Skip to main content

Modules and homotopy invariance of functors

  • Chapter
  • First Online:
Modules over Operads and Functors

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1967))

  • 1219 Accesses

In this chapter, we study the homotopy invariance of the functors SR(M) : RE → E associated to right modules over an operad R. In summary, we aim to prove that: – A weak-equivalence of R-algebras f : A ~ -→ B induces a weak-equivalence SR(M,f) : SR(M,A) ~ -→ SR(N,B) under reasonable assumptions on M, A and B, – A weak-equivalence of right R-modules f : M ~ -→ N induces a pointwise weak-equivalence of functors SR(f,A) : SR(M,A) ~ -→ SR(N,A), under reasonable assumptions on M, N and A. In §15.1, we assume that the right R-modules are cofibrant. In this context, the homotopy invariance properties hold under very mild assumptions on the R-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fresse, B. (2009). Modules and homotopy invariance of functors. In: Modules over Operads and Functors. Lecture Notes in Mathematics(), vol 1967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89056-0_15

Download citation

Publish with us

Policies and ethics