
Chapter 12

The Homotopy of Algebras
over Operads

Introduction

In this chapter we apply the adjoint construction of model structures to the
category of operads and to categories algebras over operads. For this purpose,
we use the adjunction F : M � O : U between operads and Σ∗-objects,
respectively the adjunction P(−) : E � PE : U between P-algebras and their
underlying category E .

The construction of these adjoint model structures is studied in [26] in
the dg-context and in [4, 58] in a more general setting. The difficulty is to
check condition (2) in proposition 11.1.14. Indeed, in many usual cases, this
condition is not satisfied unless we restrict ourself to cellular objects. For this
reason, we have to use semi-model categories, structures introduced in [29]
to enlarge the applications of theorem 11.1.13. The rough idea is to restrict
the lifting and factorization axioms of model categories to morphisms with a
cofibrant domain. By [58], the category of operads inherits such a semi-model
structure, and so do the categories of algebras over a Σ∗-cofibrant operads.

The main purpose of this chapter is to review the definition of these semi-
model categories. First of all, in §12.1, we recall the definition of a semi-model
category, borrowed from [29], and we review the construction of adjoint model
structures in this setting. In §12.2, we survey briefly the definition of semi-
model structures on categories of operads. In §12.3, we address the definition
of semi-model structures on categories of algebras over operads.

In this book, the semi-model category of operads only occurs in examples
of applications of the main results. For this reason, we only sketch the proof of
the axioms for this semi-model category. But we give comprehensive proofs of
the axioms of semi-model categories for categories of algebras over operads,
because we use this structure in the next part. The main verification is a
particular case of statements about modules over operads used in the next
part of the book and deferred to an appendix.
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186 12 The Homotopy of Algebras over Operads

In §12.4, we study the semi-model categories of algebras over a cofibrant
operad, for which the lifting and factorization axioms of semi-model cate-
gories hold in wider situations. In §12.5, we survey results about the homotopy
of extension and restriction functors φ! : PE � QE : φ∗ associated to an operad
morphism φ : P→ Q.

The statements of §§12.4-12.5 are proved in the next part of the book as
applications of our results on the homotopy of modules over operads.

12.1 Semi-Model Categories

The rough idea of semi-model categories is to assume all axioms of model
categories, including the lifting axiom M4 and the factorization axiom M5,
but only for morphisms f : X → Y whose domain X is a cofibrant object.
This restriction allows us to relax condition (2) of proposition 11.1.14 in the
definition of model categories by adjunction and to enlarge the applications
of this construction.

12.1.1 The Axioms of Semi-Model Categories. Explicitly, the structure
of a semi-model category consists of a category A equipped with classes of
weak-equivalences, cofibrations and fibrations so that axioms M1, M2, M3 of
model categories hold, but where the lifting axiom M4 and the factorization
axiom M5 are replaced by the weaker requirements:

M4’. i. The fibrations have the right lifting property with respect to the
acyclic cofibrations i : A→ B whose domain A is cofibrant.

ii. The acyclic fibrations have the right lifting property with respect to
the cofibrations i : A→ B whose domain A is cofibrant.

M5’. i. Any morphism f : A→ B such that A is cofibrant has a factorization
f = pi, where i is a cofibration and p is an acyclic fibration.

ii. Any morphism f : A→ B such that A is cofibrant has a factorization
f = qj, where j is an acyclic cofibration and q is a fibration.

Besides, a semi-model category is assumed to satisfy:

M0’ (initial object axiom): The initial object of A is cofibrant.

In the context of semi-model categories, the lifting axiom M4’ and the fac-
torization axiom M5’ are not sufficient to imply that the initial object is
cofibrant. Therefore we add this assertion as an axiom.

In a semi-model category, the class of (acyclic) cofibrations is not fully
characterized by the left lifting axioms M4’, and similarly as regards the class
of (acyclic) fibrations. As a byproduct, the class of (acyclic) cofibrations is
not stable under the composition of morphisms, and similarly as regards the
class of acyclic fibrations. The axioms imply only that a (possibly transfinite)
composite of (acyclic) cofibrations with a cofibrant domain forms still an
(acyclic) cofibration.
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Similarly, not all (acyclic) cofibrations are stable under pushouts, not all
(acyclic) fibrations are stable under pullbacks. The axioms imply only that
(acyclic) cofibrations are stable under pushouts over cofibrant domains.

On the other hand, since usual semi-model categories are defined by
adjunction from a cofibrantly generated model category (see next), the class
of (acyclic) fibrations is stable under composites and pullbacks in applica-
tions. Besides, these properties are used to generalize the construction of the
homotopy category of model categories. For these reasons, the next assertions
are taken as additional axioms of semi-model categories:

M6’ (fibration axioms):

i. The class of (acyclic) fibrations is stable under (possibly transfinite)
composites.

ii. The class of (acyclic) fibrations is stable under pullbacks.

But we do not use these properties in this book.

The result of proposition 11.1.4 can be generalized in the context of semi-
model categories:

12.1.2 Proposition. The following assertion holds in every semi-model cat-
egory A:

P1’. The pushout of a weak-equivalence along a cofibration

A

∼

C

B D

gives a weak-equivalence C ∼−→ D provided that A and B are cofibrant
in A.

Proof. Careful inspection of the proof of proposition 11.1.4 in [27, Proposition
13.1.2]. ��

The properness axiom P1 does not make sense in the context of semi-model
categories because only cofibrations with a cofibrant domain are characterized
by the axioms.

12.1.3 Cofibrantly Generated Semi-Model Categories. The notion
of a cofibrantly generated model category has a natural generalization in
the context of semi-model categories. Again, a cofibrantly generated semi-
model category consists of a semi-model category A equipped with a set of
generating cofibrations I, respectively a set of generating acyclic cofibrations
J , so that:

G1. The fibrations are characterized by the right lifting property with respect
to acyclic generating cofibrations j ∈ J .
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G2. The acyclic fibrations are characterized by the right lifting property with
respect to generating cofibrations i ∈ I.

The small object argument is also supposed to hold for the set of generating
cofibrations I (respectively, generating acyclic cofibrations J ) but we can
relax the smallness assumption. Namely, we may assume:

S1’. The domain A of every generating cofibration (respectively, generating
acyclic cofibration) is small with respect to relative I-cell (respectively,
J -cell) complexes

K = L0 → · · · → Lλ−1
jλ−→ Lλ → · · · → colim

λ<μ
Lλ = L

such that K is a cofibrant object.

In a cofibrantly generated semi-model category, the axioms imply only
that:

K1’. The relative I-cell (respectively, J -cell) complexes with a cofibrant do-
main are cofibrations (respectively, acyclic cofibrations).

K2’. The cofibrations (respectively, acyclic cofibrations) with a cofibrant do-
main are retracts of relative I-cell (respectively, J -cell) complexes.

Our motivation to use semi-model categories comes from the following
proposition which weaken the conditions of proposition 11.1.14 to define semi-
model structures by adjunction:

12.1.4 Theorem. Suppose we have an adjunction F : X � A : U , where A
is any category with limits and colimits and X is a cofibrantly generated model
category. Let I, respectively J , be the set of generating (acyclic) cofibrations
of X and set FI = {F (i), i ∈ I}, respectively F J = {F (j), j ∈ J }.
Consider also the set F X c = {F (i), i cofibration in X}.

Under assumptions (1-3) below, the category A inherits a cofibrantly gener-
ated semi-model structure with FI (respectively, F J ) as generating (acyclic)
cofibrations and so that the functor U : A→ X creates weak-equivalences.

(1) The functor U : A → X preserves colimits over non-empty ordinals.
(2) For any pushout

F (K)

F (i)

A

f

F (L) B

such that A is an X -cofibrant F X c-cell complex, the morphism U(f)
forms a cofibration (respectively an acyclic cofibration) in X whenever
i is a cofibration (respectively an acyclic cofibration) with a cofibrant
domain.

(3) The object UF (0) is cofibrant.
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The functor U : A → X creates the class of fibrations too and preserves
cofibrations with a cofibrant domain.

In accordance with the conventions of §11.1.17, we say that an object
A ∈ A is X -cofibrant if the functor U : A → X maps the initial morphism
F (0)→ A to a cofibration.

Proof. This theorem follows from a careful inspection of the arguments of
theorem 11.1.13 and proposition 11.1.14. Use the next lemma to apply con-
dition (2) in the case where the domain of generating (acyclic) cofibrations
is not cofibrant. ��
12.1.5 Lemma. Suppose we have a pushout

F (K)

F (i)

A

f

F (L) B

such that U(A) is cofibrant and i : K → L is a cofibration (respectively, an
acyclic cofibration), but where K is not necessarily cofibrant. Then we can
form a new pushout

F (M)

F (j)

A

f

F (N) B

such that j : M → N is still a cofibration (respectively, an acyclic cofibration),
but where M is now cofibrant.

Proof. Set M = U(A) and consider the pushout

K

i

U(A) =: M

j

L L⊕K U(A) =: N

where K → U(A) is the adjoint morphism of F (K)→ A. By straightforward
categorical constructions, we can form a new pushout

F (U(A))

F (j)

A

f

F (L ⊕K U(A)) B

in which j is substituted to i.
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The object M = U(A) is cofibrant by assumption. The morphism j forms
a cofibration (respectively, an acyclic cofibration) if i is so. Hence all our
requirements are satisfied. ��

For our needs, we record that Brown’s lemma is also valid in the context
of semi-model categories:

12.1.6 Proposition (Brown’s lemma). Let F : A → X be a functor, where
A is a semi-model category and X is a category equipped with a class of
weak-equivalences that satisfies the two-out-of-three axiom. If F maps acyclic
cofibrations between cofibrant objects to weak-equivalences, then F maps all
weak-equivalences between cofibrant objects to weak-equivalences.

Proof. The proposition follows from a straightforward generalization of the
proof of the standard Brown’s lemma. ��
¶ The dual version of this statement, in which cofibrations are replaced

by fibrations, holds only under a weaker form:

12.1.7 ¶ Proposition (Brown’s lemma). Let U : A → X be a functor,
where A is a semi-model category and X is a category equipped with a class of
weak-equivalences that satisfies the two-out-of-three axiom. If F maps acyclic
fibrations between fibrant objects to weak-equivalences, then F maps to weak-
equivalences the weak-equivalences f : X → Y so that X is both cofibrant and
fibrant and Y is fibrant. ��

The proof of this statement uses axiom M6’.

12.1.8 Quillen Adjunctions Between Semi-Model Categories. Some
care is necessary to generalize the notion of a Quillen adjunction in the con-
text of semi-model categories: as the lifting axiom M4’ is not sufficient to
characterize the class of (acyclic) cofibrations and the class of (acyclic) fibra-
tions, the usual equivalent conditions of the definition of a Quillen adjunction
are no more equivalent.

Therefore, we say that adjoint functors F : A � X : U between semi-
model categories A and X define a Quillen adjunction if every one of the
following conditions hold:

A1’. The functor F preserves cofibrations and acyclic cofibrations between
cofibrant objects.

A2’. Same as A2: The functor U preserves fibrations and acyclic fibrations.

Observe however that A2’ implies (but is not equivalent to) A1’. Thus, in ap-
plications, we only check condition A2’. These properties imply that the pair
(F,U) yields an adjunction between homotopy categories, as in the context
of model categories.



12.1 Semi-Model Categories 191

Say that the functors (F,U) define a Quillen equivalence if we have further:

E1’. For every cofibrant object X ∈ X , the composite

X
ηX−−→ UF (X)

U(i)−−−→ U(B)

forms a weak-equivalence in X , where ηX refers to the adjunction unit
and i arises from a factorization F (X)

∼�B � ∗ of the terminal mor-
phism F (X)→ ∗.

E2’. Same as E2: For every fibrant object A ∈ A, the composite

F (Y )→ FU(A) εA−−→ A

forms a weak-equivalence in A, where εA refers to the adjunction aug-
mentation and Y is any cofibrant replacement of U(A).

The derived functors of a Quillen equivalence of semi-model categories de-
fine adjoint equivalences of homotopy categories, as in the context of model
categories.

12.1.9 Relative Semi-Model Structures. In certain semi-model cate-
gories, the lifting and factorization axioms hold under weaker assumptions
on the domain of morphisms. These properties are formalized in a relative
notion of a semi-model structure. Next we explain that operads and alge-
bras over cofibrant operads inherits such improved lifting and factorization
axioms. But we do not really use these improved semi-model structures that
we recall for the sake of completeness only.

Suppose we have an adjunction F : X � A : U , where A is a category
with limits and colimits and X is a model category. Suppose A is equipped
with a semi-model structure so that:

– The functor U : A → X creates weak-equivalences, creates fibrations, and
maps the cofibrations i : A→ B so that A is X -cofibrant to cofibrations.

Again, we say that an object A ∈ A is X -cofibrant if the functor U : A → X
maps the initial morphism F (0)→ A to a cofibration.

In this situation, it makes sense to require the following lifting and factor-
ization axioms:

M4”. i. The fibrations have the right lifting property with respect to the
acyclic cofibrations i : A→ B such that A is X -cofibrant.

ii. The acyclic fibrations have the right lifting property with respect to
the cofibrations i : A→ B such that A is X -cofibrant.

M5”. i. Any morphism f : A → B has a factorization f = pi, where i is
a cofibration and p is an acyclic fibration, provided that A is X -
cofibrant.

ii. Any morphism f : A → B has a factorization f = qj, where j is
an acyclic cofibration and q is a fibration, provided that A is X -
cofibrant.
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If these properties are satisfied, then we say that A forms a semi-model
category over X .

The initial object of A is supposed to be cofibrant by axiom M0’ of semi-
model categories. As a byproduct, the assumption on the functor U : A→X
implies that U(A) is cofibrant if A is cofibrant in A. Accordingly, the lifting
and factorization axioms M4”-M5” are stronger than the lifting and factor-
ization axioms M4’-M5’ of semi-model categories.

Suppose now we have an adjunction F : X � A : U , where A is any
category with limits and colimits and X is a cofibrantly generated model
category. Suppose we have:

(1) Same as assumption (1) of theorem 12.1.4: “The functor U : A → X
preserves colimits over non-empty ordinals.”

(2) Drop the condition that A is an F X c-cell complex in assumption (2) of
theorem 12.1.4: “For any pushout

F (K)

F (i)

A

f

F (L) B

such that A is X -cofibrant, the morphism U(f) forms a cofibration (re-
spectively an acyclic cofibration) in X whenever i is a cofibration (respec-
tively an acyclic cofibration) with a cofibrant domain.”

(3) Same as assumption (3) of theorem 12.1.4: “The object UF (0) is cofi-
brant.”

Then A inherits an adjoint semi-model structure from X since the require-
ments of theorem 12.1.4 are fulfilled.

But we have better:

12.1.10 Proposition. Under these assumptions (1-3) the category A forms
a semi-model category over X .

Proof. This proposition, like theorem 12.1.4, follows from a careful inspection
of the arguments of theorem 11.1.13 and proposition 11.1.14. ��

12.1.11 Relative Properness Axioms. In the case of a semi-model cat-
egory A over a model category X , it makes sense to improve the proper-
ness property of proposition 12.1.2 to cofibrations i : A → B such that A is
X -cofibrant. If the next axiom holds, then we say that A forms a (left) proper
semi-model category over X :

P1”. The pushout of a weak-equivalence along a cofibration
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A

∼

C

B D

gives a weak-equivalence C
∼−→ D provided that A and B are X -

cofibrant.

12.2 The Semi-Model Category of Operads

In this section, we survey briefly the application of model structures to
categories of operads. For this purpose, we assume that the base category
C is equipped with a model structure and forms a cofibrantly generated sym-
metric monoidal category. Recall that C is supposed to satisfy the pushout
product axiom MM1, as well as the unit axiom MM0.

In this book, the semi-model structure of the category of operads is only
used in §17.4, where we study applications of the homotopy theory of modules
over operads to categories of algebras over cofibrant dg-operads. Usually, we
only deal with the underlying model category of Σ∗-objects and we only use
Σ∗-cofibrations of operads and Σ∗-cofibrant operads. Recall that, according
to our convention, a Σ∗-cofibration refers to a morphism of operads φ : P→ Q
which forms a cofibration in the underlying category of Σ∗-objects and an op-
erad P is Σ∗-cofibrant if the unit morphism η : I → P forms a Σ∗-cofibration.

For our needs, we only recall the statement of the result, for which we
refer to [4, 26, 58], and we make explicit the structure of cofibrant operads
in dg-modules.

Proposition 12.1.10 can be applied to the adjunction

F :M� O : U

between operads and Σ∗-objects and returns the following statement:

Theorem 12.2.A (see [26, 58]). The category of operads O forms a semi-
model category over the category of Σ∗-objects, so that:

– The forgetful functor U : O → M creates weak-equivalences, creates fi-
brations, and maps the cofibrations of operads i : P → Q such that P is
Σ∗-cofibrant to cofibrations.

– The morphisms of free operads F(i) : F(M) → F(N), where i : M → N
ranges over generating (acyclic) cofibrations of Σ∗-objects, form generating
(acyclic) cofibrations of the category of operads.

– The lifting axiom M4” holds for the (acyclic) cofibrations of operads i :
P→ Q such that P is Σ∗-cofibrant.
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– The factorization axiom M5” holds for the operad morphisms φ : P → Q
such that P is Σ∗-cofibrant.

��
Thus an operad morphism φ : P → Q forms a weak-equivalence, respec-

tively a fibration, if its components φ : P(n) → Q(n) are weak-equivalences,
respectively fibrations, in the base model category C.

One has to study the structure of free operads and coproducts to check that
assumptions (1-3) of proposition 12.1.10. are fulfilled. This task is achieved
in [26] in the context of dg-modules and in [58] in a wider context to return
the result of theorem 12.2.A.

By [58], we also have:

Theorem 12.2.B (see [58]). The semi-model category of operads satisfies
the axiom of relative properness:

P1”. The pushout of a weak-equivalence along a cofibration

P

∼

R

Q S

gives a weak-equivalence R
∼−→ S provided that P and Q are Σ∗-cofibrant.

The authors of [4] observe that the proof of theorem 12.2.A can be sim-
plified in certain usual situations to give a better result:

Theorem 12.2.C (see [4]). Under assumptions (1-3) below, the adjunction

F :M� O : U

creates a full model structure on the category of non-unitary operads O0.

(1) There is a fixed ordinal μ, such that the domains of generating (acyclic)
cofibrations are small with respect to all colimits

C = D0 → · · · → Dλ−1
jλ−→ Dλ → · · · → colim

λ<μ
Dλ = D.

(2) There is a functor of symmetric monoidal model categories R : C → C
which associates a fibrant replacement to any object C ∈ C.

(3) The category C is equipped with a commutative Hopf interval (we refer
to loc. cit. for the definition of this notion). ��

Recall that an operad P is non-unitary if we have P(0) = 0.

The assumptions hold for the category of dg-modules, for the category of
simplicial sets, but assumption (1) fails for the category of topological spaces
(see [28, §2.4]).
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The Hopf interval is used to associate a canonical path object to any
operad. An argument of Quillen permits to turn round the study of relative
cell complexes of operads to prove directly condition (2) of theorem 12.1.4
by using the existence of such path objects (see loc. cit. for details).

In the remainder of this section, we take C = dg k Mod and we study the
semi-model category of operads in dg-modules. Our purpose is to review the
explicit structure of cofibrant cell dg-operads obtained in [26]. The result is
used in applications of §17.4.

In summary, we check that cofibrant cell dg-operads are equivalent to cer-
tain quasi-free objects in operads, just like we prove in §11.2 that cofibrant
cell dg-modules are equivalent to quasi-free objects equipped with an appro-
priate filtration.

12.2.1 Quasi-Free Operads in dg-Modules. To begin with, we recall the
definition of a twisting cochain and of a quasi-free object in the context of
operads. For more background, we refer to [14, 17, 26].

First, a twisting cochain of operads consists of a collection of twisting
cochains of dg-modules ∂ ∈ HomC(P(n), P(n)) that commute with the action
of symmetric groups and satisfy the derivation relation

∂(p ◦e q) = ∂(p) ◦e q +±p ◦e ∂(q)

with respect to operadic composites. These assumptions ensure that the col-
lection of twisted dg-modules (P(n), ∂) forms still a dg-operad with respect
to the operad structure of P.

An operad P is quasi-free (as an operad) if we have P = (F(M), ∂), for a
certain twisting cochain of operads ∂ : F(M) → F(M), where F(M) is a free
operad. Note that ∂ : F(M) → P(M) is determined by its restriction to the
generating Σ∗-object M ⊂ F(M) since we have the derivation relation

∂((· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er ξr) = (· · · ((∂ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er ξr

+ (· · · ((ξ1 ◦e2 ∂ξ2) ◦e3 · · · ) ◦er ξr

+ · · ·+ (· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er ∂ξr

for any formal composite (· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er ξr ∈ F(M), where
ξ1, . . . , ξr ∈M .

By construction, the generating cofibrations of dg-operads are the mor-
phism of free operads F(i⊗ Fr) : F(C ⊗ Fr) → F(D ⊗ Fr), where i : C → D
ranges over the generating cofibrations of dg-modules and Fr is a free Σ∗-
object. Recall that the generating cofibrations of dg-modules are inclusions
i : Bd−1 → Ed where Ed is spanned by an element ed of degree d, by an
element bd−1 of degree d− 1, together with the differential δ(ed) = bd−1, and
Bd−1 is the submodule of Ed spanned by bd−1.
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We use the convention of §11.1.8 to call cofibrant cell operads the cell
complexes in operads built from generating cofibrations. We prove that cofi-
brant cell operads are quasi-free operads equipped with a suitable filtration.
To obtain this result, we examine the structure of cell attachments:

12.2.2 Lemma. For a quasi-free operad P = (F(M), ∂), a cell attachment of
generating cofibrations

F(
⊕

αB
dα−1 ⊗ Frα)

f

F(idα⊗Frα )

P

j

F(
⊕

αE
dα ⊗ Frα) Q

returns a quasi-free operad such that Q = (F(M ⊕ E), ∂), where E is a free
Σ∗-object in graded k-modules E =

⊕
α k edα ⊗ Frα (together with a trivial

differential).
The twisting cochain ∂ : F(M ⊕ E) → F(M ⊕ E) is given by the twisting

cochain of P on the summand M ⊂ F(M ⊕ E) and is determined on the
summand E =

⊕
α k edα⊗Frα ⊂ F(M⊕E) by the relation ∂(edα) = f(bdα−1),

where f :
⊕

α k bdα−1 ⊗ Frα → P represents the attaching map.

Proof. Straightforward verification. ��
By induction, we obtain immediately:

12.2.3 Proposition. A cofibrant cell operad is equivalent to a quasi-free
operad P = (F(L), ∂) where L is a free Σ∗-object in graded k-modules L =⊕

α k edα ⊗ Frα equipped with a basis filtration Lλ =
⊕

α<λ k edα ⊗ Frα such
that ∂(Lλ) ⊂ F(Lλ−1). ��

12.3 The Semi-Model Categories of Algebras
over Operads

The purpose of this section is to define the semi-model structure of the cat-
egory of algebras over an operad. For this aim, we apply theorem 12.1.4 to
the adjunction

P(−) : E � PE : U

between the category of P-algebras and the underlying category E . As usual,
we assume that E is any symmetric monoidal category over the base category
C in which the operad is defined. For the needs of this section, we assume
as well that E is equipped with a model structure and forms a cofibrantly
generated symmetric monoidal category over C. Recall that E is supposed to
satisfy the pushout product axiom MM1, as well as the unit axiom MM0,
like the base category C.
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The main result reads:

Theorem 12.3.A. If P is a Σ∗-cofibrant operad, then the category of P-
algebras inherits a cofibrantly generated semi-model structure so that the
forgetful functor U : PE → E creates weak-equivalences and fibrations.
The generating (acyclic) cofibrations are the morphisms of free P-algebras
P(i) : P(K)→ P(L) such that i : K → L is a generating (acyclic) cofibrations
of the underlying category E.

¶ In the context where the category E has regular tensor powers, we obtain
further:

¶ Theorem. If E is a (reduced) symmetric monoidal category with regular
tensor powers, then the definition of theorem 12.3.A returns a semi-model
structure as long as the operad P is C-cofibrant.

This theorem gives as a corollary:

¶ Proposition. Let P be a reduced operad. The category of P-algebras in
connected Σ∗-objects PM0 forms a semi-model category as long as the operad
P is C-cofibrant. ��
¶ The positive stable model category of symmetric spectra SpΣ does not

satisfy axiom MM0, but this difficulty can be turned round. Moreover, a
better result holds: according to [23], the category of P-algebras in the pos-
itive stable flat model category of symmetric spectra inherits a full model
structure, for every operad P in SpΣ (not necessarily cofibrant in any sense).
Note however that the forgetful functor U : P SpΣ → SpΣ does not preserves
cofibrations in general.

In many usual situations, the operad P is the image of an operad in sim-
plicial sets under the functor Σ∞(−)+ : S → SpΣ. In our sense, we use the
category of simplicial sets C = S as a base model category and the category
of spectra E = SpΣ as a symmetric monoidal category over S. The forget-
ful functor U : P SpΣ → SpΣ seems to preserve cofibrations for an operad
in simplicial sets though P does no form an SpΣ-cofibrant object in spectra
(see for instance the case of the commutative operad in [55]). For a cofi-
brant P-algebra in spectra A, this property implies that the initial morphism
η : P(0) → A is a cofibration, but A does not form a cofibrant object in the
underlying category of spectra unless we assume P(0) = pt.

The proof of theorem 12.3.A (and theorem 12.3) is outlined in the next
paragraph. The technical verifications are achieved in the appendix, §20.1.

Under the assumption of theorem 12.3.A, the pushout-product property
of proposition 11.5.1 implies that the functor S(P) : E → E preserves cofibra-
tions, respectively acyclic cofibrations, with a cofibrant domain. In §2.4, we
observe that the functor S(P) : E → E preserves all filtered colimits as well.
Thus condition (1) of theorem 12.1.4 is easily seen to be satisfied (and simi-
larly in the context of theorem 12.3). The difficulty is to check condition (2):
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12.3.1 Lemma. Under the assumption of theorem 12.3.A, for any pushout

P(X)

P(i)

A

f

P(Y ) B

such that A is an E-cofibrant P(Ec)-cell complex, the morphism f forms a
cofibration (respectively, an acyclic cofibration) in the underlying category E
if i : X → Y is so.

The same result holds in the context of theorem 12.3. The technical veri-
fication of this lemma is postponed to §20.1.

As usual, we call E-cofibrations the morphisms of P-algebras i : A → B
which form a cofibration in the underlying category E , we call E-cofibrant
objects the P-algebras A such that the initial morphism η : P(0) → A is an
E-cofibration.

The verification of lemma 12.3.1 includes a proof that:

12.3.2 Proposition. The cofibrations of P-algebras i : A → B such that
A is a cofibrant P-algebra are E-cofibrations. Any cofibrant P-algebra A is
E-cofibrant.

The definition of the semi-model structure in theorem 12.3.A is natural
with respect to the underlying category E in the following sense:

12.3.3 Proposition. Let P be any Σ∗-cofibrant operad. Let ρ! : D � E : ρ∗

be a Quillen adjunction of symmetric monoidal model categories over C. The
functors

ρ! : PD � PE : ρ∗

induced by ρ! and ρ∗ define a Quillen adjunction of semi-model categories.

Proof. Fibrations and acyclic fibrations are created by forgetful functors in
the semi-model categories of P-algebras. For this reason we obtain immedi-
ately that ρ∗ preserves fibrations and acyclic fibrations. Since the functor ρ!

maps (acyclic) cofibrations to (acyclic) cofibrations and preserves free objects
by proposition 3.2.14, we obtain that ρ! maps generating (acyclic) cofibrations
of PD to (acyclic) cofibrations in PE . Since the functor ρ! preserves colimits
and retracts, we obtain further that ρ! maps all (acyclic) cofibrations of PD
to (acyclic) cofibrations in PE . ��

We have further:

12.3.4 Proposition. If ρ! : D � E : ρ∗ is a Quillen equivalence, then
ρ! : PD � PE : ρ∗ defines a Quillen equivalence as well.

Proof. Suppose A is a cofibrant object in PD. By proposition 12.3.2, the
morphism η : P(0) → A forms a cofibration in D. Since P is supposed to be



12.3 The Semi-Model Categories of Algebras over Operads 199

Σ∗-cofibrant in D, the P-algebra A forms a cofibrant object in D as well. Since
the forgetful functor U : PE → E creates fibrations, any fibrant replacement
of ρ!A in PE defines a fibrant replacement of ρ!A in the underlying category.
From these observations, we conclude that the composite

A
ηA−−→ ρ∗ρ!A→ ρ∗B,

where ηA refers to the adjunction unit and B is any fibrant replacement of
ρ!A in PE , forms a weak-equivalence in D and hence forms a weak-equivalence
of P-algebras in D.

Suppose B is a fibrant object in PE . Pick a cofibrant replacement P(0) �
A

∼−→ ρ∗B of ρ∗B in PD. Use again that the forgetful functor U : PE→E creates
fibrations and that the forgetful functor U : PD → D preserves cofibrations
to conclude that the composite

ρ!A→ ρ!ρ
∗B ε−→ B,

where εB refers to the adjunction augmentation, forms a weak-equivalence
in E and hence forms a weak-equivalence of P-algebras in E . ��

12.3.5 ¶ Remark. If ρ! : D0 � E0 : ρ∗ is a Quillen adjunction, respec-
tively a Quillen equivalence, between (reduced) categories with regular tensor
powers, then propositions 12.3.3-12.3.4 hold as long as P is a C-cofibrant (non-
unitary) operad.

12.3.6 Quasi-Free Algebras over Operads in dg-Modules. In the re-
mainder of this section, we take C = dg k Mod and we study the structure
of cofibrant algebras over a Σ∗-cofibrant dg-operad P. To simplify, we also
take E = dg k Mod but we can use the principle of generalized point-tensors
to extend our results to P-algebras in Σ∗-objects and to P-algebras in right
modules over operads.

As usual, we prove that cofibrant cell P-algebras in dg-modules are equiv-
alent to quasi-free P-algebras equipped with an appropriate filtration. The
plan of our constructions parallels the case of operads, addressed in §§12.2.1-
12.2.3.

First, we review the definition of a twisting cochain and of a quasi-free
object in the category of P-algebras.

A twisting cochain of dg-modules ∂ ∈ HomC(A,A) defines a twisting
cochain of P-algebras if ∂ : A→ A satisfies the derivation relation

∂(p(a1, . . . , an)) =
n∑

i=1

±p(a1, . . . , ∂(ai), . . . , an),

for every p ∈ P(n), a1, . . . , an ∈ A. This assumption ensures that the twisted
dg-module (A, ∂) inherits the structure of a P-algebra in dg-modules.
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A P-algebra A is quasi-free if we have A = (P(C), ∂) for a certain twisting
cochain of P-algebras ∂ : P(C) → P(C). Note that ∂ : P(C) → P(C) is
determined by its restriction to the generating dg-module C ⊂ P(C) of the
free P-algebra P(C) since we have the relation

∂(p(x1, . . . , xn)) =
n∑

i=1

±p(x1, . . . , ∂(xi), . . . , xn),

for every element p(x1, . . . , xn) ∈ P(C).

Recall that the generating cofibrations of P-algebras in dg-modules are
the morphism of free P-algebras P(i) : P(C) → P(D) induced by generating
cofibrations of dg-modules. Recall that the generating cofibrations of dg-
modules are inclusions i : Bd−1 → Ed where Ed is spanned by an element ed
of degree d, by an element bd−1 of degree d− 1, together with the differential
δ(ed) = bd−1, and Bd−1 is the submodule of Ed spanned by bd−1.

We use the convention of §11.1.8 to call cofibrant cell P-algebras the cell
complexes in P-algebras obtained by successive attachments of generating
cofibrations of the category of P-algebras. We prove that cofibrant cell P-
algebras are quasi-free P-algebras equipped with a suitable filtration. To ob-
tain this result, we examine the structure of cell attachments on quasi-free
P-algebras:

12.3.7 Lemma. For a quasi-free P-algebra A = (P(C), ∂), a cell attachment
of generating cofibrations

P(
⊕

αB
dα−1)

f

P((idα ))

A

j

P(
⊕

αE
dα) B

returns a quasi-free P-algebra such that B = (P(C ⊕E), ∂), where E is a free
graded k-module E =

⊕
α k edα (equipped with a trivial differential).

The twisting cochain ∂ : P(C ⊕ E) → P(C ⊕ E) is given by the twisting
cochain of A on the summand C ⊂ P(C ⊕ E) and is determined by the
relation ∂(edα) = f(bdα−1) on the summand E =

⊕
α k edα ⊂ P(C ⊕ E),

where f :
⊕

α k bdα−1 → A represents the attaching map.

Proof. Straightforward verification. ��
By induction, we obtain immediately:

12.3.8 Proposition. A cofibrant cell P-algebra is equivalent to a quasi-free
P-algebra A = (P(C), ∂) where C is a free graded k-module C =

⊕
α k edα

equipped with a basis filtration Cλ =
⊕

α<λ k edα such that ∂(Cλ) ⊂ P(Cλ−1).
��
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12.4 Addendum: The Homotopy of Algebras
over Cofibrant Operads

The result of theorem 12.3.A can be improved if we assume that P is a cofi-
brant operad:

Theorem 12.4.A (see [58]). If P is a cofibrant operad, then the category of
P-algebras in E forms a semi-model category over E, so that:

– The forgetful functor U : PE → E creates weak-equivalences, creates fibra-
tions, and maps the cofibrations of P-algebras i : A → B such that A is
E-cofibrant to cofibrations.

– The lifting axiom M4” holds for the (acyclic) cofibrations of P-algebras
i : A→ B such that A is E-cofibrant.

– The factorization axiom M5” holds for the morphisms of P-algebras f :
A→ B such that A is E-cofibrant.

Besides:

Theorem 12.4.B (see [58]). The semi-model category of algebras over a
cofibrant operad P satisfies the axiom of relative properness:

P1”. The pushout of a weak-equivalence along a cofibration

A

∼

C

B D

gives a weak-equivalence C ∼−→ D provided that A and B are E-cofibrant.

We refer to [58] for the proof of these theorems. We do not use these
results, which are only mentioned for the sake of completeness.

12.5 The Homotopy of Extension and Restriction
Functors – Objectives for the Next Part

By §3.3.5, any morphism of operads φ : P→ Q gives rise to adjoint extension
and restriction functors:

φ! : PE � QE : φ∗.

In §16, we use the homotopy of modules over operads to prove:

Theorem 12.5.A. Suppose P (respectively, Q) is a Σ∗-cofibrant operad so
that the category of P-algebras (respectively, Q-algebras) comes equipped with
a semi-model structure.
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The extension and restriction functors

φ! : PE � QE : φ∗.

define a Quillen adjunction, a Quillen equivalence if φ is a weak-equivalence.

¶ In the context of a (reduced) symmetric monoidal category with regular
tensor powers, this statement holds whenever the operads P and Q are C-
cofibrant.

Property A2’ (the right adjoint preserves fibrations and acyclic fibrations)
of a Quillen adjunction is immediate to check, because fibrations and acyclic
fibrations are created by forgetful functors and the restriction functor φ∗ :
QE → PE reduces to the identity if we forget algebra structures.

In §16, we use the representation of the functors φ! : PE � QE : φ∗ by
modules over operads and the results of §15 to prove properties E1’-E2’ of a
Quillen equivalence when φ : P→ Q is a weak-equivalence of operads.

We refer to this chapter for full details on the proof of theorem 12.5.A.




