν on the
right-hand side. ��

5.3 Chessboard Estimates

The proof of the infrared bound was based on Lemma 5.3 which boils
down to the Cauchy-Schwarz inequality for the inner product

f, g �→ Eμ(f ϑg) (5.32)

In this section we will systematize the use of the Cauchy-Schwarz
inequality to derive bounds on correlation functions. The key
inequality — referred to as the chessboard estimate — will turn out
to be useful in the proofs of phase coexistence in specific spin systems
(even those to which the IRB technology does not apply).

Throughout we will restrict attention to reflections through planes
of sites as this is somewhat more useful in applications (except for
quantum systems). Pick two integers, B < L, such that B divides
L and L/B is even. Fixing the origin of the torus, let ΛB the block
corresponding to {0, 1, . . . , B}d — i.e., the block of side B with lower-
left corner at the origin. We may cover TL by translates of ΛB,

TL =
⋃

t∈TL/B

(ΛB +Bt) (5.33)
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noting that the neighboring translates share the vertices on the adjacent
sides. (This is the specific feature of the setup based on reflections
through planes of sites.) The translates are indexed by the sites in a
“factor torus” TL/B.

Definition 5.7. A function f : ΩTL → R is called a B-block function
if it depends only on {Sx : x ∈ ΛB}. An event A ⊂ ΩTL is called a
B-block event if 1A is a B-block function.

Given a B-block function f , and t ∈ TL/B, we define ϑtf be the
reflection of f “into” ΛB +Bt. More precisely, for a self-avoiding path
on TL/B connecting ΛB to ΛB + Bt, we may sequentially reflect f
along the planes between the successive blocks in the path. The result
is a function that depends only on {Sx : x ∈ ΛB + Bt}. Due to the
commutativity of the reflections, this function does not depend on the
choice of the path, so we denote it simply by ϑtf . Note that since
reflections are involutive, ϑ2 = id, there are only 2d distinct functions
one can obtain from f modulo translations.

Theorem 5.8 (Chessboard Estimate). Suppose μ is RP with re-
spect to all reflections between the neighboring blocks of the form ΛB +
Bt, t ∈ TL/B. Then for any B-block functions f1, . . . , fm, and any
distinct t1, . . . , tm ∈ TL/B,

Eμ

( m∏

j=1

ϑtjfj

)
≤

m∏

j=1

[
Eμ

( ∏

t∈TL/B

ϑtfj

)](B/L)d

(5.34)

Here is a version of this bound for events: If A1, . . . ,Am are B-block
events and t1, . . . , tm are distinct elements of TL/B, then

μ
( m⋂

j=1

ϑtj (Aj)
)
≤

m∏

j=1

[
μ
( ⋂

t∈TL/B

ϑt(Aj)
)](B/L)d

(5.35)

where
ϑt(A) := {ϑt1A = 1} (5.36)

Note that the exponent (B/L)d is the reciprocal volume of the torus
TL/B. (This is consistent with the fact that both expressions transform
homogeneously under the scaling fj → λjfj with λj ≥ 0.)
Proof of Theorem 5.8. We will assume throughout that Eμ(f ϑf) = 0
implies f = 0. (Otherwise, one has to factor out the ideal of such
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functions and work on the factor space.) We will first address the 1D
case; the general dimensions will be handled by induction.

Abbreviate 2n := L/B and fix a collection of non-zero functions
f1, . . . , f2n. Define a multilinear functional F on the set of B-block
functions by

F (f1, . . . , f2n) := Eμ
( 2n∏

t=1

ϑtft

)
(5.37)

Noting that F (fj , . . . , fj) > 0, we also define

G(f1, . . . , f2n) :=
F (f1, . . . , f2n)

∏2n
j=1 F (fj , . . . , fj)

1
2n

(5.38)

These objects enjoy a natural cyclic invariance,

F (f1, . . . , f2n) = F (f2n, f1, . . . , f2n−1) (5.39)

and, similarly,

G(f1, . . . , f2n) = G(f2n, f1, . . . , f2n−1) (5.40)

The definition of G also implies

G(f, . . . , f) = 1 (5.41)

Finally, Cauchy-Schwarz along the plane separating f1 from f2n and fn
from fn+1 yields

G(f1, . . . , f2n) ≤ G(f1, . . . , fn, fn, . . . , f1)
1/2

× G(f2n, . . . , fn+1, fn+1, . . . , f2n)
1/2 (5.42)

This will of course be the core estimate of the proof.
The desired claim will be proved if we show that

G(f1, . . . , f2n) ≤ 1 (5.43)

i.e., that G is maximized by 2n-tuples composed of the same function.
We will proceed similarly as in the proof of Gaussian Domination: Given
a 2n-tuple of B-block functions, (f1, . . . , f2n), let (g1, . . . , g2n) be such
that

(1) gi ∈ {f1, . . . , f2n} for each i = 1, . . . , 2n
(2) G(g1, . . . , g2n) maximizes G over all such choices of g1, . . . , g2n
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(3) g1, . . . , g2n is minimal in the sense that it contains the longest
block (counted periodically) of the form fi, fi, . . . , fi, for some i ∈
{1, . . . , 2n}.

Let k be the length of this block and, using the cyclic invariance, assume
that the block occurs at the beginning of the sequence g1, . . . , g2n, i.e.,
we have g1, . . . , gk = fi (with gk+1 �= fi unless k = 2n).

We claim that k = 2n. Indeed, in the opposite case, k < 2n, we must
have g2n �= fi whereby (5.42) combined with the fact that (g1, . . . , g2n)
is a maximizer of G imply

G(g1, . . . , g2n)2≤G(g1, . . . , gn, gn, . . . , g1)G(g2n, . . . , gn+1, gn+1, . . . , g2n)
≤ G(g1, . . . , gn, gn, . . . , g1)G(g1, . . . , g2n)

(5.44)
i.e.,

G(g1, . . . , g2n) ≤ G(g1, . . . , gn, gn, . . . , g1) (5.45)

This means that (g1, . . . , gn, gn, . . . , g1) is also a legitimate maximizer
of G but it has a longer constant block — namely of length at
least min{2k, 2n}. This is a contradiction and so we must have k = 2n
after all. In light of (5.41–5.43), this proves the claim in d = 1.

To extend the proof to d > 1, suppose that m = (L/B)d and assume,
without loss of generality, that we have one function ft for each block
ΛB +Bt. Writing

∏

t∈TL/B

ϑtft =
2n∏

j=1

( ∏

t∈TL/B

t1=j

ϑtft

)
(5.46)

we may apply the 1D chessboard estimate along the product over j.
This homogenizes the product over ft in the first coordinate direc-
tion. Proceeding through all directions we eventually obtain the desired
claim. ��

The chessboard estimate allows us to bound the probability of si-
multaneous occurrence of distinctly-placed B-block events in terms of
their disseminated versions

⋂
t∈TL/B

ϑt(A). The relevant quantities to
estimate are thus

zL(A) := μ
( ⋂

t∈TL/B

ϑt(A)
)(B/L)d

(5.47)

The set function A �→ zL(A) is not generally additive. However, what
matters for applications is that it is subadditive:
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Lemma 5.9 (Subadditivity). Let A and A1,A2, . . . , be a collection
of B-block events such that

A ⊂
⋃

k

Ak (5.48)

Then
zL(A) ≤

∑

k

zL(Ak) (5.49)

Proof. First we use the subadditivity of μ and (5.48) to get

zL(A)|TL/B | = μ
( ⋂

t∈TL/B

ϑt(A)
)

≤
(5.48)

∑

(kt)

μ
( ⋂

t∈TL/B

ϑt(Akt)
)

(5.50)

Next we apply the chessboard estimate

μ
( ⋂

t∈TL/B

ϑt(Akt)
)
≤

∏

t∈TL/B

zL(Akt) (5.51)

to each term on the right hand side. Finally we apply the distributive
law for sums and products with the result

zL(A)|TL/B | ≤
∑

(kt)

∏

t∈TL/B

zL(Akt)

=
∏

t∈TL/B

∑

k

zL(Ak) =
(∑

k

zL(Ak)
)|TL/B | (5.52)

Taking the |TL/B|-th root now yields the desired claim. ��
Here is how subadditivity zL is generally used in computations: In

order to estimate the zL-value of an event, we first cover it by the union
of a collection of smaller — and, as desired, easier to compute-with —
events, then evaluate the zL-value for each of them and, finally, add the
results.

In estimates, we often work with the limiting version,

z(A) := lim
L→∞

zL(A) (5.53)

of this quantity. We may interpret this as a partition function per site
restricted to event A on each B-block. The advantage of taking the
limit is that it often washes out some annoying finite-size factors and
thus provides a more tractable expression to work with. In addition, the
limit can be computed using arbitrary — not just periodic — boundary
conditions.
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5.4 Diagonal Reflections, Other Lattices

The above proof of the chessboard estimate is tailored to the under-
lying setting of the hypercubic lattice, primarily because of its use
of the orthogonality between the principal lattice directions. However,
some practical problems may lead us to the consideration of other lat-
tices. Some cases generalize directly, e.g., certain instances of the body-
centered cubic (BCC) or face-centered cubic (FCC) lattices, whose unit
cells look respectively as follows:

Both of these are decorations of the cubic lattice in which an extra
vertex placed in the center of each unit cube (BCC) or a face (FCC)
and is attached by edges to the vertices in its ultimate vicinity.

Assuming the interaction (2.15) with Jxy non-zero and positive only
for adjacent (i.e., nearest-neighbor) pairs of vertices, the torus Gibbs
measure is reflection positive for reflections both through and between
the planes of sites of Z

3. (A key observation is that the planes between
sites of Z

3 contain some of the added vertices but bisect no additional
edges.) The strengths of the interactions across the “old” and “new”
edges may not even be the same.

In d = 2, a corresponding graph is the lattice with a vertex placed
in the middle of each square of Z

2 and edges from it to each of the four
corners thereof. By the same reasoning, the nearest-neighbor ferromag-
netic interaction leads to a reflection positive torus Gibbs measure.

The situation becomes more involved for the triangular (two-dimen-
sional) lattice, whose standard embedding into the complex plane C has
vertices

m+ n eiπ/3, m, n ∈ Z (5.54)

and an edge between any pair of such vertices that differ by a number
in the set {1, eiπ/3, ei2π/3}. The principal problem with such graphs is
how to place a finite piece of this lattice on a torus in a way that gives
rise to reflection positive measures. Here is a convenient choice:
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with the torus obtained by identifying the vertices on the opposite sides.
The allowed planes of reflection are all horizontal lines (reflections

through sites) and the vertical lines (reflections through both sites
and bonds). Again, for ferromagnetic nearest-neighbor interactions, the
Gibbs measure with interaction (2.15) is reflection positive. A minor,
though annoying, problem occurs in the application of chessboard es-
timates because the vertical lines of reflections actually cut through
triangles. A solution is to focus only on those events that lie either
on white or on gray triangles in the above picture and use reflection
only with respect to vertical lines that do not cut through the chosen
triangles.

A completely analogous situation occurs for the honeycomb lattice.
Here we consider the domain of the form

and wrap it into a torus by identifying the vertices on the opposite side.
Again, for nearest-neighbor ferromagnetic interactions, the resulting
Gibbs measure is reflection positive with respect to reflections in verti-
cal lines on sites and horizontal lines between sites. In the application
of chessboard estimates to a collection of “hexagon events,” we only
use every other horizontal and vertical reflections to a corresponding
subset of these events; e.g., those sitting on the shaded hexagons.
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A final case of interest is that of diagonal reflections in Z
d. In d = 2,

this is achieved by wrapping the domain of the form

periodically into a torus. Reflections in the horizontal and vertical
lines of sites — the diagonals — are now symmetries of this graph;
for nearest-neighbor interactions (of any sign) the corresponding torus
Gibbs measure is reflection positive.

The advantage of the diagonal torus is that it permits the use of re-
flection positivity on collections of “bond events,” i.e., those associated
with pairs of nearest-neighbor spins. Subsequent applications of chess-
board estimates disseminate a single-bond event over the entire torus.
This, in turn, helps in estimates of the quantity z(A) whenever A is an
event depending on a single square that is itself an intersection of bond
events:

Lemma 5.10. Given a unit cube in Z
d, let Ab, with b running over all

of the cd := d2d−1 edges in this cube, be a collection of bond events.
Then

z

(⋂

b

Ab
)
≤

∏

b

z(Ab)1/cd (5.55)

Here z(Ab) is the partition function per site restricted to configurations
such that Ab, or its corresponding reflection, occurs at all edges of Z

d.

Proof. Let us first focus on d = 2. The key fact is that the partition
function per site, z(A), does not depend on what boundary conditions
were used to define it. So, in order to compute z of the intersection
event, we may first wrap the square lattice into the diagonal torus, and
disseminate the bond events before passing to the L → ∞. As there
are c2 = 4 edges in each lattice square, there is an extra power of 1/4.

In d > 2, we perform the same by singling out two lattice direc-
tions and wrapping the torus diagonally in these, and regularly in the
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remaining ones. This homogenizes the event in two lattice directions.
Proceeding by induction, the claim follows. ��

5.5 Literature Remarks

The material of this section is entirely classical; a possible exception
is Lemma 5.9 which seems to have been formulated in the present
form only relatively recently [13]. The use of reflection positivity goes
back to the days of constructive quantum field theory (namely, the
Osterwalder-Schrader axioms [84]) where RP was a tool to obtain a
sufficiently invariant — and natural — inner product. The use in sta-
tistical mechanics was initiated by the work of Fröhlich, Simon and
Spencer [50] (infrared bound) and Fröhlich and Lieb [48] (chessboard
estimates). The theory was further developed in two papers by Fröhlich,
Israel, Lieb and Simon [46, 47]. There have been a couple of nice reviews
of this material, e.g., by Shlosman [95] and in Georgii [57].

All use of reflection positivity in these notes is restricted to one of
the three interactions introduced in Chapter 3. Various generalizations
beyond these are possible. For instance, the n.n. interaction of strength
J may be accompanied by a n.n.n. interaction of strength λ— including
negative values — and the result is still RP provided J ≥ 2(d − 1)|λ|.
For reflections through planes of sites, we may even allow any sort of
interactions involving the spins in a given lattice cube. (This exhausts
all finite range interactions; any longer range RP interactions are au-
tomatically infinite range.) Many other examples are discussed, e.g.,
in [46, page 32].

Notwithstanding our decision to restrict attention only to three spe-
cific interactions, the set of reflection positive interactions is not so
small as it may appear. Indeed, in the class of translation and rotation
invariant coupling constants, letting

F (x1, . . . , xd) := J0,x (5.56)

we check that a sufficient conditions for RP is that the matrix

(x, y) �→ F (x1 + y1, x2 − y2, . . . , xd − yd)1{x1>0}1{y1>0} (5.57)

is positive semidefinite. (See (5.15) for a specific case of this.) By Shur’s
Theorem — namely that if (aij) and (bij) are positive semidefinite
matrices, then so is (aijbij) — we thus know that if J (1) and J (2) are
two collections of RP couplings, then also the collection J (1)

xy J
(2)
xy is RP.

In particular, the set of RP couplings is closed under taking products.
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The situation on other lattices is discussed in [47]; the use of diago-
nal reflections goes back to [95]. We caution the reader that it is rather
easy to make a mistake in this context. For instance, the regularly-
wrapped (L × L) torus in Z

2 is also symmetric with respect to all of
the diagonal reflections. However, for diagonal reflection on direct torus
it is not possible to define two components of the “plane of reflection”
so that the reflection in one leaves the other intact. So we cannot si-
multaneously use both direct and diagonal reflections, and this prevents
a direct proof of (5.55) in finite volume. (This error appeared in [17,
eq. 4.39] though, as shown in Lemma 5.10, all differences get washed
out in the thermodynamic limit.)

Gaussian domination appears in a rather different context as the
celebrated Brascamp-Lieb inequality. Consider the measure on R

n of
the form

μ(dx) := Z−1e−V (x)dx (5.58)

with V smooth and strictly convex. Let V ′′(x) be the Hessian, i.e., an
n × n matrix of all second derivatives of V . Then for each smooth f
with compact support,

Eμ(f2)− (Eμf)2 ≤
∫

dx
〈
(V ′′)−1∇f(x),∇f(x)

〉
(5.59)

where 〈·, ·〉 denote the n-dimensional Euclidean inner product. In par-
ticular, if Q is a positive definite n × n matrix that dominates the
Hessian from below at all x, then the correlations of μ are dominated
by those of the Gaussian measure with covariance 2Q−1. This is, un-
fortunately, not very useful in the analysis of the Gibbs measures for
general lattice spin systems as these are generally not of the required
form — e.g., because the restriction to a specific spin-space (a unit
sphere for the Heisenberg model) cannot be approximated by convex
functions.

6 Applications of Chessboard Estimates

In this section we will apply the technique of chessboard estimates to
obtain proofs of phase coexistence in some lattice spin models. The
arguments will be carried out in detail only for one rather simple ex-
ample. For more sophisticated systems we present only the important
ideas. Details, anyway, can be found in the corresponding papers.
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6.1 Gaussian Double-well Model

Here we will demonstrate the use of chessboard estimates on the model
of a Gaussian free-field model in a non-quadratic, double-well on-site
potential. The Hamiltonian takes the general form

βH(φ) := β
∑

〈x,y〉
(φx − φy)2 +

∑

x

V (φx) (6.1)

where φx ∈ R with a priori measure given by the Lebesgue mea-
sure, and V is a potential. Note that β has been incorporated into
the Hamiltonian in such a way that the on-site potential remains inde-
pendent of it.

The most well known example of such systems is V (φ) := κ
2φ

2

with κ > 0 which is known as the massive Gaussian free field. This
case can of course be treated completely explicitly; e.g., on the torus the
corresponding Gaussian measure on (φx) is zero-mean with covariance

Cov(φx, φy) =
∑

k∈T
�
L

eik·(x−y)

βD̂(k) + κ
(6.2)

where D̂(k) is the Fourier transform of the torus (discrete) Laplacian,

D̂(k) :=
d∑

j=1

|1− eikj |2 (6.3)

Note that the inclusion of the mass, κ > 0 — more precisely, κ is the
mass squared — makes the covariance regular even for the zero mode
k = 0.

We will look at a modification of this case when V takes the form

V(φ)

φ
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In fact, we will be even more specific and assume that V is simply
given by

e−V (φ) := e−
κ
2
(φ−1)2 + e−

κ
2
(φ+1)2 (6.4)

It is easy to check that, for κ sufficiently large, V defined using this
formula looks as in the figure. The reason for assuming (6.4) is the pos-
sibility of an Ising-spin representation. Indeed, we may rewrite (6.4) as

e−V (φ) =
∑

σ=±1

e−
κ
2
(φ−σ)2 = C

∑

σ=±1

e−
κ
2
φx−κφxσx (6.5)

where C := e−κ. A product of such terms is thus proportional to
∏

x

e−V (φx) ∝
∑

(σx)

∏

x

e−
κ
2
φ2

x−κφxσx (6.6)

This means we can write the Gibbs weight of the model as follows

e−β
∑

〈x,y〉(φx−φy)2−
∑

x V (φx)

∝
∑

(σx)

e−β
∑

〈x,y〉(φx−φy)2−κ
2

∑
x φ

2
x e−κ

∑
x φxσx (6.7)

If we elevate (σx) to genuine degrees of freedom, we get a model on
spins Sx := (φx, σx) with a priori law Lebesgue on R× counting mea-
sure on {−1, 1} and the Hamiltonian

βH(φ, σ) := β
∑

〈x,y〉
(φx − φy)2 +

κ

2

∑

x

φ2
x + κ

∑

x

φxσx (6.8)

Notice the first two terms on the right-hand side is the Hamiltonian of
the massive (centered) Gaussian free field while the interaction between
the φ’s and the σ’s has on-site form.

Here are some observations whose (simple) proof we leave to the
reader:

Lemma 6.1. Let μ be a Gibbs measure for Hamiltonian (6.8) and let ν
be its φ-marginal. Then ν is a Gibbs measure for the Hamiltonian (6.1)
subject to (6.4). The marginal ν completely determines μ: For any f
depending only on φ and σ in a finite set Λ,

Eμ(f) = Eν
( ∑

(σx)x∈Λ

f(φ, σ)
∏

x∈Λ
eV (φx)−κ

2
(φx−σx)2

)
(6.9)
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We will use Gβ,κ to denote the set of all Gibbs measures for the
Hamiltonian (6.8) with parameters β and κ. The principal result for
this model is as follows:

Theorem 6.2. Let d ≥ 2. For each ε > 0 there is c > 0 such that
if κ, κ/β > c, then there exist μ+, μ− ∈ Gβ,κ which are translation in-
variant and obey

μ±(σx = ±1) ≥ 1− ε (6.10)

and
Eμ±

(
(φx ∓ 1)2

)
≤ ε (6.11)

In simple terms, at low temperatures and large curvature of the wells
of V , the fields prefer to localize in one of the wells. We remark that,
while we chose the model as simple as possible, a similar conclusion
would follow for V given by

e−V (φ) = e−
κ+
2

(φ−1)2+h + e−
κ−
2

(φ+1)2−h. (6.12)

where h changes the relative weight of the two minima. Indeed, there
exists ht at which one has two Gibbs measure — the analogues of μ+

and μ−. Moreover, if κ+ � κ−, then ht > 0 because, roughly speaking,
the well at −1 offers “more room” for fluctuations.

6.2 Proof of Phase Coexistence

Here we will prove Theorem 6.2. We will focus on d = 2; the proof in
general dimension is a straightforward, albeit more involved, general-
ization.

Let us refer to a face of Z
2 as a plaquette (i.e., a plaquette is a

square of side one with a vertex of Z
2 in each corner). Given a spin

configuration (σx), we say that a plaquette is good if all four spins take
the same value, and bad otherwise. Let B denote the event that the
plaquette with lower-left corner at the origin is bad.

Since the interaction is that of the GFF with a modified single-spin
measure, the torus Gibbs measure is RP. The crux of the proof is to
show that bad plaquettes are suppressed. Specifically, we want to show
that

z(B) � 1 once β, κ� 1 (6.13)

Appealing to the subadditivity lemma (Lemma 5.9) we only need to
estimate the z-value of all possible configurations on the plaquette that
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constitute B. Due to the plus-minus symmetry of the σ’s, it suffices to
examine three patterns:

+
−
−
+

+
+
−
−

+
−

+
+

(6.14)

We begin with the most interesting of the three:

Lemma 6.3. For any β, κ > 0,

z
(
+
−
−
+
)
≤ e−

4βκ
8β+κ (6.15)

Proof. Let ZL :=
∑
σ

∫
e−βHL(φ,σ)

∏
x∈TL

dφx be the torus partition
function. Given a plaquette spin pattern, let ZL(pattern) denote the
same object with σ fixed to the disseminated pattern — the sole element
of

⋂
t∈TL

ϑt(pattern). (We are working with B = 1.) By the definition
of z we have

zL
(
+
−
−
+
)|TL| :=

ZL
(
+
−
−
+
)

ZL
≤
ZL

(
+
−
−
+
)

ZL
(
+
+

+
+
) (6.16)

Now the partition function with all σ’s restricted to + is given by

ZL
(
+
+

+
+
)

=
∫

e−β
∑

〈x,y〉(φx−φy)2−κ
2

∑
x φ

2
x e−κ

∑
x φx

∏

x∈TL

dφx

=
(
. . .

)
EGFF

(
e−κ

∑
x φx

)
(6.17)

where the expectation is with respect to the massive Gaussian free
field and the prefactor denotes the integral of the Gaussian kernel over
all φx. Similarly we obtain

ZL
(
+
−
−
+
)

=
(
. . .

)
EGFF

(
e−κ

∑
x φx(−1)|x|) (6.18)

where we noticed that by disseminating the pattern +
−
−
+ we obtain a

configuration which is one at even parity x and minus on at odd par-
ity x. Thus we conclude

zL
(
+
−
−
+
)|TL| ≤

EGFF

(
e−κ

∑
x φx

)

EGFF

(
e−κ

∑
x φx(−1)|x|

) (6.19)

i.e., we only need to compute the ratio of the Gaussian expectations,
and not the prefactors.

Next we recall a standard formula for Gaussian moment generating
functions: If X is a multivariate Gaussian, then
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E(eλ·X) = eλ·EX+ 1
2
Var(λ·X) (6.20)

Since EGFF(φx) = 0, we only need to compute the (diagonal) ma-
trix element of Cov(φx, φy) against vectors 1 = (1, 1, . . . ) and (−1)|x|.
However, a quick look at (6.2) will convince us that these functions
are eigenvectors of the covariance matrix corresponding to k = 0 and
k = (π, π), respectively. Since D̂(0) = 0 while D̂(π, π) = 8, we get

VarGFF

(∑

x

φx

)
=
|TL|
κ

(6.21)

VarGFF

(∑

x

φx(−1)|x|
)

=
|TL|

8β + κ
(6.22)

where the factor |TL| is the (square of) the L2(TL)-norm of the func-
tions under consideration. Plugging this in (6.19) we conclude

zL
(
+
−
−
+
)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
8β + κ

− 1
κ

)}
(6.23)

from which the claim readily follows. ��
Next we attend to the other patterns:

Lemma 6.4. For any β, κ > 0,

z
(
+
+
−
−) ≤ e−

2βκ
4β+κ (6.24)

and
z
(
+
−

+
+
)
≤ e−

2βκ
8β+κ (6.25)

Proof. As for (6.24), dissemination of +
+
−
− leads to alternating stripes

of plusses and minuses, i.e., σx = (−1)|x1|. Again, this is an eigenvector
of the covariance matrix (6.2) with k = (π, 0). The corresponding D̂
equals 4 and so

zL
(
+
+
−
−)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
4β + κ

− 1
κ

)}
(6.26)

yielding (6.24).
The pattern +

−
+
+ is more complex because its dissemination will not

lead to an eigenvector of the covariance matrix. However, we circumvent
this problem by noting that Lemma 5.10 implies

z
(
+
−

+
+
)
≤ z

(
+
−
−
+
)1/2z

(
+
+

+
+
)1/2 ≤ z

(
+
−
−
+
)1/2 (6.27)

where we used z
(
+
+

+
+
)
≤ 1. Now (6.25) follows from Lemma 6.3. ��



64 M. Biskup

Corollary 6.5. For each ε > 0 there exists a > 0 such that if β, κ > a,
then z(B) ≤ ε.

Proof. The event B can be written as the union over a finite number
of bad patterns. On the basis of Lemmas 6.3–6.4 the claim holds for B
replaced by any fixed bad pattern. The desired bound now follows —
with slightly worse constants — by invoking Lemma 5.9. ��

Next we explain our focus on the bad event:

Lemma 6.6. There exists a constant c ∈ (1,∞) such that if cz(B) < 1/2

then for any x, y ∈ TL,

μL(σx = 1, σy = −1) ≤ 2cz(B). (6.28)

Proof. This is a consequence of a simple Peierls’ estimate. Indeed, if
σx = 1 and σy = −1, then x is separated from y by a “circuit” of
bad plaquettes. (Formally, either all plaquettes containing x are bad
or there exists a non-trivial connected component of good — i.e., not
bad — plaquettes containing x. This component cannot cover the whole
torus because σy = −1; the above “circuit” is then comprised of the
bad plaquettes on the boundary of this component.) This means that

μL(σx = 1, σy = −1) ≤
∑

γ

μL

( ⋂

t∈γ
ϑt(B)

)
≤

∑

γ

z(B)|γ| (6.29)

where |γ| denotes the maximal number of disjoint bad plaquettes in γ
and where we used the chessboard estimates to derive the second
bound. By standard arguments, the number of circuits of “length” n
surrounding x or winding around TL at least once is bounded by cn,
for some constant c > 1. It follows

μL(σx = 1, σy = −1) ≤
∑

n≥1

cnz(B)n (6.30)

Under the condition cz(B) < 1/2 this sum is less than twice its first
term. ��

Finally, we can assemble the ingredients into the desired proof of
phase coexistence:
Proof of Theorem 6.2. By symmetry of the torus measure, we have

μL(σx = 1) = 1/2 = μL(σx = −1). (6.31)

Let z be a site at the back of the torus — that is distant at least L/2
from the origin — and define
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μ±L (−) := μL(−|σz = ±1). (6.32)

These measures satisfy the DLR condition with respect to any func-
tion that depends only on the “front” of the torus and so any weak
cluster point of these measures will be an infinite-volume Gibbs mea-
sure. Extract such measures by subsequential limits and call them μ+

and μ−, respectively.
We claim that μ+ �= μ−. Indeed, by Lemma 6.6 we have

μ+
L (σx = −1) ≤ 2cz(B) (6.33)

once z(B) � 1 and, by Corollary 6.5, this actually happens once
β, κ� 1. Thus if, say, 2cz(B) ≤ 1/4, then μ+

L (σx = −1) ≤ 1/4 and,
at the same time, μ−L (σx = +1) ≤ 1/4. The same holds for the limiting
objects and so μ+ �= μ−. Note that the measures can be averaged over
shifts so that they become translation invariant. ��

Notice that in the last step of the proof we used, rather conve-
niently, the plus-minus symmetry of the torus measure. In the asym-
metric cases, e.g., (6.12), one can either invoke a continuity argument —
choose h = hL such that (6.31) holds — or turn (6.28) into the proof
that |TL|−1

∑
x∈TL

σx will take values in [−1,−1 + ε] ∪ [1− ε, 1] with
probability tending to one as L→∞. The latter “forbidden-gap” argu-
ment is rather robust and extends, with appropriate modifications, to
all shift-ergodic infinite-volume Gibbs measures. Hence, the empirical
magnetization in ergodic measures cannot change continuously with h.

To prove Theorem 6.2, it remains to show the concentration of
the φ’s around the σ’s:
Proof of (6.11). Let μ be a Gibbs measure for parameters β and κ.
Then (6.8) shows that, conditional on the σ’s, the φ’s are Gaussian
with mean

Eμ(φx|σ) = κ
(
(2βΔ+ κ)−1σ

)
x

(6.34)

and covariance (2βΔ + κ)−1, where Δ is the lattice Laplacian. Now,
once β/κ � 1 we may expand the inverse operator into a power series
to get

Eμ(φx|σ)− σx =
∑

n≥1

(2β
κ

)n
(Δnσ)x (6.35)

which by the fact that |σz| = 1 is O(β/κ) independently of x. Since the
conditional variance of φx is O(1/κ), we obtain

Eμ
(
(φx − σx)2

∣∣σ
)
≤ 2Eμ

(
[φx − E(φx|σ)]2

∣∣σ
)

+ 2
(
E(φx|σ)− σx

)2

= O
(
(β/κ)2

)
+O(1/κ)

(6.36)
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with the constants implicit in the O’s independent of the σ’s and x.
Thus, if κ� 1 and κ/β � 1, then (6.11) follows by the fact that μ± put
most of the mass on σx = ±1. ��

6.3 Gradient Fields with Non-convex Potential

Having demonstrated the use of chessboard estimates on a toy model,
we will proceed to discuss more complicated systems. We begin with an
example which is somewhat similar to the Gaussian double-well model.

A natural generalization of the massless GFF is obtained by re-
placing the quadratic gradient interaction by a general, even function
of the gradients. The relevant Hamiltonian (again with temperature
incorporated in it) is

βH(φ) :=
∑

〈x,y〉
V (φx − φy) (6.37)

The requirements that we generally put on V are continuity, evenness
and quadratic growth at infinity. Under these conditions one can always
define finite-volume Gibbs measures.

As to the measures in infinite volume, the massless nature of the
model may prevent existence of a meaningful thermodynamic limit in
low dimensions; however, if one restricts attention to gradient variables,

ηb := φy − φx if b is the oriented edge (x, y), (6.38)

then the infinite-volume Gibbs measures exist, and may be character-
ized by a DLR condition, in all d ≥ 1. We call these gradient Gibbs
measures (GGM). A non-trivial feature of the GGM is that they obey
a host of constraints. Indeed, almost every η is such that

ηb1 + ηb2 + ηb3 + ηb4 = 0 (6.39)

for any plaquette (b1, . . . , b4) with bonds listed (and oriented) in the
counterclockwise direction.

Surprisingly, the classification of all possible translation-invariant,
infinite-volume GGMs can be achieved under the condition that V is
strictly convex:

Theorem 6.7. Suppose V is convex, twice continuously differentiable
with V ′′ bounded away from zero and infinity. Then the shift-ergodic
GGMs μ are in one-to-one correspondence with their tilt, which is a
vector a ∈ R

d such that



Phase Transitions in Lattice Models 67

Eμ(ηb) = a · b (6.40)

for every (oriented) bond b (we regard b as a unit vector for this pur-
pose).

The word tilt comes from the interpretation of a as the slope or
the incline of the interface whose height-gradient along bond b is given
by ηb. The proof of this result — which is due to Funaki and Spohn —
is based on the use of the Brascamp-Lieb inequality through which the
convexity assumption enters in an essential way. It is also known that
the large-scale fluctuation structure of the η’s is that of a Gaussian Free
Field.

A natural question to ask is what happens when V is not convex.
Specific examples of interest might be V taking the form of a double-
well potential — kind of like for the Gaussian double-well model — or
V ’s as in the figure:

V(η) V(η)

η

a

η

b

As it turns out, the double-well case is not quite tractable at the mo-
ment — and most likely behaves like a massless GFF on large scales —
but the other two cases are within reach. We will focus on the case (a)
and, as for the Gaussian double-well model, assume a particular form
of the potential:

e−V (η) := p e−κOη2/2 + (1− p) e−κDη2/2 (6.41)

where κO and κD are positive numbers and p ∈ [0, 1] is a parameter to
be varied. For this system one can prove the following result:

Theorem 6.8. Suppose d = 2 and κO � κD. Then there is pt ∈ (0, 1)
and, for V with p = pt, there are two distinct, infinite-volume, shift-
ergodic GGMs μord and μdis that are invariant with respect to lattice
rotations and have the following properties:

(1) zero tilt:
1
|ΛL|

∑

b=(x,y)
x,y∈ΛL

ηb −→
L→∞

0, μord, μdis-a.s. (6.42)
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(2) distinct fluctuation size:

Eμord
(η2
b ) � Eμdis

(η2
b ) (6.43)

The upshot of this result is that, once the convexity of V is strongly
violated, the conclusions of Theorem 6.7 do not apply. While the ex-
ample is restricted to d = 2, and to potentials of the form (6.41),
generalizations to d ≥ 2 and other potentials as in the above figure are
possible and reasonably straightforward.

Here are the main steps of the proof. First, as for the Gaussian
double-well model, we use (6.41) to expand the Gibbs weight according
to whether the first or the second term in (6.41) applies. This gives rise
to a configuration of coupling strengths (κb), one for each bond b, which
take values in {κO, κD}. The joint Hamiltonian of the η′s and the κ’s is

βH(η, κ) :=
∑

b

κb
2
η2
b (6.44)

The joint measure is RP with respect to reflections through bonds and
sites and, conditional on (κb), the η’s are Gaussian.

For the proof of phase coexistence, we focus on lattice plaquettes
and divide these into good and bad according to whether all of the
edges have the same coupling κ or not. The dissemination of each bad
patterns leads to a Gaussian integral but this time for GFF with inho-
mogeneous — yet periodically varying — couplings. For instance, the
pattern with three bonds of type κO and one of type κD disseminates
into periodic configuration where the edges on every other vertical line
is of type κD and all other edges are of type κO. Similarly for all other
bad patterns.

The periodic nature of the disseminated events allows the use of
Fourier modes — i.e., pass to the reciprocal torus — to diagonalize the
requisite covariance matrices. For instance, the aforementioned pattern
with three κO’s and one κD leads to a configuration which is periodic
with period two. A calculation shows that the covariance is block di-
agonal with 2× 2 blocks of the form

Π(k) :=

(
κO|a−|2 + 1

2(κO + κD)|b−|2 1
2(κO − κD)|b−|2

1
2(κO − κD)|b−|2 κO|a+|2 + 1

2(κO + κD)|b−|2

)

(6.45)
where a± and b± are defined by

a± = 1± eik1 and b± = 1± eik2 (6.46)



Phase Transitions in Lattice Models 69

with k := (k1, k2) varying through one half of the reciprocal torus T
∗
L.

(The block combines the contribution of both k and k+πê1, and so we
only need half of all k’s.) The requisite Gaussian integral then reduces
to

∏
k∈T

∗
L\{0}

[detΠ(k)]−1/4 where in the exponent we get 1/4 instead of
the expected 1/2 to account for double counting of the k’s. To estimate
the growth rate of this product, we note that

∏

k∈T
∗
L\{0}

[detΠ(k)]−1/4

= exp
{
−|TL|

1
4

∫
dk

(2π)2
log detΠ(k) + o(|TL|)

}
(6.47)

The integral plays the role of the free energy associated with the Gaus-
sian variables on the background of the specific periodic configuration
of the κ’s. A similar expression — with different integrand — applies
to each pattern.

Comparing the integrals for all possible arrangements of the two
types of bonds around a plaquette, we find that under the condition
κO � κD, the bad patterns are heavily suppressed. Thus bad plaquettes
are infrequent and can be regarded as parts of a contour. As it is not
possible to pass from all-κO pattern to all-κD pattern without cross-
ing a bad plaquette, the coexistence follows — as for the double-well
model — by a standard Peierls’ argument and chessboard estimates.
Full details of the proof are to be found in a paper by Kotecký and the
present author.

The two-dimensional model has the special feature that we can ac-
tually compute pt:

Theorem 6.9. Let d = 2. If κO/κD � 1, then pt is given by

pt
1− pt

=
(κD

κO

)1/4

. (6.48)

This is a consequence of a duality relation that can be used to
exchange the roles of κO and κD. It is also interesting to note that, while
the one-to-one correspondence between the Gibbs measures and their
tilt is violated for non-convex potentials, the large-scale fluctuation
structure remains that of a Gaussian Free Field. Indeed, we have:

Theorem 6.10. Let d = 2. For each translation-invariant, ergodic gra-
dient Gibbs measure μ with zero tilt, there exists a positive-definite d×d
matrix q = q(μ) such that for any smooth f : R

2 → R with compact sup-
port and

∫
f(x)dx = 0,
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∫

dxφ�x/ε�f(x)
D−→
ε↓0

N
(
0, (f,Q−1f)

)
(6.49)

where N (0, C) denotes a normal random variable with mean zero and
covariance C and Q is the elliptic operator

Qf(x) :=
d∑

i,j=1

qij
∂2

∂xi∂xj
f(x) (6.50)

The basis of this result — derived in all d ≥ 1 by Spohn and the
present author — is the fact that, conditional on the κ’s, the φ’s are
Gaussian with mean zero and covariance given by the inverse of the
generator of a reversible random walk in random environment. The
Gaussian limit is a consequence of an (annealed) invariance principle
for such random walks and some basic arguments in homogenization
theory. The restriction to zero tilt appears crucially in the proof.

6.4 Spin-waves vs Infinite Ground-state Degeneracy

Next we will discuss a couple of spin models whose distinctive feature
is a high degeneracy of their ground state which is removed, at pos-
itive temperature, by soft-mode spin-wave fluctuations. The simplest
example with such property is as follows:

Orbital compass model : Here the spins on Z
d take values in a unit sphere

in R
d, i.e., Sx ∈ S

d−1 with x ∈ Z
d. The Hamiltonian is

H(S) :=
∑

x

d∑

α=1

(S(α)
x − S(α)

x+êα
)2 (6.51)

where S(α)
x denotes the α-th Cartesian component of the spin and êα

is the unit vector in the α-th coordinate direction.
Despite a formal similarity with the Heisenberg model, note that

only one component of the spin is coupled in each lattice direction.
Notwithstanding, every constant configuration is still a minimum-
energy state of (6.51). Further ground states may be obtained from
the constant ones by picking a coordinate direction α and changing the
sign of the α-th component of all spins in some of the “lines” paral-
lel with êα. In d = 2 these are all ground states but in d ≥ 3 other
operations are possible that preserve the minimum-energy property.

The key question is now what happens with this huge ground-state
degeneracy at positive temperatures. Here is a theorem one can prove
about the two-dimensional system:
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Theorem 6.11. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0,
there exist two distinct, shift-ergodic Gibbs measures μ1, μ2 ∈ Gβ such
that

Eμj

(
|Sx · êj |

)
≥ 1− ε, j = 1, 2 (6.52)

Moreover, for any μ ∈ Gβ we have

Eμ(Sx) = 0 (6.53)

and there are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,2Eμ

(
|Sx · êj |

)
< 1− ε.

The main idea underlying the proof is the evaluation of the free
energy associated with spin-wave perturbations of the constant ground
states; it this expected that only the states with the largest contribution
of these fluctuations survive at positive temperatures. Specifically, we
need to quantify the growth rate of the torus partition function with
all spins constrained to lie within Δ of a given direction:

Lemma 6.12. For each ε > 0 there is δ > 0 such that if β,Δ obey

βΔ2 >
1
δ

and βΔ3 < δ (6.54)

then for every v̂θ := (cos θ, sin θ) ∈ S
1,

E⊗μ0

(
e−βHL(S)

∏

x∈TL

1{|Sx−v̂θ|<Δ}
)

=
(2π
β

)L2/2
e−L

2[F (θ)+o(ε)] (6.55)

where

F (θ) :=
1
2

∫
dk

(2π)2
log

{
sin2(θ)|1− eik1 |2 + cos2(θ)|1− eik2 |2

}
(6.56)

The quantity F has the interpretation of the spin-wave free en-
ergy where the term “spin wave” refers to slowly varying deformations
of a constant ground states. A convexity argument — based on the
identity sin2(θ) + cos2(θ) = 1 — now shows that F is minimized by
θ = 0, π/2, π, 3π/2, i.e., exactly in one of the coordinate directions. This
corroborates the intuition that only the configurations with most of the
spins aligned in one of these directions will be relevant at low temper-
atures. However, to extract a proof of phase coexistence, we will have
to again invoke a Peierls’ argument.
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Fix κ > 0 and let Δ := β−
5
12 and B := log β and let BE and BSW

denote the following events:

(1) BE := { a pair of neighboring spins in ΛB differ by an angle ≥ Δ}
(2) BSW is the set of configurations in the complement of BE in which

the block ΛB has all neighboring spins within Δ of each other
with at least κ� Δ from one of the four coordinate directions

The event BE captures the situations when two neighboring spins are
not quite close to each other leading to excess energy order Δ2. As a
result of that,

z(BE) ≤ 3B3e−c3βΔ
2

(6.57)

The event BSW collects the configurations where the energy is good
but the fluctuations are not sufficiently powerful. The calculation in
Lemma 6.12 and a simple use of the subadditivity lemma show

z(BSW) ≤ c1
Δ

e−c2B
3κ2

(6.58)

for some constants c1, c2 > 0. Thus, for our choices of Δ and B,
once β � 1 the density of blocks where BE∪BSW occurs in any typical
configuration from the torus measure will be rather small. However, if a
block is aligned in one coordinate direction and another block is aligned
in a different direction, they must be separated by a “circuit” of bad
blocks. Such circuits are improbable which leads to phase separation.
Details of these calculations — which extend even to quantum setting
— can be found in a paper by Chayes, Starr and the present author.

120-degree model : A somewhat more complicated version of the inter-
action, but with the spins Sx taking values in the unit circle S

1, can
be contrived in d = 3. The Hamiltonian will actually look just as for
the orbital compass model except that S(α)

x are not Cartesian compo-
nents but projections on the three third-roots of unity b̂1, b̂2, b̂3 in S

1.
Explicitly,

H(S) :=
∑

x

∑

α=1,2,3

(
Sx · b̂α − Sx+êα · b̂α

)2 (6.59)

Again, all constant configurations are ground states and further ground
states may again be obtained by judicious reflections. Fortunately, the
number of energy-preserving operations one can perform on ground
states is much smaller than for the orbital compass model, and all
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ground states can thus be classified. Namely, given a ground state con-
figuration, every unit cube in Z

3 looks as one of the four cubes in the
picture

modulo, of course, a simultaneous rotation of all spins. Here is what
we can we say rigorously about this model:

Theorem 6.13. Let ŵ1, . . . , ŵ6 ∈ S
1 be the six sixth roots of unity.

For each ε > 0 there exist β0 > 0 and, for each β ≥ β0, there exist six
distinct, shift-ergodic Gibbs measures μ1, . . . , μ6 ∈ Gβ such that

Eμj

(
Sx · ŵj

)
≥ 1− ε, j = 1, . . . , 6 (6.60)

There are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,...,6Eμ

(
Sx · ŵj

)
< 1− ε.

The ideas underlying this theorem are quite similar to the orbital
compass model. First we find out that the spin-wave free energy for
fluctuations about the ground state pointing in direction θ is given by

F (θ) :=
1
2

∫
dk

(2π)3

[
log

∑

α=1,2,3

qα(θ)|1− eikα |2
]

(6.61)

where q1 := sin2(θ), q2 := sin2(θ − 120◦) and q3 := sin2(θ + 120◦). A
surprisingly sophisticated argument is then required to show that F
is minimal only for θ of the form π

3 j, j = 1, . . . , 6. Once we have this
information, the rest of the argument follows a route very similar to
that for the orbital compass model (including the introduction of the
scales κ and Δ and the corresponding events BE and BSW). Details
appeared in a paper by Chayes, Nussinov and the present author.

n.n. and n.n.n. antiferromagnet : Finally, we will consider a toy model
that exemplifies the features of both systems above. Here d = 2 and the
spins take again values in S

1, but the interaction is antiferromagnetic —
that is, with a preference for antialignment — for both nearest and
next-nearest neighbors:
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H(S) := γ
∑

x

[
Sx ·Sx+ê1 +Sx ·Sx+ê2

]
+
∑

x

[
Sx ·Sx+ê1+ê2 +Sx ·Sx+ê1−ê2

]

(6.62)

Assuming |γ| < 2, the minimum energy state is obtained by first en-
forcing the n.n.n. constraints — there is an antiferromagnetic, or Neél,
order on both even and odd sublattice — and only then worrying about
how to satiate the n.n. constraint. But once the sublattices are or-
dered antiferromagnetically, the net interaction between the sublattices
is zero — and so each of the sublattices can be rotated independently!
Here is a configuration of this form:

For this system we can nevertheless prove the following theorem:

Theorem 6.14. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0,
there exist two distinct, shift-ergodic Gibbs measures μ1, μ2 ∈ Gβ such
that

−Eμj

(
Sx · Sx+ê1±ê2

)
≥ 1− ε (6.63)

and
Eμj

(
Sx · Sx+êj

)
≥ 1− ε, j = 1, 2 (6.64)

There are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which either (6.63) or
at least one of (6.64) does not hold.
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As for the two models above, everything boils down to a spin-wave
calculation. Here the relevant parameter is the relative orientation θ of
the two antiferromagnetically ordered sublattices. The spin-wave free
energy is then

F (θ) :=
1
2

∫

[−π,π]2

dk

(2π)2
logDk(θ) (6.65)

where

Dk(θ) := |1− ei(k1+k2)|2 + |1− ei(k1−k2)|2

+ γ cos(θ)
(
|1− eik1 |2 − |1− eik1 |2

)
(6.66)

As D(θ) = αD(0) + (1 − α)D(π), with α := 1
2(1 + cos(θ)), Jensen’s

inequality for the logarithm directly shows that F is minimized by
θ = 0 or θ = π. In spin configurations, the former corresponds to
horizontal alignment and vertical antialignment of nearest neighbors,
and the latter to horizontal antialignment and vertical alignment, i.e.,
stripe states. Details of all calculations appeared in a paper by Chayes,
Kivelson and the present author.

Notice that, despite the fact that the lattices maintain a specific
relative orientation at low temperatures, a Mermin-Wagner argument
ensures that every Gibbs measure is invariant under a rigid rotation of
all spins.

6.5 Literature Remarks

The Gaussian double-well model is a standard example which can be
treated either by methods of reflection positivity, or by Pirogov-Sinai
theory [35]. Representations of the kind (6.4) have been used already
before, e.g., by Külske [74, 75] and Zahradńık [107]. The method of
proof presented here draws on the work of Dobrushin, Kotecký and
Shlosman [33, 71, 69] which was used to control order-disorder tran-
sitions in a number of systems; most notably, the q-state Potts model
with q � 1 [69]. These methods may be combined with graphical rep-
resentations of Edwards-Sokal [39] (or Fortuin-Kasteleyn [43]) to es-
tablish rather complicated phase diagrams, e.g., [26, 12]. Recently, the
method has been used to resolve a controversy about a transition can
occur in 2D non-linear vector models [41, 42].

Theorem 6.7 has been proved by Funaki and Spohn [53]. As already
mentioned, their proof is based on convexity properties of the poten-
tial V — by invoking the Brascamp-Lieb inequality as well as certain
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coupling argument to the natural dynamical version of the model —
and so it does not extend beyond the convex case. (A review of the
gradient measures, and further intriguing results, can be found in Fu-
naki [52], Velenik [104] or Sheffield [92].) Theorem 6.8 was proved by
Biskup and Kotecký [17]; Theorem 6.10 was derived by Biskup and
Spohn [18].

The interest in models in Sect. 6.4 came from a physics controversy
about whether orbital ordering in transition-metal oxides exists at low
temperatures. On the basis of rigorous work by Biskup, Chayes and
Nussinov [13] (120-degree model) Biskup, Chayes, Nussinov and Starr
[15, 14] (2D and 3D orbital compass model), it was demonstrated that,
at least at the level of classical models, spin-wave fluctuations stabilize
certain ground states [83]. The conclusions hold also the 2D quantum
orbital-compass model with large quantum spins [15]. The mechanism
of entropic stabilization — or, in physics jargon, order by disorder — is
most clearly demonstrated in the n.n. & n.n.n. antiferromagnet studied
by Biskup, Chayes and Kivelson [11]. This model actually goes back to
the papers by Shender [93] and Henley [63] which first spelled out the
original order-by-disorder physics arguments.

All three “phase coexistance” theorems in Sect. 6.4 have, apart
from an existence clause, also a clause on the absence of ergodic states
whose local properties deviate from those whose existence was asserted.
Actually, these were not the content of the original work [13, 11] be-
cause, at that time, the focus on torus measures dictated by reflection
positivity was deemed to make it impossible to rule out the occurrence
of some exotic measures. A passage to such statements was opened
by the work of Biskup and Kotecký [16]; the non-existence clauses in
Theorems 6.11, 6.13 and 6.14 are direct consequences of the main result
of [16] and the method of proof of the existence part. This technique
does not quite apply in the setting of gradient models due to the strong
role the boundary conditions play in this case.

7 Topics Not Covered

There are naturally many interesting topics dealing with reflection pos-
itivity that have not been covered by these notes. Here we will attempt
to at least provide a few relevant comments and give pointers to the
literature where an interested reader may explore the subject to the
desired level of detail.

The first (and large) area which was neglected is that of quantum
models. Here one faces the principal difficulty that the spin variables
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are replaced by operators which, generally, do not commute with one
another. Nevertheless, reflection positivity can be proved for reflections
through planes between sites under the condition that the Hamiltonian
is of the form (5.10). (For reflections through planes of sites the non-
commutativity of involved objects makes the above technology largely
unavailable.) Thus, chessboard estimates and, by a passage via the
Duhamel two-point function, also infrared bound can again be estab-
lished. This and the resulting applications to proofs of phase transitions
in, e.g., the quantum Heisenberg anti ferromagnet and XY-model con-
stitute the papers of Dyson, Lieb and Simon [38] and Fröhlich and
Lieb [48]. A pedagogical account of these can be found in the notes by
Tóth [103].

Unlike for the classical models, in the quantum setting reflection
positivity appears to be a somewhat peculiar condition. Generally,
it requires that the involved operators can be represented by either
real or purely imaginary matrices. This is where the technique fails
in the case of the quantum Heisenberg ferromagnet (Speer [99], but
see also Kennedy [67] and Conlon and Solovej [27]). Notwithstanding,
the technique continued to be applied in the quantum world to derive
useful conclusions; e.g., to study long range order in two-dimensional
antiferromagnets (Kennedy, Lieb and Shastry [68]), to resolve the so
called flux phase problem in the Hubbard model (Lieb [78], see also
Macris and Nachtergaele [81]) or to prove uniqueness of the ground
state in the half-filled band therein (Lieb [77]). The latter work invokes
spin-reflection positivity ; a new idea later further exploited by, e.g.,
Tian [102] and Tasaki [101]. Other applications of reflection positivity
in itinerant-electron models appear in, e.g., Macris [79] and Macris and
Lebowitz [80].

As already mentioned, one can use RP to develop a rigorous link be-
tween the phase transitions in quantum and classical systems (Biskup,
Chayes and Starr [15]). Here the main idea is the conversion of the
quantum chessboard estimate to the classical one by means of an ex-
tension of Berezin-Lieb inequalitites to matrix elements in the basis of
coherent states.

Another topic not sufficiently represented in these notes is that of
dimer or other combinatorial models. Here we wish to mention, e.g.,
the conclusions concerning the six-vertex model and hard-core lattice
gasses (Fröhlich, Israel, Lieb and Simon [47]) or the liquid-crystal mod-
els based on interacting dimers (Heilmann and Lieb [62] and Abraham
and Heilmann [1]). There is also a novel application to characterization
of graph homomorphisms (Freedman, Lovász and Schrijver [44]).
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The origin of reflection positivity lies within the field theory as part
of the Osterwalder-Schrader axioms. A reader interested in this direc-
tion should employ the relevant search outlets to explore the literature
on the subject. For statistical mechanics, interesting applications come
in the proofs of phase transitions in Euclidean field theories, e.g., that of
quark confinement (Borgs and Seiler [20]) or chiral symmetry breaking
(Salmhofer and Seiler [91]) in gauge theories.

Finally, there is the recent clever application of chessboard estimates
to control the rigidity of Dobrushin interfaces in the Ising (and some
other) three dimensional models (Shlosman and Vignaud [96]). This
direction will likely be further exploited to study interface states in
continuum-spin systems.

8 Three Open Problems

We finish with a brief discussion of three general open problems of the
subject covered by these notes which the present author finds worthy
of significant research effort.

In Chapters 3 and 4 we have shown how useful the infrared bound is
in proofs of symmetry breaking and control of the mean-field approxi-
mation. Unfortunately, the only way we currently have for proving the
IRB is reflection positivity. So our first problem is:

Problem 8.1. Consider models with the HamiltonianH=−
∑

〈x,y〉 Sx·
Sy. Prove the IRB directly without appeal to RP.

As already mentioned, a successful attempt in this direction has
been made by Sakai [90], who managed to apply the lace expansion to
a modified random current representation of the Ising model. However,
here we have in mind something perhaps more robust which addresses
directly the principal reason why we need RP, which is that

the spins (Sx) are not a priori independent Gaussian
Among approaches in this direction is the spherical approximation for
the O(n) model, in which the constraint |Sx| = 1 at every spin is
replaced by a constraint on

∑
x |Sx|2.

The IRB is often viewed as a rigorous version of spin-wave theory.
This theory, initiated in the work of Dyson [37] and others, describes
continuous deformations of the lowest energy states by means of an
appropriate Gaussian field theory. In Chapter 6 we saw that chessboard
estimates may be applied in conjunction with spin-wave calculations —
which are generally deemed to be the realm of the IRB — to prove phase
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transitions. This was possible because spin-waves disqualified all but
a finite number of ground states from candidacy for low-temperature
states. Notwithstanding, one might be able to do the same even in the
presence of infinitely many low-temperature states:

Problem 8.2. Prove symmetry breaking at low temperatures in sys-
tems with continuous internal symmetry — e.g., the O(2)-model —
without the use of the IRB. Chessboard estimates are allowed.

An interesting resource for thinking about this problem may be the
paper of Bricmont and Fontaine [21].

Further motivation to look at this problem comes from quantum
theory: The quantum Heisenberg ferromagnet is not RP (see Speer [99])
and so there is no proof of the IRB and, consequently, no proof of
low-temperature symmetry breaking. On the other hand, the classical
Heisenberg ferromagnet is RP and so the spin-condensation argument
applies. However, if we had a more robust proof of symmetry breaking
in the classical model, e.g., using chessboard estimates, one might hope
to extend the techniques of Biskup, Chayes and Starr [15] to include
also the quantum system.

While the theory described in these notes is not restricted exclu-
sively to ferromagnetic systems, in order to have the IRB one needs a
good deal of attractivity in the system. It is actually clear that the IRB
cannot hold as stated for antiferromagnets, e.g., hard core lattice gas,
which is a model with variables nx ∈ {0, 1} and the “Gibbs” weight
proportional to

λ
∑

x nx
∏

〈x,y〉
(1− nxny), (8.1)

or the q-state Potts antiferromagnet, which is the model in (2.7)
with J < 0. Indeed, the staggered long-range order, which is known
to occur in the hard core lattice gas once λ � 1, implies that the
macroscopically occupied mode is k = (π, . . . , π) rather than k = 0.
Nevertheless, we hope that some progress can be made and so we pose:

Problem 8.3. Derive a version of the IRB for the hard-core lattice gas
and/or the q-state Potts antiferromagnet at zero temperature.

Solving this problem would, hopefully, also provide an easier pas-
sage to the proof that the critical λ for the appearance of staggered
order tends to zero as d → ∞ — in fact, if the mean-field theory is
right then one should have λc ∼ c/d — and that the 3-coloring of Z

2

exhibits six distinct extremal measures of maximal entropy. These re-
sults have recently been obtained by sophisticated contour-counting
arguments [54, 55].
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16. M. Biskup and R. Kotecký, Forbidden gap argument for phase transitions
proved by means of chessboard estimates, Commun. Math. Phys. 264
(2006), no. 3, 631–656.



Phase Transitions in Lattice Models 81
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