
Chapter 5
Local and Global Endoscopy for GSp(4)

In this chapter we refine the global description of the endoscopic lift obtained in
Corollary 4.2. The main result obtained in this chapter is Theorem 5.2, which is a
special case of a global multiplicity formula conjectured by Arthur. We consider the
symplectic groupGSp(4) over an arbitrary totally real number field F . In the special
case F = Q and for irreducible automorphic representations π with π∞ in the
discrete series the proof of this theorem is given in Sects. 5.2 and 5.3. In Sect. 5.1 we
explain how the local endoscopic character lift is constructed for arbitrary local base
fields of characteristic zero. In Sects. 5.4 and 5.5 we explain how the Arthur–Selberg
trace formula can be used to extend the results obtained in Sects. 5.2 and 5.3 to the
case of arbitrary totally real number fields and arbitrary irreducible automorphic not
necessarily cohomological representations π. The proof of Theorem 5.2 is based on
two ingredients: the principle of exchange and the key formula (stated in Sect. 5.3).
The latter can be directly deduced from weak versions of the trace formula (see
Chap. 4, Corollary 4.2, or Sect. 5.5). It deals with simultaneous changes of global
representations at two places. The principle of exchange, on the other hand, deals
with an exchange of the representation at one place exclusively, and its proof boils
down to a special case of the Hasse–Brauer–Noether theorem (Lemma 5.4). This is
based on an explicit theta lift. At this point we use [56], which unfortunately forces
us to make the restrictive assumption that F is a totally real number field. Since
we apply results obtained in [56] in a rather specific case, it is very likely that this
restriction on F can be removed.

5.1 The Local Endoscopic Lift

In this section we extend the results obtained in Chap. 4 to the case of arbitrary local
fields Fv of characteristic zero. We restrict ourselves to the non-Archimedean case.
For the Archimedean case see [90, 91].

Let RZ[Gv] and RZ[Mv] denote the Grothendieck group of finitely gener-
ated, admissible representations of Gv and Mv, respectively. For a finite sum
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α =
∑

ni · πv,i ∈ RZ(Gv) with integer coefficients ni and irreducible, admissible
representations πv,i, and a locally constant function fv with compact support onGv ,
put α(fv) =

∑
ni · tr πv,i(fv). Similarly for the group Mv. Irreducible admissible

representations σv of Mv are considered as a pair (σ1v, σ2v) of irreducible represen-
tations of Gl(2, Fv) with equal central characters ω1v = ω2v . This common central
character ωv will be called the central character of σv . For a quasicharacter χv ,
the character twist for Gv is defined via the similitude homomorphisms Gv → F ∗

v

(Lemma 4.8), and similarly σv ⊗ χv = (σ1,v ⊗ χv, σ2,v ⊗ χv). Recall σ 	→ σ∗ was
defined by (σ1,v, σ2,v)∗ := (σ2,v, σ1,v).

Theorem 5.1 (Nonarchimedean Lift). There exists a unique homomorphism

r = rGv

Mv
: RZ[Mv] → RZ[Gv]

between the Grothendieck groups with the following properties:

(i) The lift r is endoscopic: For α ∈ RZ[Mv]

α(fMv
v ) = r(α)(fv)

holds for locally constant functions fv, f
Mv
v with compact support on Gv , and

Mv, respectively, and matching orbital integrals.
(ii) The lift r preserves the central character, and commutes with character twists

r(σv ⊗ χv) = r(σv) ⊗ χv.

(iii) The lift r commutes with parabolic induction

r ◦ rMv

PMv
(ρv) = rGv

Pv
(ρv),

where ρv is in RZ[Gl(2, Fv) × F ∗
v ], and where PMv is a maximal proper

parabolic of Mv and Pv is the Siegel parabolic of Gv . Similarly for induction
from the Borel groups BMv , Bv of Mv and Gv, we have

r ◦ rMv

BMv
(ρv) = rGv

Bv
(ρv).

(iv) r(σ∗) = r(σ).
(v) r commutes with Galois twists

r(στ
v ) = r(σv)τ , τ ∈ Aut(C/Q).

In addition the refined properties of Sect. 4.11 hold.

Concerning the proof. The above-mentioned properties of the endoscopic lift have
already been shown for p-adic fields Qp. To extend this to the case of a general non-
Archimedean local field Fv of characteristic zero, again one reduces the case to that
of of irreducible representations σv in the discrete series by local arguments. For
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the global arguments we now replace the topological trace formula by the Arthur–
Selberg trace formula. Choose a totally real number field F of degree at least 2 over
Q with completion Fv at the non-Archimedean place v. Suppose one can find a
global cuspidal automorphic representation σ �∼= σ∗ extending the given discrete se-
ries σv , where σ can be chosen to be cuspidal at some additional non-Archimedean
place w �= v, belonging to the discrete series at all Archimedean places. Now
one stabilizes the Arthur trace formula for the group GSp(4, AF ), using the fun-
damental lemma for GSp(4) (see Chaps. 6–8). For this it is enough to consider a
simple version of the trace formula with a test function of the form f =

∏
w fw,

where fw is a difference of pseudocoefficients of the discrete series representations
π+(σ∞), π−(σ∞) at all Archimedean places of F . Furthermore, we may assume
fw to be a matrix coefficient of a cuspidal representation π−(σw) at some auxiliary
place w, say, where Fw = Qw splits and where σw is cuspidal. Then Arthur’s trace
formula can be stabilized with arguments analogous to those in Chap. 4 starting
from [6], Corollaries 7.2 and 7.4. For the details and further technical assumptions,
we refer to Sect. 5.5. Once the Arthur trace formula has been stabilized, one can de-
duce from it the following statement: The endoscopic lift r(σv) of the character of
a discrete series representation σv of M(Fv), a priori only defined as a distribution
satisfying properties (i) and (iii) from above, can be expressed as a finite integral
linear combination r(σv) ∈ RZ[Gv] of characters of irreducible, admissible rep-
resentations of G(Fv). The construction of this “integral” lift is the crucial step
(generalizing Lemma 4.11 or its Corollary 4.5), and it will be explained in more
detail later. Once this is known, all properties of the lift are deduced completely
analogously to the p-adic case. So, for the proof of the theorem, it remains for us to
construct the integral lift, since up to a character twist σv can be embedded globally.
See the comment on page 182. �

5.1.1 The Integral Character Lift

We want to show the existence of the integral character lift for irreducible, admis-
sible representations σv of Mv. It is enough to assume σv is in the discrete series.
The endoscopic transfer of distributions applied to the character of σv defines dis-
tributions on Gv , which will be called character lifts of the characters σv . We have
to show that the character lift is a linear combination of the characters of irreducible
representations

r(σv) =
∑

πv

n(σv, πv) · πv.

This uniquely determines the transfer coefficients n(σv, πv), once they are known
to exist, by linear independence of characters (see [76], Proposition 13.8.1). So it
remains for us to show the existence of such an expansion, and integrality of the
coefficients.
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Archimedean Case. According to Shelstad [90,91] this holds in the Archimedean
case such that, furthermore, the Archimedean transfer coefficients n(σ∞, π∞) be-
long to {±1, 0}, and only finitely many are nonzero [91], Theorem 4.1.1(i).

Non-Archimedean Case. To obtain a corresponding local character lift for an ar-
bitrary local field of characteristic zero, we copy the arguments used so far. We have
to replace the global arguments. Since these arguments involve several steps, we
first summarize for the convenience of the reader the different steps involved in the
proof of the p-adic case. Afterwards we discuss how this carries over to a non-p-adic
local field.

5.1.2 Steps (0)–(xi) of the Proof (in the p-Adic Case)

(A) Global Inputs. The stabilization of the global trace formula in Chaps. 3 and 4
was the source for the desired weak character identities r(σv) =

∑
n(σv, πv) · πv ,

with coefficients n(σv, πv) in C. A priori these sums are not finite, but are locally fi-
nite and hence absolutely convergent (see Sect. 4.6 [76]). The coefficients n(σv, πv)
are directly related to global multiplicities m(π) of automorphic representations π.
In fact, the basic result was the identity (Corollary 4.2)

(0)
∏

v �=∞ n(σv, πv) = m(πW
∞ ⊗ πf ) − m(πH

∞ ⊗ πf ),

for a global weak endoscopic automorphic lift πf = ⊗v �=∞πv of a global irreducible
cuspidal automorphic representation σf = ⊗v �=∞σv , for which σ∗ �∼= σ holds,
where m(π) denote the multiplicity of π in the discrete spectrum, and πH

∞, πW
∞

denote the irreducible Archimedean representations defined by the Archimedean
character lift r(σ∞) = πW

∞ − πH
∞ defined by Shelstad [91].

Claim 5.1. Formula (0) implies for the local component σv of σ:

(i) r(σv) is an absolutely convergent sum

r(σv) = n(σv) ·
∑

πv

ε(σv, πv) · πv

for certain n(σv) ∈ C∗ such that the following hold:
(ii) (integrality) ε(σv, πv) ∈ Z and ε(σv, πv) = 1 for πv = π+(σv) (as defined

below).
(iii) (product formula)

∏
v n(σv) = 1.

(iv) (Shelstad) n(σ∞) = 1.

Proof of the Claim. Theorem 4.3 provides the existence of a globally generic cus-
pidal representation π+ = π+(σ) such that (π+)v = π+(σv) for all v, and
m(π+) = 1. Being generic implies (π+)∞ = π+(σ∞) = πW

∞ (σ∞). Since
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m(π+) = m(πW∞ ⊗ (π+)f ) = 1, the principle of exchange (see Lemmas 5.4 and
5.5) implies m(πH

∞ ⊗ (π+)f ) = 0. Hence,
∏

v �=∞ n(σv, π+(σv)) = 1 by formula
(0). For

n(σv) := n(σv, π+(σv))

we get n(σ∞) = 1 from [91], Theorem 4.1.1(i), and hence (iv). (iv) together
with the product formula just obtained gives (iii). Assertion (i), on the other
hand, is a consequence of the global stabilized trace formula. For ε(σv, πv) =
n(σv, πv)/n(σv, π+(σv)) obviously ε(σv, πv) = 1 for πv = π+(σv), by defini-
tion. So for (ii) only ε(σv, πv) ∈ Z has to be shown. From [91] we can assume v
is non-Archimedean. Put π̃f = πv ⊗w �=v,∞ π+(σw) and (π+)f = ⊗w �=∞ π+(σw).
By (iii) and (iv) we have

∏
w �=∞ n(σw , π+(σw)) = 1; hence,

ε(σv, πv) = ε(σv, πv)
∏

w �=∞
n(σw, π+(σw)) =

n(σv, πv)
n(σv, π+(σv))

∏

w �=∞
n(σw, π+(σw)) =

∏

w �=∞
n(σw, π̃w).

Together with formula (0) applied for the representation π̃f , instead of πf , this gives

ε(σv, πv) = m(πW
∞ ⊗ π̃f ) − m(πH

∞ ⊗ π̃f ),

and hence (ii), since the right side is an integer. This proves the claim. �

(B) Local Inputs. A purely local investigation of the character lift, using compati-
bility with parabolic induction, gives (Lemmas 4.12 and 4.27):

(v) n(σv) = 1 for generic σv not in the discrete series.

For the elliptic scalar product < ηv, ωv >e on the elliptic regular locus of Gv write
‖ηv‖2

e =< ηv, ηv >e. Then (see in particular Sect. 4.5 and Lemma 4.14) we have

(vi) (Weyl integration formula) ‖r(σv)‖2
e = Av · ‖σv‖2

e = Av

for irreducible σv in the discrete series of Mv, where Av = 2 or 4 depending on
whether σ∗

v �∼= σv or σ∗
v
∼= σv .

Furthermore (Sects. 4.6, 4.9, Lemma 4.20, and Corollary 4.8), for σv in the dis-
crete series the classification of irreducible, admissible representations of Gv im-
plies that there exists a second irreducible representation π−(σv) such that:

(vii)
∑

πv
ε(σv, π+(σv)) ·πv = L(σv) +R(σv) for L(σv) = π+(σv)− π−(σv)

and

(viii) ‖L(σv)‖2
e = Av and < L(σv), R(σv) >= 0

with the same coefficients Av = 2, 4 as above.
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Combining (A) and (B). For the finite set S of places, where the (suitable chosen
global cuspidal irreducible) representation σ �∼= σ∗ belongs locally to the discrete
series, statements (vi) and (vii) above imply

∏

v∈S

‖r(σv)‖2
e =

∏

v∈S

n(σv)2 ·
∏

v∈S

‖
∑

πv

ε(σv, π+(σv)) ·πv‖2
e ≤ 1 ·

∏

v∈S

‖L(σv)‖2
e,

since
∏

v∈S n(σv)2 = 1 by (iii)–(v). The inequality obtained is in fact an equality,
since the left and the right sides are equal to

∏
v∈S Av by (vi) and (viii), respectively.

That an equality holds forces ‖R(σv)‖2
e = 0 from (vii) and (viii). Therefore,

(ix)
∑

πv
ε(σv, πv) · πv = π+(σv) − π−(σv)

for σv in the discrete series (for σ) and ‖r(σv)‖2
e = ‖∑

ε(σv, πv)πv‖2
e. Hence,

‖r(σv)‖2
e = |n(σv)|2 · ‖∑

ε(σv, πv)πv‖2
e implies Av = |n(σv)|2 · Av , or

(x) |n(σv)| = 1.

On the other hand, the local non-Archimedean theory of Whittaker models implies

(xi) n(σv) is a positive real number,

since π−(σv) does not have local Whittaker models (Lemmas 4.35 and 5.6 and
Corollary 4.16). This implies n(σv) = 1; hence, we obtain from (x) and (xi) the
final formula

r(σv) = π+(σv) − π−(σv)

for all σv in the discrete series realized in a global representation σ. Since up to a
character twist every irreducible representation σv in the discrete series of Mv can
be realized as the local component of a global cuspidal irreducible representation
σ of M(AF ), which follows from the existence of strong pseudocoefficients for
Gl(2, Fv), this completes the proof for σv in the discrete series. The general case is
reduced to this case by purely local methods (as in Sects. 4.5–4.11).

How this Generalizes. To see how this carries over to the case of an arbitrary non-
Archimedean local field of characteristic zero, observe that all the arguments above
were of general nature, and hence carry over to a non-Archimedean field of charac-
teristic zero immediately, except that the trace identity (0) needs some equivalent in
the general case, which now will be provided by the strong multiplicity 1 theorem
forM(AF ) (orGl(2,AF )) and a version of the Arthur trace formula (Lemma 5.8 in
Sect. 5.5). Formula (0) then again implies (i)–(iv), from which one deduces (v)–(xi)
as above. Finally (0)–(xi) imply all properties of the local endoscopic character lift
r(σv) as in the p-adic case. This includes the statements of Theorem 5.1.

Concerning the Proof of Formula (0). To be accurate, one has to use an avatar
of Lemma 5.8 for two reasons. On one hand, in the formulation and proof of
Lemma 5.8, the existence and properties of the local character lift will already be
used in special cases. Secondly, using an avatar gets rid of twisting by multipliers in
the proof of Lemma 5.8. By examining the different steps in the proof of Lemma 5.8,
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one sees that formula (0) can be proved by making slight changes in the argument.
First, it is enough to use the existence of the local character lift only in situations
where the formula is already known, say, for the Archimedean places [91] and for
places where the number field F splits, i.e., where Fv

∼= Qp is a p-adic field. Sec-
ond, for the proof of (0) multipliers are not needed, since in this case it suffices to
use a strongly simplified version of the trace formula of Deligne–Kazhdan type. We
sketch the main steps of the argument which gives formula (0) at the end of the
proof of Lemma 5.8 in Sect. 5.5. For the moment the reader is advised to skip this
proof at first, since arguments from Sects. 5.2–5.4 are also used. �

This being said, we return to the representations π±(σv) defining the local
L-packets. They can be further described in terms of the general classification
of irreducible admissible representations of GSp(4, Fv) as in Sect. 4.11. But they
can also be described in terms of a theta lift (Weil representation) in Sect. 4.12.

5.1.3 Complements on the Local Theta Lift

Extended Jacquet–Langlands Correspondence. Let Dv be the nonsplit quater-
nion algebra over Fv , and M̌v = (D∗

v × D∗
v)/F ∗

v . The quotient is defined by the
embedding t 	→ (t, t−1) of F ∗

v in D∗
v × D∗

v .

The Jacquet–Langlands lift describes the irreducible discrete series representations
of the group Gl(2, Fv) in terms of the irreducible representations of the multiplica-
tive group D∗

v of the quaternion algebra. We can use this to define an extended lift,
denoted JL, from the irreducible admissible representations of the group M̌v to the
irreducible, admissible, discrete series representations of the group Mv. In fact the
description of M̌v and that of Mv as a quotient of two copies of D∗

v and Gl(2, Fv),
respectively, allows us to extend the Jacquet–Langlands lift JL in the obvious way.
By this the irreducible, admissible discrete series representations σv of Mv corre-
spond uniquely to irreducible, admissible representations σ̌v of M̌v and vice versa
via the correspondence σv = JL(σ̌v).

Quaternary Theta Lifts. Mv can be considered as the group of special orthogonal
similitudesGSO(V ) of a split quaternary quadratic form overFv . Similarly M̌v can
be considered as the group of special orthogonal similitudes GSO(V ) of the qua-
ternary anisotropic quadratic form over Fv . This defines the theta correspondence
for the groups GO(V ) and GSp(4) as in Chap. 4 for arbitrary number fields F . It
relates representations σext

v and πv of GO(V ) and GSp(4) if σext
v ⊗πv is a quotient

of the big theta representation w̃ defined in [104], Sect. 4, or in Chap. 4. Although
the big theta representation in [104] is defined in a slightly different way, we will
use results obtained in [104] whenever they carry over: The groups GSO(V ) are
subgroups of index 2 in GO(V ), so in general irreducible admissible representa-
tions σv of GSO(V ) cannot be extended uniquely to irreducible representations of
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the group GO(V ). If σv
∼= σ∗

v , there exist possibly two nonisomorphic extensions
σext

v of the representation σv to GO(V ). One can consider the representations on
GSp(4, Fv) attached to σext

v by the theta correspondence.

Notice there is a subtlety present in the definition of the theta correspondence: Ei-
ther one deals with it on the level of representations of the groups O(V ), Sp(2n)
or one deals with it on the extended level of the groups GO(V ), GSp(2n). Both
points of view are of relevance. The representations obtained from the theta lift for
GSp(4, Fv), say, with a fixed central character of the center Zv of GSp(4, Fv),
can be obtained – via compact induction from Sp(4, Fv) × Zv ⊆ GSp(4, Fv)
– from the Sp(4, Fv) representations obtained from the (O(V ), Sp(2n)) corre-
spondence [104], p. 470. This often allows us to decide whether σext

v has a lift to
GSp(4, Fv) [104], Proposition 4.11. Inversely, the restriction from G = GO(V ) to
O(V ) is multiplicity free. For this see [41], Lemma 7.2, and the remarks after it on
p. 94 for the split and the anisotropic quaternary spaces V .

The Definite Theta Lift. Using the last remarks, the statements, Theorem 9.1, and
the results obtained in [41], Sect. 10, carry over from Sp(4) to GSp(4). Hence,
the local theta correspondence for GSp(4, Fv) and GO(V ) is always nontrivial for
anisotropic V . In other words, to every irreducible representation σ̌v of M̌v the theta
lift Θ(σ̌v) is nonzero for the theta correspondence with respect to some extension
of σ̌v from M̌v = GSO(V ) to GO(V ). Let EΘ(σ̌v) denote the set of isomorphism
classes of irreducible admissible representations πv ofGv = GSp(4, Fv), for which
σ̌v × πv is a quotient of the big Weil representation of the pair GO(V ) × Gv.

Lemma 5.1 (Density Lemma). (i) EΘ(σ̌v) = {π−(σv)}, and for σ̌v �∼= σ̌∗
v or

dim(σ̌v) > 1 this is a cuspidal representation.

(ii) Furthermore, given a finite set S of places w of a number field F and given
unitary representations σ̌w of the discrete series of Mw and irreducible repre-
sentations πw of Gw in EΘ(σ̌w) for all w ∈ S, suppose the central characters
ωv of σ̌v are the components of a grössen character ω of F . Then there exists a
corresponding automorphic irreducible cuspidal representation of M(AF ) and
a nontrivial irreducible cuspidal automorphic theta lift π of σ, which realizes
the given local representations πw for all places in S.

Proof. See Corollary 4.17 for (i). For (ii) see page 171, noticing the following �

Comment on Global Embeddings. One can enlarge S by a place w, and choose
some σ̌w �∼= σ̌∗

w with central character ω̃w to obtain the situation described in
Chap. 4, page 171. From the existence of very strong pseudocoefficients for Gl(2),
one can find a global cuspidal σ with central character ω realizing σv for v ∈
S ∪ {w}.

Concerning the Central Character. Let l be the order of the group of roots of
unity in F . If we choose the place w outside S of residue characteristic larger
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than l, we can always extend given unitary central characters ωv, v ∈ S to a grössen
character ω of F ∗, which is unramified outside {w} ∪ S and induces the given lo-
cal character up to an unramified character twist ωv = ω̃v|.|itv

v . For this, at one
place v ∈ S we can prescribe ωv = ω̃v. [We leave this as an exercise for the
reader with the following hints: Use [102], p. 342ff. Notice that extending condi-
tion (A) of [102] can be solved by choosing a suitable character ω̃w : o∗w → C∗,
which is trivial on 1 + ℘w. Then the remaining extension of condition (B) of
[102] for the parameters tv can be solved. This defines an extension ω on the sub-
group (

∏
v∈{w}∪S F ∗

v

∏
v else o

∗
v)/(F ∗

S) of (A1
F /F ∗) × R∗. Since C∗ is divisible,

and hence injective, there is no obstruction to extending ω from this subgroup to
A1

F /F ∗. Notice there are only finitely many such extensions to a character unrami-
fied outside w and S and tame at w, since the S-ideal class group is finite].

Indefinite Theta Lift. If σv is an irreducible admissible representation of the group
Mv and V is the split quaternary quadratic space, one can define a corresponding
set EΘ+(σv). It consists of the classes of irreducible admissible representations πv

of Gv , for which σv × πv is a quotient of the big Weil representation of the pair
GO(V ) × Gv. From [96], proof of Theorem 3.1 on p. 366, there is at most one
generic class of representations in EΘ+(σv). Otherwise one could easily show that
the space of functionals of [96], p. 366, would have dimension 2 or more, which
would give a contradiction. A representative of this generic class will be denoted
θ+(σv) if it exists. A generic θ+(σv) exists in EΘ+(σv) if σv is in the discrete
series of Mv (see Lemma 4.25). Hence, EΘ+(σv) is nonempty in this case. This
argument also gives θ+(σv) ∼= π+(σv) for discrete series representations σv of Mv

(as in Theorem 4.4).

Definite vs. Indefinite Theta Lift. For σv in the discrete series of Mv, there exists
a unique σ̌v for which for σv = JL(σ̌v). Then we have defined θ+(σv) (indefinite
theta lift) and we define θ−(σv) to be the anisotropic theta lift θ−(σ̌v) attached to σ̌v .

σv
� Θ �� θ+(σv) unique generic class in EΘ+(σv)

σ̌v

�

JL

��

� Θ �� θ−(σv) defining EΘ−(σv) := {θ−(σv)}

Proposition 5.1. For irreducible, admissible representations σv in the discrete se-
ries of Mv the set EΘ−(σv) has cardinality 1. Furthermore, there is a unique
generic representation in EΘ+(σv), and the endoscopic lift is given by these Weil
representations

r(σv) = θ+(σv) − θ−(σv).

Proof. The proof for arbitrary Fv remains the same as that for Corollary 4.16. How-
ever, recall that the proof of Corollary 4.16 depended on Lemma 5.6, which is
proved later in this chapter. �
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Remark 5.1. EΘ+(σv) presumably has cardinality 1, although we have not been
able to show this. Notice since we want to include places of residue characteristic 2,
and since we consider the theta lift for the groups of similitudes, the result obtained
by Waldspurger for the Howe duality cannot be directly applied in this situation. To
overcome this – for the global applications later – we introduce the subset

EΘglr
± (σv) ⊆ EΘ±(σv)

of “globally relevant” representations. It consists of all classes of representations
πv in EΘ±(σv) for which there exists a global irreducible cuspidal automorphic
representation σ �∼= σ∗ (or σ̌ �∼= σ̌∗), for which πv is the local component of a
weak lift π attached to σ. The notion of weak lift will be explained in Sect. 5.2. The
density lemma, stated above, implies

EΘglr
− (σv) = EΘ−(σv),

in the analogous sense. Later, in Corollary 5.1, with proof in Sect. 5.3, and more
generally for F �= Q in Sect. 5.4, it is shown that for discrete series representa-
tions σv

EΘglr
+ (σv) = {θ+(σv)}.

So EΘglr
+ (σv) has cardinality 1.

5.2 The Global Situation

General Assumptions. Let F be a number field, and AF its ring of adeles. Since
we apply the findings of [56] (in the argument preceding Lemma 5.3) we assume
F to be totally real. This restriction will not be needed otherwise (and therefore is
most likely unnecessary). Let G = GSp(4) and let M = Gl(2)×Gl(2)/G∗

m be its
proper elliptic endoscopic group. Let π = ⊗vπv be an irreducible, unitary cuspidal
automorphic representation of the groupG(AF ). Recall an irreducible automorphic
cuspidal representation π is a cuspidal representation associated with a parabolic
subgroup (CAP representation) if it is weakly equivalent to an automorphic repre-
sentation associated with an Eisenstein series. Two irreducible automorphic repre-
sentations are called weakly equivalent if their local components are isomorphic at
almost all places. In the following we assume π is not a CAP representation. Then,
by the Langlands theory of Eisenstein series, π only contributes to the cuspidal part
of the discrete spectrum

mcusp(π) = mdisc(π).

Definition 5.1. An irreducible, unitary cuspidal automorphic representation π of the

group G(AF ) is called a weak endoscopic lift (from M(AF )) if there exist two
automorphic representations

σ1 , σ2
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ofGl(2,AF ) such that σi are either induced from a pair of global grössen characters
or are irreducible cuspidal such that the representations σi have the same central
character ωσ1 = ωσ2 , and such that the spinor L-series of π satisfies

Lv(πv, s) = Lv(σ1,v, s) · Lv(σ2,v, s)

for almost all places v of F . We also call π a weak lift of the irreducible automor-
phic representation σ = (σ1, σ2) of M(AF ) and Gl(2,AF ) × Gl(2,AF ) in this
situation.

Suppose π is a weak endoscopic cuspidal lift as in the definition above, which is
not CAP. Let σ be the corresponding automorphic representation of Gl(2,AF ) ×
Gl(2,AF ). Then σ = (σ1, σ2) has to be a cuspidal representation. Otherwise either
σ1 or σ2, say, σ1, has L-factors of the form Lv(σ1, s) = Lv(λ, s)Lv(λ−1ωσ2 , s)
for an idele class character λ for v /∈ S. Put τ = σ2 ⊗ λ−1. Then LS(π, s) =
LS(λ, s)L(λωτ , s)LS(τ ⊗ λ, s). If τS ∼= νS × μS (locally induced from the
unramified characters νv, μv), then this is the L-series with the local parameters
λv, λvνv, λvμv, λvνvμv or from [97], p. 85, the L-series of the induced representa-
tion νS × μS � λS of GSp(4,AS) in the short notation used in Chap. 3, page 121,
and induced from a Borel subgroup. Since νS × μS � λS = τS � λS (induction in
steps), we see that LS(π, s) would be the partial L-series of the automorphic form
τ � λ of the Levi component of the Siegel parabolic subgroup. Hence, the weak
lift would be associated with an automorphic Eisenstein representation, which is
weakly equivalent to π. Hence, π is CAP of Saito–Kurokawa type. This implies

π not CAP ⇒ σ cuspidal.

Notice that σ is not uniquely defined by π. If π is a weak lift of σ = (σ1, σ2), then
it is also a weak lift of σ∗ = (σ2, σ1). These are the only possibilities.

Proposition 5.2. Suppose π is an irreducible cuspidal automorphic representation
of the group G(AF ), which is not a CAP representation. If π is a weak endoscopic
lift of the representations σ and σ̃ of M(AF ), then σ̃ is isomorphic to either σ or
σ∗ and σ is cuspidal.

Proof. Write σ = (σ1, σ2) and σ̃ = (σ3, σ4). Then σ, σ̃; hence, σ1, σ2, σ3, σ4 are
cuspidal representations, as explained above. Then for a cuspidal representation ρ
of Gl(2,A) there exists a finite set S of places of F outside of which we have an
equality of partial L-series

LS(σ1 × ρ, s) · LS(σ2 × ρ, s) = LS(σ3 × ρ, s) · LS(σ4 × ρ, s).

Since the σi are cuspidal, there exist complex numbers si for which |.|si ⊗ σi

becomes unitary. By a suitable (re)indexing, we may suppose Re(s1) =
maxi(Re(si)). For the contragredient ρ of σ1 the function LS(σ1 × ρ, s) has a
simple pole at s = 1, and LS(σ2 × ρ, s) does not vanish at s = 1 by statements
(2.2) and (2.3) in [8], p. 200. Furthermore, if σ1 is neither isomorphic to σ3 nor
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isomorphic to σ4, the right side is holomorphic at s = 1. This gives a contradic-
tion. So, possibly by switching σ3 and σ4, we may assume σ1

∼= σ3. But then
LS(σ2, s) = LS(σ4, s), and the strong multiplicity 1 theorem for Gl(2) implies
σ2

∼= σ4. �
Definition 5.2. Let π be an irreducible (unitary) cuspidal automorphic representa-
tion of the group G(AF ), which is not a CAP representation. Let π be a weak
endoscopic lift. Suppose σ is a corresponding cuspidal automorphic representation
of M(AF ). Then the set of equivalence classes of irreducible, automorphic rep-
resentations π′ of G(AF ), which are weakly equivalent to π, is called the global
L-packet of π.

Since this global L-packet consists of all the weak endoscopic lifts attached to the
given cuspidal representation σ, it will also be called the global L-packet attached
to σ. Since π was assumed not to be CAP, all representations in the global L-packet
are cuspidal.

Theorem 5.2 (Main Theorem). Suppose π is an irreducible, cuspidal automor-
phic representation of GSp(4,AF ), and suppose π is not CAP. Suppose the global
L-packet attached to the cuspidal irreducible automorphic representation σ of
Gl(2,AF )2/A∗

F is nonempty and contains π as a weak endoscopic lift. Then:

1. σ1 and σ2 are not isomorphic as representations of Gl(2,AF ) for σ = (σ1, σ2).
2. The restriction of π to Sp(4,AF ) is obtained as a Weil representation from the

orthogonal group attached to a quaternary quadratic form of a square discrimi-
nant.

3. All local representations πv of π = ⊗′πv belong to the local L-packets attached
to σv . Hence,

πv ∈ {π+(σv), π−(σv)}
if σv belongs to the discrete series, and πv = π+(σv) otherwise.

4. The multiplicity of any irreducible representation π′ = ⊗π′
v weakly equivalent

to π is

m(π′) =
1
2
(1 + (−1)e(π′)),

where e(π′) denotes the (finite) number of representations π′
v which do not have

a local Whittaker model.
5. Let d(σ) be the number of local components σv of σ in the discrete series. The

global L-packet attached to σ contains a single representation if d(σ) < 2 and
contains 2d(σ)−1 representations, each occurring with multiplicity 1 otherwise.

In Addition. For any cuspidal irreducible automorphic representation σ =
(σ1, σ2) with σ1 �∼= σ2 the global L-packet attached to σ is nonempty.

Remark 5.2. For CAP representations a result analogous to statement (5) of the last
theorem is Theorem 2.6 in [69].

Proof. The proof of the main theorem has several steps, and it is carried out in the
remaining sections of this chapter. We deal separately with the case where π∞ be-
longs to the discrete series and F is the field of rational numbers. This situation is



5.2 The Global Situation 187

easier to begin with since we can directly refer to the multiplicity formula of Corol-
lary 4.2 in Chap. 4. For the general case we have to use the Arthur trace formula to
prove an analogous multiplicity formula, and some of the arguments therefore be-
come more complicated. See Sects. 5.4 and 5.5 for this. Although the arguments are
primarily global, they simultaneously provide us with the necessary local informa-
tion, e.g., on local Whittaker models. The relevant local information will be derived
in the subsequent Lemmas 5.4–5.6. By some kind of bootstrap, we then improve
this to complete the proof for general representations π∞ and for general (totally
real) number fields F in Sects. 5.4 and 5.5. �

We start with the proof of statements (1) and (2) of the main theorem.

Lemma 5.2 (Global Endoscopic = Theta Lift). Suppose π is an irreducible cusp-
idal automorphic representation of GSp(4,AF ), which is a weak lift in the global
L-packet attached to an irreducible automorphic representation σ = (σ1, σ2) of
M(AF ).

(A) Suppose π is not CAP. Then:

1. σ is cuspidal and
σ1 �∼= σ2 for σ = (σ1, σ2).

2. Furthermore, all irreducible constituents of the restriction of π to Sp(4,AF )
are contained in the image of theta lifts of the form Θ : Acusp(H(AF )) →
A(Sp(4,AF )), where H are orthogonal groups of similitudes over F , which are
inner forms of Gl(2, F )2/F ∗. Hence, H(F ) = D∗ × D∗/{(x, x−1)|x ∈ F ∗},
where D∗ is either the multiplicative group of a quaternion algebra over F or
Gl(2, F ).

3. For each local component πv of π there exists a quadratic character μv such that
πv ⊗ μv is contained in

EΘglr
+ (σv) ∪ EΘglr

− (σv).

(B) Conversely, suppose σ is cuspidal and σ1 �∼= σ2. Then the weak lift π of σ is
not CAP.

Concerning the notation. A will denote packets of irreducible automorphic repre-
sentations.

Proof. Concerning (A) it is enough to prove the global statements (1) and (2). The
local statement (3) then follows by Frobenius reciprocity [104], Proposition 4.12(c),
using compact induction. So let us prove (A)(1) and (2). Let ω = ωπ denote
the central character of the irreducible representation π of GSp(4,AF ). The stan-
dard L-function of π corresponds to the four-dimensional standard representation
st of the L-group LG of G. The alternating square of the standard representation
is a six-dimensional representation

∧2(st) of the L-group LG. The corresponding
L-series of π outside a finite set S of ramified places is a product ζS(π,

∧2(st), s) =
LS(ω, s)·ζS(π, ω, s) of the DirichletL-seriesL(ω, s) for the characterω and a twist
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of the degree 5 standard L-series ζ(π, ω, s) of the restriction of π to Sp(4,AF ).
Here, by abuse of notation, we again let π denote any of the irreducible constituents
of its restriction to Sp(4,AF ). Then in fact, the degree 5 L-series ζ(π, ω, s) is the
standard L-series attached to the representation π × ω of Sp(4,AF ) × Gl(1,AF ),
at least if we consider partial L-series at almost all unramified places. Since π is a
weak lift, we get from this

The Partial L-series. If we omit a suitable chosen finite set of places S depending
on σ and π, then

ζS(π,

2∧
(st), s) = LS(ωσ1 , s) · LS(ωσ2 , s) · LS(σ1 ⊗ σ2, s).

Hence, from ωσ1 = ωσ2

LS(ωπω−1
σ2

, s)ζS(π, ωπω−1
σ2

, s) = ζS(s)2 · LS(σ1 ⊗ σ2 ⊗ ω−1
σ2

, s)

= ζS(s)2 · LS(σ1 ⊗ σ2̌, s)

for the contragredient representation σ2̌ of σ2. For cuspidal σi the L-series
LS(σ1⊗σ2̌, s) does not vanish at s = 1. By a character twist the σi become unitary.
A twist of the cuspidal representations σi becomes unitary if and only if their cen-
tral character ωσi becomes unitary. Since this is a common character, one can take
the same character twist in both cases. So without restriction of generality, we can
assume that σ1 and σ2 are both unitary. Notice the representations have the same
central character. If ωΠ �= ωσi , this implies that ζS(π, ωπω−1

σ2
, s) has a pole of order

2 at s = 2. This is impossible, as will be explained below. Therefore,

ωπ = ωσ2

holds. Then the partial degree 5 standard L-function ζS(π, s) = ζ(π, 1, s) of π
is given by the formula

ζS(π, s) = ζS(s) · LS(σ1 ⊗ σ2 ⊗ ω−1
σ2

, s) = ζS(s) · LS(σ1 ⊗ σ2̌, s).

Then LS(σ1 ⊗ σ2̌, 1) �= 0 holds at s = 1 for cuspidal unitary representations σi.
Hence,

ords=1ζ
S(π, s) ≥ 1.

For σ1
∼= σ2 the pole order would be 2 or more. Hence, the first assertion of

Lemma 5.2 comes from the next result obtained by Soudry.

Review of a Result Obtained by Soudry.

ζS(π, χ, s) has at most a simple pole at s = 1 for unitary cuspidal π.

In fact, this is proved in [97] for a special character χ = χT . Indeed, this is the
most difficult case. For other characters one can use the same approach. Then again
as in [97], the order of the pole at s = 1 can be estimated by the pole order of
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an Eisenstein series. Up to a factor LS(χ2, 2s)LS(χ, s + 1), which is irrelevant
at s = 1, the L-series ζS(π, χT χ, s) is (except for an unimportant function A(s)
with A(1) �= 0,∞) an integral

∫
ϕ(g)θφ

T,ψ(g, 1)E(fs,χ; g)dg by (2.2) and (2.5)
in [97]. The poles of E(fs,χ; g), therefore, give an upper bound for the poles of
ζS(π, χχT , s). From [97], Theorem 2.4, the poles of these Eisenstein series are con-
tained in the poles ofL(χ2, 2s)L(χ, s+1),L(χ2, 2s)L(χ, s), L(χ2, 2s−1)L(χ, s),
L(χ2, 2s − 1)L(χ, s − 1) counted with multiplicity. There is no pole at s = 1 for
χ2 �= 1 and at most a simple pole for χ �= 1. The difficult case is χ = 1. In this case
there is no pole according to [97], Theorems 3.1 and 4.4(b). Therefore, the claim
follows.

Now Apply Kudla–Rallis–Soudry Theorem 7.1 [56]. This is now the point where
we have to restrict ourselves to the case of totally real number fields. This assump-
tion regarding the number field is made in [56]. Under this assumption the existence
of a pole for the partial degree 5 L-series ζS(π, s) at s = 1 implies that π – or more
precisely any irreducible constituent of π as a representation of Sp(4,AF ) – is a
constituent of a suitable theta lift

Θ(A(O(V ′,AF ))

attached to a quadratic space V ′ of discriminant 1 over F :

Δ(V ′) = Δ(VT ) · Δ(VT ′ ) = 1.

This formula for the discriminants follows from χT χT ′ = 1 = ( . , Δ(VT )) ·
( . , Δ(VT ′)) using Theorem 7.1(ii) in [56] if χT �= 1 or Theorem 7.1(i) if χT = 1.

Remark 5.3. The assumption F is totally real is most likely unnecessary since it
is needed only for the case of split discriminant. In fact, looking at the integral
representation in [97], formula (2.2), it would suffice to show that the residues of the
nonholomorphic Siegel Eisenstein series E(fs; g) at s = 1 ([97], 2(b)) are binary
theta series. A partial result in this direction – namely, the local case of this statement
– is Lemma 3.3 in [97].

Structure of V′. The quaternary quadraticF -spaces V ′ of discriminantΔ(V ′) = 1
are classified by their local Hasse invariants, or in this case alternatively by the
structure of their orthogonal groups of similitudes

GSO(V ′)(F ) ∼= D∗ × D∗/F ∗.

Here D is the corresponding quaternion algebra or Gl(2, F ), having invariants de-
termined by the signs of the local Hasse invariants of V ′. This proves part (A) of
Lemma 5.2, and it also proves statements (1) and (2) of the main theorem.

For the converse part (B) of Lemma 5.2 we may assume σ has unitary cen-
tral character. Notice LS(π, s) = LS(σ1, s)LS(σ2, s) and ζS(π ⊗ χ, s) =
LS(χ, s)LS(σ1 ⊗ σ2̌ ⊗ χ, s) outside a suitable finite set S. The known CAP



190 5 Local and Global Endoscopy for GSp(4)

criteria for π in terms of poles of these L-series (Soudry and Piatetski-Shapiro) ex-
clude the possibility that π is CAP for cuspidal σ, since the known analytic behavior
of L-series of cuspidal forms for Gl(2) or Gl(2) × Gl(2) excludes the existence of
poles at s = 3/2 for the degree 4 L-series and poles at s = 2 for degree 5 L-series
(for unitary central characters and unitary χ). This proves part (B), and completes
the proof of Lemma 5.2. �

Lemma 5.3. We have
⋃

σv

EΘ+(σv) ∩
⋃

σv

EΘ−(σv) = ∅,

where the union is over all generic irreducible admissible representations σv of Mv

on the left, and over all generic irreducible admissible discrete series representa-
tions σv of Mv on the right. In other words, the two theta lifts attached to Mv (split
case) and M̌v (anisotropic case) have no irreducible representation of GSp(4, Fv)
in common. The same statement also holds globally or after restriction to the sub-
group Sp(4, Fv).

Proof. It is enough to consider the restrictions to Sp(4, Fv). Here we refer to Howe
and Piatetski-Shapiro [41], Theorem 9.4, where it is shown that there is at most one
representation in common. In the proof of Lemma 4.26 we saw that the common
representation corresponds to a one-dimensional representation σv . However, this
is not a generic representation, and therefore it is excluded in the statement above.
This proves Lemma 5.3. �

Lemma 5.4 (Principle of Exchange). Suppose the cuspidal irreducible automor-
phic representation π = ⊗πv of GSp(4,AF ) is a weak endoscopic lift, but is not
CAP. Let σ denote the corresponding cuspidal representation of M(AF ):

1. Fix some place v0. Then πv0 is in EΘglr
ε (σv0 ⊗μv0) for some quadratic character

μv and some ε ∈ {±}. Suppose π′
v0

�∼= πv0 is an irreducible representation of
GSp(4, Fv0) and consider

π′ = π′
v0

⊗
⊗

v �=v0

πv.

Make the assumption: π′
v0

�∈ EΘglr
ε (σv0 ⊗ μ′

v0
) for all quadratic characters μ′

v .
Under this assumption π′ has global multiplicity

mdisc(π′) = 0.

2. If d(σ) < 2 (d(σ) is defined in Theorem 5.2(5), then πv = θ+(σv ⊗ μv) for all v
and certain local quadratic characters μv . In particular, πv is generic.

Proof. Suppose that to the contrary m(π′) ≥ 1 holds. Then π′ is in the global
L-packet of π, and hence it is a weak endoscopic lift attached to the same irreducible
representation σ of M(A) as π. According to Lemma 5.2 all constituents of π′
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and π, after restriction to the group Sp(4,AF ), are in the image of some theta
lifts Θ. These theta correspondences lift automorphic forms from orthogonal groups
arising from global simple algebras of rank 4 to automorphic forms on GSp(4). In
our case let D and D′ be the corresponding algebras, respectively. From the known
local properties of the theta lift it follows that

Dv
∼= D′

v (∀v �= v0),

since by Lemma 5.3 we would otherwise get a contradiction to the fact that

πv
∼= π′

v (∀v �= v0).

But then Dv0
∼= D′

v0
, as a consequence of the theorem of Hasse–Brauer–Noether.

Dv0
∼= D′

v0
implies that the constituents of both πv and π′

v (after restriction to
Sp(4, Fv)) either both belong or both do not belong to the local theta lift EΘglr

ε (σv).
Since this contradicts the assumptions, the proof of the first part of Lemma 5.4 is
complete.

The second part is shown similarly. Now D splits globally. Then [41], Theorem
5.7b or 8.1b, implies that the restriction of πv to Sp(4, Fv) is generic. By compact
induction also πv ⊗ μv, and hence πv is generic. This implies πv

∼= θ+(σv ⊗μv) =
θ+(σv) ⊗ μv for some quadratic character. This proves part (2) of the lemma. �

The principle of exchange can be applied for an Archimedean place in the sit-
uation of Lemma 5.5, since in this case the assumption made in Lemma 5.4(1)
is satisfied. In fact, assume Fv0 = R and let πv0 and π′

v0
be representations in

the local Archimedean L-packet {πW
∞ , πH

∞} = {π+(σ∞), π−(σ∞)} attached to a
discrete series representation σ∞ of M∞. By Lemma 5.5 πW ∈ EΘ+(σ∞) and
πH ∈ EΘ−(σ∞ ⊗ μ∞); hence, πH /∈ EΘ+(σ∞ ⊗ μ∞) for all μ∞ by Lemma 5.3.
Hence, the principle of exchange can be applied.

Lemma 5.5. Let Fv = R and π′
v = πW

∞ and πv = πH
∞, then the constituents of

π′
v restricted to Sp(4,R) have Whittaker models, whereas the constituents of πv

restricted to Sp(4,R) do not have a Whittaker model. Furthermore, πW ⊗ μv
∼=

πW , πH ⊗ μv
∼= πH for all quadratic characters μ∞, and also πW ∈ EΘ+(σ∞ ⊗

μ∞) and πH ∈ EΘ−(σ∞ ⊗ μ∞) for all quadratic characters μ∞.

Proof.Well known. �

5.3 The Multiplicity Formula

Themain results obtained in this section are the following: the local–global principle
(Lemma 5.6) and the key formula. Under the assumptionF = Q and the assumption
that in the global L-packet of the representation π a representation exists for which
the Archimedean component π∞ belongs to the discrete series, Lemma 5.6 and the
key formula are proven in this section. This of course suffices for the applications in
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Chap. 2. The proof of Lemma 5.6 and key formula for general totally real number
fields and arbitrary cusp forms π is contained in Sects. 5.4 and 5.5. In this section we
also show that the local–global principle (Lemma 5.6) and the key formula imply
for arbitrary F and π certain corollaries (Corollaries 5.1–5.5), from which the main
Theorem 5.2 follows.

Let π be a cuspidal irreducible weak endoscopic lift attached to some irreducible
cuspidal representation σ of M(AF ). Write π = π∞ ⊗ πf , where π∞ denotes the
tensor product over all Archimedean components. Assume π is not CAP. Then σ is
cuspidal and σ �∼= σ∗ (Lemma 5.2(1)). For irreducible automorphic representations
of the group Gl(2,AF ) cuspidal implies generic. So the same is true for the group
M(AF ).

So Lemma 5.6 proves assertion (3) of the main theorem.

Lemma 5.6 (Local–Global Principle). Let π be a weak endoscopic lift contained
in the global L-packet attached to some generic, irreducible cuspidal automorphic
representation σ of M(A). Suppose π is cuspidal but not CAP. Then for all places
v of F the local components πv of π belong to the local L-packets {π±(σv)} and
{π+(σv)} of σv .

Proof of Lemma 5.6 for F = Q and π∞ in the discrete series (for the general case
see Sects. 5.4 and 5.5). By assumption π∞ is contained in some local Archimedean
L-packet {πW , πH} attached to a discrete series representation of M∞. From the
topological trace formula we have the

Weak Multiplicity Formula (Corollary 4.2). For F = Q and πf as above

m(πW
∞ ⊗ πf ) − m(πH

∞ ⊗ πf ) = n(πf ),

where n(πf ) is zero if there exists a non-Archimedean place v for which πv is not
contained in the local L-packet of σv, and where n(πf ) is equal to (−1)e(πf ) other-
wise. Here e(πf ) denotes the number of non-Archimedean places v for which πv

∼=
π−(σv) holds. Since e(πf ) < d(σ), this number is finite. Some comments: The mul-
tiplicity m(π) is the multiplicity of π in the discrete spectrum of G(AQ) or equiva-
lently the multiplicity in the cuspidal spectrum since π is not CAP. We remark that
the multiplicity formula above is a reformulation of Corollary 4.2. In fact we used
Corollary 4.4 to identify the multiplicities m1(πf ), m2(πf ) used in Corollary 4.2
with the multiplicities m1(πf ) = m(πH

∞ ⊗ πf ) and m2(πf ) = m(πW
∞ ⊗ πf ). We

also used the property that the normalizing sign ε from Corollary 4.2 is ε = −1
(Lemma 8.4). Also recall that in Corollary 4.2 the value n(πf ) =

∏
v �=∞ n(πv) is

defined in terms of the multiplicities n(πv) of πv in the local character expansion
r(σ(σv)) =

∑
n(πv) · πv for the local endoscopic lift r : RZ(Mv) → RZ(Gv).

The expression for n(πf ) in the form stated above follows from the structure of
the local L-packets of the local endoscopic lift r(σv) of a generic representation
σv of Mv. This was described in Sect. 4.11 and also in Sect. 5.1 of this chapter
in the non-Archimedean case and in Lemma 5.5 in the Archimedean case. The
L-packets consist of two representations π+(σv), π−(σv) if σv belongs to the dis-
crete series, and of one representation π+(σv) if σv does not belong to the discrete
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series. Among these only the representations π−(σv) do not haveWhittaker models.
Hence, n(πv) = 0 unless πv is in the local L-packet of σv . Furthermore, n(πv) is
+1 or −1 otherwise, and the sign depends on the existence of a Whittaker model.

If πv is not in the local L-packet of σv , then v is non-Archimedean and the weak
multiplicity formula implies m(πW

∞ ⊗ πf ) = m(πH
∞ ⊗ πf ). But then m(π) > 0

and m(π′) > 0 for π = πW∞ ⊗ πf and π′ = πH∞ ⊗ πf . But this contradicts the
principle of exchange. By Lemma 5.5 the assumptions of Lemma 5.4 are satisfied
for the place v0 = ∞. Hence, Lemma 5.6 follows under the assumptions F = Q
and π∞ is in the discrete series.

Now let us return to the general case. In fact, suppose that Lemma 5.6 holds as-
suming the results obtained in Sects. 5.4 and 5.5. From Lemma 5.6 we now deduce
the next three corollaries. First recall from Sect. 5.1 the global (GSp(4), GO(V ))-
theta correspondence: For discrete series representations σv we constructed a global
irreducible automorphic cuspidal representation σ of M(AF ) and a nonvanishing
global theta lift π of σ with local components πv such that πv ∈ EΘ−(σv) which
do not have local Whittaker models. Hence, πv �∼= π+(σv) since π+(σv) has Whit-
taker models. This implies πv = π−(σv) (Lemma 5.6). In particular, π−(σv) is
in EΘ−(σv) and does not have local Whittaker models. Since we also know that
π+(σv) = θ+(σv) is generic, we obtain from Lemma 5.6 �

Corollary 5.1 (Local Endoscopic Lift = Theta Lift). Under the assumptions of
Lemma 5.6 the representations π±(σv) of the local L-packet attached to a discrete
series representation σv of Mv are the two Weil representations θ±(σv):

(a) Θglr
+ (σv) = {π+(σv)} = {θ+(σv)} for split D.

(b) Θ−(σv) = {π−(σv)} = {θ−(σv)} for nonsplit D.

In particular, π+(σv) has a local Whittaker model, whereas π−(σv) does not have
local Whittaker models.

Notice Lemma 5.6 and its Corollary 5.1 imply Proposition 5.1.

Corollary 5.2 (Whittaker Models). Suppose the assumptions of Lemma 5.6 are
satisfied. Let v be a place where σv belongs to the discrete series. Then π+(σv) ∈
Θ+(σv) has local Whittaker models, whereas π−(σv) ⊗ μv �∈ Θ+(σ) for all
(quadratic) characters μv, and these representations are cuspidal and do not have
local Whittaker models.

Proof. Follows from Corollary 5.2 and Lemmas 4.17 and 5.3. �

Corollary 5.3 (Refined Principle of Exchange). Suppose the assumptions of
Lemma 5.6 are satisfied. For the weak automorphic lift π = ⊗vπv of σ put
π′ = π′

v ⊗v �=v0 πv for an irreducible admissible representation π′
v of Gv . Then

for π′
v �∼= πv

m(π′) = 0.
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Proof. Suppose m(π′) > 0 and π′
v �∼= πv . Then both π and π′ are weak automorphic

endoscopic lifts of σ. Hence, πv, π
′
v ∈ {π+(σv), π−(σv)} by Lemma 5.6. Since

they are not isomorphic, we can apply the principle of exchange (Lemma 5.4),
because Corollaries 5.1 and 5.2 imply that all the assumptions of Lemma 5.4 are
now satisfied. Hence, m(π′) = 0 (Lemma 5.4), which completes the proof of
Corollary 5.3. �

Proof of the Remaining Assertions (4) and (5) of the Main Theorem. Suppose π is
an automorphic representation of G(AF ) as in the main theorem. π is irreducible,
cuspidal automorphic but not CAP, and π is a weak lift attached to some irreducible
automorphic representation σ of M(AF ). Then, as already shown, σ is cuspidal and
its local components σv are generic. �

Conversely for an irreducible cuspidal automorphic representation σ = (σ1, σ2) of
M(AF ) consider the global L-packet of all weak endoscopic lifts attached to it.
Since we are mainly interested in cuspidal automorphic representations, assume

σ1 �∼= σ2

because otherwise the global L-packet attached to σ does not contain a cuspidal
representation (Lemma 5.2). See also Corollary 5.5. In fact, recall from Theorem 4.3

The Base Point of the L-packet. From a result obtained by Soudry this global
L-packet is nonempty and contains the representation π+(σ) =

∏
v π+(σv) as a

cuspidal automorphic representation with multiplicity m(π+(σ)) = 1.

In fact the situation in Theorem 4.3 is slightly more restrictive. So for the conve-
nience of the reader we sketch the argument.

Sketch of Proof. π+(σ) is the theta lift EΘ+(σ) (for the split case). By the assump-
tions regarding σ this theta lift does not vanish, and it is cuspidal since σ1 �∼= σ2.
Hence, m(π+(σ)) > 0. Then from a result obtained by Soudry

m(π+(σ)) = 1,

since every cuspidal representation which is isomorphic to π+(σ) has a global
Whittaker model. This follows from another result obtained by Soudry, namely,
since by construction π+(σ) is locally generic at all places v, it is enough to show
the nonvanishing of ζS(π+(σ), s) at Re(s) = 1 (if ω is normalized to be unitary).
But this nonvanishing follows immediately from the computationsmade in the proof
of Lemma 5.2, since under our assumptions the L-series LS(σ1 × σ̂2, s) does not
vanish on the line Re(s) = 1. This completes the proof of the claim. �

Corollary 5.1 now implies that for every representation π in the global L-packet
there exists a finite set of places S of F where πv does not have a Whittaker model
and such that
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π =
⊗

v∈S

π−(σv) ⊗
⊗

v/∈S

π+(σv).

Let e(π) = #S be cardinality of this uniquely defined set

S = S(π).

This is a subset of the finite set of places, where σv belongs to the discrete series.

Corollary 5.4. Suppose the assumptions of Lemma 5.6 are satisfied. Also suppose
the key formula (stated below) holds. Then for any π in the global L-packet of a
cuspidal irreducible representation σ with σ �∼= σ∗ the multiplicity mcusp(π) =
mdisc(π) is

m(π) =
1
2
(1 + (−1)e(π)), e(π) = #S(π).

In Other Words: m(π) = 1 for even e(π), and m(π) = 0 otherwise.

Proof.As in the proof of Lemma 5.4(2) this is true for e(π) < 2. So we may assume
e(π) ≥ 2. Pick two places v1 �= v2 which contribute to e(π). �

If some Archimedean πv belongs to the discrete series we assume v1 to be
Archimedean. More generally, let S be the set of places v where πv is in the
discrete series. Then we may assume v1 to be some fixed place of S. Now consider
the representation π′ of G(AF ), which is obtained from π by replacing the two
local representations πv1 and πv2 within their local L-packets. Since πv is in the
discrete series for v = v1, v2, the local L-packets both have cardinality 2 at v1 and
at v2. With this notation we formulate the

Key Formula. Let π be a weak endoscopic lift of a cuspidal automorphic represen-
tation σ with σ∗ �∼= σ. Suppose π is not a CAP representation and suppose e(π) ≥ 2.
Let π′ be defined as above by replacements at two places v1, v2, where π belongs to
the discrete series. Then m(π) + m(π′) > 0 implies that e(π) is even, and implies

m(π) + m(π′) = 2.

Continuation of the Proof of Corollary 5.4. It is clear that with this key formula
we can prove Corollary 5.4 by induction on e(π), by reduction to the known cases
e(π) = 0, 1, since every set S′ of even cardinality of the set of places where σv

belongs to the discrete series can be obtained by a finite number of exchanges at two
places of this set. It is of no harm to assume, in addition, that at one of the places,
say, v1 (for F = Q, e.g., the Archimedean place, if π∞ belongs to the discrete
series), σv1 remains unchanged. This impliesm(π′) = 1 orm(π′) = 0 by induction,
depending on whether e(π′) is even or odd. This proves Corollary 5.4. �

Proof of the Key Formula.We now prove it for F = Q and π∞ in the discrete series.
The general case is done in Sect. 5.4. Put π = πε2(σv2 ) ⊗ πε1(σv1) ⊗ πv1,v2 . Then
by the weak multiplicity formula, applied twice,
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(
m(πε2 (σv2) ⊗ πε1(σv1 ) ⊗ πv1,v2) − m(πε2(σv2) ⊗ π−ε1(σv1 ) ⊗ πv1,v2)

)

−(
m(π−ε2(σv2) ⊗ πε1(σv1 ) ⊗ πv1,v2) − m(π−ε2(σv2 ) ⊗ π−ε1(σv1 ) ⊗ πv1,v2)

)

= (−1)e(π) − (−1)e(π)±1 = 2 · (−1)e(π) = 2 · (−1)e(π).

By the principle of exchange, two of these multiplicities always vanish. If
m(πv1v2) > 0 or m(π) > 0, then m(π−ε2(σv2) ⊗ πε1(σv1) ⊗ πv1,v2) =
m(πε2(σv2 ) ⊗ π−ε1(σv1) ⊗ πv1,v2) = 0 vanishes (Corollary 5.3). Hence,

m
(
πε2(σv2)⊗πε1(σv1)⊗πv1,v2

)
+m

(
π−ε2(σv2)⊗π−ε1(σv1)⊗πv1,v2

)
= 2 · (−1)e(π).

The left side is nonnegative by assumption, so e(π) is even and m(π)+m(π∞,v) =
2. This proves the key formula, and hence Corollary 5.4 and the main theorem (in
the special case). �

Corollary 5.5. Suppose that σ is a (generic) irreducible cuspidal representation of
M(AF ) = Gl(2,AF ) × Gl(2,AF )/A∗

F . Suppose σ = JL(σ̌) is the Jacquet–
Langlands lift of an irreducible representation σ̌ of some inner form D∗(A) ×
D∗(A)/A∗ of M(A), where D is a quaternion algebra. Then the corresponding
theta lift ΘD(σ̌) does not vanish.

Remark 5.4. The corresponding statement for D∗ = Gl(2) is easier and follows
from the existence of Whittaker models. See [41] or Chap. 4. See also the discussion
preceding Corollary 5.4.

Proof of Corollary 5.5. Suppose σ1
∼= σ2. Consider the theta lift ΘD(σ) and its

zero Fourier coefficient with respect to the maximal parabolic Q, which is not the
Siegel parabolic. In the classical theory of Siegel modular forms this corresponds to
considering the Siegel φ-operator. As a representation of theGl(2,AF )-factor of the
Levi component, this Fourier coefficient essentially defines the Jacquet–Langlands
lift attached to the automorphic representation σ̌1

∼= σ̌2 of D∗(AF ) (for details
we refer to [41] and Chap. 4, Corollary 4.13). Since the Jacquet–Langlands lift is
always nontrivial, this implies that the theta lift ΘD(σ) is not trivial. In particular, it
is not cuspidal under the assumption σ1

∼= σ2.
To prove the first assertion we can now assume σ1 �∼= σ2. We will then show

that the theta lift ΘD(σ) does not vanish. Let S be the set of nonsplit places of
the quaternion algebra D. As the cardinality of S is even, the multiplicity of the
representation π =

∏
v∈S π−(σv)⊗ ∏

v/∈S π+(σv) is 1 by Corollary 5.4. Hence, in
particular, it is not zero, and π is therefore a cuspidal automorphic representation.
As π is a weak endoscopic lift by definition, Proposition 5.1 implies that π is a
theta lift. The set S of places where πv does not have a Whittaker model is the
set of nonsplit places of the corresponding algebra by Corollary 5.1. Hence, this
algebra is D. But then by Proposition 5.2 π is a theta lift of typeΘD(σ) or ΘD(σ∗).
But ΘD(σ) = ΘD(σ∗) since the theta lift was originally defined by passing from
M = GSO(4) to GO(4) (we refer to the remarks at the end of Sect. 5.1). Hence the
claim follows. This proves Corollary 5.5. �
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5.4 Local and Global Trace Identities

We say a locally constant function fv on Gv with compact support on Gv satis-
fies the condition (RS), if its support is contained in the locus of regular points.
A semisimple element of Gv is called elliptic if it is an element of an elliptic
Cartan subgroup. The set of regular elliptic points is open in Gv . For locally con-
stant functions fv on Gv with compact support we say condition (ES) holds if
the support is contained in the regular elliptic locus. Condition (ES) implies that
all the orbital integrals OGv

γv
(fv) of fv vanish for Gv-regular nonelliptic elements

γv ∈ Gv = GSp(4, Fv)

OGv
γv

(fv) = 0 for γv regular and not elliptic.

Hence, fv ∈ A(Gv) in the sense of [44]. And fv ∈ A(Gv) implies that fv is
cuspidal in the sense of [6], p. 538. By definition, this means (fv)Mv = 0 for all
Levi subgroups Mv �= Gv of Gv , or equivalently by the adjunction formula for
induced representations

tr πv(fv) = 0, for all πv = IndGv

Pv
(σv).

Here πv runs over all induced representations of tempered representations σv of Mv

for proper parabolic subgroups Pv = MvNv. See [5], p. 328.
We say condition (∗)v holds for fv if the stable orbital SOGv

γv
(fv) of fv vanishes

for all regular semisimple γv ∈ Gv

(∗)v SOGv
γv

(fv) = 0 (for all γv regular semisimple).

Since unstable tori of the group Gv = GSp(4, Fv) are elliptic, the orbital integrals
and stable orbital coincide for regular points outside the elliptic locus. Hence, con-
dition (∗)v implies OGv

γv
(fv) = 0 for all regular nonelliptic γv .

Let G̃v ⊆ Gv denote the subgroup of elements whose value under the similitude
character is a square in (Fv)∗. Then tr (πv ⊗ μv)(fv) = tr πv(fv) for all quadratic
characters μv , if supp(fv) ⊆ G̃v . Note G̃v = Zv ·Sp(4, Fv), and G̃v is open in Gv .
Every element in Gv, which is stably conjugate to an element of G̃v , is contained
in G̃v .

Remark 5.5. We later use the following auxiliary result, which is related to
Proposition 5.3. For Fv = R there exists some σv in the discrete series and
some K-finite infinitely differentiable function fv with compact support satisfying
(∗)v and tr π−(σv)(fv) > 0. This is constructed by smooth truncation of a func-
tion fπ+(σv) − fπ+(σv), where fπ±(σv) are pseudocoefficients. We leave this as an
exercise. See also [91], (4.7.1).

Lemma 5.7 (Stability). For σv in the discrete series of Mv, the character T of
π+(σv) ⊕ π−(σv) is a stable distribution. In other words, for any locally constant
function fv on Gv , condition (∗)v implies T (fv) = 0.
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Proof of Lemma 5.7. In the Archimedean case this follows from [90], Lemma 5.2.
In the non-Archimedean case one can argue as in [76], Proposition 12.5.3 and
Corollary 12.5, to show that the stability of a distribution T is equivalent to the
statement < T, r(ρv) >e= 0 for all discrete series representations ρv of Mv. Since
for T = tr π+(σv) + tr π−(σv) the latter means < π+(σv) + π−(σv), π+(ρv) −
π−(ρv) >e = 0, this follows from the scalar product formulas proved in Chap. 4,
Lemma 4.22. There are two cases that have to be distinguished. Either σv �∼= σ∗

v .
Then we can apply the orthogonality relations, since both π±(σv) belong to the dis-
crete series, and since furthermore πε(σv) ∼= πε′ (ρv) implies σv

∼= ρv and ε = ε′.
Or σv

∼= σ∗
v . Then < πε(σv), πε′(ρv) >e = 1 for σv

∼= ρv and is zero otherwise as
shown in Chap. 4. So this gives the proof. �

Remark 5.6. The same argument proves stability for the traces T = tr πv of dis-
crete series representations πv of Gv for which πv is not isomorphic to one of the
representations π±(σv), σv in the discrete series.

Lemma 5.7 implies the existence of auxiliary functions fv ∈ A(Gv) as follows

Proposition 5.3 (Instability). For σv in the discrete series of Mv, there exists a
locally constant function fv with condition (ES) and support in G̃v such that (∗)v

holds and such that tr π−(σv) > 0.

Proof of Proposition 5.3. We can assume v is non-Archimedean. Recall fv ∈
A(Gv), and this implies T (fv) = 0 for T = tr π+(σv)+ tr π−(σv) by Lemma 5.7.
Therefore, tr π−(σv)(fv) > 0 and tr r(σv)(fv) < 0 are equivalent statements.
Hence, it is enough to show tr σv(fMv

v ) < 0 for a matching function fMv
v . The

character of σv does not vanish in any neighborhood of the identity element for
at least one elliptic torus Tv in Mv. Such a Tv defines two conjugacy classes of
tori in Gv , which are stable conjugate, together with admissible isomorphisms be-
tween Tv and these tori. Since regular points are smooth points of the conjuga-
tion map, one can easily construct matching functions fv and fMv

v with support in
these tori sufficiently near to the identity such that (∗)v holds for fv, but such that
tr σv(fMv

v ) < 0. This is done by the implicit function theorem. Simply consider
bump functions fv with small support near γv ∈ Tv such that SOGv

γv
(fv) = 0 and

such that Oκ
γv

(fv) = SOMv
γv

(fMv
v ) �= 0 for a corresponding bump function with

sufficiently small support near γv . Then the support of fv is in G̃v, and fv satisfies
(ES). Furthermore, tr r(fv) < 0 and fv ∈ A(Gv). This proves the claim. �

We now prove the following results.

Proposition 5.4. For irreducible σv in the discrete series EΘ−(σv) = {π−(σv)}.

Proposition 5.5. Suppose σv is irreducible and generic. Then πv ∈ EΘglr
+ (σv) im-

plies πv
∼= θ+(σv).

In some cases these statements are known already, for instance, in the Archimedean
case. For p-adic fields (completions of Q), Proposition 5.3 follows from the density
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lemma (Chap. 4, Sect. 5.1) and Lemma 5.6 in Sect. 5.3. Still another case: If σv is
cuspidal non-Archimedean such that σv

∼= σ∗
v , then EΘ+(σv) = {π+(σv)} (see

Chap. 4 and [106], p. 64, lines 10-15, and p. 55), which is stronger than Proposi-
tion 5.5. The distribution T of Lemma 5.7 is stable in this case for a trivial reason.
Namely π+(σv) and π−(σv) are the two constituents of an induced representation
called 1 × σv (Lemma 4.19). Since the orbital integral of any fv ∈ A(Gv) has el-
liptic support, this implies T (fv) = 0 since the trace of the induced representation
1 × σv vanishes on the regular elliptic locus. In particular, we obtain

Auxiliary functions. For non-Archimedean p-adic local fields Fv and given an
irreducible cuspidal representation σv with σv

∼= σ∗
v , there exist functions fv ∈

A(Gv) with support in the regular elliptic point of G̃v such that tr πv(fv) > 0
holds for all πv ∈ EΘ−(σv ⊗ μv), μv quadratic.

Proof of Proposition 5.4. The Archimedean case is well known, so assume v is non-
Archimedean.

Suppose for some σv in the discrete series of Mv the assertion of Proposition 5.4 is
false. Then there is a πv ∈ EΘ−(σv) not isomorphic to π−(σv). Choose a global
field F for the given local field Fv such that the central character of σv is induced
from a grössen character ω of F . For reasons to become clear soon, we write v′′ for
the place v from now on.

We choose additional auxiliary non-Archimedean places v, v′, for which F/Q is
split. Choose σv, σv′ at these auxiliary places in the discrete series such that σv

∼= σ∗
v

and σv′ ∼= σ∗
v′ with central characters ωv ωv′ , respectively. Then we fix auxiliary

functions fv ∈ A(Gv) and fv′ ∈ A(Gv′) with condition (ES) and support in G̃v

and G̃v′ , respectively, as constructed above (Proposition 5.3).
By the density lemma formulated in Sect. 5.1 and the appropriate choice of cen-

tral characters, we find a global cuspidal automorphic representation σ of M(AF )
such that σ �∼= σ∗ realizes the given discrete series representations σv , σv′ , and σv′′

at the places v, v′, and v′′. Consider the set C of classes of irreducible cuspidal
automorphic representation π′ in the global L-packet of σ, which specialize to the
given representations π−(σv), π−(σv′), and πv′′ at the places v, v′,and v′′. Such a
π′ is never CAP , and by the density lemma we can assume C is nonempty.

We now apply Lemma 5.8 from Sect. 5.5 for the auxiliary functions fv, fv′ cho-
sen above. Hence, conditions (ii), (iv), (v), and (vi) of Lemma 5.8 hold for w = v.
For our choice of π (i) and (iii) are also satisfied. Furthermore, fv′′ may be arbi-
trary. Then all assumptions for Lemma 5.8 are satisfied. We get – since fv′′ is now
arbitrary –

∑

π′,(π′)v,v′=πv,v′
m(π′) · tr π′

v(fv) · tr π′
v′ (fv′) = 0.

The right side vanishes, since πv′′ �∼= π±(σv′′ ) at the local place v′′, where we orig-
inally started from. Furthermore, as we know, the summation is over theta lifts.
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Hence, every π′
v is in EΘ±(σv) up to a quadratic character twist (Lemma 5.2,

part 1), and similarly for π′
v′ .

Since the places v, v′ are split in F , they are p-adic. Hence EΘ−(σv) =
{π−(σv)} from Sect. 5.3, and similarly EΘ−(σv′ ) = {π−(σv′)}. From our choice
of fv, fv′ (Proposition 5.4), therefore,

tr π′
v(fv) · tr π′

v′(fv′) > 0

holds for all relevant π′ in the sum, unless either πv ∈ EΘ+(σv) or πv′ ∈ EΘ+(σv′)
holds up to quadratic character twists. But then the principle of exchange at v or v′,
respectively (Lemma 5.4), implies that πv and πv′ must be both in the plus space.
From the assumption σv

∼= σ∗
v and σv′ ∼= σ∗

v′ , we know from [106] that EΘ+(σv) =
{θ+(σv)} and EΘ+(σv′ ) = {θ+(σv′ )}. Hence, tr π′

v(fv) = tr π′
v ⊗ μ′

v(fv) =
tr π+(σv)(fv) = −tr π−(σv)(fv), and similarly at the place v′. Since the signs of
v and v′ cancel, again

tr π′
v(fv) · tr π′

v′(fv′) > 0.

In other words, this term is positive for all relevant π′ appearing in the trace formula
stated above. Furthermore, m(π′) ≥ 0 and m(π) ≥ 1. Since the total sum of the
terms tr π′

v(fv) · tr π′
v′(fv′) is zero, this gives a contradiction and completes the

proof of Proposition 5.4. �

Proof of Proposition 5.5. Fix a global cuspidal representation σ �∼= σ∗ of M(AF )
for some number field F . An irreducible cuspidal automorphic representation π in
the global L-packet of σ will be called strange if for some place it is strange locally,
i.e., if πv ∈ EΘglr

+ (σv) for πv �∼= π+(σv). Notice such a v is never Archimedean,
since in this case the theta lift is understood well enough.We therefore have to show
that strange representations π cannot arise at non-Archimedean places.

For any π′ in the global L-packet attached to σ let S = S(π′) be the set of places v
where π′

v ∈ EΘ−(σv) holds up to some quadratic character twist. If strange π exist
in this L-packet, we choose π to be minimal with respect to the cardinality of S(π)
among all the strange π in this L-packet. For this π there exists a non-Archimedean
place v′′ where πv′′ is strange locally.

We claim the cardinality of S(π) is 2 or more. Otherwise the underlying quater-
nion algebraD = D(π) would be split and S = ∅ (second assertion of Lemma 5.4).
In this situation the corresponding theta lift is locally and also globally generic ac-
cording to results obtained by Howe and Piatetski-Shapiro [41] and also by Soudry.
But this implies πv

∼= θ+(σv) for all v, which contradicts the strangeness assump-
tion. For this recall from [96] and Sect. 5.1 that there is at most one class of irre-
ducible generic representation in Θ+(σv). It follows that #S(π) ≥ 2.

Fix two different places v, v′ in S = S(π). Choose fv, fv′ to be cuspidal with
supp(fv) ⊆ G̃v and supp(fv′) ⊆ G̃v′ such that fv, fv′ satisfy (∗)v ad (∗)v′ , respec-
tively. Furthermore, suppose tr πv(fv) > 0 and tr πv′(fv′) > 0 (Proposition 5.3).

Furthermore, choose an auxiliary non-Archimedean place w �= v, v′, v′′ of
residue characteristic different from 2, where σw and πw = π+(σw) are unramified.
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In particular, w �∈ S(π). Choose fw with regular support contained in G̃w such that
tr π+(σw)(fw) > 0. For example, take a bump function with support in the max-
imal split torus concentrated at a regular point near the origin, where the character
of the unramified representation π+(σw) is nontrivial. Then, in particular, condition
(RS) holds.

With these data fixed we apply Lemma 5.8 from Sect. 5.5. This gives
∑

π′,(π′)v,v′,w=πv,v′,w

m(π′) · tr π′
v(fv) · tr π′

v′(fv′) · tr π′
w(fw) = 0.

The right side vanishes since πv′′ �∼= π±(σv′′ ) at the place v′′ where πv′′ is locally
strange.

The minimality of π and Propositions 5.3 and 5.4 imply π′
v ∈ EΘ−(σv)

(up to quadratic character twists) for all π′ which contribute to the trace for-
mula above, i.e., those π′ which are isomorphic to π outside v, v′. The same as-
sertion is true at the place v′. Hence, tr π′

v(fv) = tr π−(fv) > 0 and also
for the place v′, by our choice of test functions. It remains for us to consider
the auxiliary place w. Here π′

w ⊗ μw ∈ EΘ+(σw) holds up to some quadratic
character μw. The unramified Sp–O Howe correspondence matches unramified
representations with unramified representations. Hence, the restriction of π′

w to
Sp(4, Fw) contains an unramified representation since σw was unramified by as-
sumption. Hence, up to a quadratic character twist both πw and π′

w are constituents
of IndGw

Zw·Sp(4,Fw)(π̃
′
w) for the same irreducible unramified representation π̃′

w of

G̃w. This implies π′
w = χw ⊗ πw for some quadratic character χw [104], p. 480,

line 5. Therefore, tr π′
w(fw) = tr πw(σw) > 0 holds independently of π′, because

the support fw is contained in G̃w. This gives a contradiction, since in the trace
formula above all these nonnegative terms should sum to zero with at least one of
them being positive (for π itself). Hence, there are no strange representations π in
the global L-packet of σ. Proposition 5.5 is proven. �

To complete the proof of Theorem 5.2 and also to obtain all the results stated in
Sects. 5.2 and 5.3 in full generality, it remains to prove the key formula and the
local–global principle (Lemma 5.6) stated in Sect. 5.3. The essential part of the
local–global principle is stated in Propositions 5.4 and 5.5. What remains to ob-
tain Lemma 5.6 will be shown below together with the key formula (as stated in
Sect. 5.3). So once more we exploit the trace formula.

Proof. Let σ �∼= σ∗ be a cuspidal irreducible automorphic representation of M(AF ).
Then any π in the global L-packet attached to σ is not CAP. Fix π and suppose
e(π) ≥ 2. Choose two places {v, v′} in S(π) and consider Lemma 5.8 in Sect. 5.5
in the special case where the assumptions (∗)v and (∗)v′ hold simultaneously. In
particular, the functions fv, fv′ are cuspidal. We choose fv and fv′ so that a+ �= 0
and a′

+ �= 0, respectively, and condition (ES) holds in addition with supports in
G̃v and G̃v′ , respectively. This is possible by Proposition 5.3. Lemma 5.7 im-
plies a− = −a+ �= 0 and a′− = a′

+ �= 0, where we used the abbreviations
a± := tr π′

±ε(σv)(fv) and a′
± := tr π′

±ε′(σv′ )(fv′). To satisfy assumption (vi)
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in Sect. 5.5, if both v and v′ are Archimedean, we also choose some additional non-
Archimedean place w and some function fw as in the proof of Proposition 5.5.

The semilocal trace identity of Lemma 5.8 in this case is simplified considerably.
This means that in the sum

∑′
adisc(π′

vπ′
v′π′

wπvv′w) · tr π′
v(fv) · tr π′

v′(fv′) ·
trπ′

w(fw) only those representations π′ contribute whose local components are in
the local L-packet of σ at least up to a quadratic character twist. In particular, πw is
unramified up to a quadratic character twist. In fact all this follows from the last two
propositions, and the arguments used for their proof. By the support conditions of
fv, fv′ , and fw, quadratic character twists do not have an effect on the trace. There-
fore, the contribution tr π′

w(fw) = tr π+(fw) �= 0 is independent of π′ and can
be canceled from both sides of the semilocal identity. Similarly, the nonvanishing
terms a+ = −a− �= 0 and a′

+ = −a′− �= 0 are independent of π′. Canceling these
terms therefore gives M++ + M+− + M−+ + M−− = 2(−1)e(π).

Here Mε,ε′ is the sum over all multiplicities m(π′) over all π′ such that π′ ⊗
μvμv′μw

∼= πε(σv)πε′(σv)πvv′
for some local quadratic characters μv, μv′ , and

μw. Since the right side 2(−1)e(π) equals the left side, which is zero or more, we
get 2|e(π). Furthermore, by the principle of exchange, the conditionM++ > 0 (note
m++ > 0 by assumption) implies M−+ = M+− = 0. Hence, M++ + M−− = 2
and e(π) is even. This almost completes the proof of the key formula. In fact we
know M(π′) = 1 from Lemma 5.4 part 2, if the cardinality of S(π′) is 0, 1. So
by induction on this cardinality, the argument surrounding the statement of the key
formula in Sect. 5.3 proves M++ = M−− = 1. It only remains for us to show
m(π′) = 0 unless πv and πv′ are in the local L-packet of σv and σv′ , respectively.
For πv ∈ μv ⊗ Θ+(σv) this follows with the same argument used in the proof of
Proposition 5.5. In particular, we always get π′

w
∼= π+(σw) at the auxiliary place w.

(This could also be seen by moving this place around, i.e., changing to some other
place where σw is unramified and where π′ = πw(σw) holds.) So by the symmetry
of v, v′ it only remains to show m(π′) = 0 whenever π′

v
∼= μv ⊗ π−(σv) holds for

some quadratic character μv but π′
v �∼= π−(σv) . Assume this were not true. To obtain

a contradiction, again apply the trace formula with fv′ , fw as above, but nowwith fv

satisfying only condition (ES) but being arbitrary otherwise. Still the assumptions
of Lemma 5.8 in Sect. 5.5 are satisfied. From this we obtain a contradiction, pro-
vided the characters χ1 and χ2 of μv ⊗ π−(σv) and π−(σv) are linear-independent
on the regular elliptic locus of Gv (the support of fv). Notice the first character,
χ1, appears on the left side of the trace identity, whereas the other character, χ2,
appears on the endoscopic left side of the assertion in Lemma 5.8. So it remains
for us to show that linear independence holds on the elliptic locus. For σv �∼= σ∗

v

both representations are cuspidal and the claimed linear independence follows from
the orthogonality relations for cuspidal characters with respect to the elliptic scalar
product. If σv

∼= σ∗
v , both representations do not belong to the discrete series. But

in this case the distribution T of Lemma 5.7 vanishes on the regular elliptic locus.
Hence, −2χ1 = r(μv ⊗ σv) and −2χ2 = r(σv) holds on the regular elliptic locus,
so the linear independence of χ1, χ2 on the elliptic locus follows from the corre-
sponding linear independence of μv ⊗ σv and σv . Since these representations are in
the discrete series, and since they are not isomorphic by our assumptions, they are
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linear-independent on the regular elliptic locus of Mv. This contradiction implies
that any π′ in the global L-packet with m(π′) > 0 has its local components π′

v in
the local L-packet attached to σv for all places v of F . In other words, the local–
global principle holds. This, together with the multiplicity result obtained above,
implies the key formula. �

Remark 5.7. If we relax the assumptions on σ = (σ1, σ2) in definition 5.1, we
can similarly consider the case where σ1 is one-dimensional. If σ2 is in the discrete
series, this is the situation considered in [3]. With the results on L-series shown
in [69] (instead of the results obtained by Soudry used in the non-CAP case), the
coefficients adisc can be worked out directly, and the arguments from above should
extend to give a characterization of the CAP representation in terms of the local
Arthur packets. This indeed would give a refined description of the Saito–Kurokawa
lift in term of local Arthur packets.

5.5 Appendix on Arthur’s Trace Formula

In this appendix we apply the Arthur trace formula. We deduce from it certain lo-
cal character identities, whose coefficients contain global information. We therefore
refer to them as semilocal character relations. This semilocal character identities
are useful for several reasons. First, they are the starting point for the proof of the
local character identities of the endoscopic lift r in Sect. 5.1. Next, we used them
in Sect. 5.4 to show local statements like the stability lemma. Finally, they provide
global information, once the local concepts are well understood. For this reason, and
to be flexible enough for all these applications, we formulate a number of technical
conditions. Under these conditions we prove the semilocal character identities in
Lemma 5.8.

Make the following assumptions (i)–(vi):

(i) Let σ be an irreducible automorphic representation of M(AF ) with σv , σv′ in
the discrete series for at least two different places v, v′.

(ii) Suppose that σ is cuspidal and σ �∼= σ∗. Then the global L-packet of σ contains
cuspidal representations. These are not CAP representations, since otherwise
there would exist poles for partial degree 4 or 5 L-functions of π, which contra-
dict the cuspidality of σ. See Sect. 5.2.

Choose signs ε, ε′ ∈ {±}. Consider the representations π = πε(σv) ⊗ πε′(σv′ ) ⊗
πv,v′

and π′ = π−ε(σv)⊗ π−ε′(σv′ )⊗ πv,v′
in the global L-packet of the weak lift

of σ. We write π = π++, π′ = π−− in the following. Let m = m++ = m(π) and
m′ = m−− = m(π′) denote their multiplicity in the discrete spectrum of G(AF ).
Assume:

(iii) m++ + m−− > 0.

From (iii) it follows that either π or π′ is an automorphic representation. By switch-
ing ε, ε′ into their negatives, we can assume without loss of generality m(π) > 0.
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Then the restriction of π to Sp(4,AF ) is a theta lift and is cuspidal (Lemma 5.2). It
is not CAP by assumption (i). So π and π′ only contribute to the cuspidal spectrum.
Every automorphic representation in the discrete spectrum isomorphic to π or π′ be-
longs to the cuspidal spectrum. This follows from Langlands results on spectral de-
composition and the fact that π is not CAP . Therefore, put m = m++ = mcusp(π)
and m′ = m−− = mcusp(π′).

Now the essential conditions:

(iv) Let fv, fv′ be locally compact functions with compact support on Gv and Gv′ ,
respectively, which are in the Hecke algebra in the sense of [6]. Assume that
both functions have vanishing orbital integrals at regular nonelliptic semisim-
ple elements. In particular, they are cuspidal.

(v) Assume that either condition (∗)v or condition (∗)v′ holds.

Furthermore, suppose:

(vi) Condition (RS) holds for the test function fw at least at one auxiliary non-
Archimedean place w, and the case w ∈ {v, v′} is not excluded.

Lemma 5.8. Suppose assumptions (i)–(vi) hold. Then

′∑

π′
adisc(π′

vπ′
v′π′

wπvv′
) · tr π′

v(fv) · tr π′
v′(fv′) · tr π′(fw)

is either zero if for a place v′′ �= v, v′, w the class of πv′′ satisfies πv′′ �∈ {π±(σv′′ )},
or equal to

1
2
(−1)e(π)(a+ − a−)(a′

+ − a′
−) · T̃ (fw)

otherwise. Here T̃ = tr π+(σw) − tr π−(σw) if σw is in the discrete series and
T̃ = tr π+(σw) otherwise.

Concerning the Notation. In these formulas the summation
∑′ is over all classes

of global representations π′ in the global L-packet of σ for which (π′)v,v′,w ∼=
πv,v′,w holds. Here a± and a′

± are abbreviations for a± = tr π′
±ε(σv)(fv) and

a′± = tr π′
±ε′(σv′ )(fv′), respectively. The coefficients aεε′ are zero unless the cor-

responding multiplicities mεε′ of the weak lifts πε(σv)πε′ (σv′ )πv,v′
in the discrete

spectrum are nonzero. In fact they are equal to the multiplicities of these represen-
tations. This follows from [6] (see the references given below) and the Langlands
theory of spectral decomposition, since by assumption (ii) all these representations
are not CAP, as explained above. In fact a++ := aG

disc(π) = mcusp(π) for any π in
the weak lift of σ, which is in the discrete spectrum and is similar for all π′ in the
global L-packet of σ.

Proof. For simplicity we suppose for the proof m(π) > 0, as above.

We apply the results obtained by Arthur [6] concerning the trace formula for
G(AF ). Choose any test functions fλ for the places λ �= v, v′, w and put f =
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∏
λ fλ. By assumption fv and f ′

v are cuspidal. So the orbital integrals of these two
functions vanish outside the regular elliptic locus and these functions are cuspidal
in the sense of [6], p. 538. Since f is cuspidal at the two different places v, v′, the
Arthur trace formula is simplified. The spectral side is a sum over the traces of the
discrete spectrum suitably ordered using the Archimedean infinitesimal characters
([6], Theorem 7.1 and Corollary 7.2) using the notation from [6]

∑

π′
aG

disc(π
′) · IG(f).

Notice IG(π′, f) = tr π′(f) in the notation in [5], p. 325. The coefficients aG
disc(π

′)
are complex numbers, and by grouping together the linear combinations of weighted
characters defined in [6], formula (4.3), we have

∑

M0⊆L0⊆G0

|WL0
0 ||WG

0 |−1
∑

s

|det(s−1)|−1
aG

L0

· tr
(

MQ0|sQ0(0)◦ρQ0,t(s, 0, f1)
)

.

Here ρQ0,t is an induced representation, induced from the partL2
disc,t(L0(F )AL0,∞

\L0(AF )) of the discrete spectrum of the Levi subgroupL0. If π′ is cuspidal but not
CAP, only L0 = G0 contributes to the coefficient adisc(π) and the sum becomes the
trace of f on L2

disc,t(L0(F )AL0,∞ \ L0(AF )). Hence, adisc(π) = mcusp(π) holds
in this case. In general, of course, adisc(π) = 0 unless mdisc(π′) �= 0.

Concerning the geometric side of this trace formula, we obtain from [6],
Corollary 7.2, ∑

γ∈(G(F ))G,S

aG(S, γ)IG(γ, f).

Here IG(γ, f) is the global orbital integral OG
γ (f) =

∏
v OGv

γv
(fv) of f (see [6],

p. 325). Moreover, by our assumption (vi) regarding fw, the orbital integral at w
vanishes unless γw is regular semisimple. This implies γ is regular semisimple.
Moreover, by our assumption (iv) regarding fv, fv′ , the geometric side only involves
regular elliptic terms (as in [6], Corollary 7.4). But in this case one can express
aG(S, γ) explicitly. As in [6], Corollary 7.4, one obtains the simpler expression for
the geometric side

∑

γ∈(G(F )ell)

vol(G(F, γ)AG,∞ \ G(AF , γ))
∫

G(AF ,γ)\G(AF )

f(x−1γx)dx.

Here G(F, γ) = Zent(γ, G0)(F ). In our case G = G0. Furthermore, in our case
Gder is simply connected.

Stabilization of the elliptic terms of the geometric side as in [53], using the fun-
damental lemma proved in Chaps. 6–9, gives for the geometric side of the Arthur
trace formula a rearrangement in terms of stable orbital integrals for G and stable
orbital integrals for the endoscopic group M
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∑

π′
adisc(π′) · tr π′(f) = ST G,∗∗(f) +

1
4
ST M,∗∗(fM ).

The ∗∗-condition on central terms in [53] can be ignored by the regular support
condition (vi) at the places w. Moreover, the global stable orbital ST G,∗∗(f) =
ST G(f) = 0 vanishes by the local assumption (∗)v or (∗)v′ of assumption (v)

ST G,∗∗(f) +
1
4
ST M,∗∗(fM ) =

1
4
ST M,∗∗(fM ).

Since M is quasisplit, the terms omitted in ST M,∗∗(fM ) are again the central terms
of the stable (semisimple) trace ST M(fM ) or preferably of a suitable stable trace
on the z-extension M̃ = Gl(2) × Gl(2). One of the functions fv, fv′ , fw satisfies
condition (RS). Without restriction of generality, suppose it is fv′ . Then there is a
matching function fM

v′ with regular support by the implicit function theorem using
the smoothness of the regular locus of an elliptic torus. Furthermore, we can assume
that for the two places v, v′ the corresponding functions fM

v , fM
v′ have vanishing

orbital integrals for regular nonelliptic elements. Then

ST M,∗∗(fM ) = ST M (fM ).

The z-extension M̃ of M does not have nontrivial endoscopy. The strong cuspidal
condition (iv) is inherited by fM , as well as condition (vi). So again the geometric
side of Arthur’s trace formula for fM̃ is simple, and in particular only involves
elliptic regular terms. Hence, stabilization gives

1
4
ST M,∗∗(fM ) =

1
4
T M̃ (fM̃ ).

If we compare the geometric terms T M̃ (fM̃ ) with the spectral side, the simple form
of the Arthur trace formula now applied for M̃ yields the character expansion

1
4
T M̃ (fM̃ ) =

1
4

∑

σ

adisc(⊗′
vσv) ·

∏

v

tr r(σv)(fv)

for the geometric side. The right side is a sum with σ running over the discrete
spectrum of M̃(AF ), suitably ordered. To obtain this formula we used the local
character identities tr σv(fM̃v

v ) = r(σv)(fv). By the multiplicity 1 theorem for
Gl(2) and M̃ and the spectral theory forGl(2), we get adisc(σ) = 1 for all cuspidal
representations σ = ⊗′

vσv . See [29, 42].
Notice the expansion for 1

4T M̃ (fM̃ ) above is a character expansion in terms of
representations of G(AF ). It involves only representations π which are weak lifts
coming fromM . All local components πv that appear are in the localL-packet of an
underlying global representation σ in the discrete spectrum of M(AF ). Comparing
this character expansion with the one obtained from the trace formula for G(AF )
gives the
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Formula (CharIdent).

∑

π′
adisc(π′) · tr π′(f) =

1
4
·
∑

σ

adisc(σ) ·
∏

v

tr r(σv)(fv).

A fixed representation πv,v′,w of G(Av,v′,w
F ) belongs to the global L-packet of a

fixed pair σ, σ∗ of representations of M(AF ). This follows from Proposition 5.2
and the strong multiplicity 1 theorem for M̃ . So the last character identity should
imply – so to say from the linear independence of characters of G(Av,v′,w

F ) and by
separating the component πv,v′,w – the following semilocal identity: The term

′∑
adisc(π′

vπ′
v′π′

wπvv′w) · tr π′
v(fv) · tr π′

v′(fv′) · tr π′
w(fw)

is equal to

=
1
2
(−1)e(π)adisc(σ) · (a+ − a−) · (a′

+ − a′
−) · T̃ (fw)

if all local components of πv,v′,w are in the localL-packets, and it is zero otherwise.
Since σ and σ∗ were supposed to be not isomorphic, and since both σ and σ∗

contribute (Proposition 5.2), we got the factor 1
2 instead of the factor 1

4 from the
sum over the σ on the right side. In the sum the representations vary over all π′ with
πv,v′,w fixed up to isomorphism.

Since the Arthur trace formula is not known to converge absolutely, an easy argu-
ment which implies the linear independence of characters in the sense above is not
known at present. However, assumptions (vi) or (vi) put us into a situation where
the above semilocal identity can nevertheless be extracted from the global trace
formula.

To extract the semilocal identity stated above from the global Arthur trace for-
mula in this case one uses multipliers at the Archimedean places.

Multipliers. Let f∞ ∈ C∞
c (G∞, K∞) be a K∞-finite test function at the

Archimedean places. A W -invariant distribution α with compact support on the
Lie algebra of the standard Cartan subgroup h1 is called a multiplier. In our
cases h1 is the Lie algebra of a maximal split torus; for the general case see [6],
Sect. 6. Typical examples are elements in the center of the universal enveloping
algebra or W -invariant smooth functions with compact support. Multipliers α act
on C∞

c (G∞, K∞) in a natural way as shown by Arthur. Let f∞ 	→ (f∞)α de-
note this action. For an irreducible admissible unitary representation π∞ of G∞
let νπ denote its infinitesimal character viewed as a W -orbit in h1. Let tπ denote
the length of its imaginary part with respect to a suitable norm on h1 [6]. Then
π∞((f∞)α)) = α̂(νπ)π∞(f∞) for the Fourier transform α̂ of the distribution α.
Indeed this formula uniquely characterizes the action.
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Notice (f∞)α is cuspidal if f∞ is cuspidal. This is true since cuspidality is
characterized by the vanishing of the traces tr π∞(f∞) for all representations
π∞ which are properly induced from irreducible tempered representations. Since
tr π∞((f∞)α)) = α̂(νπ)tr π∞(f∞), this property is preserved.

Furthermore, the condition (∗)∞ is preserved by the action of multipliers.
See [97] and [6], Definition 1.2.1. Without restriction of generality Fv = R. Then
(∗)∞ is equivalent to T (f) = 0 for all characters T = tr π∞ of discrete series repre-
sentations of Gv not isomorphic to π±(σv), and for all T = tr π+(σv)+ tr π−(σv)
attached to discrete series representations σv of Mv and all characters T of repre-
sentations properly induced from tempered representations. This follows from [90],
Lemma 5.3. Furthermore, for an irreducible unitary representation σ∞ the infinites-
imal character νσ∞ determines the infinitesimal character ν± of the representations
π±(σ∞). Indeed

ν+ = ν− = ξ(νσ∞)

for a suitable “linear” map ξ, up to some shift. This follows from the description of
the endoscopic lift in terms of the theta correspondence or from [91], Lemma 4.2.1.
The precise nature of the map ξ is of no importance here. For νv = ξ(νσv ) this
implies for the Archimedean places v

T ((fv)α) = α̂(ξ(νv)) · T (fv) = ̂̃α(νv) · T (fv)

for α̃ = α ◦ ξ.
Multipliers act on the global K-finite test function f =

∏
v fv in C∞

c (G∞ ×
G((AF )f )) via their action on the Archimedean component f∞. Hence, the non-
Archimedean condition (vi) is preserved by the action of multipliers for trivial rea-
sons.

The infinitesimal character ν = νπ∞ of a unitary irreducible admissible repre-
sentation π∞ defines a W -orbit. Given ν, a smooth multiplier α is constructed on
p. 182ff of [8] such that for αm = α ∗ . . . ∗ α (m-fold convolution) the following
holds:

limm→∞
∑

π′
adisc(π′) · tr π′(fαm) =

∑

π′, νπ′=ν

adisc(π′) · tr π′(f).

Recall the left side is the spectral side of the Arthur trace formula in a simple form
(for our purposes f is supposed to satisfy the assumption of the trace hypothesis;
under the second assumption of condition (vi) this assumption is stable under the
action of multipliers). This sum is not necessarily absolutely convergent, so summa-
tion is with respect to a suitable ordering using the parameter tπ′ . The sum on the
right is absolutely convergent owing to the admissibility statement [6], Lemma 4.1.
Hence, linear independence of the characters involved holds in the sense of [42],
Lemma 16.1.1. We recall that for the above limit formula it suffices to know that
α̂(ν) = 1 and |α̂(νπ′)| < 1 unless the W -orbits of νπ′ and ν coincide.

A similar separation of the infinitesimal character can be obtained for the spectral
side of the simple trace formula for the endoscopic group. In fact, one can do better.
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For an irreducible unitary representation σ∞ the infinitesimal character νσ∞ deter-
mines the infinitesimal character ν± of the representations π±(σ∞), as explained
above: ν+ = ν− = ξ(νσ∞) for a suitable “linear” map ξ. For νv = ξ(νσv ) this
implies for the Archimedean places v

tr r(σv((fv)α)= α̂(ξ(νv))·tr r(σv)(fv)= α̂(ξ(νv))·tr σv((fv)Mv )= tr σv((fv)α̃)

for α̃ = α ◦ ξ. If we identify the domains of the functions α and α̃, as we may do,
we can symbolically write

(
(fv)α

)Mv =
(
fMv

v

)
α
.

In other words, the action of multipliers commutes with the endoscopic matching
condition. Since the Weyl group of Mv is a subgroup of the Weyl group of Gv , the
smooth multiplier α for Gv can therefore be considered as a smooth (∗-invariant)
multiplier for Mv. This being said, we can consider the formulas (CharIdent) from
above for the various test functions fαm . From the spectral limit formulas both for
G and for M we obtain for m → ∞

∑

π′,νπ′=ξ(ν)

adisc(π′) · tr π′(f) =
1
4
·

∑

σ, νσ=ν

adisc(σ) ·
∏

v

tr σv((fv)Mv )

=
1
4
·

∑

σ, νσ=ν

adisc(σ) ·
∏

v

tr r(σv)(fv).

From this formula [6], Lemma 4.1, and [42], Lemma 16.1.1, the semilocal identity
follows. This completes the proof of Lemma 5.8. �

Proof of formula (0). See page 180. We now explain how to obtain formula (0) in
the non-p-adic case as a complement of the proof of Lemma 5.8. For this choose
v, v′ as in Lemma 5.8 to be Archimedean for a suitable chosen auxiliary number
field F , and a suitably chosen auxiliary global irreducible cuspidal automorphic
representation σ �∼= σ∗ of M(AF ), and we choose w to be some auxiliary “harm-
less” place, where the global representation σ is unramified and for which the norm
of w is sufficiently large. Furthermore, we choose F and σ so that for some addi-
tional auxiliary non-Archimedean place w′, where F/Q splits with residue char-
acteristic different from 2, σ∗

w′ �∼= σw′ holds and is cuspidal. Then π±(σw′) are
cuspidal and up to character twists the only representations in EΘ±(σw′′) (see
Proposition 5.1 for the notation). Indeed, the statement on the theta lift uses Wald-
spurger’s proof of the Howe duality for the dual pair Sp(4)×O(4), whereas the cus-
pidality statement uses what we already considered the case of local fields, which
are completions of Q, in Theorem 4.5. For the Archimedean places we choose fv

to be some fixed auxiliary cuspidal function in the Hecke algebra satisfying (∗)v

such that a− = −a+ = tr π−(σv)(fv) > 0 (notation as in Sect. 5.4). At the
Archimedean place v′ we choose two functions fv′ such that tr π+(σv′)(fv′ ) = 0
and tr π−(σv′)(fv′) = 1 or vice versa. At the place w′ we choose a function fw′
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in the Hecke algebra whose traces separate the finitely many cuspidal represen-
tations of Gv which appear in the packets EΘ±(σw′) of the theta lift twisted by
quadratic characters. For this we can assume fw′ to be a linear combination of ma-
trix coefficients of these finitely many cuspidal representations. Finally fw is cho-
sen with regular support in a maximal split torus of Gw. With these choices the
global trace formula is considerably simplified, as observed by Deligne–Kazhdan,
by Arthur and by Henniart. In particular, on the spectral side only the cuspidal auto-
morphic spectrum contributes, owing to the cuspidal matrix coefficients fw′ at the
non-Archimedean place w′. This makes the use of multipliers, which were neces-
sary in the more complicated situation of Lemma 5.8, superfluous. Secondly, the fw′

chosen completely suffice for the detection of all local constituents of global endo-
scopic lifts at the place w′. This is due to Lemma 5.2. The next observation is that
“moving” the unramified auxiliary place w to become “sufficiently large” allows
us to get rid of the influence of fw in the trace formula. This follows from well-
known finiteness results (i.e., apply the same trick as in the proof of Lemma 5.6 and
of the key formula at the end of Sect. 5.4). Furthermore, similarly as for the place
w′, Lemmas 5.2–5.5 in Sect. 5.2 control the Archimedean constituents of the global
endoscopic lift. So the fv′ chosen again completely detect all local constituents of
global endoscopic lifts at the place v′ (Lemmas 5.2 and 5.5 in Sect. 5.2). With these
choices made, we can now follow the arguments in the proof of Lemma 5.8 mutatis
mutandis to obtain

∑

π′
m(π′

v ⊗ (π′)v) · tr π′(fv) =
1
2
(a+ − a−)

∏

w �=v

n(σw , π′
w),

where π′ = π′
v⊗(π′)v runs over all global cuspidal representations, which are weak

endoscopic lifts (in the sense of Sect. 5.2) of our fixed auxiliary global automorphic
representation σ with fixed (π′)v outside v. Since π′

v ∈ {π±(σ∞)} by Lemma 5.5,
we then obtain tr π′(fv) = a± = ±a+. Canceling a+ = −a− �= 0 from the for-
mula leaves us with a formula which is the precise analogue of formula (0) with
the unique Archimedean place ∞ of F = Q now replaced by the fixed chosen
Archimedean place v of the number field F . To make a comparison with the situa-
tion above we change the notation, and let v denote ∞ from now on. Then for any
local non-Archimedean local field Fv of characteristic zero and any irreducible ad-
missible representation σv of Mv in the discrete series we may have chosen F and σ
such that they extend Fv and σv (maybe up to a local twist by a character). With this
additional choice made, the analogue of formula (0) has now been established. �




