Skip to main content

A general principle and some questions about penalisations

  • Chapter
  • First Online:
Penalising Brownian Paths

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1969))

  • 687 Accesses

Abstract

In the preceding chapters, we have shown that, in a large class of frameworks, certain families \( \{ P^{(t)} ,t \ge 0\} \) of probabilities defined on a filtered space \( \{ \Omega ,(F_s )_{S \ge 0} \} \) converge, as t → ∞, to a probability Q, at least in the sense that :

$$\forall \;s\; > 0,\;\forall \Lambda _s \in \;F_s ,\;P^{(t)} (\Lambda _S )\mathop \to \limits_{t \to \infty } Q(\Lambda _S )$$

The typical question which we consider in this chapter is, roughly :

to which extent can we replace \(\Lambda _s \in \;F_s ,\;by\;\Lambda \in \;F_\infty \;? \)

The answer is, to say the least, subtle, and not every Λ ∈ F is suitable. This led us to detect some non-uniform integrability results, as well as the convergence of certain (Hellinger, total variation⋯) distances between P (t) and \(Q_{|F_t } \), as t → ∞.

We also prove, in the Brownian framework, the convergence in law of \(X^{(t)\;} : = \left( {\frac{1}{{\sqrt t }}X_{tu} ;u \le 1} \right)\), under P (t) or Q, as t → ∞. The limits in law are different, and may be expressed in terms of the BES(3) process or the Brownian meander.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AY2] J. Azéma and M. Yor. Etude d'une martingale remarquable. (French) [Study of a remarkable martingale]. Sém. de Prob. XXIII, 88–130, LNM 1372, Springer, Berlin, 1989.

    Google Scholar 

  2. [M] P.A. Meyer. Probabilités et potentiel. Publications de l'Institut de Mathématique de l'Université de Strasbourg, N° XIV. Actualités Scientifiques et Industrielles, N° 1318. Hermann, Paris, 1966.

    Google Scholar 

  3. [MY] R. Mansuy and M. Yor. Random times and enlargements of filtrations in a Brownian setting. LNM 1873. Springer, Berlin, 2006.

    MATH  Google Scholar 

  4. [RVY,I] B. Roynette, P. Vallois, and M. Yor. Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I. Studia Sci. Math. Hungar., 43(2):171–246, 2006.

    MATH  MathSciNet  Google Scholar 

  5. [RVY,II] B. Roynette, P. Vallois, and M. Yor. Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time. II. Studia Sci. Math. Hungar., 43(3):295–360, 2006.

    MATH  MathSciNet  Google Scholar 

  6. [RVY,IV] B. Roynette, P. Vallois, and M. Yor. Some extensions of Pitman's and Ray-Knight theorems for penalized Brownian motion and their local time. IV. Studia Sci. Math. Hungar., 44(4):469–516, 2007.

    MATH  MathSciNet  Google Scholar 

  7. [RVY,V] B. Roynette, P. Vallois, and M. Yor. Penalizing a BES (d) process (0 < d < 2) with a function of its local time. V. Studia Sci. Math. Hungar., 45(1):67–124, 2008.

    MATH  MathSciNet  Google Scholar 

  8. [RY,VIII] B. Roynette and M. Yor. Ten penalisation results of Brownian motion involving its one-sided supremum until first passage time VIII. Journal Funct. Anal., 255(9):2606–2640, 2008.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Roynette .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roynette, B., Yor, M. (2009). A general principle and some questions about penalisations. In: Penalising Brownian Paths. Lecture Notes in Mathematics(), vol 1969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89699-9_5

Download citation

Publish with us

Policies and ethics