
Chapter II

Measures and Integrals. The General
Theory

In this chapter we shall develop a general integration theory for cone-valued
functions with respect to operator-valued measures. The structure of locally
convex cones will allow the use of many of the main concepts of classical
measure theory for (extended) real-valued functions. Section 1 introduces
measurability for cone-valued functions on a set X with respect to a (weak)
σ-ring of subsets of X. This notion does not involve any reference to a partic-
ular measure. Bounded operator-valued measures will be defined in Section 3.
The introduction of its modulus allows the extension of any given measure
to a full locally convex cone containing the given cone and its neighborhood
system, thus greatly facilitating the expansion of our concepts. This yields a
new understanding of the variation of a measure, not as a separate positive
real-valued measure associated with the given one, but as a component of its
extension. The development of an integration theory for cone-valued functions
with respect to an operator-valued measure follows in Section 4. Section 5
contains the general convergence theorems for sequences of functions and
measures, that is variations and adaptations of the dominated convergence
theorem. Chapter II concludes with a long list of special cases and examples
in Section 6, demonstrating the generality of the approach. These examples
include classical real-valued measure theory as well as settings with vector-,
cone-, functional- and operator-valued measures and functions.

1. Measurable Cone-Valued Functions

Throughout the following let X be a set, (P,V) a locally convex cone with
dual P∗. Endowed with the pointwise algebraic operations and order, the
P-valued functions on X form again a cone, denoted by F(X,P). As usual,
we say that a function f ∈ F(X,P) is supported by a set E ⊂ X if
f(x) = 0 for all x ∈ X \E. For a positive real-valued function ϕ on X and
f ∈ F(X,P) we denote by ϕ⊗f ∈ F(X,P) the mapping
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120 II Measures and Integrals. The General Theory

x �→ ϕ(x)f(x) : X → P.

For an element a of P or of V we shall also use its symbol to denote the
constant function x �→ a, hence ϕ⊗a for x �→ ϕ(x)a.

1.1 Weak σ-Rings. We shall develop our measure and integration theory
with respect to a family R of subsets of X with the following properties:

(R1) ∅ ∈ R.
(R2) If E1, E2 ∈ R, then E1

⋃
E2 ∈ R and E1 \ E2 ∈ R.

(R3) If En ∈ R for n ∈ N and En ⊂ E for some E ∈ R, then
⋃

n∈N

En ∈ R.

We shall call a family R with these properties a (weak) σ-ring. (Condition
(R3) is weaker then the usual one for σ-rings.) As E1 ∩E2 = E1 \ (E1 \E2),
Condition (R2) implies that E1 ∩E2 ∈ R whenever E1, E2 ∈ R. Of course,
any σ-algebra is a σ-ring in this sense, and a σ-ring R is a σ-algebra
if and only if X ∈ R. However, because we shall require boundedness for
measures defined on R, using σ-algebras from the beginning would impose
undue limitations. We may, however, associate with R in a canonical way
the σ-algebra

AR = {A ⊂ X | A ∩ E ∈ R for all E ∈ R}

of measurable subsets of X. As usual, χ
E

stands for the characteristic (or
indicator) function on X of a subset E ⊂ X, and SR(X,P) is the subcone
of F(X,P) of all P-valued step functions supported by R, that is functions
h =

∑n
i=1 χ

Ei
⊗ai with Ei ∈ R and ai ∈ P. If the sets Ei are pairwise dis-

joint, then we shall call the above the standard representation for the step
function h. Measurability for vector-valued functions has been introduced
in various places (see for example Dunford & Schwartz [55], III.2.10). A suit-
able adaptation for cone-valued functions needs to consider the presence of
unbounded elements in P and the absence of negatives. We shall therefore
employ the relative topologies.

1.2 Measurable Functions. We shall say that a function f ∈ F(X,P) is
measurable with respect to the σ-ring R if for every v ∈ V, with respect
to the symmetric relative v-topology of P
(M1) f−1(O) ∩ E ∈ R for every open subset O of P and every E ∈ R.
(M2) f(E) is separable in P for every E ∈ R.

Note that Condition (M1) means that f−1(O) ∈ AR for all open subsets O
of P. Obviously the functions in SR(X,P) are measurable.

Proposition 1.3. A function f ∈ F(X, R) is measurable if and only if it is
measurable in the usual sense with respect to the σ-algebra AR.

Proof. Let f ∈ F(X, R). The neighborhood system for R consists of the
positive reals ε > 0. The symmetric relative topology therefore coincides
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with the usual topology on the elements of R, while +∞ is an isolated
point. The range of f, hence f(E) for every E ∈ R, is separable in any
case. Thus for measurability we require that f−1(O) ∈ AR for every open
subset of R and also that f−1(+∞) ∈ AR. This coincides with the usual
definition of measurability. 
�

Theorem 1.4. A function f ∈ F(X,P) is measurable if and only if for
every E ∈ R, v ∈ V and ε > 0 there are sets En ∈ R, n ∈ N, such that⋃

n∈N
En = E and f(x) ∈ vε

(
f(y)

)
whenever x, y ∈ En for some n ∈ N.

Proof. First assume that the function f ∈ F(X,P) is measurable. For E ∈R

and v ∈ V let A = {an | n ∈ N} be a dense subset (with respect to the
symmetric relative v -topology) of f(E). For a ∈ P and ε > 0 the sets

◦
vε(a) =

⋃

0<ε′<ε

vε′(a) and (a)
◦
vε =

⋃

0<ε′<ε

(a)vε′

are open in the upper and lower relative v -topologies, respectively, and their
intersection

◦
vs

ε(a) is an open neighborhood of a in the symmetric relative
v -topology. Set

En = f−1(◦vs
(ε/3)(an)

)
∩ E ∈ R.

Then Lemma I.4.1(a) shows that f(x) ∈ vε

(
f(y)

)
whenever x, y ∈ En.

Furthermore, for every x ∈ E there is some an ∈
◦
vs

ε/2

(
f(x)

)
. Thus f(x) ∈

◦
vs

ε/2(an) ⊂ ◦
vs

ε(an), hence x ∈ En. This shows
⋃

n∈N
En = E, as required.

For the converse, assume that the above condition holds for the function
f ∈ F(X,P) and let E ∈ R Then for every m ∈ N there are Em

n ∈ R,
such that

⋃
n∈N

Em
n = E and f(x) ∈ v(1/m)

(
f(y)

)
whenever x, y ∈ Em

n for
some n ∈ N. Choose am

n = f(xm
n ) for some xm

n ∈ Em
n . Then the set A =

{am
n | n,m ∈ N} is seen to be dense in f(E), which yields Condition (M1).

For (M2), let O ⊂ P be open in the symmetric relative v -topology. With
the sets Em

n from above set

F =
⋃ {

Em
n | Em

n ⊂ f−1(O
)
}.

Then F ∈ R by (R2) and F ⊂ f−1(O) ∩ E. For x ∈ f−1(O) ∩ E on the
other hand, there is m ∈ N such that vs

(1/m)

(
f(x)

)
⊂ O. We find x ∈ Em

n

for some n ∈ N. Then for every y ∈ Em
n we have f(y) ∈ v(1/m)

(
f(x)

)
⊂

O, hence y ∈ f−1(O). This shows x ∈ Em
n ⊂ F, hence f−1(O) ∩ E =

F ∈ R. 
�

We can indeed assume that the sets En ∈ R from Theorem 1.4 are dis-
joint, since otherwise we may set

G1 = E1 and Gn = En \
n−1⋃

i=1

Ei
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for n ≥ 2. Then Gn ∈ R and Gn ⊂ En. The sets Gn are disjoint and their
union equals the union of the sets En, that is the given set E ∈ R.

Corollary 1.5. The measurable functions form a subcone of F(X,P).

Proof. Clearly, αf is measurable, whenever f ∈ F(X,P) is measurable and
α ≥ 0. We proceed to show that for measurable functions f, g ∈ F(X,P)
their sum f + g is also measurable. In a first step, given E ∈ R and v ∈
V, using Theorem 1.4 and Lemma I.4.1(c) we can find sets En ∈ R and
λn ≥ 0 such that

⋃
n∈N

En = E and 0 ≤ f(x) + λn and 0 ≤ g(x) +
λn whenever x ∈ En. Now, given ε > 0 we set δn = ε/(2 + 2λn) and
again using Theorem 1.4, for every n ∈ N we find sets Em

n ∈ R such that⋃
m∈N

Em
n =En and f(x) ∈ vδn

(
f(y)

)
as well as g(x) ∈ vδn

(
g(y)

)
whenever

x, y ∈ Em
n . Following I.4.1(b) this yields

f(x) ≤ (1 + δ)f(y) + δ(1 + λ)v = (1 + δ)f(z) + (ε/2)v

and, likewise g(x) ≤ (1 + δ)f(y) + (ε/2)v. Thus

f(x) + g(x) ≤ (1 + δ)
(
f(y) + g(y)

)
+ εv

and indeed f(x) + g(x) ∈ vε

(
f(y) + g(y)

)
. As

⋃
m,n∈N

Em
n = E, this proves

that the function f + g is also measurable. 
�

Theorem 1.6. For measurable functions f, g ∈ F(X,P) and v ∈ V the set
{x ∈ X | f(x) �v g(x)} is measurable, that is in AR.

Proof. Let f, g ∈ F(X,P) be measurable, v ∈ V and E ∈ R. According to
Theorem 1.4, for 0 < ε ≤ 1 there are disjoint sets Ei ∈ R such that

⋃
i∈N

=
E and f(x) ∈ vε

(
f(y)

)
as well as g(x) ∈ vε

(
g(y)

)
whenever x, y ∈ Ei for

some i ∈ N. Set

Fε =
⋃ {

Ei | f(xi) ∈ vε

(
g(xi)

)
for some xi ∈ Ei

}
∈ R.

If x ∈ Fε, then f(x) ∈ vε

(
f(xi)

)
, f(xi) ∈ vε

(
g(xi)

)
and g(xi) ∈ vε

(
g(x)

)
,

hence f(x) ∈ v(7ε)
(
g(x)

)
by Lemma 2,1(a). This shows

{
x ∈ E | f(x) ∈ vε

(
g(x)

)}
⊂ Fε ⊂

{
x ∈ E | f(x) ∈ v7ε

(
g(x)

)}
.

Then
F =

⋂

n∈N

F( 1
n ) = {x ∈ E | f(x) �v g(x)} ∈ R

as well. As F = E
⋂
{x ∈ X | f(x) �v g(x)}, our claim follows. 
�

We shall use different patterns of pointwise convergence for sequences of
cone-valued functions. For functions (fn)n∈N and f in F(X,P), a subset
F ⊂ X and a neighborhood v ∈ V we shall write

fn ↘Fv f, fn ↗F
v f, or fn →Fv f
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if (fn)n∈N converges to f pointwise on F with respect to the upper, lower
or symmetric relative v-topology of P, that is if for every x ∈ F and ε > 0
there is n0 ∈ N such that fn(x) ∈ vε

(
f(x)

)
, fn(x) ∈

(
f(x)

)
vε or fn(x) ∈

vs
ε

(
f(x)

)
for all n ≥ n0, respectively. Convergence in this sense for all v ∈ V

means convergence in the (global) upper, lower or symmetric relative topology
of P. We shall denote this by

fn ↘F f, fn ↗F f, or fn →F f.

All the above notions of convergence are compatible with the algebraic oper-
ations in P (see Lemma I.4.1(d)).

Theorem 1.7. If for f ∈ F(X,P) and every E ∈ R and v ∈ V there
is a sequence of measurable functions fn ∈ F(X,P) such that fn →Ev (f),
then f is also measurable.

Proof. Let f ∈ F(X,P), E ∈ R and v ∈ V. Suppose that there is a
sequence of measurable functions (fn)n∈N such that fn →Ev (f). If for all
n ∈ N the sets An = {ai

n | i ∈ N} are dense (in the symmetric relative v -
topology) in fn(E), then A =

⋃
n∈N

An is obviously dense in f(E), which
is thus seen to be separable. Now let O ⊂ P be open in the symmetric
relative v -topology. For ε > 0 let Uε be the topological interior of the set
Oε = {a ∈ O | vs

ε(a) ⊂ O}. For m,n ∈ N set

Em
n = E

⋂

k≥n

(fk)−1(U(1/m)
)
∈ R

and F =
⋃

m,n∈N
Em

n ∈ R. If x ∈ f−1(O)∩E, then there is ε > 0 such that
vs

ε

(
f(x)

)
⊂ O. For m ≥ 7/ε there is n ∈ N such that fk(x) ∈ vs

(1/m)

(
f(x)

)

for all k ≥ n. For any such k let a ∈ vs
(1/m)

(
fk(x)

)
. Then

vs
(1/m)(a) ⊂ vs

(3/m)

(
fk(x)

)
⊂ vs

(7/m)

(
f(x)

)
⊂ vs

ε

(
f(x)

)
⊂ O

by Lemma I.4.1(a). Thus a ∈ O(1/m), hence vs
(1/m)

(
fk(x)

)
⊂ O(1/m), there-

fore fk(x) ∈ U(1/m) and x ∈ Em
n ⊂ F. This shows f−1(O) ⊂ F. For x ∈ F,

on the other hand, there are m,n ∈ N such that fk(x) ∈ U(1/m) ⊂ O(1/m) for
all k ≥ n. There is such k such that f(x) ∈ vs

(1/m)

(
fk(x)

)
, hence f(x) ∈ O.

Thus f−1(O) ∩ E = F ∈ R. 
�

Theorem 1.8. Let f ∈ F(X,P) be measurable.

(a) Let ϕ : X → R. If ϕ is positive and measurable with respect to AR,
then ϕ⊗f ∈ F(X,P) is also measurable.

(b) Let Φ : X → X. If Φ−1(A) ∈ AR for all A ∈ AR, and Φ(E) ⊂ F for
every E ∈ R with some F ∈ R, then the function then f◦Φ ∈ F(X,P)
is also measurable.
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(c) Let (N ,U) be a locally convex cone and let Ψ : P → N . If for every
u ∈ U there is v ∈ V such that the mapping Ψ is continuous with
respect to the symmetric relative v- and u-topologies of P and N ,
then the function Ψ ◦ f ∈ F(X,N ) is also measurable.
The assumption on Ψ holds in particular if Ψ : P → N is a continuous
linear operator.

Proof. (a) Our claim is obvious if ϕ is a real-valued step function (supported
by AR,) since the validity of the criterion from Theorem 1.4 for ϕ⊗f follows
straight from its validity for f. Generally, there is a sequence (ψn)n∈N of
positive real-valued step functions that converges pointwise from below to ϕ.
All the functions fn = ψn⊗f are measurable by the above. If ϕ(x) = 0 for
x ∈ X, then ψn(x) = 0 for all n ∈ N. Otherwise, for v ∈ V and ε > 0
choose λ > 0 such that 0 ≤ f(x) + λv and set γ = min

{
1 + ε, 1 + ε

2λϕ(x)

}
.

There is n0 ∈ N such that ψn(x) ≤ ϕ(x) ≤ γψn(x), hence

ψn(x)(f(x) + λv) ≤ ϕ(x)(f(x) + λv) ≤ γψn(x)(f(x) + λv)

for all n ≥ n0. This shows

fn(x) + λψn(x)v ≤ ϕ(x)f(x) + λϕ(x)v ≤ ϕ(x)f(x) + γλψn(x)v,

hence fn(x) ≤ ϕ(x)f(x) + εv by the cancellation law for positive elements
(see Lemma I.4.2 in [100]), as γλψn < λψn(x) + ε. Likewise, the above
implies

ϕ(x)f(x) + λϕ(x)v ≤ γfn(x) + γλψn(x)v ≤ γfn(x) + γλϕ(x)v,

and ϕ(x)f(x) ≤ γfn(x) + εv as well. Thus fn(x) ∈ vs
ε

(
ϕ(x)f(x)

)
for all

n ≥ n0. This shows fn →X ϕ⊗f, and by Theorem 1.7 the function ϕ⊗f is
seen to be measurable.

For (b), let f and Φ : X → X be as stated, let g = f ◦Φ and v ∈ V. For
E ∈ R we have Φ(E) ⊂ F for some F ∈ R, hence g(E) ⊂ f(F ) which is
separable in the symmetric relative v -topology. Secondly, for an open subset
O of P we have f−1(O) ∈ AR, hence g−1(O) = Φ−1

(
f−1(O)

)
∈ AR, and

the function g is seen to be measurable.
For Part (c), let f and Ψ : P → N be as stated, let g = f ◦ Ψ and

u ∈ U . Let v ∈ V be such that Ψ is continuous with respect to the sym-
metric relative v - and u-topologies of P and N . For every E ∈ R, the set
f(E) is separable with respect to the symmetric relative v -topology of P,
hence its continuous image g(E) = Ψ

(
f(E)

)
is separable with respect to the

symmetric relative u-topology of N . Secondly, for an open subset O of N
its inverse image Ψ−1(O) is open in P, hence g−1(O) = f−1

(
Ψ−1(O)

)
∈ AR,

and the function g is seen to be measurable. For the additional statement
in (c), suppose that Ψ : P → N is a continuous linear operator. Given u ∈ U
there is v ∈ V such that Ψ(a) ≤ Ψ(b) + u holds whenever a ≤ b + v for
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a, b ∈ P. Thus a ∈ vε(b), that is a ≤ γb + εv with some 1 ≤ γ ≤ 1 + ε
implies Ψ(a) ≤ γΨ(b) + ε, hence Ψ(a) ∈ uε

(
Ψ(b)

)
. Likewise, a ∈ vs

ε(b)
implies that Ψ(a) ∈ us

ε

(
Ψ(b)

)
. The function Ψ is therefore continuous with

respect to the symmetric relative v - and u-topologies of P and N . 
�

In the literature the terms weak measurability or scalar measurability are
often used for a vector-valued function f if all the scalar-valued functions
μ ◦ f for linear functionals μ in the dual of the range of f are measurable
in the usual sense. The following theorem states that measurability in our
sense implies scalar measurability. The converse holds true for functions with
bounded values and separable ranges.

Theorem 1.9. Let f ∈ F(X,P).

(a) If f is measurable, then the R-valued functions μ◦f are measurable for
all μ ∈ P∗.

(b) If the values of f are bounded, f(E) is separable in the symmetric rel-
ative v-topology for all E ∈ R and v ∈ V, and the R-valued functions
μ ◦ f are measurable for all μ ∈ P∗, then f is measurable.

Proof. For (a), suppose that the function f ∈ F(X,P) is measurable, and
let μ ∈ P∗, that is μ ∈ v◦ for some v ∈ V. Recall from Proposition I.4.5
and Example I.4.37(a) that a continuous linear functional μ : P → R is
also continuous, if we endow P with the symmetric relative v-topology and
R with its given symmetric topology (which of course coincides with its
symmetric relative topology). Following Theorem 1.8(c), this shows that the
function μ◦f : X → R is measurable whenever the function f is measurable.

Now suppose that the assumptions of Part (b) hold for the function f ∈
F(X,P). We shall verify the criterion of Theorem 1.4 for measurability.
Recall from Proposition I.4.2(iv) that on the subcone B of bounded elements
of P the corresponding given and relative topologies coincide. As the values
of f are supposed to be bounded, this will greatly facilitate our arguments.

In a first step, let us consider an element a ∈ B and neighborhood v ∈ V.
Then b /∈ v(a), that is b � a + v, for an element b ∈ B implies that
b �� a + v/2, as indeed otherwise, for λ > 0 such that a ≤ λv and ε =
min

{
1/9, 1/(3λ)

}
there would be 1 ≤ γ ≤ 1 + ε such that

b ≤ γ (a + v/2) + εv = γa +
(γ

2
+ ε

)
v ≤ γa +

2
3
v.

Because

γa = a + (γ − 1)a ≤ a + (γ − 1)λv ≤ a + ελv ≤ a +
1
3
v,

this yields a ≤ b + v, contradicting our assumption. Consequently, following
Theorem 3.2 in [175] (see also Corollary 4.34 in Chapter I), there is a linear
functional μ ∈ v◦ such that
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μ(b) > μ(a) +
1
2
.

Now, in a second step of our argument, consider an element a ∈ B and for
v ∈ V the symmetric neighborhood

vs(a) = v(a) ∩ (a)v = {c ∈ P | c ≤ a + v and a ≤ c + v}.

Given a set E ∈ R, let {bi}i∈N be a countable subset of f(E) \ vs(a) ⊂ B
that is dense with respect to the (given) symmetric topology. Such a subset
exists because on B the given and the relative topologies of P coincide.
For each i ∈ N we have either bi /∈ v(a) or bi /∈ (a)v. Accordingly, we may
choose linear functionals μi ∈ v◦ corresponding to the elements bi such that
either

μi(b) > μi(a) +
1
2

or μi(a) > μi(b) +
1
2

if bi /∈ v(a) or bi /∈ (a)v, respectively. We denote

Oi =
(
−∞ , μi(a) +

1
4

]
or Oi =

[
μi(a)− 1

4
, +∞

]

in these respective cases and set Ai = μ−1
i (Oi) ⊂ P and A =

⋂
i∈N

Ai.
For every c ∈ (v/4)s(a), that is c ≤ a + v/4 and a ≤ c + v/4 we have
μ(c) ≤ μ(a) + 1/4 and μ(a) ≤ μ(c) + 1/4 for all μ ∈ v◦, hence c ∈
Ai for all i ∈ N. This shows vs(a) ⊂ A. We shall proceed to verify that
A ∩ f(E) ⊂ (2v)s(a). For this, consider any element c ∈ f(E) \ (2v)s(a).
First we observe that vs(c)∩ vs(a) = ∅, because the existence of an element
d ∈ vs(c) ∩ vs(a) would lead to c ∈ (2v)s(a), contradicting our choice of c.
Thus f(E) ∩ (v/4)s(c) ⊂ f(E) \ vs(a) holds as well, and there is some
bi ∈ (v/4)s(c). We have

μi(bi) ≤ μi(c) +
1
4

and μi(c) ≤ μi(b) +
1
4

since μi ∈ v◦. Recall that either bi /∈ v(a) or bi /∈ (a)v. In the first case,
this implies μi(bi) > μi(a) + 1/2, hence μi(c) > μi(a) + 1/4, and c /∈ Ai.
In the second case, we have μi(bi) < μi(a)− 1/2, hence μi(c) < μi(a)− 1/4
and, likewise c /∈ Ai. Thus indeed c /∈ A. Summarizing, we verified that

vs(a) ⊂ A and A ∩ f(E) ⊂ (2v)s(a).

Let us apply this to an element a = f(x) for some x ∈ E. By our assump-
tion, all the R-valued functions ϕi = μi ◦ f are measurable, hence the sets
Fi = ϕ−1

i (Oi) are contained in AR. Likewise,

F =
⋂

i∈N

Fi =
⋂

i∈N

f−1(μ−1
i (Oi)

)
=
⋂

i∈N

f−1(Ai) = f−1(A) ∈ AR.
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Thus
f−1(vs(a)

)
⊂ F and F ∩ E ⊂ f−1((2v)s(a)

)
.

Now in the third and final step of our argument we shall verify the criterion
of Theorem 1.4: For E ∈ R and v ∈ V let {an}n∈N be a subset of f(E)
that is dense with respect to the symmetric relative v-topology, hence with
respect to the given symmetric v-topology. For each element an and the
neighborhood u = (ε/4)v ∈ V in place of v choose the set F = Fn ∈ AR

as in the last part of the preceding step and set En = Fn ∩ E. Then

f−1(us(an)
)
∩ E ⊂ En and En ⊂ f−1((2u)s(a)

)

holds for all n ∈ N by the above. Thus, firstly, for x, y ∈ En we have
f(x), f(y) ∈ (2u)s(an). But this obviously implies that f(x) ∈ (4u)

(
f(y)

)
⊂

vε

(
f(y)

)
. Secondly, for any x ∈ E there is some an such that f(x) ∈ us(an),

that is x ∈ f−1
(
us(an)

)
∩ E ⊂ En. This demonstrates

⋃
n∈N

En = E and
completes our argument. 
�

2. Inductive Limit Neighborhoods for Cone-Valued
Functions

Let (P,V) be a locally convex cone. In preparation of our integration the-
ory for cone-valued functions with respect to an operator-valued measure, we
shall introduce appropriate neighborhoods for the cone F(X,P) and cor-
responding subcones of measurable functions. Our integrals will constitute
continuous linear operators on these cones. First, in order to allow greater
generally, we shall extend the given neighborhood system of V.

2.1 Infinity as a Neighborhood. We shall adjoin the maximal element
∞ to the neighborhood system V such that a ≤ b+∞ holds for all a, b ∈ P.
The addition and multiplication by scalars involving this element is defined
in a canonical way: We set v +∞ = ∞, 0 · ∞ = 0 and α · ∞ = ∞ for all
v ∈ V and α > 0. The augmented neighborhood system which includes this
infinite element and 0 ∈ P will be denoted by V, that is V = V ∪ {0,∞}.
Obviously, (V,V) is a full locally convex cone.

2.2 Inductive Limit Neighborhoods. Let X and R be as before, and
let F

(
X,V

)
be the family of V-valued functions on X, endowed with

the pointwise operations and order. For functions f, g ∈ F(X,P) and
s ∈ F

(
X,V

)
we write f ≤ g + s if f(x) ≤ g(x) + s(x) for all x ∈ X.

The addition and multiplication by scalars for functions s, t ∈ F
(
X,V

)
is

defined pointwise, and s ≤ t means that f ≤ g + s implies f ≤ g + t for
f, g ∈ F(X,P).
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An (R-compatible) inductive limit neighborhood for F(X,P) is a convex
subset v of measurable functions in F

(
X,V

)
such that for every E ∈ R

there is vE ∈ V and s ∈ v such that χ
E
⊗vE ≤ s. Measurability is meant

with respect to R and the locally convex cone (V,V). For functions f, g ∈
F(X,P) and an inductive limit neighborhood v we denote

f ≤ g + v if f ≤ g + s, for some s ∈ v.

We define sums and multiples by positive scalars for inductive limit neighbor-
hoods through the addition and multiplication of their elements. A canonical
order relation is given by

v ≤ u if for every s ∈ v there is t ∈ u such that s ≤ t.

Inductive limit neighborhoods include uniform neighborhoods, consisting of
a single constant function x �→ v; and if X ∈ R, that is if R is a σ-algebra,
then the uniform neighborhoods form a base for the family of all inductive
limit neighborhoods.

2.3 The Cone FR(X, P). We shall in the sequel deal with measurable
functions in F(X,P) that can be reached from below by step functions; more
precisely: We denote by FR(X,P) the subcone of all measurable functions
f ∈ F(X,P) such that for every inductive limit neighborhood v there is
h ∈ SR(X,P) satisfying h ≤ f + v.

Lemma 2.4. Let f ∈ FR(X,P).

(a) For every inductive limit neighborhood v there is λ ≥ 0 such thats 0 ≤
f + λv.

(b) There is E ∈ R such that f(x) ≥ 0 for all x ∈ X \ E, and for every
v ∈ V there is λ ≥ 0 such that 0 ≤ f + λ χE⊗v.

Proof. Let f ∈ FR(X,P). For (a), given an inductive limit neighborhood v,
there is a step function h =

∑n
i=1 χ

Ei
⊗ai ∈ SR(X,P) such that h ≤ f + v,

that is h ≤ f + s for some s ∈ v. We may assume that the sets Ei ∈ R are
disjoint and E =

⋃n
i=1 Ei ∈ R. There is v ∈ V such that χE⊗v ≤ v, and in

turn there is λ ≥ 0 such that 0 ≤ ai + λv for all i = 1, . . . , n. This shows
0 ≤ f(x) + s(x) + λv for all x ∈ E and 0 ≤ f(x) + s(x) for all x ∈ X \ E.
Thus 0 ≤ f + (s + λ χE⊗v), hence indeed 0 ≤ f + (1 + λ)v.

For (b), let the inductive limit neighborhood v consist of all V-valued
functions that are supported by some set in R. By (a) there is λ ≥ 0 and
a function s ∈ v such that 0 ≤ f + λs. Because s is supported by some
set E ∈ R, that is s(x) = 0 for all x ∈ X \ E, we have indeed f(x) ≥ 0
for all x ∈ X \ E. Now let v ∈ V and let v consist of the single function
x → v. Then 0 ≤ f + λv with some λ ≥ 0 by (a). Thus 0 ≤ f + λχE⊗v,
as claimed. 
�
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The following lemma provides a more straightforward characterization of
the functions in FR(X,P), avoiding the use of inductive limit neighbor-
hoods.

Lemma 2.5. A measurable P-valued function f is in FR(X,P) if and
only if

(i) there is E ∈ R such that f(x) ≥ 0 for all x ∈ X \ E, and
(ii) for every v ∈ V there is h ∈ SR(X,P) such that h ≤ f + χX⊗v.

Proof. If f ∈ FR(X,P), then (i) follows from Lemma 2.4(b). Statement (ii)
follows from the definition of the cone FR(X,P) if we consider the singleton
inductive limit neighborhood v = {χX⊗v}. For the converse, suppose that (i)
and (ii) hold for the measurable function f ∈ F(X,P), and let v be an
inductive limit neighborhood. For the set E ∈ R from (i) there is v ∈ V
such that χE⊗v ≤ s for some s ∈ v. According to (ii), let h ∈ SR(X,P)
such that h ≤ f + χX⊗v and set h′ = χE⊗h ∈ SR(X,P). Then h′ ≤ f + s,
hence h′ ≤ f + v. This shows f ∈ FR(X,P). 
�

Note that a function χF ⊗a for F ∈ AR and a ∈ P is contained in
FR(X,P) if and only if either a ≥ 0 or F ∈ R.

Lemma 2.6. Let f ∈ FR(X,P) and let ϕ be a positive real-valued function
on X, measurable with respect to AR. If either f is positive or if ϕ is
bounded, then ϕ⊗f ∈ FR(X,P).

Proof. Following Theorem 1.8(a), the function ϕ⊗f is measurable. If f is
positive, then ϕ⊗f is also positive, hence in FR(X,P). Otherwise, there is
ρ > 0 such that 0 ≤ ϕ(x) ≤ ρ for all x ∈ X. Given an inductive limit
neighborhood v there is h ∈ SR(X,P) such that h ≤ f + (1/2ρ)v. Also,
there is λ > 0 such that 0 ≤ f + λv. As ϕ is bounded and measurable,
there is a real-valued positive step function ψ on X such that

ψ(x) ≤ ϕ(x) ≤ ψ(x) +
1
2λ

for all x ∈ X. Then l = ψ⊗h ∈ SR(X,P), and indeed

l ≤ ψ⊗f +
1
2ρ

ψ⊗v ≤ ψ⊗f +
1
2
v + (ϕ− ψ)⊗(f + λv) ≤ ϕ⊗f + v.


�
Lemma 2.6 implies in particular that χF ⊗f ∈ FR(X,P) whenever f ∈
FR(X,P) and F ∈ AR. Also, if ϕ is a positive real-valued measurable
function and a ∈ P, then ϕ⊗a ∈ FR(X,P) if a ≥ 0, and (χEϕ)⊗a =
ϕ⊗(χE⊗a) ∈ FR(X,P) for every E ∈ R in general if the function ϕ is
bounded.

A sequence (fn)n∈N in FR(X,P) is said to be bounded below if for every
inductive limit neighborhood v there is λ ≥ 0 such that 0 ≤ fn + λv for
all n ∈ N.
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Theorem 2.7. Let f ∈ FR(X,P) and E ∈ R. For every inductive limit
neighborhood v, every v ∈ V and ε > 0 there is 1 ≤ γ ≤ 1 + ε and a
bounded below sequence (hn)n∈N of step functions in SR(X,P) such that

(i) hn ≤ γf + v for all n ∈ N.
(ii) For every x ∈ E there is n0 ∈ N such that f(x) ≤ hn(x) + v for

all n ≥ n0.

Proof. Let f ∈ FR(X,P), E ∈ R, let v be an inductive limit neighborhood,
let v ∈ V and ε > 0. Following Lemma 2.4(b) we may assume that f(x) ≥ 0
for all x ∈ X \ E. There is u ∈ V such that both u ≤ v and χE⊗u ≤ v.
Again using 2.4(b) we find λ ≥ 0 such that 0 ≤ f + λχE⊗u We set δ =
min{1, ε

3 , 1
4(1+λ)} and γ = (1+δ)2 ≤ 1+ε. By Theorem 1.4 there is a partition

of E into disjoint subsets Ei ∈ R, i ∈ N, such that f(x) ∈ uδ

(
f(y)

)
holds

for all x, y ∈ Ei. Thus

f(x) ≤ (1 + δ)f(y) + δ(1 + λ)u

by Lemma I.4.1(b). We set ai = (1 + δ)f(xi) ∈ P for some xi ∈ Ei. Thus
for any x ∈ Ei we have

f(x) ≤ ai + δ(1 + λ)u ≤ ai + v

and
ai ≤ (1 + δ)2f(x) + δ(1 + δ)(1 + λ)u ≤ γf(x) +

1
2
u.

Thus
n∑

i=1

χEi
⊗ai ≤ χE⊗(γf) +

1
2
χE⊗u ≤ χE⊗(γf) +

1
2
v.

Furthermore, there is h0 ∈ SR(X,P) such that h0 ≤ γf + 1
2v, and therefore

χ(X\E)⊗ho ≤ χ(X\E)⊗(γf) +
1
2
v

holds as well. Now we choose the step functions

hn =
n∑

i=1

χEi
⊗ai + χ(X\E)⊗h0.

Adding the above yields indeed

hn ≤ γf + v

for all n ∈ N, hence (i). Part (ii) of our claim follows directly from the
above, as

f(x) ≤ hn(x) + v for all x ∈
n⋃

i=1

Ei.
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Finally, given an inductive limit neighborhood u, there is λ ≥ 0 such that
0 ≤ h0 + λu, that is 0 ≤ h0 + λs for some s ≤ u. Also there is u ∈ V such
that χE⊗u ∈ u and ρ ≥ 0 such that 0 ≤ f + ρχE⊗u. The latter implies
0 ≤ ai + ρu for all i ∈ N, hence

0 ≤ hn + λs + ρχE⊗u ≤ hn + (λ + ρ)u

for all n ∈ N. The sequence (hn)n∈N is therefore bounded below. Finally, if
f ≥ 0, then we may choose h0 = 0, and as all the elements ai = (1+δ)f(xi)
are also positive, we realize that hn ≥ 0 for all n ∈ N. 
�

If (P,V) is indeed a full locally convex cone, as will frequently occur in
the subsequent sections, then the preceding result can obviously be simplified.
We shall formulate this in a corollary.

Corollary 2.8. Let (P,V) be a full locally convex cone. Let f ∈ FR(X,P)
and E ∈ R. For every inductive limit neighborhood v and ε > 0 there is
1 ≤ γ ≤ 1 + ε and a bounded below sequence (hn)n∈N of step functions in
SR(X,P) such that

(i) hn ≤ γf + v for all n ∈ N.
(ii) For every x ∈ E there is n0 ∈ N such that f(x) ≤ hn(x) for all n ≥ n0.

Proof. We choose v ∈ V such that χE⊗v ≤ (1/2)vw and apply Theorem 2.7
with this v, the inductive limit neighborhood (1/2)vw and the given ε > 0.
There is a sequence (hn)n∈N as in 2.7. The functions h′n = hn + χE⊗v then
satisfy our claim. 
�

3. Operator-Valued Measures

Let (P,V) be a quasi-full locally convex cone and let (Q,W) be a locally
convex complete lattice cone (see Sections 5 and 6 in Chapter I). Let L(P,Q)
denote the cone of all (uniformly) continuous linear operators from P to
Q. Recall from Section 3 in Chapter I that a continuous linear operator
between locally convex cones is monotone with respect to the respective weak
preorders. Because Q carries its weak preorder, this implies monotonicity
with respect to the given orders of P and Q as well. Let X be a set, R

a (weak) σ-ring of subsets of X. An L(P,Q)-valued measure θ on R is a
set function

E �→ θE : R → L(P,Q)

such that θ(∅) = 0 and

θ(
⋃

i∈N

Ei) =
∞∑

i=1

θEi
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holds whenever the sets Ei ∈ R are disjoint and
⋃∞

i=1 Ei ∈ R. Convergence
for the series on the right-hand side is meant in the following way: For ev-
ery a ∈ P the series

∑∞
i=1 θEi

(a) is order convergent in Q in the sense
of I.5.26. (Recall from Proposition I.5.42 that order convergence is implied
by convergence in the symmetric relative topology.)

Lemma 3.1. Let E ∈ R and a ∈ P.

(a) If Ei ∈ R are such that Ei ⊂ Ei+1 for all i ∈ N and E = ∪∞i=1Ei, then
θE(a) = lim

i→∞
θEi

(a).

(b) If Ei ∈ R are such that E ⊃ Ei ⊃ Ei+1 for all i ∈ N, and ∩∞i=1Ei = ∅,
then 0 ≤ lim

i→∞
θEi

(a) + O
(
θE(a)

)
and lim

i→∞
θEi

(a) ≤ O
(
θE(a)

)
.

Proof. For Part (a), let F1 = E1 and Fi = Ei \Fi−1 for i > 1. The sets Fi

are disjoint, En = ∪n
i=1Fi and E = ∪∞i=1Fi. From the countable additivity of

the measure θ we infer that θEn
(a) =

∑n
i=1 θFi

(a) and θE(a) =
∑∞

i=1 θFi
(a),

hence our claim. For Part (b), let Fi = E \ Ei for i ∈ N. Thus Fi ⊂ Fi+1
and ∪∞i=1Fi = E. This shows θE(a) = lim

i→∞
θEi

(a) by Part (a). Furthermore,

θE(a) = θEi
(a)+θFi

(a) holds for all i ∈ N by Part (a). Using the limit rules
in Lemma I.5.19 we infer that

θE(a) ≤ lim
i→∞

θEi
(a) + θE(a) ≤ lim

i→∞
θEi

(a) + θE(a) ≤ θE(a),

hence equality for these terms as Q carries the weak preorder which is sup-
posed to be antisymmetric. Now the cancellation rule in Proposition I.5.10(a)
yields our claim. 
�

For our upcoming integration theory for P-valued functions with respect
to an L(P,Q)-valued measure θ (see Section 4 below) we shall also have
to assign values of θ to the neighborhoods in P. This will be done by the
introduction of its modulus |θ|. Recall that we require the locally convex
cone (P,V) to be quasi-full.

3.2 The Modulus of a Measure. Throughout the following, let θ be a
fixed L(P,Q)-valued measure on R. For a neighborhood v ∈ V and a set
E ∈ R, modulus (or semivariation) of θ is defined as

|θ|(E, v)

= sup

{
n∑

i=1

θEi
(si)

∣
∣
∣ si ∈ P, si ≤ v, Ei ∈ R disjoint subsets of E

}

.

The following is obvious from this definition.

Lemma 3.3. Let v ∈ V and E ∈ R. If v ∈ P, then |θ|(E, v) = θE(v).

Proof. Let E ∈ R and v ∈ V ∩ P. If si ∈ P such that si ≤ v and Ei ∈ R

are disjoint subsets of E for i = 1, . . . , n, then
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n∑

i=1

θEi
(si) ≤

n∑

i=1

θEi
(v) = θ(∪n

i=1Ei)(v) ≤ θE(v).

Thus |θ|(E, v) ≤ θE(v). The reverse inequality is obvious, as we may choose
E1 = E and s1 = v in 3.2. 
�
Lemma 3.4. Let v ∈ V and E ∈ R. Then

(a) 0 ≤ |θ|(E, v) and |θ|(∅, v) = 0.
(b) θE(a) ≤ θE(b) + |θ|(E, v) whenever a ≤ b + v for a, b ∈ P.
(c) If Ei ∈ R are disjoint sets such that E =

⋃∞
i=1 Ei,

then |θ|(E, v) =
∑∞

i=1 |θ|(Ei, v).

Proof. Part (a) is obvious. Part (b) follows as the locally convex cone is
supposed to be quasi-full. Indeed, for a ≤ b + v there is s ≤ v such that
a ≤ b + s. This implies θE(a) ≤ θE(b) + θE(s), and as θE(s) ≤ |θ|(E, v),
our claim follows immediately from

∧
1 . For Part (c), let E = ∪∞i=1Ei for

disjoint sets Ei ∈ R. Let F1, . . . , Fn ∈ R be disjoint subsets of E and
sk ∈ P such that sk ≤ v for k = 1, . . . , n. Then

θFk
(sk) =

∞∑

i=1

θ(Fk∩Ei)(sk)

for every k = 1, . . . , n by the countable additivity of θ, hence

n∑

k=1

θFk
(sk) =

n∑

k=1

( ∞∑

i=1

θ(Fk∩Ei)(sk)

)

=
∞∑

i=1

(
n∑

k=1

θ(Fk∩Ei)(sk)

)

≤
∞∑

i=1

|θ|(Ei, v)

by the limit rules established in Section 5 of Chapter I. For the converse
inequality, let n ∈ N and for each i = 1, . . . , n, let F i

1 , . . . , F
i
ni
∈ R be

disjoint subsets of Ei and si
1, . . . , s

i
ni
≤ v. Then

n∑

i=1

(
ni∑

k=1

θF i
k
(si

k)

)

≤ |θ|(E, v),

as the sets F i
k ⊂ E are pairwise disjoint. Now taking the supremum over all

such choices of sets F k
i yields with (

∨
1)

n∑

i=1

|θ|(Ei, v) ≤ |θ|(E, v), hence
∞∑

i=1

|θ|(Ei, v) ≤ |θ|(E, v),

as n ∈ N was arbitrary. 
�
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Lemma 3.5. Let E ∈ R, α > 0 and u, v ∈ V. Then

(a) |θ|(E,αv) = α|θ|(E, v).
(b) |θ|(E, u + v) = |θ|(E, u) + |θ|(E, v).

Proof. Part (a) is obvious. For Part (b), let E1, . . . , En ∈ R be disjoint
subsets of E and let ri ∈ P such that ri ≤ u+v for i = 1, . . . , n. According
to (QF2) in I.6.1 there are elements si, ti ∈ P such that si ≤ u, ti ≤ v and
si ≤ ri + ti. This shows

n∑

i=1

θEi
(ri) ≤

n∑

i=1

θEi
(si) +

n∑

i=1

θEi
(ti) ≤ |θ|(E, u) + |θ|(E, v).

As the sets Ei ∈ R and the elements ri ≤ u+v were chosen arbitrarily, this
shows |θ|(E, u + v) ≤ |θ|(E, u) + |θ|(E, v). For the converse inequality, let
E1, . . . , En ∈ R and F1, . . . , Fm ∈ R be two collections of disjoint subsets of
E. We may assume that

⋃n
i=1 Ei =

⋃m
k=1 Fk = E. Let si ≤ u and tk ≤ v

for si, tk ∈ P. Then

n∑

i=1

θEi
(si) +

m∑

k=1

θFk
(tk) =

n∑

i=1

m∑

k=1

θ(Ei∩Fk)(si + tk) ≤ |θ|(E, u + v)

by the above. Taking first the supremum over all choices for the sets Ei ∈
R and the elements si ≤ u on the left-hand side of this inequality and
using (

∨
1) yields

|θ|(E, u) +
m∑

k=1

θFk
(tk) ≤ |θ|(E, v + u).

In a second step, we obtain |θ|(E, u) + |θ|(E, v) ≤ |θ|(E, u + v) if we repeat
this argument for the sets Fk ∈ R and the elements tk ≤ v. 
�

3.6 Bounded Measures. Let (P,V) be a quasi-full locally convex cone
and let (Q,W) be a locally convex complete lattice cone. We shall say that an
L(P,Q)-valued measure θ on R is R-bounded or of bounded semivariation
on R if

(BV) For every w ∈ W and E ∈ R there is v ∈ V such that |θ|(E, v) ≤ w.

In the sequel we shall always assume boundedness in this sense.

Remarks 3.7. (a) If (P,V) is a full locally convex cone, then every L(P,Q)-
valued measure on R is bounded. Indeed, let E ∈ R and w ∈ W. Because
the operator θE : P → Q is supposed to be continuous, there is v ∈ V
such that θE(a) ≤ θE(b) + w whenever a ≤ b + v for a, b ∈ P. Following
Lemma 3.3, this shows |θ|(E, v) = θE(v) ≤ w in particular.
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(b) Let P = K for K = R or K = C, endowed with the equality as
order and the usual Euclidean topology; that is V = {εB | ε > 0}, where B is
the unit ball in K and a ≤ b+εB means that a ∈ b+εB. Let Q = R. Then
L(P,Q) can be identified with K, since every linear operator (functional)
from K to R is given by an element z ∈ K via the evaluation a �→ �e(za)
for a ∈ K. This is therefore the case of a real- or complex-valued measure θ.
According to 3.2, its modulus is computed as

|θ|(E, B) = sup

{
n∑

i=1

θEi
· si

∣
∣
∣ si ∈ B, Ei ∈ R disjoint subsets of E

}

= sup

{
n∑

i=1

|θEi
|
∣
∣
∣ Ei ∈ R disjoint subsets of E

}

,

that is the usual total variation of the real- or complex-valued measure θ
(see II.1.4 in [55]).

(c) If (P,V) is a locally convex topological vector space, and Q = R,
that is the case of a functional-valued measure, our requirement of bound-
edness corresponds to Dieudonné’s notion of p-domination in [44] and to
Prolla’s of finite p-semivariation in [155] (Ch. 5.5) for measures with values
in the dual of a locally convex vector space.

(d) If (N , ‖ ‖) is a normed space over K = R or K = C, then every
N -valued measure θ may be considered to be an operator-valued measure
in our sense. Indeed, the elements of N are linear operators from P = K,
endowed with the Euclidean topology, into the standard lattice completion
(N̂ , Ŵ) of N as introduced in I.5.57. The notion of the semivariation of a
vector-valued measure as given for example in IV.10.3 in [55] slightly differs
from our notion of the modulus, as there it is a real-valued expression (in
fact, it is in some sense the norm in N of our modulus; see Section 8 below),
which is however not countably additive in general. We shall consider this
example in more detail in Section 6 below.

(e) If (P,V) is a quasi-full locally convex cone and if we endow the sub-
cone P+ of its positive elements with the neighborhood system Ṽ = {0},

(
for

this, see also Example I.1.4(b)
)
, then every L(P,Q)-valued measure θ can be

canonically extended to an L(P+,Q)-valued measure on the whole σ-algebra
AR : For every set F ∈ AR we define the operator θF ∈ L(P+,Q) by

θF (a) = sup{θE(a) | E ⊂ F, E ∈ R} ∈ Q

for a ∈ P+. Linearity of this operator follows from I.5.22, and continuity is
trivial, since P+ is endowed with the neighborhood system Ṽ = {0}. For
countable additivity on AR let Fn ∈ AR, for n ∈ N, be disjoint sets and
let F =

⋃
n∈N

Fn. Let a ∈ P+. Then
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θF (a) = sup{θE(a) | E ⊂ F, E ∈ R}

= sup

{ ∞∑

i=1

θE∩Fi
(a) | E ⊂ F, E ∈ R

}

≤
∞∑

i=1

θFi
(a).

For every n ∈ N, on the other hand, and Ei ∈ R such that Ei ⊂ Fi for
i = 1, . . . , n, we set E =

⋃n
i=1 Ei ∈ R and have

∑n
i=1 θEi

(a) = θE(a) ≤
θF (a). Taking the supremum over all such choices of sets Ei ∈ R yields
with Lemma I.5.5(a) that

∑n
i=1 θFi

(a) ≤ θF (a). This holds for all n ∈ N

and therefore yields the reverse inequality
∑∞

i=1 θFi
(a) ≤ θF (a).

3.8 Extension of a Measure. We may use the modulus of an R-bounded
L(P,Q)-valued measure θ to define an extension to an R-bounded L(PV ,Q)-
valued measure, where (PV ,V) denotes the standard full extension of the
quasi-full locally convex cone (P,V) as constructed in Section 6.2 of
Chapter I, that is

PV =
{
a⊕ v | a ∈ P, v ∈ V ∪ {0}

}
.

This follows the extension of a continuous linear operator from P to Q into
a continuous linear operator from PV to Q as elaborated in Theorem I.6.3.
For E ∈ R and a⊕ v ∈ PV we set

θE(a⊕ v) = θE(a) + |θ|(E, v).

The required properties for a measure are readily checked. Indeed, for a fixed
set E ∈ R, Lemma 3.5 shows that θE is a linear operator on PV . In order to
verify that this operator is monotone, let a⊕ v ≤ b⊕u for a⊕ v, b⊕u ∈ PV .
Let E1, . . . , En ∈ R be disjoint subsets of E and s1, . . . , sn ≤ v. We set
E0 = E \

⋃n
i=1 Ei and s0 = 0. Then

⋃n
i=0 Ei = E and a+ si ≤ b +u for all

i = 0, . . . , n by our definition of the order in PV , hence a + si ≤ b + ti for
some ti ≤ u by Condition (QF1) from I.6.1. Thus θEi

(a + si) ≤ θEi
(b + ti)

for all i = 0, . . . , n by the monotonicity of the operators θEi
, hence

θE(a) +
n∑

i=1

θEi
(si) =

n∑

i=0

θEi
(a + si)

≤
n∑

i=0

θEi
(b + ti)

= θE(b) +
n∑

i=1

θEi
(ti)

≤ θE(b) + |θ|(E, u).

Taking the supremum over all such choices of sets Ei ∈ R and elements
si ≤ v on the left-hand side of this inequality yields

θE(a⊕ v) = θE(a) + |θ|(E, v) ≤ θE(b) + |θ|(E, u) = θE(b⊕ u).
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Furthermore, given w ∈ W, by the R-boundedness of the given measure θ,
there is v ∈ V such that θE(0 ⊕ v) = |θ|(E, v) ≤ w. This implies that the
linear operator θE : PV → R is indeed continuous. The countable additivity
of the extended measure follows from Lemma 3.4(c). Furthermore, as (PV ,V)
is a full cone, the extension of θ remains R-bounded (see 3.7(a)), that is,
|θ|(E, 0 ⊕ v) = θE(0 ⊕ v) = |θ|(E, v) holds for all E ∈ R and v ∈ V. If
on the other hand, θ is an R-bounded L(PV ,Q)-valued measure on R, and
if θ0 denotes its restriction to an L(P,Q)-valued measure, then we have
|θ0|(E, v) ≤ θE(0⊕ v).

This procedure of extending a given R-bounded measure from a quasi-full
to a full cone yields an interesting new understanding of the (total) variation
of a given measure, not as a separate positive real-valued measure associated
with the given one, but as an integral part of its extension. Because this
extension, evaluated at the neighborhoods is also Q- and not necessarily
positive real-valued, its countable additivity is preserved, thus removing a
major inconvenience that arises in the classical approach (see IV.10.3 in [55]).
This therefore avoids the need to introduce the separate terms of variation
and semivariation for a measure (see I.2 in [43]).

The extension of a given measure as carried out in 3.8 will turn out to be
invaluable in our upcoming integration theory for cone-valued functions with
respect to an operator-valued measure. It does in fact justify the use of a full
cone for P, that is the range of the concerned functions and the domain of
the linear operators resulting from our measures.

3.9 Composition of Measures and Continuous Linear Operators.
Let (P,V) and (P̃, Ṽ) be quasi-full locally convex cones, and let (Q,W)
and (Q̃, W̃) be locally convex complete lattice cones. For continuous linear
operators S ∈ L(P̃,P), T ∈ L(P,Q) and U ∈ L(Q, Q̃) let U ◦ T ◦ S ∈
L(P̃, Q̃) denote their composition, that is the continuous linear operator

l �→ U
(
T
(
S(l)

))
: P̃ → Q̃.

It is straightforward to verify that this operator is indeed linear and con-
tinuous. We shall use this in the following way: If θ is an L(P,Q)-valued
measure on R, if S ∈ L(P̃,P) and if the operator U ∈ L(Q, Q̃) is order
continuous (see I.5.29), then the set function

E �→ (U ◦ θE ◦ S) : R → L(P̃, Q̃)

is an L(P̃, Q̃)-valued measure, called the composition of θ with U and S
and denoted as (U ◦ θ ◦ S). Countable additivity follows from the order
continuity of the operator U. Indeed, let Ei ∈ R be disjoint sets such that
E =

⋃∞
i=1 Ei ∈ R. Then for every l ∈ P̃ we have θE

(
S(l)

)
=
∑∞

i=1 θEi

(
S(l)

)

by the countable additivity of θ, hence
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(U ◦ θ ◦ S)E (l) = U
(
θE

(
S(l)

))

= U

( ∞∑

i=1

θEi

(
S(l)

)
)

=
∞∑

i=1

U
(
θEi

(
S(l)

))

=
∞∑

i=1

(U ◦ θ ◦ S)Ei
(l)

by the order continuity of U. The modulus of the measure (U ◦ θ ◦ S) can
be estimated as follows: Let E ∈ R, and for v ∈ V let ṽ ∈ Ṽ such that
S(l) ≤ S(m) + v whenever l ≤ m + ṽ for l,m ∈ P̃. If E1, . . . , En ∈ R are
disjoint subsets of E and if li ∈ P̃ such that li ≤ ṽ for i = 1, . . . , n, then

n∑

i=1

(
U ◦ θ ◦ S

)
Ei

(li) = U

(
n∑

i=1

θEi

(
S(li)

)
)

≤ U
(
|θ|(E, v)

)
.

Taking the supremum over all such choices for sets Ei ∈ R and elements
li ≤ ṽ yields

|U ◦ θ ◦ S|(E, ṽ) ≤ U
(
|θ|(E, v)

)
.

The L(P̃, Q̃)-valued measure (U ◦θ◦S) is therefore R-bounded whenever
the L(P,Q)-valued measure θ is R-bounded. Indeed, for E ∈ R and w̃ ∈
W̃ there is w ∈ W such that U(s) ≤ U(t) + w̃ whenever s ≤ t + w̃ for
s, t ∈ Q. There is v ∈ V such that |θ|(E, v) ≤ w, hence |U ◦θ◦S|(E, ṽ) ≤ w̃

if ṽ ∈ Ṽ is chosen as above.
We shall in particular make use of the combination of an L(P,Q)-valued

measure θ with an order continuous linear functional μ ∈ Q∗. (We choose
P̃ = P and the identity operator for S.) The resulting measure (μ ◦ θ) is
L(P, R) -, that is P∗-valued in this case.

3.10 Strong Additivity. Countable additivity of an L(P,Q)-valued mea-
sure θ is meant with respect to order convergence in the locally convex
complete lattice cone (Q,W). Order convergence does in general not im-
ply convergence in the weak or indeed convergence in the symmetric relative
topology of Q (see I.5.42). However, the following result based on a well-
known theorem by Pettis (see Theorem IV.10.1 in Dunford & Schwartz, [55])
will show that in special cases some stronger type of convergence is implied.

Theorem 3.11. Let θ be an L(P,Q)-valued measure, let a be a bounded
element of P and let Q0 be the subcone of Q spanned by the set {θE(a) |
E ∈ R}. If every continuous linear functional on Q0 can be extended to an
order continuous linear functional on Q, then for disjoint sets Ei ∈ R such
that ∪∞i=1Ei ∈ R the series
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θ(
⋃

i∈N

Ei)(a) =
∞∑

i=1

θEi
(a)

converges in the symmetric topology of Q.

Proof. We shall follow the main lines of the arguments in the proof of Pettis’
Theorem as presented in [55]. Let a ∈ P be a bounded element, and let Q0
be the subcone of Q spanned by the set {θE(a) ∈ Q0 | E ∈ R}. As all the
operators θE are continuous, the elements of Q0 are bounded in Q. We may
therefore consider Q0 as a locally convex cone endowed with the symmetric
topology generated by the neighborhood system W. Let Qs∗

0 be the dual of
Q0 under this topology. According to Proposition II.2.21 in [100], the linear
functionals μ ∈ Qs∗

0 can be expressed as the difference of two elements of
the given dual cone (with respect to the given topology) Q∗0 of Q0, that is
Qs∗

0 = Q∗0−Q∗0. As the elements of Q∗0 were supposed to be order continuous
on Q0, so are the elements of Qs∗

0 .
Now let us consider a sequence of disjoint sets Ei ∈ R such that E =

∪∞i=1Ei ∈ R. Let Z0 ⊂ R be the set algebra in E generated by the sets Ei,
and let Z ⊂ R be the σ-algebra in E generated by Z0. The algebra Z0
is known to be countable (see III.8.4 in [55]). Let Q1 be the closure (with
respect to the symmetric topology) in Q0 of the subcone that is spanned by
the countable set {θE(a) | E ∈ Z0}.

In a first step, an argument using the separation result from Corollary 4.6
in [172] will demonstrate that θE(a) ∈ Q1 for all E ∈ Z. For this, assume
to the contrary that θE(a) /∈ Q1 for some E ∈ Z. Then according to the
separation result 4.6 in [172] there is a linear functional μ ∈ Qs∗

0 such that
such that μ

(
θE(a)

)
≤ −1 ≤ μ(l) for all l ∈ Q1. As Q1 is a cone, this

implies indeed that μ(l) ≥ 0 holds for all l ∈ Q1. As the linear functional
μ ∈ Qs∗

0 was seen to be order continuous, G �→ μ
(
θG(a)

)
: Z → R defines a

countably additive real-valued measure (μ◦θ◦a) on Z. This measure, taking
non-negative values on Z0 and a negative value on E ∈ R contradicts the
uniqueness part of Hahn’s extension theorem for measures from an algebra
Z0 to the σ-algebra Z generated by Z0 (see III.5.9 in [55] or 12.2.8 in [178]).
Thus θE(a) ∈ Q1 as claimed.

Now set Fn =
⋃n

i=1 Ei for n ∈ N, and let us assume that, contrary to our
claim, there exists a neighborhood w ∈ W, and a subsequence (Fm)m∈N of
(Fn)n∈N such that either

θE(a) � θFm
(a) + w or θFm

(a) � θE(a) + w

for all m ∈ N. Then according to Theorem 3.11 in [175] (see also Corollary 4.34
in Chapter I) there are linear functionals μm ∈ Qs∗

0 , contained in the polar
of the symmetric neighborhood w, such that μm

(
θE(a)

)
> μm

(
θFm

(a)
)

+ 1
for all m ∈ N. Let {lk | k ∈ N} be a countable dense (with respect to
the symmetric topology) subset of Q1. Since for every k ∈ N the sequence(
μm(lk)

)
m∈N

is bounded in R, we may use a Cantor diagonal procedure to
find a subsequence (μmj

)j∈N of (μm)m∈N such that the limit lim
j→∞

μmj
(lk)
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exists in R for all k ∈ N : Indeed, there is a subsequence (μm(1,j) )j∈N of
(μm)m∈N such that lim

j→∞
μm(1,j) (l1) exists in R. Then there is a subsequence

(μm(2,j) )m∈N of (μm(1,j) )m∈N such that lim
j→∞

μm(2,j) (l2) exists, etc. We set

μmj
= μm(j,j) for all j ∈ N. Then (μmj

)j∈N is a subsequence of each of
the sequences (μm(k,j) )m∈N for k ∈ N, thus satisfying our requirement. Now
a simple argument will show that the limit lim

j→∞
μmj

(l) exists indeed for all

l ∈ Q1. In fact, given l ∈ Q1 and ε > 0 there is some lk such that both
l ≤ lk + εw and lk ≤ l + εw, hence |μmj

(l) − μmj
(lk)| ≤ ε for all j ∈ N.

Moreover, there is j0 ∈ N such that |μmj1
(lk) − μmj2

(lk)| ≤ ε whenever
j1, j2 ≥ j0. This implies |μmj1

(lk) − μmj2
(l)| ≤ 3ε. Thus the sequence(

μmj
(l)
)
j∈N

is a Cauchy sequence, hence convergent in R. For every j ∈ N

let (μmj
◦ θ ◦ a) denote the real-valued measure G �→ μmj

(
θG(a)

)
: Z → R.

Then lim
j→∞

(μmj
◦ θ ◦ a)(G) exists for every G ∈ Z by the above, hence

following Nikodým’s theorem (see Corollary III.7.4 in [55]) the countable ad-
ditivity of these measures is uniform in j. As E =

⋃∞
j=1 Fj , this contradicts

our assumption that (μmj
◦ θ ◦ a)(E) > (μmj

◦ θ ◦ a)(Fj) + 1 holds for
all j ∈ N. 
�

This result applies in particular if (Q,W) is the standard lattice comple-
tion of some subcone Q0 of Q and if the measure θ is L(P,Q0)-valued. In
this case, all continuous linear functionals on Q0 extend to order continuous
linear functionals on Q, as required in Theorem 3.11. If all elements of P are
bounded, then countable additivity of an L(P,Q0)-valued measure implies
convergence of the concerned operators with respect to the strong operator
topology of L(P,Q0)

(
see I.7.2(ii)

)
.

We shall provide a simple example of a measure that is countably addi-
tive with respect to order convergence but not with respect the symmetric
topology of Q.

Example 3.12. Let P = R with its usual (Euclidean) topology, and let Q
be the cone of all R-valued bounded below functions on the interval [0, 1],
endowed with the pointwise algebraic operations and order, and the constant
functions w > 0 as neighborhoods. Then (Q,W) is a locally convex com-
plete lattice cone. Let R be the σ-algebra of Borel sets on X = [0, 1]. For
every E ∈ R let θE be the linear operator in L(P,Q) that maps ρ ∈ R

into ρχE ∈ Q, where χE denotes the characteristic function of the set E.
Clearly θ is countably additive with respect to order convergence, but not
with respect to uniform convergence, that is convergence with respect to the
symmetric topology in Q.

If (Q0,W0) is locally convex topological vector space over K = R or K =
C, then the elements of Q0 may be considered as continuous linear operators
from P = K, endowed with the Euclidean topology, into the standard lattice
completion (Q,W) of Q0. (This situation will be explored in greater detail
in Example 6.23 below.) A Q0-valued measure is required to be countably
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additive with respect to order convergence in Q, that is weak convergence in
Q0. According to Theorem 3.11 (use a = 1 ∈ P), this implies convergence
with respect to the symmetric topology of Q, that is the given topology of
Q0. This result is commonly known as Pettis’ theorem.

Corollary 3.13. Let (P,V) be a locally convex topological vector space over
R or C. For a P-valued measure countable additivity with respect to the weak
topology implies countable additivity with respect to the given topology of P.

3.14 Weak Compactness. A well-known result due to Bartle, Dunford
and Schwartz

(
see Corollary I.2.7 in [43] or Theorem VI.7.3 in [55]

)
about

the relative weak compactness of the range of a vector-valued measure implies
the following for operator-valued measures:

Theorem 3.15. Suppose that (Q,W) is the standard lattice completion of
a Banach space (Q0, ‖ ‖) over R or C and that θ is a bounded L(P,Q0)-
valued measure. Then for every a ∈ P and every E ∈ R the set

{θG(a) | F ∈ R, G ⊂ E}

is relatively compact in Q0 with respect to the weak topology σ(Q0,Q∗0).

Proof. Let a ∈ P and E ∈ R. The family RE = {G ∈ R, G ⊂ E} is a σ-
algebra on E, and the set function

G �→ θG(a) : RE → Q0

is a countably additive Q0-valued, that is a Banach space-valued measure
on RE . Our claim then follows directly from Corollary I.2.7 in [43]. 
�

4. Integrals for Cone -Valued Functions

Throughout this section, let (P,V) be a full locally convex cone and let
(Q,W) be a locally convex complete lattice cone. Let R be a (weak) σ-
ring of subsets of X and θ an L(P,Q)-valued measure on R. The require-
ment that the locally convex cone (P,V) is full does in fact accommodate
quasi-full cones as well. Indeed, in this case we may take advantage of the em-
bedding of a quasi-full cone (P,V) into the full locally convex cone (PV ,V),
that is its standard full extension, as elaborated in I.6, and make use of the
corresponding extension of an R-bounded L(P,Q)-valued measure θ to an
L(PV ,Q)-valued measure as constructed in Section 3.8; that is, we may set
θE(v) = |θ|(E, v) for every set E ∈ R and every neighborhood v ∈ V ⊂ PV .

We proceed to define integrals for cone-valued functions with respect to θ.
The values of these integrals will be elements of Q. We shall use the cone
FR(X,P) of all P-valued measurable functions on X that can be reached
from below by P-valued step functions in the sense of Section 2.3. Similarly,
FR(X,V) denotes the cone of all measurable

(
V∪{0}

)
-valued functions on X.
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In a first step, we shall define integrals for P- and V-valued step functions
on X, that is functions s =

∑n
i=1 χEi

⊗ai for Ei ∈ R and elements ai

in P or V, respectively. We shall denote the corresponding subcones of
F(X,P) by SR(X,P) and SR(X,V). Note that the functions in SR(X,V)
are

(
V ∪{0}

)
-valued. Obviously, any representation

∑n
i=1 χEi

⊗ai for a given
step function is not unique. To prepare our definition of the integral for
functions in SR(X,P) we observe:

Lemma 4.1. Let Ei, Fk ∈ R and ai, bk ∈ P for i = 1, . . . , n and k =
1, . . . ,m. If

∑n
i=1 χEi

⊗ai ≤
∑m

k=1 χFk
⊗bk, then

∑n
i=1 θEi

(ai) ≤
∑m

k=1 θFk
(bk).

Proof. First we shall verify that for any step function s =
∑n

i=1 χEi
⊗ai there

exists a representation
∑m

k=1 χFk
⊗bk such that the sets Fk ∈ R are pairwise

disjoint and such that
∑n

i=1 θEi
(ai) =

∑m
k=1 θFk

(bk). We shall use induction
with respect to n. For n = 1 there is nothing to prove. Assume that our
claim holds true for some n ≥ 1 and let s =

∑n+1
i=1 χEi

⊗ai. There are disjoint
sets Fk ∈ R such that

∑n
i=1 χEi

⊗ai =
∑m

k=1 χFk
⊗bk satisfying the above. By

adding a suitable term χF ⊗0 to the right-hand of the last equation, we may
assume that En+1 ⊂

⋃m
k=1 Fk. Hence

s =
m∑

k=1

χFk
⊗bk + χEn+1⊗an+1

=
m∑

k=1

χ(Fk∩En+1)⊗(bk + an+1) +
m∑

k=1

χ(Fk\En+1)⊗bk.

The sets in the above representation for s are disjoint, and we have indeed

n+1∑

i=1

θEi
(ai) =

m∑

k=1

θFk
(bk) + θEn+1(an+1)

=
m∑

k=1

θ(Fk∩En+1)(bk + an+1) +
m∑

k=1

θ(Fk\En+1)(bk)

as claimed. Thus, to prove our claim in Lemma 4.1, we may assume that both
families of sets Ei and Fk are pairwise disjoint and that

∑n
i=1 χEi

⊗ai ≤∑m
k=1 χFk

⊗bk. By adding suitable terms χE⊗0 and χF ⊗0 on the left- and
right-hand sides of the above inequality, we may assume in addition that
E =

⋃n
i=1 Ei =

⋃m
k=1 Fk. Under these assumptions the sets Ei ∩ Fk form a

disjoint partition of E, and we have either Ei ∩ Fk = ∅ or ai ≤ bk. This
yields

n∑

i=1

θEi
(ai) =

n∑

i=1

m∑

k=1

θ(Ei∩Fk)(ai) ≤
m∑

k=1

n∑

i=1

θ(Ei∩Fk)(bk) =
m∑

k=1

θFk
(bk),

as claimed. 
�
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4.2 Integrals for P-Valued Step Functions. We are now in a position
to define the integral for a P-valued step function

h =
n∑

i=1

χ
Ei
⊗ai ∈ SR(X,P)

over a measurable set F ∈ AR with respect to θ by

∫

F

h dθ =
n∑

i=1

θ(Ei∩F )(ai).

Lemma 4.1 implies that the sum on the right-hand side is independent of the
particular representation for h. The integral represents a monotone linear
operator from SR(X,P) into Q.

Lemma 4.3. Let F ∈ AR, let h, g ∈ SR(X,P) and α ≥ 0. Then

(a)
∫

F (αh) dθ = α
∫

F h dθ.
(b)

∫
F (g + h) dθ =

∫
F g dθ +

∫
F h dθ.

(c)
∫

F g dθ ≤
∫

F h dθ whenever g ≤ h.
(d)

∫
F g dθ =

∫
X(χF ⊗g) dθ.

All these properties are obvious from the definition of the integral and
from Lemma 4.1.

We shall demonstrate in the following lemma that, if the full cone (P,V) is
in fact the standard full extension (P0V ,V) of a quasi-full cone (P0,V), and
if θ is the canonical extension of an R-bounded L(P0,Q)-valued measure
θ0, as elaborated in I.6 and 3.8, then the way in which this extension was
constructed, guarantees that the integral is already determined by its values
on the subcone SR(X,P0) of SR(X,P), that is by P0-valued step functions
and the given measure θ0.

Lemma 4.4. Let F ∈ AR and g ∈ SR(X,P). If (P,V) is the standard full
extension of the quasi-full cone (P0,V), and if θ is the canonical extension
of an R-bounded L(P0,Q)-valued measure θ0, then

∫

F

g dθ = sup
{∫

F

h dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ g

}
.

Proof. Following 4.3(c), we may assume that F = X. Let us first recall and
reformulate from 3.2 the definition of the modulus of θ0 for a set E ∈ R

and a neighborhood v ∈ V.

|θ0|(E, v)=sup

{
n∑

i=1

θEi
(si)

∣
∣
∣ si ∈ P0, si ≤ v, Ei ∈ R disjoint subsets of E

}

= sup
{∫

X

h dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ χE⊗v

}
.
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Recall that the extension of θ0 into θ was constructed by setting θE(v) =
|θ0|(E, v). Now we consider the case that

g =
n∑

i=1

χ
Ei
⊗vi ∈ SR(X,V)

is a V-valued function. We compute using Lemma I.5.5(a)

∫

X

g dθ =
n∑

i=1

θEi
(vi)

=
n∑

i=1

|θ0|(Ei, vi)

= sup

{
n∑

i=1

∫

X

hi dθ
∣
∣
∣ hi ∈ SR(X,P0), hi ≤ χEi

⊗v

}

= sup
{∫

X

h dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ g

}
,

as claimed. Now for the general case, let

g =
n∑

i=1

χ
Ei
⊗(ai + vi) ∈ SR(X,P),

for ai ∈ P0 and vi ∈ V. Set g1 =
∑n

i=1 χ
Ei
⊗ai ∈ SR(X,P0) and

g2 =
∑n

i=1 χ
Ei
⊗vi ∈ SR(X,V). Then g = g1 + g2, and the above yields

with property (
∨

1)
∫

X

g dθ =
∫

X

g1 dθ +
∫

X

g2 dθ

= sup
{∫

F

(g1 + h) dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ g2

}

≤ sup
{∫

F

h′ dθ
∣
∣
∣ h′ ∈ SR(X,P0), h′ ≤ g

}
.

The converse inequality is obvious from 4.3(c). 
�
Subsequently, with every neighborhood w ∈ W we associate the inductive

limit neighborhood vw, defined as

vw =
{

s ∈ SR(X,V)
∣
∣
∣
∫

X

s dθ ≤ w

}
.

(We shall write vw(θ) if different measures are involved in our considera-
tions.) The boundedness of θ guarantees that for every E ∈ R there is
v ∈ V such that χE⊗v ∈ vw. Convexity follows from Lemma 4.3. We have
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v(λw) = λvw and vw + vw′ ≤ v(w+w′) for w,w′ ∈ W and λ > 0. We pro-
ceed to develop the integral over a measurable set F ∈ AR for a function
f ∈ FR(X,P) in the following manner: First, for a neighborhood w ∈ W
we set

∫ (w)

F

f dθ = sup
{∫

F

h dθ
∣
∣
∣ h ∈ SR(X,P), h ≤ f + vw

}
.

We note that in the situation of Lemma 4.4, the integral of a function in
FR(X,P) is already determined by P0-valued step functions alone:

Lemma 4.5. Let F ∈ AR, f ∈ FR(X,P) and w ∈ W. If (P,V) is the
standard full extension of a quasi-full cone (P0,V), and if θ is the canonical
extension of an L(P0,Q)-valued measure θ0, then

∫ (w)

F

f dθ = sup
{∫

F

h dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ f + vw

}
.

We proceed with a simple observation for step functions.

Lemma 4.6. Let F ∈ AR, f ∈ SR(X,P) and w ∈ W. Then

∫

F

f dθ ≤
∫ (w)

F

f dθ ≤
∫

F

f dθ + w.

Proof. The first part of the inequality is trivial. For the second part, let
h ≤ f + vw for h ∈ SR(X,P), that is h ≤ f + s for some V-valued step
function s ∈ vw. Following Lemma 4.3(b) and (c), this implies

∫

F

h dθ ≤
∫

F

f dθ +
∫

F

s dθ ≤
∫

F

f dθ + w

for each such step function h ∈ SR(X,P), hence
∫ (w)

F f dθ ≤
∫

F f dθ + w as
claimed. 
�

Proposition 4.7. Let E ∈ R and f ∈ FR(X,P) and let (hn)n∈N be a
bounded below sequence of step functions in SR(X,P) such that for every
x ∈ E there is n0 ∈ N such that f(x) ≤ hn(x) for all n ≥ n0. Then

∫ (w)

E

f dθ ≤ lim
n→∞

∫

E

hn dθ + w

for every w ∈ W.

Proof. Let E ∈ R, f ∈ FR(X,P), and let (hn)n∈N be a sequence of step
functions satisfying our assumptions. For w ∈ W let l ∈ SR(X,P) such
that l ≤ f + vw, that is l ≤ f + s for some s ∈ vw. Now we set

En = {x ∈ E | l(x) ≤ hm(x) + s(x) for all m ≥ n}.
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All the sets En are measurable, En ⊂ En+1 and E =
⋃

n∈N
En by our

assumption. Given any u ∈ W there is v ∈ V such that θE(v) ≤ u, and
as the sequence (hn)n∈N is bounded below, there is ρ ≥ 0 such that 0 ≤
hn + ρχX⊗v for all n ∈ N. Thus

χEn
⊗l ≤ χEn

⊗(hn + s) + χ(E\En)(hn + ρχX⊗v)
≤ χE⊗hn + χEn

⊗s + ρχ(E\En)⊗v.

Hence by Lemma 4.3, and because
∫

X

χEn
s dθ ≤

∫

X

s dθ ≤ w, and
∫

X

χ(E\En)⊗v = θ(E\En)(v),

when taking the integrals over X in the above inequality, we obtain
∫

En

l dθ ≤
∫

E

hn dθ + ρθ(E\En)(v) + w.

Because En ⊂ En+1 and
⋃

n∈N
En = E, Lemma 3.1(a) yields

θ(F∩E)(a) = lim
n→∞

θ(F∩En)(a)

for all F ∈ R and a ∈ P. Considering the definition of the integral for a
step function in 4.2, this renders

lim
n→∞

∫

En

l dθ =
∫

E

l dθ,

and Lemma 3.1(b) yields

lim
n→∞

θ(E\En)(v) ≤ O
(
θE(v)

)
≤ ε′u

for all ε′ ≥ 0. Thus, using the limit rules from Lemma I.5.19, we obtain
∫

E

l dθ ≤ lim
n→∞

∫

E

hn dθ + w + ε′u.

Because u ∈ W and ε′ > 0 were arbitrary, and because Q carries the weak
preorder, this shows

∫

E

l dθ ≤ lim
n→∞

∫

E

hn dθ + w.

Our claim follows, since the above inequality holds true for all step functions
l ∈ SR(X,P) such that l ≤ f + vw. 
�

Corollary 4.8. Let F ∈ AR, f ∈ FR(X,P) and u,w ∈ W. Then
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∫ (w)

F

f dθ ≤
∫ (u)

F

f dθ + w.

Proof. Let F ∈ AR, f ∈ FR(X,P) and u,w ∈ W. Let l ∈ SR(X,P) such
that l ≤ f + vw, and according to Lemma 2.4, we choose E ∈ R such that
both h is supported by E and such that f(x) ≥ 0 for all x ∈ X \ E. For
the set E ∩F ∈ R, the inductive limit neighborhood v = vu and ε ≥ 0, let
(hn)n∈N be a sequence of step functions in SR(X,P) approaching f as in
Corollary 2.8. We may assume that the functions hn are supported by the
set E ∩ F, since we may otherwise replace them by their product with the
characteristic function of this set. Proposition 4.7 yields

∫ (w)

(E∩F )
f dθ ≤ lim

n→∞

∫

(E∩F )
hn dθ + w.

On the other hand, we have

∫

F

l dθ =
∫

(E∩F )
l dθ ≤

∫ (w)

(E∩F )
f dθ,

since the function l is supported by E. Similarly, for the functions hn we
observe that ∫

(E∩F )
hn dθ =

∫

F

hn dθ ≤ γ

∫ (u)

F

f dθ,

since hn ≤ γf + vw for all n ∈ N. Combining all of the above then yields

∫

F

l dθ ≤ γ

∫ (u)

F

f dθ + w

with some 1 ≤ γ ≤ 1 + ε, and indeed

∫

F

l dθ ≤
∫ (u)

F

f dθ + w,

since ε > 0 was chosen independently. Finally, because this last inequal-
ity holds true for all l ∈ SR(X,P) such that h ≤ f + vw, our claim
follows. 
�
4.9 Integrals for Functions in FR(X, P). We may now define the in-
tegral over a set F ∈ AR for a function f ∈ FR(X,P) as

∫

F

f dθ = inf
w∈W

∫ (w)

F

f dθ.

The above infimum is well-defined and yields an element of the locally con-
vex complete lattice cone Q. Indeed, given any neighborhood u ∈ W there
is λ ≥ 0 such that 0 ≤ f + λvu. Thus 0 ≤

∫ (λu)
F f dθ. According to

Corollary 4.8, this yields
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0 ≤
∫ (λu)

F

f dθ ≤
∫ (w)

F

f dθ + λu.

for all w ∈ V. This demonstrates that the set
{ ∫ (w)

F f dθ | w ∈ W
}

is
bounded below, and its infimum exists by (

∧
1). Moreover, our earlier ob-

servation in Lemma 4.5 justifies that the above definition of the integral is
consistent with the preceding one for step functions. Obviously, the integral
is monotone, and we shall proceed to verify that it determines a continuous
linear operator from FR(X,P) into Q. For Part (a) of the following lemma,
recall from Lemma 2.6 that χF ⊗f ∈ FR(X,P) whenever f ∈ FR(X,P) and
F ∈ AR. In Part (b) we consider R as the index set of a net, directed upward
by set inclusion.

Lemma 4.10. Let f ∈ FR(X,P) and F ∈ AR. Then

(a)
∫

F f dθ =
∫

X(χF ⊗f) dθ.
(b)

∫
F f dθ = lim

E∈R

∫
(E∩F ) f dθ.

Proof. For Part (a) we first note that χF ⊗f ∈ FR(X,P) (see Lemma 2.6).
Let w ∈ W and h0 ∈ SR(X,P) such that h0 ≤ f + vw. We have

∫ (w)

F

f dθ = sup
{∫

F

h dθ
∣
∣
∣ h ∈ SR(X,P), h ≤ f + vw

}

and

∫ (w)

X

χF ⊗f dθ = sup
{∫

X

h′ dθ
∣
∣
∣ h′ ∈ SR(X,P), h′ ≤ χF ⊗f + vw

}

First, let h ∈ SR(X,P) such that h ≤ f+vw. Then h′ = χF ⊗h ≤ χF ⊗f+vw,
and

∫
X h′ dθ =

∫
F h dθ by 4.3(d). This shows

∫ (w)

F

f dθ ≤
∫ (w)

X

χF ⊗f dθ.

For the converse inequality, let h′ ∈ SR(X,P) such that h′ ≤ χF ⊗f + vw.
Then χF ⊗h′ ≤ χF ⊗f + vw and χ(X\F )⊗h0 ≤ χ(X\F )⊗f + vw, hence h =
χF ⊗h′ + χ(X\F )⊗h0 ≤ f + 2vw, and

∫
F h dθ =

∫
F h′ dθ. As χ(X\F )⊗h

′ ≤ vw,
we have

∫
(X\F ) h′ dθ ≤ w, hence

∫
X h′ dθ ≤

∫
F h dθ + w. This shows

∫ (w)

X

χF ⊗f dθ ≤
∫ (2w)

F

f dθ + w.

Taking the infima over all w ∈ W in the above inequality yields Part (a).
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For Part (b) it is therefore sufficient to consider the case F = X, be-
cause the function f may be replaced by its product with the character-
istic function χF . Let E0 ∈ R such that f(x) ≥ 0 for all x ∈ X \ E0.
Then χE⊗f ≤ χE′ ⊗f whenever E0 ⊂ E ⊂ E ′ for E,E ′ ∈ R, hence∫

E f dθ ≤
∫

E′ f dθ by Part (a) and the monotony of the integral. This shows

lim
E∈R

∫

E

f dθ = sup
E0⊂E∈R

∫

E

f dθ ≤
∫

X

f dθ.

For the converse, let w ∈ W and h ≤ f+vw for h ∈ SR(X,P). Because h is
supported by a set in R, there is E0 ⊂ E ∈ R such that

∫
X h dθ =

∫
E h dθ ≤

∫ (w)
E f dθ. Moreover, Corollary 4.8 shows that

∫ (w)
E f dθ ≤

∫
E f dθ + w. Thus

∫

X

h dθ ≤ sup
E0⊂E∈R

∫

E

f dθ + w.

This shows ∫

X

f dθ ≤
∫ (w)

X

f dθ ≤ sup
E0⊂E∈R

∫

E

f dθ + w,

hence our claim, since w ∈ W was arbitrary and Q carries the weak
preorder. 
�

4.11 Sets of Measure Zero and Properties Holding Almost Every-
where. A set Z ∈ AR is said to be of measure zero (with respect to θ) if
θ(E∩Z) = 0 for all E ∈ R. The family Z(θ) of all sets of measure zero is
obviously closed for set complements and for countable unions. For a subset
F of X we shall say that a pointwise defined property of functions on X
holds θ-almost everywhere on F if it holds on F \ Z with some Z ∈ Z(θ).
In particular, we shall use the symbols ≤

a.e.F or =
a.e.F if the relations ≤ or

= hold θ-almost everywhere on the set F, respectively; that is for example,
f ≤a.e.F g + v for functions f, g ∈ F(X,P) and an inductive limit neighbor-
hood v means that χ(F \Z)⊗f ≤ χ(F \Z)⊗g + v holds with some Z ∈ Z(θ).
These relations are of course transitive and compatible with the algebraic
operations.

As θ(E∩Z) = 0 holds for all E ∈ R and Z ∈ Z(θ), we infer that θE =
θ(E\Z). Now Definition 4.2 yields that

∫
F h dθ =

∫
(F \Z) h dθ for all step

functions h ∈ SR(X,P), F ∈ AR and Z ∈ Z(θ). Considering our definition
of the integral in 4.9 we observe that this yields

∫
F f dθ =

∫
(F \Z) f dθ for all

f ∈ FR(X,P) as well. Consequently, f ≤a.e.F g for functions f, g ∈ FR(X,P)
implies that χ(F \Z)⊗f ≤ χ(F \Z)⊗g for some Z ∈ Z(θ), hence

∫

F

f dθ =
∫

(F \Z)
f dθ ≤

∫

(F \Z)
g dθ =

∫

F

g dθ.
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In particular, any two functions in FR(X,P) that coincide θ-almost ev-
erywhere on a set F ∈ AR have the same integrals over F with respect
to θ.

4.12 Integrability over a Set E ∈ R. We may now define integrability
for cone-valued functions over measurable sets with respect to an operator-
valued measure. First, for a set E ∈ R we shall say that a function f ∈
F(X,P) is integrable over E with respect to θ if for every w ∈ W and
ε > 0 there are functions f(w,ε) ∈ FR(X,P) and s(w,ε) ∈ FR(X,V) such
that

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) dθ ≤ εw

for some 1 ≤ γ ≤ 1 + ε. Recall that the functions in FR(X,V) are actually(
V ∪ {0}

)
-valued. However, in the case of Definition 4.12, without loss of

generality we may assume that the function s(w,ε) ∈ FR(X,V) is indeed
V-valued, as we can otherwise replace it by a function s̃(w,ε) = s(w,(ε/2)) +
χX⊗v, where v ∈ V is such that θE(v) ≤ (ε/2)w, hence

∫
E s̃(w,ε) dθ ≤ εw.

Consequently, for an integrable function f ∈ F(X,P) and a net
(f(w,ε))ε>0

w∈W a of functions in FR(X,P) satisfying the above, we shall show
that the limit ∫

E

f dθ = lim
ε > 0
w ∈ W

∫

E

f(w,ε) dθ

exists and is independent of the particular choice for the net (f(w,ε))ε>0
w∈W .

(The index set for this net is W × {ε > 0} with the reverse componentwise
order.) Indeed, given w ∈ W and ε > 0, for all w1, w2 ∈ W such that
w1, w2 ≤ w and 0 < ε1, ε2 ≤ ε we have

f(w1,ε1) ≤ γf + s(w1,ε1) ≤ γ1f(w2,ε) + s(w1,ε1)

for some 1 ≤ γ ≤ 1 + ε, hence
∫

E

f(w1,ε1) ≤ γ1

∫

E

f(w2,ε2) + εw.

Thus
( ∫

E f(w,ε)
)
ε>0
w∈W forms a Cauchy net in the symmetric relative topology

of Q, hence is convergent by Proposition I.5.41. The preceding argument
together with Lemma I.5.20(c) also shows that this limit is independent of
the particular choice for the net (f(w,ε))ε>0

w∈W .

4.13 Integrability over a Set F ∈ AR. Obviously, integrability in the
sense of 4.12 for a function f ∈ FR(X,P) over a set E ∈ R implies in-
tegrability over all subsets G ∈ R of E. This observation, together with
Lemma 4.10 shows that we may consistently define integrability over sets
in the σ-algebra AR in the following way: We shall say that a function
f ∈ F(X,P) is integrable over F ∈ AR with respect to θ if f is inte-
grable over the sets E ∩ F for all E ∈ R and if the limit
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∫

F

f dθ = lim
E∈R

∫

(E∩F )
f dθ

exists in Q. The set of all functions in F(X,P) that are integrable over F
shall be denoted by F(F,θ)(X,P). Lemma 4.10(b) implies that FR(X,P) ⊂
F(F,θ)(X,P) for every F ∈ AR and every L(P,Q)-valued measure θ on R.

We may use this definition of integrability also for functions that take the
value ∞ ∈ V on a set of measure zero (see Section 2.1).

Theorem 4.14. Let F ∈ AR. Then F(F,θ)(X,P) is a subcone of F(X,P)
containing FR(X,P). More precisely, for f, g ∈ F(F,θ)(X,P) and 0 ≤ α ∈
R we have

(a)
∫

F (αf) dθ = α
∫

F f dθ
(b)

∫
F (f + g) dθ =

∫
F f dθ +

∫
F g dθ

(c)
∫

F f dθ ≤
∫

F g dθ whenever f ≤a.e.F g.

Proof. In a first case, let us assume that f, g ∈ FR(X,P) and that F = E ∈
R. Then Part (a) follows trivially from our definition of the integral. For (b),
let w ∈ W, and h1 ≤ f +vw and h2 ≤ g +vw for h1, h2 ∈ SR(X,P). Then
h1 + h2 ≤ (f + g) + 2vw, hence

∫ (w)

E

f dθ +
∫ (w)

E

g dθ ≤
∫ (2w)

E

(f + g) dθ,

and therefore ∫

E

f dθ +
∫

F

g dθ ≤
∫

E

(f + g) dθ.

For the converse inequality, let u ∈ W. For the set E ∈ R the inductive limit
neighborhood vu and any ε > 0 choose sequences (hn)n∈N and (ln)n∈N

of step functions in SR(X,P) approaching f and g as in Corollary 2.8,
respectively. The sequence (kn)n∈N, where kn = hn + ln then approaches
the function f + g with respect to F, the inductive limit neighborhood 2vu

and ε. Thus by Proposition 4.7 we have

∫ (w)

E

(f + g) dθ ≤ lim
n→∞

∫

E

kn dθ + w

≤ lim
n→∞

∫

E

hn dθ + lim
n→∞

∫

E

ln dθ + w

≤
∫ (u)

E

f dθ +
∫ (u)

E

g dθ + w

for all w ∈ W. This yields

∫

E

(f + g) dθ ≤
∫ (u)

E

f dθ +
∫ (u)

E

g dθ,
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since Q is a locally convex complete lattice cone, and indeed
∫

E

(f + g) dθ ≤
∫

E

f dθ +
∫

E

f dθ

after applying the infima over all u ∈ W on the right-hand side and using
the rules from Section I.5.

Now in a second case, we still suppose that F = E ∈ R, and let
f, g ∈ F(E,θ)(X,P). Let (f(w,ε))ε>0

w∈W and (g(w,ε))ε>0
w∈W be nets of functions

in FR(X,P) approaching the functions f and g as in 4.12. Then the nets
(αf(w,ε))ε>0

w∈W and (f(w,ε) +g(w,ε))ε>0
w∈W approach the functions αf and f +g,

respectively, and the limit rules from Section 4 yield
∫

E

αf dθ = lim
ε > 0
w ∈ W

∫

E

αf(w,ε) dθ = α

∫

E

f(w,ε) dθ = α

∫

E

f dθ

and
∫

E

(f + g) dθ = lim
ε > 0
w ∈ W

∫

E

(f(w,ε) + g(w,ε)) dθ

= lim
ε > 0
w ∈ W

∫

E

f(w,ε) dθ + lim
ε > 0
w ∈ W

∫

E

g(w,ε) dθ

=
∫

E

f dθ +
∫

E

g dθ.

For Part (c) in this case, suppose that f ≤a.e.E g and let (f(w,ε))ε>0
w∈W and

(g(w,ε))ε>0
w∈W be nets in FR(X,P) as before. Then

f(w,ε)
≤

a.e.E γf + s(w,ε)
≤

a.e.E γg + s(w,ε)
≤

a.e.E γg(w,ε) + s(w,ε),

hence ∫

E

f(w,ε) dθ ≤ γ

∫

E

g(w,ε) dθ + εw

with some 1 ≤ γ ≤ 1 + ε for all w ∈ W and ε > 0. According to the limit
rules in Section I.5, this yields

∫

E

f dθ = lim
ε > 0
w ∈ W

∫

E

f(w,ε) dθ ≤ lim
ε > 0
w ∈ W

∫

E

g(w,ε) dθ =
∫

E

g dθ.

For the final and general case, let F ∈ AR and f, g ∈ F(F,θ)(X,P). Then
the claims of Parts (a),(b) and (c) hold for integrals over all sets E ∩ F
for E ∈ R. The definition of the respective integrals over F together with
the limit rules from Lemma I.5.19 yield the validity of these claims for the
integrals over F as well. 
�
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Simple examples can show that F ⊂ G for F,G ∈ AR does not neces-
sarily imply that F(F,θ)(X,P) ⊂ F(G,θ)(X,P), but we have the following:

Proposition 4.15. Let f ∈ F(X,P) and F,G ∈ AR

(a) If F,G ∈ AR, then f is integrable over F ∩ G if and only if χG⊗f is
integrable over F, if and only if χF ⊗f is integrable over G. In this case
we have

∫
(F∩G) f dθ =

∫
F χG⊗f dθ =

∫
G χF ⊗f dθ.

(b) If F and G are disjoint and f is integrable over F and G, then f is
integrable over F ∪G and

∫
(F∪G) f dθ =

∫
F f dθ +

∫
G f dθ.

(c) If F ⊂ G and f is integrable over F,G and G\F, then O
(∫

F f dθ
)
≤

O
(∫

G f dθ
)
.

Proof. For Part (a), in a first step let E ∈ R. First we observe from
Definition 4.12 that a function f ∈ F(X,P) is integrable over E if and
only if χE⊗f is integrable over E and that

∫
E f dθ =

∫
E χE⊗f dθ. Thus,

if for f ∈ F(X,P), the function χE⊗f is integrable over X, then by
Definition 4.13 the function χE⊗f and therefore f is integrable over E.
For the converse, assume that f ∈ F(X,P) is integrable over E. Let
E′ ∈ R, w ∈ W and ε > 0. According to 4.12 there are f(w,ε) ∈ FR(X,P)
and s(w,ε) ∈ FR(X,V) such that f ≤a.e.E f(w,ε)

≤
a.e.E γf + s(w,ε) with some

1 ≤ γ ≤ 1 + ε and
∫

E s(w,ε) dθ ≤ εw. Then we have

χE⊗f ≤a.e.E′ χE⊗f(w,ε)
≤

a.e.E′ γf + χE⊗s(w,ε)

and ∫

E′
χE⊗s(w,ε) dθ ≤ εw

as well. Because the functions χE⊗f(w,ε) and χE⊗s(w,ε) are also contained in
FR(X,P) and FR(X,V), respectively, we conclude that the function χE⊗f
is integrable over E′ and that

∫

E′
χE⊗f dθ = lim

ε > 0
w ∈ W

∫

E′
χE⊗f(w,ε) dθ = lim

ε > 0
w ∈ W

∫

X

χ(E′∩E)⊗f(w,ε) dθ.

The last equality follows from Lemma 4.10(a). The above holds for all sets
E ′ ∈ R, hence using Definition 4.13, we realize that the function χE⊗f is
indeed integrable over X and that

∫

X

χE⊗f dθ = lim
E′∈R

∫

E′
χE⊗f dθ = lim

ε > 0
w ∈ W

∫

X

χE⊗f(w,ε) dθ

= lim
ε > 0
w ∈ W

∫

E

f(w,ε) dθ =
∫

E

f dθ
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holds. Thus we have verified that a function f ∈ F(X,P) is integrable over
a set E ∈ R if and only if χE⊗f is integrable over X and that

∫
E f dθ =∫

X χE⊗f dθ in this case. Now in a second step, let F ∈ AR and f ∈ F(X,P).
By the above, the function f is integrable over all sets E ∩F for E ∈ R, if
and only if all the functions χ(E∩F )⊗f = χE⊗(χF ⊗f) are integrable over X.
In this case

∫

(E∩F )
f dθ =

∫

X

χ(E∩F )⊗f dθ =
∫

X

χE⊗(χF ⊗f) dθ =
∫

E

χF ⊗f dθ

holds by our first step. According to Definition 4.13 therefore f is integrable
over F if and only χF ⊗f is integrable over X and

∫

F

f dθ = lim
E∈R

∫

(E∩F )
f dθ = lim

E∈R

∫

E

χF ⊗f dθ =
∫

X

χF ⊗f dθ.

In a third and final step for Part (a), let F,G ∈ AR. From the preceding
we conclude that χG⊗f is integrable over F if and only if χF ⊗(χG⊗f) =
χ(F∩G)⊗f is integrable over X, that is f is integrable over F ∩G, and all
the integrals coincide.

For Part (b), suppose that F ∩ G = ∅ and that f is integrable over
both F and G. Then both functions χF ⊗f and χG⊗f are integrable over
X by Part (a), hence χ(F∪G)⊗f = χF ⊗f + χG⊗f is also integrable over X
by Theorem 4.14(b). Thus f is indeed integrable over F ∪G and

∫

(F∪G)
f dθ =

∫

X

χ(F∪G)⊗f =
∫

X

χF ⊗f +
∫

X

χG⊗f =
∫

F

f dθ +
∫

G

f dθ

by 4.14(b)
For Part (c), suppose that F ⊂ G and that f is integrable over F,G

and G \ F. Then ∫

G

f dθ =
∫

F

f dθ +
∫

(G\F )
f dθ

by Part (b), and

O

(∫

F

f dθ

)
≤ O

(∫

F

f dθ

)
+ O

(∫

(G\F )
f dω

)
= O

(∫

G

f dθ

)
.

by Proposition I.5.11(a). 
�

Proposition 4.16. Let f, g ∈ F(E,θ)(X,P) for E ∈ R and let v ∈ V. If
f(x) �v g(x) holds θ-almost everywhere on E, then

∫
E f dθ ≤

∫
E g dθ +

O
(
θE(v)

)
.

Proof. Let E ∈ R, let v ∈ V and f, g ∈ F(E,θ)(X,P) such that f(x) �v

g(x) θ-almost everywhere on E. In a first case, let us assume in addition
that g ∈ FR(X,P). Lemma 2.4(b) implies that there is λ ≥ 0 such that
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0 ≤ g(x) + λv for all x ∈ E. Recall from Section 2 that f(x) �v g(x)
means that f(x) ∈ vε

(
g(x)

)
for all ε > 0. In turn, f(x) ∈ vε

(
g(x)

)
and

0 ≤ g(x) + λv implies f(x) ≤ (1 + ε)g(x) + ε(1 + λ)v by Lemma I.4.1(b).
Thus our assumption yields

f ≤a.e.E (1 + ε)g + ε(1 + λ)χE⊗v

for all ε > 0. By Theorem 4.14(c), this implies
∫

E

f dθ ≤ (1 + ε)
∫

E

g dθ + ε(1 + λ)θE(v).

Now we let ε tend to 0 in the right-hand side of this expression. Lemma I.5.21
together with the definition of the zero component in I.5.8 leads to

∫

E

f dθ ≤
∫

E

g dθ + O
(
θE(v)

)
.

Now we may argue the general case: Suppose that f, g ∈ F(E,θ)(X,P), let
w ∈ W and ε > 0, and for g choose the functions g(w,ε) ∈ FR(X,P)
and s(w,ε) ∈ FR(X,V) as in 4.13, that is g ≤a.e.E g(w,ε)

≤
a.e.E γg + s(w,ε) and∫

E s(w,ε) dθ ≤ εw for some 1 ≤ γ ≤ 1 + ε. Then f(x) �v g(w,ε)(x) holds
θ-almost everywhere on E, and our first case together with 4.14(c) yields

∫

E

f dθ ≤
∫

E

g(w,ε) dθ + O
(
θE(v)

)
≤ γ

∫

E

g dθ + O
(
θE(v)

)
+ εw.

Because w ∈ W and ε > 0 were arbitrarily chosen, our claim follows. 
�
The following Proposition 4.17 is an immediate consequence of 4.16 and

strengthens Part (c) of Theorem 4.14(c).

Proposition 4.17. Let f, g ∈ F(F,θ)(X,P) for F ∈ AR. If f(x) � g(x)
holds θ-almost everywhere on F, then

∫
F f dθ ≤

∫
F g dθ.

Proof. Let F ∈ AR and f, g ∈ F(F,θ)(X,P) such that f(x) � g(x) holds
θ-almost everywhere on F. Let E ∈ R, w ∈ W, and choose v ∈ V such
that θE(v) ≤ w. As f(x) � g(x) implies f(x) �v g(x), Proposition 4.16
yields ∫

(E∩F )
f dθ ≤

∫

(E∩F )
g dθ + w,

hence
∫

(E∩F ) f dθ ≤
∫

(E∩F ) g dθ, since w ∈ W was arbitrarily chosen. Now
our definition of the integral over a set F ∈ AR in 4.13 together with
Lemma I.5.20(c) yields our claim. 
�
Proposition 4.18. Let f ∈ F(E,θ)(X,P) for E ∈ R.

(a) If En ∈ R such that En ⊂ En+1 for all n ∈ N, and E =
⋃

n∈N
En,

then
∫

E f dθ = lim
n→∞

∫
En

f dθ.
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(b) If En ∈ R such that E ⊃ En ⊃ En+1 for all n ∈ N, and
⋂

n∈N
En = ∅,

then 0 ≤ lim
n→∞

∫
En

f dθ ≤ lim
n→∞

∫
En

f dθ ≤ O
(∫

E f dθ
)
.

Proof. For Part (a), let En ∈ R such that En ⊂ En+1 for all n ∈ N,
and E =

⋃
n∈N

En ∈ R. We shall first assume that f ∈ FR(X,P). By
Lemma 2.4, for w ∈ W there is a neighborhood v ∈ V and λ ≥ 0 such that
θE(v) ≤ w and 0 ≤ f + λχE⊗v. This implies

χEn
⊗f ≤ χEn

⊗f + χ(E\En)⊗(f + λχE⊗v) = χE⊗f + λχ(E\En)⊗v.

Thus
∫

En

f dθ ≤
∫

E

(f + λχ(E\En)⊗v) dθ =
∫

E

f dθ + λθ(E\En)(v).

Following Lemma 3.1(b), this yields

lim
n→∞

∫

En

f dθ ≤
∫

E

f dθ + εw

for all ε ≥ 0. Now let h ∈ SR(X,P) be a step function such that h ≤ f+vw,
that is h ≤ f + s for some s ∈ SR(X,V) such that

∫
X s dθ ≤ w. Then∫

En
h dθ ≤

∫
En

f dθ + w by 4.13(b) and (c), hence
∫

E

h dθ = lim
n→∞

∫

En

h dθ ≤ lim
n→∞

∫

En

f dθ + w.

Taking the supremum over all such step functions h ≤ f + vw yields
∫ (w)

F

f dθ ≤ lim
n→∞

∫

En

f dθ + w.

Combining with the above we infer that
∫

E

f dθ ≤ lim
n→∞

∫

En

f dθ + w ≤ lim
n→∞

∫

En

f dθ + w ≤
∫

E

f dθ + (1 + ε)w.

Thus indeed
∫

E f dθ = lim
n→∞

∫
En

f dθ, since w ∈ W and ε > 0 were arbi-

trary. Now for the general case, let f ∈ F(E,θ)(X,P). Given w ∈ W and
ε > 0 choose the functions f(w,ε) ∈ FR(X,P) and s(w,ε) ∈ FR(X,V) as in
Definition 4.12. Then the preceding yields

∫

E

f dθ ≤
∫

E

f(w,ε) dθ = lim
n→∞

∫

En

f(w,ε) dθ ≤ γ lim
n→∞

∫

En

f dθ + εw,

and

lim
n→∞

∫

En

f dθ ≤ lim
n→∞

∫

En

f(w,ε) dθ =
∫

E

f(w,ε) dθ ≤ γ

∫

E

f dθ + εw.

Our claim from Part (a) follows, since both w ∈ W and ε > 0 were arbitrary.
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For Part (b), let En ∈ R such that E ⊃ En ⊃ En+1 for all n ∈ N, and⋂
n∈N

En = ∅. For the left-hand side of the inequality in (b) we shall again
first assume that f ∈ FR(X,P). Let w ∈ W. Following Lemma 2.4(b),
there is v ∈ V and λ ≥ 0 such that θE(v) ≤ w and 0 ≤ f + λχE⊗v, hence
0 ≤ χEn

⊗f + λχEn
⊗v. Then

0 ≤
∫

En

(f + λχEn
⊗v) dθ =

∫

En

f dθ + λθEn
(v).

This yields

0 ≤ lim
n→∞

∫

En

f dθ + λO
(
θE(v)

)

by Lemma 3.1(b). Because O
(
θE(v)

)
≤ εw for all ε > 0, because w ∈

W was arbitrary and Q carries the weak preorder, we infer that 0 ≤
lim

n→∞

∫
En

f dθ. For the general case, that is f ∈ F(E,θ)(X,P), given w ∈ W
and ε >, 0 we choose functions f(w,ε) ∈ FR(X,P) and s(w,ε) ∈ FR(X,V)
as in Definition 4.12. Then the preceding yields together with the limit rules
from Lemma I.5.19

0 ≤ lim
n→∞

∫

En

f(w,ε) dθ ≤ γ lim
n→∞

∫

En

f dθ + lim
n→∞

∫

En

s(w,ε) dθ

≤ γ lim
n→∞

∫

En

f dθ + εw.

Thus indeed 0 ≤ lim
n→∞

∫
En

f dθ, since w ⊂ W and ε > 0 were arbitrarily

chosen. For the right-hand side of the inequality in (b), let Gn = E \ En.
Then Gn ⊂ Gn+1, E = ∪∞n=1Gn and E = Gn ∪ En. Thus

∫

Fn

f dθ +
∫

En

f dθ =
∫

E

f dθ

for all n ∈ N by 4.15(b). Part (a) of 4.18 yields
∫

E f dθ = lim
n→∞

∫
Gn

f dθ.

Again using the limit rules in Lemma I.5.19 we infer that

lim
n→∞

∫

En

f dθ +
∫

E

f dθ = lim
n→∞

∫

En

f dθ + lim
n→∞

∫

Gn

f dθ

≤ lim
n→∞

(∫

En

f dθ +
∫

Gn

f dθ

)
=
∫

E

f dθ.

Now the cancellation rule in Proposition I.5.10(a) yields

lim
n→∞

∫

En

f dθ ≤ O

(∫

E

f dθ

)
. 
�
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Given a set F ∈ AA we shall denote by F(|F |,θ)(X,P) the subcone of all
functions in F(X,P) that are integrable over all complements in F of sets
in R, that is

F(|F |,θ)(X,P) =
⋂

E∈R

F(F \E,θ)(X,P).

Using this notion, we obtain:

Proposition 4.19. Let f ∈ F(|F |,θ)(X,P) for F ∈ AR.

Then 0 ≤ lim
E∈R

∫
(F \E)f dθ ≤ lim

E∈R

∫
(F \E)f dθ ≤ O

(∫
F f dθ

)
.

Proof. For every E ∈ R the function f is integrable over E ∩ F ∈ R and
F \ E ∈ AR. Thus

∫
(F \E) f dθ +

∫
(E∩F ) f dθ =

∫
F f dθ by 4.15(b). Taking

the limit over all E ∈ R and using the definition of the integral in 4.13 and
Lemma I.5.19, we obtain

lim
E∈R

∫

(F \E)
f dθ +

∫

F

f dθ ≤
∫

F

f dθ,

hence

lim
E∈R

∫

(F \E)
f dθ ≤ O

(∫

F

f dθ

)

by the cancellation rule Proposition I.5.10(a). For the first part of the in-
equality in 4.19, we fix E0 ∈ R and let E0 ⊂ E ∈ R. Then

∫

(F \E0)
f dθ =

∫

(F \E)
f dθ +

∫
(
(F \E0)∩E

) f dθ.

Passing to the limits over E ∈ R in this equation and again using I.5.19 and
the definition of the integral leads to

∫

(F \E0)
f dθ ≤ lim

E∈R

∫

(F \E)
f dθ +

∫

(F \E0)
f dθ.

Now passing to the limit over E0 ∈ R, we obtain

lim
E∈R

∫

(F \E)
f dθ ≤ lim

E∈R

∫

(F \E)
f dθ + lim

E∈R

∫

(F \E)
f dθ.

Following Proposition I.5.10(a) and Proposition I.5.14, the latter implies

0 ≤ lim
E∈R

∫

(F \E)
f dθ,

as claimed. 
�
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5. The General Convergence Theorems

We shall proceed to establish a range of general convergence results for se-
quences of measures and functions and their respective integrals. These re-
sults are modeled after the dominated convergence theorem from classical
measure theory. However, the presence of unbounded elements and the gen-
eral absence of negatives will considerably complicate some technical aspects
of the approach. First we shall extend some of the concepts of the preced-
ing section from a single measure to families of measures. Subsequently, we
shall set up suitable notions for convergence of sequences of measures and
functions. Convergence for sequences of integrals will generally refer to order
convergence in Q, though in some special cases we will be able to establish
stronger convergence with respect to the symmetric topology.

As in the preceding section, let (P,V) be a full locally convex cone and
let (Q,V) be a locally convex complete lattice cone. R denotes a (weak) σ-
ring of subsets of X. We shall consider L(P,Q)-valued measures on R.

5.1 Families of Measures and Properties Holding Almost Every-
where. In the following we shall simultaneously deal with families of mea-
sures, and therefore need to extend our notion of properties holding almost
everywhere from 4.11 to this situation: Given a (non-empty) family Θ
of L(P,Q)-valued measures, we denote by Z(Θ) the collection of all sets
Z ∈ AR such that θ(E∩Z) = 0 for all E ∈ R and θ ∈ Θ. This collection is
obviously closed for set complements and for countable unions. Correspond-
ingly, for a subset F of X we shall say that a pointwise defined property of
functions on X holds Θ-almost everywhere on F if it holds on F \Z with
some Z ∈ Z(Θ). If the concerned family Θ of measures is clearly identified,
for the sake of simplicity we may use the symbols ≤a.e.F or =

a.e.F if the relations
≤ or = hold Θ-almost everywhere on the set F, respectively.

5.2 Equibounded Families of Measures. A family Θ of measures on
R is called equibounded if for every E ∈ R and w ∈ W there is v ∈ V
such that |θ|(E, v) = θE(v) ≤ w for all θ ∈ Θ.

5.3 Integrability with Respect to Equibounded Families of Mea-
sures. Likewise, we need to adapt our notation of integrability from Sec-
tion 4.12 and 4.13. We shall say that a function f ∈ F(X,P) is integrable
over a set E ∈ R with respect to a family Θ of L(P,Q)-valued measures
if Θ is equibounded and if for every w ∈ W and ε > 0 there are functions
f(w,ε) ∈ FR(X,P) and s(w,ε) ∈ FR(X,V) such that

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) dθ ≤ εw

for some 1 ≤ γ ≤ 1 + ε and all θ ∈ Θ. The almost-everywhere relation ≤
a.e.E

is meant with respect to the family Θ. As in 4.12, we may again assume that
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the function s(w,ε) ∈ FR(X,V) is indeed V- rather than
(
V ∪ {0}

)
-valued.

Integrability over a set F ∈ AR with respect to Θ then follows as in 4.13:
The function f ∈ F(X,P) is integrable over F ∈ AR with respect to Θ if
f is integrable over the sets E ∩ F with respect to Θ for all E ∈ R and
all θ ∈ Θ the limit ∫

F

f dθ = lim
E∈R

∫

(E∩F )
f dθ

exists. The subcone of all these functions f ∈ F(X,P) is denoted by
F(F,Θ)(X,P).

Likewise, F(|F |,Θ)(X,P) denotes the subcone of all functions in F(X,P)
that are integrable with respect to Θ over all complements in F of sets in
R, that is

F(|F |,Θ)(X,P) =
⋂

E∈R

F(F \E,Θ)(X,P).

Repeating the argument from Proposition 4.15(a), one can verify that a func-
tion f ∈ F(X,P) is in F(F,Θ)(X,P) or in F(|F |,Θ)(X,P) if and only if the
function χF ⊗f is contained in F(X,Θ)(X,P) or in F(|X|,Θ)(X,P), respec-
tively.

While integrability with respect to a family of measures obviously implies
integrability with respect to every member of this family, the converse is not
always true (see Example 5.15 below).

The following results 5.4 to 5.7 are already of interest for integration with
respect to a single measure and might therefore have been placed into the
preceding section. We shall, however, also refer to the subsequent more gen-
eral versions which refer to integration with respect to equibounded families
of measures.

Proposition 5.4. Let Θ be an equibounded family of measures on R. Let
E ∈ R and f ∈ F(E,Θ)(X,P). For every w ∈ W there is s ∈ FR(X,V)
and λ ≥ 0 such that 0≤a.e.E f + s and

∫
E s dθ ≤ λw for all θ ∈ Θ.

Proof. Let E ∈ R, let f ∈ F(E,Θ)(X,P) and w ∈ W. According to the
definition of integrability in 4.12, for ε = 1 there are g ∈ FR(X,P) and
s ∈ FR(X,V) such that f ≤a.e.E g ≤a.e.E γf + s for some 1 ≤ γ ≤ 2 and∫

E s dθ ≤ w for all θ ∈ Θ. We choose v ∈ V such that θE(v) ≤ w for
all θ ∈ Θ. Following Lemma 2.4(b) there is G ∈ R and λ ≥ 0 such that
0 ≤ g + λχG⊗v. The latter implies 0≤a.e.E g + λχE⊗v, hence

0 ≤a.e.E

1
γ

(g + λχE⊗v) ≤a.e.E f +
1
γ

(s + λχE⊗v) ≤a.e.E f + (s + λχE⊗v).

As s + λχE⊗v ∈ FR(X,V) and
∫

E(s + λχE⊗v) dθ ≤ (1 + λ)w for all θ ∈ Θ,
our claim follows. 
�
5.5 The Locally Convex Cone

(
F(F,Θ)(X, P), V(F, Θ)

)
. Let Θ be

an equibounded family of measures on R. Endowed with the order ≤
a.e.F ,
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that is the given pointwise order Θ-almost everywhere on the set F ∈ AR,
F(F,Θ)(X,P) is an ordered cone. We generate a canonical convex quasi-
uniform structure (see I.1.3) in the following way: With every w ∈ W
and E ∈ R we associate the neighborhood v̆E

w(Θ), defined for functions
f, g ∈ F(F,Θ)(X,P) by

f ≤ g + v̆E
w(Θ) if f ≤a.e.E g + s

for some s ∈ FR(X,V) such that
∫

E s dθ ≤ w for all θ ∈ Θ. Let V(F,Θ)
denote the neighborhood system generated by the neighborhoods v̆E

w(Θ) for
all w ⊂ W and E ∈ R such that E ⊂ F. As Θ is equibounded, according
to Proposition 5.4, for every function f ∈ F(F,Θ)(X,P), every w ∈ W and
E ∈ R such that E ⊂ F there is s ∈ FR(X,V) and λ ≥ 0 such that
0 ≤a.e.E f + s and

∫
E s dθ ≤ λw holds for all θ ∈ Θ. Thus 0 ≤ f + λvE

w(Θ).
All functions in F(F,Θ)(X,P) are therefore bounded below with respect to
these neighborhoods. In this way,

(
F(F,Θ)(X,P),V(F,Θ)

)
becomes a locally

convex cone as elaborated in I.1.3. Theorem 4.14(c) implies that for every
E ∈ R such that E ⊂ F and every θ ∈ Θ the mapping

f �→
∫

E

f dθ : F(F,Θ)(X,P) → Q

is a continuous linear operator. Indeed, for w ∈ W we have
∫

E f dθ ≤∫
E g dθ + w whenever f ≤ g + v̆E

w(Θ) for f, g ∈ F(F,Θ)(X,P).

5.6 Subcone-Based Integrability. The following definition of subcone-
based integrability is motivated by the fact that in many realizations (P,V)
is indeed the standard full extension of some subcone of P, and we might
be particularly interested in functions with values in this subcone. Given a
subcone P0 of P and a neighborhood subsystem V0 of V, we shall say
that a function f in F(X,P) is (P0,V0)-based integrable over a set E ∈ R

with respect to an equibounded family Θ of measures if for every w ∈ W
and ε > 0 there are functions f(w,ε) ∈ FR(X,P0) and s(w,ε) ∈ FR(X,V0)
such that

f ≤a.e.E f(w,ε) + s(w,ε), f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) dθ ≤ εw

for some 1 ≤ γ ≤ 1 + ε and all θ ∈ Θ. The almost-everywhere relation ≤
a.e.E

is meant with respect to the family Θ. In this context, FR(X,P0) is the
subcone of FR(X,P) consisting of all measurable P0-valued functions such
that for every inductive limit neighborhood v for F(X,P) there is a P0-
valued step function h ∈ SR(X,P0) satisfying h ≤ f(w,ε) + v. Measurability
is still defined with respect to the given neighborhood system V rather than
the subsystem V0. Similarly, FR(X,V0) consists of all V0-valued functions
in FR(X,P).
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Because (P0,V0)-based integrability over a set E ∈ R implies (P0,V0)-
based integrability over all subsets G ∈ R of E, (P0,V0)-based integrability
over a set F ∈ AR may be defined as in 5.3.

Note that a (P0,V0)-based integrable function is not required to be P0-
valued. Obviously, this notion of subcone-based integrability implies inte-
grability based on the given cone (P,V) in the sense of 4.13 and 5.3, and
the (P0,V0)-based integrable functions form a subcone of F(F,Θ)(X,P). For
P0 = P and V0 = V the definition of (P0,V0)-based integrability coincides
of course with the definition of integrability from 5.3: Clearly, integrability
in the sense of 5.3 implies (P,V)-based integrability. For the converse, use
f̃(w,ε) = f(w,ε) + s(w,ε) instead of f(w,ε) in 5.3.

Other than in the classical scenario (see for example [25], [55], [178] and
[179]), our definition of integrability does not generally guarantee that an
integrable cone-valued function f ∈ F(X,P) can be approximated (even
with respect to pointwise convergence) by a sequence of step functions whose
integrals then converge towards the integral of f. However, a combination
of Theorem 2.7 with Proposition 4.7 yields some corresponding results.

Theorem 5.7. Let Θ be an equibounded family of measures on R. Let E ∈
R and let f ∈ F(X,P) be (P0,V0)-based integrable over E with respect to
Θ for a subcone P0 of P and a subsystem V0 of V. For every w ∈ W
such that θE(v) ≤ w for some v ∈ V0 and all θ ∈ Θ, and every ε > 0 there
is s ∈ FR(X,V0) such that

∫
E s dθ ≤ w for all θ ∈ Θ, 1 ≤ γ ≤ 1 + ε and

a bounded below sequence (hn)n∈N of P0-valued step functions such that:

(i) hn
≤

a.e.E γf + s holds for all n ∈ N.
(ii) Θ-almost everywhere on E, for x ∈ E there is n0 ∈ N such that

f(x) ≤ hn(x) + s(x) for all n ≥ n0.

(iii)
∫

G f dθ ≤ lim
n→∞

∫
G hn dθ + w and

∫
G hn dθ ≤ γ

∫
G f dθ + w

for all n ∈ N, all G ∈ R such that G ⊂ E, and all θ ∈ Θ.

Proof. Let f ∈ F(X,P) be (P0,V0)-based integrable over E ∈ R. Given
w ∈ W and 0 < ε ≤ 1, following our assumption there are f(w,ε) ∈
FR(X,P0) and s(w,ε) ∈ FR(X,V0) such that

∫
E s(w,ε) dθ ≤ w/4 for all

θ ∈ Θ and f ≤a.e.E f(w,ε) + s and f(w,ε)
≤

a.e.E γf + s(w,ε) with some 1 ≤ γ ≤
1 + ε/3. By our assumption there is v ∈ V0 such that θE(v) ≤ w/2 for
all θ ∈ Θ. We shall apply Theorem 2.7 to the locally convex cone (P0,V0),
the function f(w,ε) ∈ FR(X,P0), the neighborhood v ∈ V0, ε/3 in place of
ε, and the inductive limit neighborhood v = {χX⊗v}. For this we observe
that the measurability conditions (M1) and (M2) in Section 1 with respect
to the neighborhood system V imply those with respect to the subsystem
V0 ⊂ V. There is 1 ≤ γ′ ≤ 1 + ε/3 and a bounded below sequence (hn)n∈N

of P0-valued step functions such that (i), hn(x) ≤ γ′f(w,ε)(x) + v for all
x ∈ E and n ∈ N, and (ii), for every x ∈ E there is n0 ∈ N such that
f(w,ε)(x) ≤ hn(x) + v for all n ≥ n0. This yields
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hn
≤

a.e.E (γγ′)f + (γ′s(w,ε) + χE⊗v)

for all n ∈ N. We set

s′ = γ′s(w,ε) + χE⊗v ∈ FR(X,V0)

and observe that
∫

E s′ dθ ≤ γ′w/4 + w/2 ≤ w for all θ ∈ Θ. Because
1 ≤ γγ′ ≤ (1 + ε/3)2 ≤ 1 + ε, this yields Part (i) of our claim with s′ in
place of s. Part (ii) also follows from the above, since f(w,ε)(x) ≤ hn(x) + v
for x ∈ E implies that

f(x) ≤ f(w,ε)(x) + s(w,ε)(x) ≤ hn(x) + s(w,ε)(x) + v ≤ hn(x) + s′(x).

For Part (iii) let G ∈ R such that G ⊂ E and let θ ∈ Θ. The second part
of (iii) is obvious, since hn

≤
a.e.E γf + s′ implies that

∫
G hn dθ ≤ γ

∫
G f dθ + w

for all n ∈ N. For the first part of (iii), consider the full cone P and let h′n =
hn + χE⊗v ∈ SR(X,P). The sequence (h′n)n∈N of step functions approaches
f(w,ε) ∈ FR(X,P) as required in Proposition 4.7, which therefore yields

∫

G

f(w,ε) dθ ≤
∫ (w′)

G

f(w,ε) dθ ≤ lim
n→∞

∫

G

h′n dθ + w′

for every θ ∈ Θ and all w′ ∈ W, hence
∫

G

f(w,ε) dθ ≤ lim
n→∞

∫

G

h′n dθ = lim
n→∞

∫

G

hn dθ + θG(v)

since
∫

G h′n dθ =
∫

G hn dθ + θG(v). Thus
∫

G

f dθ ≤
∫

G

f(w,ε) dθ +
∫

G

s(w,ε) dθ

≤ lim
n→∞

∫

G

hn dθ +
∫

G

s(w,ε) dθ + θG(v)

≤ lim
n→∞

∫

G

hn + w

since
∫

G s(w,ε) dθ ≤ w/4 and θG(v) ≤ w/2. This yields the first inequality
in (iii). 
�

If the family Θ of measures is equibounded relative to the subsystem V0
of V, that is if for every E ∈ R and every w ∈ W there is v ∈ V0 such
that θE(v) ≤ w for all θ ∈ Θ, then the condition on the neighborhood
v ∈ V0 in Theorem 5.7 is obviously superfluous. Indeed, given w ∈ V and
any v ∈ V0 there is v′ ∈ V0 as above. Because the neighborhood system
V0 is supposed to be directed downward, there is v′′ ∈ V0 such that both
v′′ ≤ v and v′′ ≤ v′. Thus θE(v′′) ≤ w for all θ ∈ Θ, and we may apply
Theorem 5.7 with v′′ in place of v.
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For future use, it is worthwhile to formulate as a corollary the simplifica-
tions that occur in Theorem 5.7 if the subcone (P0,V0) of (P,V) is indeed
a full cone, that is if V0 ⊂ P0.

Corollary 5.8. Let Θ be an equibounded family of measures on R. Let
E ∈ R and let f ∈ F(X,P) be (P0,V0)-based integrable over E with respect
to Θ for a subcone P0 of P and a subsystem V0 ⊂ P0 of V. For every
w ∈ W such that θE(v) ≤ w for some v ∈ V0 and all θ ∈ Θ, and every
ε > 0, there is s ∈ FR(X,V0) such that

∫
E s dθ ≤ w for all θ ∈ Θ,

1 ≤ γ ≤ 1 + ε and a bounded below sequence (hn)n∈N of P0-valued step
functions such that:

(i) hn
≤

a.e.E γf + s holds for all n ∈ N.
(ii) Θ-almost everywhere on E, for x ∈ E there is n0 ∈ N such that

f(x) ≤ hn(x) for all n ≥ n0.
(iii)

∫
G f dθ ≤ lim

n→∞

∫
G hn dθ and

∫
G hn dθ ≤ γ

∫
G f dθ + w

for all n ∈ N, all G ∈ R such that G ⊂ E, and all θ ∈ Θ.

Proof. Given a neighborhood w ∈ W satisfying the requirement of the corol-
lary, and 0 < ε ≤ 1 we apply Theorem 5.7 with the neighborhood w/4 ∈ W
instead of w. As in the proof of 5.7 we choose v ∈ V such that θE(v) ≤ w/8.
Let s ∈ FR(X,V0) and the sequence (hn)n∈N of P0-valued step functions
as in 5.7. We apply Corollary 2.8 to the full cone (V0,V0) for the function
s ∈ FR(X,V0) with the inductive limit neighborhood v = {χX⊗v} : There is
a bounded below sequence (sn)n∈N of V0-valued step functions satisfying (i)
sn ≤ γ′s + χX⊗v with some 1 ≤ γ′ ≤ 1 + ε and (ii) for every x ∈ E there
is n0 such that s(x) ≤ sn(x) for all n ≥ n0. The latter implies

∫

G

s(x) dθ ≤ lim
n→∞

∫

G

sn(x) dθ

for all G ∈ R such that G ⊂ E, and all θ ∈ Θ, by Proposition 4.7. Now
we set

h′n = hn + sn + χE⊗v ∈ SR(X,P0) and s′ = 3s + 2χE⊗v ∈ FR(X,V0).

These are the functions that we use for Corollary 5.8: We have
∫

E

s′ dθ ≤ 3(w/4) + 2(w/8) = w,

and

h′n ≤
aeE

(γf + s) + sn + χE⊗v

≤ (γf + s) + (γ′s + χX⊗v) + χE⊗v

≤ γf + s′



5. The General Convergence Theorems 165

since 1 + γ′ ≤ 3. This implies
∫

G h′n dθ ≤ γ
∫

G f dθ + w for all n ∈ N, all
G ∈ R such that G ⊂ E, and all θ ∈ Θ. The first part of (iii) follows from
the last inequality in the proof of 5.7, that is

∫

G

f dθ ≤ lim
n→∞

∫

G

hn dθ +
∫

G

s dθ + θG(v)

≤ lim
n→∞

∫

G

hn dθ + lim
n→∞

∫

G

sn dθ + θG(v)

≤ lim
n→∞

∫

G

(hn + sn + χE⊗v) dθ

≤ lim
n→∞

∫

G

h′n dθ,

hence our claim. 
�

For the following recall the definition of the order topology of a locally
complete lattice cone from Section I.5.43. We shall also consider integrals of
measurable V-, that is V ∪{0,∞}-valued functions (see Section 2.1), if they
take the value ∞ ∈ V only on a set of measure zero (see 4.12 and 4.13).

Corollary 5.9. Let Θ be an equibounded family of measures on R. Let
F ∈ AR and let f ∈ F(X,P) be (P0,V)-based integrable over F with
respect to Θ for a subcone P0 of P. Then there is a net (hi)i∈I of P0-
valued step functions, a net (si)i∈I of measurable V-valued functions and a
net (γi)i∈I in R such that for every θ ∈ Θ :

(i) For every x ∈ F there is i0 ∈ I such that f(x) ≤ γihi(x) + si(x) and
hi(x) ≤ f(x) + si(x) for all i ≥ i0.

(ii) lim
i∈I

∫
F hi dθ =

∫
F f dθ in the order topology of Q.

(iii) lim
i∈I

∫
F si dθ = 0 in the symmetric topology of Q.

(iv) γi ≥ 1 for all i ∈ I and lim
i∈I

γi = 1.

Consequently,
∫

F f dθ is contained in the closure with respect to the order
topology of the subcone of Q spanned by the set {θ(E∩F )(a) | E ∈ R, a∈P0}.

Proof. Suppose that the function f ∈ F(X,P) is (P0,V)-based integrable
over the set F ∈ AR with respect to Θ and in a first step let E ∈ R be
a subset of F. For every w ∈ W and ε > 0, let (sw,ε

n )n∈N be a sequence
of P0-valued step functions, 1 ≤ γw,ε ≤ 1 + ε and sw,ε ∈ SR(X,V) as in
Theorem 5.7 with εw in place of w. According to 5.7 we have

∫
E sw,ε dθ ≤

εw for all θ ∈ Θ, and
∫

E

f dθ ≤ lim
n→∞

∫

E

hw,ε
n dθ + εw and lim

n→∞

∫

E

hw,ε
n dθ ≤ γw,ε

∫

E

f dθ + εw

follows from 5.7(iii). That is, for all θ ∈ Θ, both
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lim
n→∞

∫

E

hw,ε
n dθ and lim

n→∞

∫

E

hw,ε
n dθ

are elements of the symmetric relative neighborhood ws
ε

(∫
E f dθ

)
. Let the

index set J consist of all triples (w, ε, φ), where w ∈ W, ε > 0 and
φ : W × {ε > 0} → N. The set J is ordered and directed upward by
(w1, ε1, φ1) ≤ (w2, ε2, φ2) if w2 ≤ w1, ε2 ≤ ε1, and φ1(w, ε) ≤ φ2(w, ε) for
all w ∈ W and ε > 0. Note that the index set J does not depend on the
subset E ∈ R of F. We set

hj = χE⊗hw,ε
φ(w,ε)

for j = (w, ε, φ) ∈ J , as well as

sj = χE⊗ sw,ε + χ(Z∪ZE)⊗∞ and γj = γw,ε,

where ∞ is the infinite element of the augmented neighborhood system V
(see 2.1), and Z = X \

(⋃
E∈R E

)
. This is a set of Θ-measure zero. Likewise,

ZE ∈ R is a subset of E of Θ-measure zero and such that the conclusions
of 5.7(i) and (ii) hold for all x ∈ E \ ZE . (For this, recall that the union of
countably many sets of measure zero is again of measure zero.) Therefore,
5.7(i) and (ii) hold for all x ∈ E, not just Θ-almost everywhere if we replace
the function sw,ε by sj . Moreover, since the function sj takes the value
∞ ∈ V only on a zero set, we infer

∫

F

sj dθ =
∫

E

sw,ε dθ ≤ εw

for all θ ∈ Θ. We have 1 ≤ γj ≤ 1 + ε. Thus

lim
j∈J

∫

F

sj dθ = 0 and lim
j∈J

γj = 1.

The first of these limits is taken in the symmetric topology of Q. Next we
shall verify that ∫

E

f dθ = lim
j∈J

∫

F

hj dθ

holds for every θ ∈ Θ in the order topology of Q. Indeed, let θ ∈ Θ and
let U be a convex and order convex neighborhood of

∫
E f dθ ∈ Q in the

order topology. As the order topology is coarser than the symmetric relative
topology of Q (see Proposition I.5.44), there are w0 ∈ W and ε0 > 0
such that U is a neighborhood for every point in the symmetric relative
neighborhood w0

s
ε0

(
∫

E f dθ). Then for each choice of w ≤ w0 and ε ≤ ε0
we have both

lim
n→∞

∫

E

hw,ε
n dθ ∈ w0

s
ε0

(∫

E

f dθ

)
and lim

n→∞

∫

E

hw,ε
n dθ ∈ w0

s
ε0

(∫

E

f dθ

)
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by the above. As U is an order topology neighborhood of every element in
vs

ε0

(∫
E f dθ

)
, there is an integer φ0(w, ε) ∈ N such that both

inf
n≥φ0(w,ε)

{∫

E

hw,ε
n dθ

}
∈ U and sup

n≥φ0(w,ε)

{∫

E

hw,ε
n dθ

}
∈ U.

Now the order convexity of the neighborhood U guarantees that
∫

E

hw,ε
n dθ ∈ U

whenever w ≤ w0, ε ≤ ε0 and n ≥ φ0(w, ε). We set j0 = (w0, ε0, φ0) ∈ J
and φ0(w, ε) = 1 if either w � w0 or ε � ε0. Then the above yields indeed
that ∫

F

hj dθ =
∫

E

hw,ε
φ(w,ε) dθ ∈ U

for all j = (w, ε, φ) ∈ J such that j ≥ j0, that is w ≤ w0, ε ≤ ε0 and
φ(w, ε) ≥ ψ0(w, ε), thus demonstrating our claim. Finally, given x ∈ E, for
every w ∈ W and ε > 0 there is φ0(w, ε) ∈ N such that

f(x) ≤ hj(x) + sj(x) and hj(x) ≤ γj f(x) + sj(x)

for all j = (w, ε, φ) ∈ J such that φ(w, ε) ≥ φ0(w, ε). If we set j0 =
(w0, 1, φ0) for any choice of w0 ∈ W, then the above inequalities hold when-
ever j ≥ j0.

Now in the second step of our construction, for every set E ∈ R we shall
construct a net (hE

j )j∈J of (P0,V)-valued step functions as in our first step
with respect to the set E ∩ F ∈ R, that is in particular

∫

(E∩F )
f dθ = lim

j∈J

∫

F

hE
j dθ

for every θ ∈ Θ. Similarly, we select the corresponding nets (sE
j )j∈J and

(γE
j )j∈J . Now we choose another index set I consisting of all pairs (E,ψ),

where E ∈ R and ψ : R → J , ordered and directed upward by (E1, ψ1) ≤
(E2, ψ2) if E1 ≤ E2, and ψ1(E) ≤ ψ2(E) for all E ∈ R. We set hi = hE

ψ(E)
for i = (E,ψ) ∈ I and realize that the net (hi)i∈I of (P0,V)-valued step
functions satisfies the properties stated in our Corollary. A straightforward
diagonal argument similar to the preceding one shows that

∫

F

f dθ = lim
i∈I

∫

F

hi dθ

holds for every θ ∈ Θ in the order topology of Q, as claimed in (ii). Because
the integrals of all step functions hi involved are linear combinations of
elements θ(E∩F )(a) for E ∈ R and a ∈ P0, (ii) does indeed imply that
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∫
F f dθ is contained in the closure with respect to the order topology of the

subcone of Q spanned by these elements. Similarly, as claimed in (iii) and
in (iv), we verify that

lim
i∈I

∫

F

si dθ = 0 and lim
i∈I

γi = 1,

where the first of these limits is taken in the symmetric topology of Q.
For Part (i), let x ∈ F. If x /∈

⋃
E∈R E, then our claim is trivial, as we

have si(x) = ∞ ∈ V for all i ∈ I. Otherwise, there is E0 ∈ R such that
x ∈ E0. We fix any w0 ∈ W and choose the index i0 = (E0, ψ0) ∈ I,
where ψ0 : R → J is the mapping E �→ (w0, 1, φE) ∈ J . The mapping
φE : W × {ε > 0} → N is chosen as constant φE(w, ε) = 1 if E0 �⊂ E, and
otherwise we chose φE(w, ε) ∈ N such that

f(x) ≤ hj(x) + sj(x) and hj(x) ≤ γj f(x) + sj(x)

for every j = (w, ε, φ) ∈ J such that j ≥ (w0, 1, φE). This holds for all
E ∈ R such that E0 ⊂ E, hence we infer that

f(x) ≤ hi(x) + si(x) and hi(x) ≤ γi f(x) + si(x)

holds for all i ≥ i0. 
�

It its important to keep in mind that the limit in 5.9(ii) refers to the order
topology of Q, not necessarily to order convergence as defined in I.5.18.
Because in general the order topology is not known to be Hausdorff, this
limit need therefore not be unique.

Corollary 5.9 is of particular interest in case that the locally convex com-
plete lattice cone (Q,W) is indeed the standard completion of some lo-
cally convex cone (Q0,W) (see I.5.57) and that the measure θ is indeed
L(P,Q0)-valued. The closure of Q0 in Q with respect to the order topol-
ogy was seen to be a subcone of the second dual Q∗∗

0 (see Remark I.5.60(a)
and Section I.7.3) in this case, and integrals of functions in F(X,P) are
therefore elements of Q∗∗

0 . Moreover, if the full locally convex cone (P,V) is
indeed the standard full extension of a quasi-full locally convex cone (P0,V)
(see I.6.2) and if for all E ∈ R the operator θE maps the elements of P0
into Q0, then a similar statement holds for all functions f ∈ F(X,P) that
are (P0,V)-based integrable over F (see Proposition 6.7 below).

Because the values of our measures, that is continuous linear operators
from P into Q, may be restricted to linear operators on a subcone P0 of
P, one may raise the question, if and how such a restriction does affect the
integrals of functions with values only in this subcone P0. Let us be precise:
Let P0 be a subcone of P, and let V0 ⊂ P0 be a neighborhood subsystem of
V. If for a given L(P,Q)-valued measure θ, for all E ∈ R, the restrictions of
the linear operators θE from the full cone (P,V) to (Q,W ) are continuous
linear operators from the full cone (P0,V0) to (Q,W ), then, obviously, θ
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may also be considered to be an L(P0,Q)-valued measure. This situation
requires that for every E ∈ R and w ∈ W there is v ∈ V0 such that
θE(v) ≤ w.

To avoid confusion, we shall denote this restriction of the measure θ to
(P0,V0) by θ0, and by F(F, θ0)(X,P0) the cone of all P0-valued functions
that are integrable over a set F ∈ AR with respect to θ0. Similarly, we shall
use F(F, Θ0)(X,P0) for functions that are integrable with respect to a family
of restricted measures. Because our notions of measurability, of being reached
from below by step functions and, consequently, of integrability depend on
the given neighborhood system as well as on the cone, we shall have to clarify
our notions for this situation.

For a P0-valued function, measurability with respect to (P,V) obviously
implies measurability with respect to (P0,V0), since V0 ⊂ V (see Condi-
tions (M1) and (M2) in Section 1.2). The cone FR(X,P0) is however not
necessarily a subcone of FR(X,P) since the condition for the elements of
FR(X,P0) of being reached from below (see Section 2.3) involves only induc-
tive neighborhoods that use the neighborhoods in V0 ⊂ V. Positive functions
in FR(X,P0) are however contained in FR(X,P), since they can be triv-
ially reached from below by the step function h = 0. Conversely, every P0-
valued function in FR(X,P) that can be reached from below by P0-val-
ued step functions is contained in FR(X,P0). This implies in particular
that FR(X,V0) consists of the V0-valued elements of FR(X,V), that is
FR(X,V0) = FR(X,V) ∩ F(X,V0).

Furthermore, we note that every set Z ∈ AR of measure zero with respect
to a measure θ is also of measure zero with respect to its restriction θ0. The
almost everywhere notion with respect to θ therefore implies the almost
everywhere notion with respect to θ0. The converse does not necessarily
hold true.

Proposition 5.10. Let P0 be a subcone of P, and let V0 ⊂ P0 be a neigh-
borhood subsystem of V. Let Θ be an equibounded family of L(P,Q)-valued
measures on R such that the family Θ0 of all restrictions of the measures
in Θ to (P0,V0) is an equibounded family of L(P0,Q)-valued measures. Let
F ∈ AR. If a P0-valued function f is (P0,V0)-based integrable over F with
respect to Θ, then f ∈ F(F, Θ0)(X,P0), and

∫

F

f dθ =
∫

F

f dθ0

holds for all θ ∈ Θ.

Proof. Let P0 be a subcone of P, and let V0 ⊂ P0 be a neighborhood sub-
system of V. Let Θ be an equibounded family of L(P,Q)-valued measures
on R. The family Θ0 of all restrictions of the measures in Θ to (P0,V0) is
an equibounded family of L(P0,Q)-valued measures if and only if for every
E ∈ R and w ∈ W there is v ∈ V0 such that θE(v) ≤ w for all θ ∈ Θ.
By our assumption, Θ satisfies this requirement. Given a set F ∈ AR, we
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shall consider P0-valued functions as elements of the cones F(F,Θ)(X,P) or
F(F, Θ0)(X,P0), respectively. We shall proceed in several steps:

First we observe that every P0-valued step function h =
∑n

i=1 χEi
⊗ai, for

Ei ∈ R and ai ∈ P0, is contained in both F(F,Θ)(X,P) and F(F,Θ0)(X,P0),
and we have

∫
F h dθ =

∫
F h dθ0 for all θ ∈ Θ.

In a second step we consider a neighborhood-valued function s∈FR(X,V0).
As we remarked before, positivity implies that s is also contained in
FR(X,V). Given a neighborhood w ∈ W, the inductive limit neighborhood
vw formed by the neighborhoods in V contains the corresponding neighbor-
hood v0

w formed by the neighborhoods in V0 as a subset (see Section 4).
Thus

∫ (w)

F

s dθ0 = sup
{∫

F

s dθ
∣
∣
∣ h ∈ SR(X,P0), h ≤ s + v0

w

}

≤ sup
{∫

F

h dθ
∣
∣
∣ h ∈ SR(X,P), h ≤ s + vw

}
=
∫ (w)

F

s dθ.

Taking the infima over all w ∈ W on both sides yields
∫

F

s dθ0 ≤
∫

F

s dθ.

Now in a third step, let E ∈ R, and let us consider a P0-valued function
that is (P0,V0)-based integrable over E with respect to Θ. We shall first
verify that f ∈ F(E, Θ0)(X,P0). Indeed, the former property requires that for
w ∈ W and ε > 0 there is a V0-valued function s(w,ε) ∈ FR(X,V), and
a P0-valued function f(w,ε) ∈ FR(X,P) that can be reached from below by
P0-valued step functions, such that

f ≤
a.e.E f(w,ε)

≤
a.e.E γf + s(w,ε)

for some 1 ≤ γ ≤ 1 + ε and such that
∫

E s(w,ε) dθ ≤ εw holds for all θ ∈ Θ.
As FR(X,V0) = FR(X,V) ∩ F(X,V0), we have

∫

E

s(w,ε) dθ0 ≤
∫

E

s(w,ε) dθ ≤ εw

for all θ0 ∈ Θ0 by our first step. As we mentioned before, the almost every-
where relation ≤

a.e.E with respect to θ implies the same relation with respect
to θ0. The function f is therefore indeed integrable over E with respect to
the family Θ0 of the restricted measures, that is f ∈ F(E,Θ0)(X,P0).

Now let w ∈ W and ε > 0. We shall apply Corollary 5.8 with the family
Θ and the given subcone (P0,V0) to find a sequence (hn)n∈N of P0-valued
step functions as in 5.8. Statements (i) and (iii) refer to the measures θ ∈ Θ.
However, all functions involved are also contained in F(E,Θ0)(X,P0), the
integrals with respect to the measures in Θ and in Θ0 coincide for the step
functions hn, and for the function s ∈ FR(X,V0) in (i) we have
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∫

F

s dθ0 ≤
∫

F

s dθ ≤ w

by our second step. Property (ii) therefore yields together with Proposition 4.7
that ∫

E

f dθ0 ≤ lim
n→∞

∫

E

hn dθ0

holds for all θ0 ∈ Θ0. Using this together with our first step and the second
part of statement (iii) in 5.8, we obtain

∫

E

f dθ0 ≤ lim
n→∞

∫

E

hn dθ0 = lim
n→∞

∫

E

hn dθ ≤ γ

∫

E

f dθ0 + w

and, likewise,
∫

E

f dθ ≤ lim
n→∞

∫

E

hn dθ = lim
n→∞

∫

E

hn dθ0

≤ γ

∫

E

f dθ0 +
∫

E

s dθ0 ≤ γ

∫

E

f dθ0 + w

with some 1 ≤ γ ≤ 1 + ε. Because w ∈ W and ε > 0 were arbitrarily
chosen, this yields

∫
E f dθ =

∫
E f dθ0.

Now for the final step of our argument, let F ∈ AR, and let f ∈
F(X,P) be P0-valued and (P0,V0)-based integrable over F. Then f is
(P0,V0)-based integrable over the sets E ∩ F, for all E ∈ R, hence
f ∈ F(E∩F, Θ0)(X,P0) by our second step, and

∫
(E∩F ) f dθ =

∫
(E∩F ) f dθ0

by our first step. This shows
∫

F

f dθ = lim
E∈R

∫

(E∩F )
f dθ = lim

E∈R

∫

(E∩F )
f dθ0 =

∫

F

f dθ0.


�

5.11 Sums, Multiples and Order for Measures. Let θ and ϑ be two
R-bounded L(P,Q)-valued measures, and let α ≥ 0. We define the L(P,Q)-
valued measures θ + ϑ and αθ by

(θ + ϑ)E(a) = θE(a) + ϑE(a)

and (αθ)E(a) = α
(
θE(a)

)

for E ∈ R and a ∈ P. The properties of a measure are readily checked.
Corresponding to a subcone P0 of P we define an order relation for

measures θ and ϑ setting

θ ≤P0 ϑ if θE(a) ≤ ϑE(a)

holds for all E ∈ R and a ∈ P0. We write θ ≤ ϑ for the canonical choice
of P0 = P+ = {a ∈ P | a ≥ 0}. In this case, for any family Θ of measures
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and every set F ∈ R, every P+-valued function f ∈ F(F,Θ)(X,P) is seen
to be (P0,V)-based integrable over F with respect to Θ. Note that θ ≤ ϑ
and ϑ ≤ θ in this sense implies that θ = ϑ, that is equality for the positive
elements implies equality for all elements of P. Indeed, given E ∈ R, a ∈ P
and w ∈ W there is v ∈ V such that θE(v) = ϑE(v) ≤ w. There is λ ≥ 0
such that 0 ≤ a+λv. Thus θE(a+λv) = ϑE(a+λv) and θE(a) ≤ ϑE(a)+w
by the cancellation rules. This shows θE(a) ≤ ϑE(a) and likewise, ϑE(a) ≤
θE(a).

Proposition 5.12. Let θ and ϑ be L(P,Q)-valued measures, let α ≥ 0,
F ∈ AR, and let P0 be a subcone of P.

(a) If f ∈ F(F,{θ,ϑ})(X,P), then f ∈ F(F,θ+ϑ)(X,P) and∫
F f d(θ + ϑ) =

∫
F f dθ +

∫
F f dϑ.

(b) If f ∈ F(F,θ)(X,P), then f ∈ F(F,αθ)(X,P) and
∫

F f d(αθ) = α
∫

F f dθ.
(c) If θ ≤P0 ϑ, then

∫
F f dθ ≤

∫
F f dϑ holds for every f ∈ F(X,P) that is

(P0,V)-based integrable over F with respect to Θ = {θ, ϑ}.

Proof. Without loss of generality, we may assume that F = X. For Part (a),
it is clear from our definition of the sum of two measures that our claim,
namely

∫
X h d(θ + ϑ) =

∫
X h dθ +

∫
X h dϑ holds for all step functions h ∈

SR(X,P). Let Θ = {θ, ϑ}. Every zero set for Θ is obviously a zero set
for θ + ϑ. We shall first show that every function f ∈ F(X,Θ)(X,P) is
integrable over every set E ∈ R with respect to θ+ϑ. Indeed, given w ∈ W
and ε > 0, let w′ = w/2 and let the functions f(w′,ε) ∈ FR(X,P) and
s(w′,ε) ∈ FR(X,V) be as in Definition 5.3, that is

f ≤a.e.E f(w′,ε)
≤

a.e.E γf + s(w′,ε)

for some 1 ≤ γ ≤ 1+ ε and
∫

E s(w′,ε) dθ ≤ εw′ and
∫

E s(w′,ε) dϑ ≤ εw′. The
function s(w′,ε) ∈ FR(X,V) is integrable with respect to every measure on
R, and for any u ∈ W we realize that

∫ (u)

E

s(w′,ε) d(θ + ϑ) = sup
{∫

E

h d(θ + ϑ)
∣
∣
∣h ∈ SR(X,P), h ≤ s(w′,ε) + vw

}

≤
∫ (u)

E

s(w′,ε) dθ +
∫ (u)

E

s(w′,ε) dϑ.

Taking the respective infima over all neighborhoods u ∈ W and using
Lemma I.5.20(c), we infer that

∫

E

s(w′,ε) d(θ + ϑ) ≤
∫

E

s(w′,ε) dθ +
∫

E

s(w′,ε) dϑ ≤ εw.

This shows integrability for f over E with respect to the family Θ =
{θ, ϑ, θ + ϑ} of measures. Next for P0 = P and V0 = V, the family Θ
from above, a set E ∈ R, a neighborhood w ∈ W and ε ≥ 0 let (hn)n∈N
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be a sequence of step functions in SR(X,P) approaching the function f ∈
F(X,Θ)(X,P) as in Corollary 5.8. Part (iii) of 5.8 then yields

∫

E

f d(θ + ϑ) ≤ lim
n→∞

∫

E

hn d(θ + ϑ)

≤ lim
n→∞

∫

E

hn dθ + lim
n→∞

∫

E

hn dϑ

≤ γ

∫

E

f dθ + γ

∫

E

f dϑ + 2w.

And similarly,
∫

E

f dθ +
∫

E

f dϑ ≤ lim
n→∞

∫

E

hn dθ + lim
n→∞

∫

E

hn dϑ

≤ lim
n→∞

∫

E

hn d(θ + ϑ)

≤ γ

∫

E

f d(θ + ϑ) + w.

This in turn shows
∫

E

f d(θ + ϑ) =
∫

E

f d(θ + ϑ),

since w ∈ W and ε > 0 were arbitrarily chosen. The latter equality holds
for all E ∈ R, hence or claim follows from the definition of the integral
over X. Part (b) may be verified in a similar way. For Part (c), let θ ≤P0 ϑ
for a subcone P0 of P, and let f ∈ F(X,P) be (P0,V)-based integrable
over X with respect to Θ = {θ, ϑ}. For E ∈ R, w ∈ W and ε > 0 we
choose v ∈ V such that both θE(v) ≤ w and ϑE(v) ≤ w. Let (hn)n∈N be a
sequence of P0-valued step functions in SR(X,P) approaching the function
f as in Theorem 5.7. We have

∫
E hn dθ ≤

∫
E hn dϑ for all n ∈ N since

θ ≤P0 ϑ, hence by Part (iii) of 5.7
∫

E

f dθ ≤ lim
n→∞

∫

E

hn dθ + w ≤ lim
n→∞

∫

E

hn dϑ + w ≤ γ

∫

E

f dϑ + 2w.

Thus
∫

E f dθ ≤
∫

E f dϑ, since w ∈ W and ε > 0 were arbitrary. Our claim
now follows from the definition of the integral over a set F ∈ R. 
�

By the restriction of a measure θ on R to a subset F ∈ AR we mean
the measure θ|F on R, defined as

(θ|F )E = θE∩F

for all E ∈ R. It is immediate from the definition of the integral in Section 4
that f ∈ F(X,θ|F )(X,P) if and only if f ∈ F(F,θ)(X,P) for a function
f ∈ F(X,P), and that

∫
X f dθ|F =

∫
F f dθ in this case.
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5.13 Convergence of Sequences of Measures. Let θ and (θn)n∈N be
L(P,Q) -valued measures on R. We shall define lower and upper setwise
convergence for measures and denote θn ↗ θ or θn ↘ θ if

(i) θE(a) ≤ lim
n→∞

θn E(a) or lim
n→∞

θn E(a) ≤ θE(a) holds for all E ∈ R and

a ∈ P, respectively.
(ii) There is a set E0 ∈R such that θ|(X\E0) ≤P θn|(X\E0) or θn|(X\E0) ≤P

θ|(X\E0) holds for all n ∈ N, respectively.

We shall denote θn −→ θ if both θn ↗ θ and θn ↘ θ.

Lemma 5.14. Let Θ = {θn}n∈N be equibounded L(P,Q)-valued measures
on R such that θn ↗ θ for a measure θ. Let E ∈ R.

(a) If f ∈ F(E,Θ)(X,P), then f ∈ F(E,Θ∪{θ})(X,P).
(b)

∫
E f dθ ≤ lim

n→∞

∫
E f dθn for every f ∈ F(E,Θ)(X,P).

(c)
∫

E f dθ = lim
n→∞

∫
E f dθn for every invertible function f such that both

f ∈ F(E,Θ)(X,P) and −f ∈ F(E,Θ)(X,P).

Proof. Let Θ = {θn}n∈N be equibounded L(P,Q)-valued measures on such
that θn ↗ θ for a measure θ. Let E ∈ R. We shall defer the proof of
Part (a) since it will use elements of the statement of Part (b). For our proof
of Part (b) we shall therefore assume that the function f is integrable over
E with respect to the family Θ̄ = Θ ∪ {θ}. First, let us consider a step
function h =

∑n
i=1 χEi

⊗ai ∈ SR(X,P). Using Lemma I.5.19 we observe that
θn ↗ θ implies

∫

X

h dθ =
m∑

i=1

θEi
(ai) ≤

m∑

i=1

(
lim

n→∞
θn Ei

(ai)
)

≤ lim
n→∞

(
m∑

i=1

θn Ei
(ai)

)

= lim
n→∞

∫

X

h dθn.

Now let f ∈ F(E,Θ̄)(X,P). We shall use Corollary 5.8 with P0 = P and
V0 = V in order to establish our claim. Given w ∈ W and ε > 0 there is a
bounded below sequence (hk)k∈N of P-valued step functions such that:

(i) there is 1 ≤ γ ≤ 1 + ε and s ∈ FR(X,V) such that
∫

E s dϑ ≤ w for
all ϑ ∈ Θ̄, and hn

≤
a.e.E γf + s holds for all n ∈ N;

(ii) Θ̄-almost everywhere on E, for x ∈ E there is n0 ∈ N such that
f(x) ≤ hn(x) for all n ≥ n0;

(iii)
∫

E f dϑ ≤ limn→∞
∫

E hn dϑ and
∫

E hn dϑ ≤ γ
∫

E f dϑ + w for all
n ∈ N and ϑ ∈ Θ̄.

For every k ∈ N then we have by the above
∫

E

hk dθ ≤ lim
n→∞

∫

X

hk dθn ≤ γ lim
n→∞

∫

E

f dθn + w.
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Note that this argument implies in particular that the sequence
(∫

Ef dθn

)
n∈N

is bounded below. Using (iii), we proceed from this and conclude that
∫

E

f dθ ≤ γ lim
n→∞

∫

E

f dθn + w.

Claim (b) follows, since this last inequality holds for all w ∈ W and ε > 0.
In Part (c) we assume in addition that the negative −f of the function f
is also contained in F(E,Θ̄)(X,P). Then Part (b) yields that both sequences(∫

E f dθn

)
n∈N

and
(∫

E(−f) dθn

)
n∈N

are bounded below, and
∫

E

f dθ ≤ lim
n→∞

∫

E

f dθn and
∫

E

(−f) dθ ≤ lim
n→∞

∫

E

(−f) dθn.

Thus

lim
n→∞

∫

E

f dθn = lim
n→∞

∫

E

f dθn +
∫

E

(−f) dθ +
∫

E

f dθ

≤ lim
n→∞

∫

E

f dθn + lim
n→∞

∫

E

(−f) dθn +
∫

E

f dθ

≤ lim
n→∞

∫

E

(
(−f) + f)

)
dθn +

∫

E

f dθ

≤
∫

E

f dθ ≤ lim
n→∞

∫

E

f dθn,

and our claim (c) follows. We shall finally prove Part (a) of the lemma: Let
Z ∈ AR be a zero-set for Θ = {θn}n∈N, that is θn (E∩Z) = 0 for all n ∈ N

and E ∈ R. As θn ↗ θ, this implies θ(E∩Z)(a) ≤ 0 for all a ∈ P, hence
θ(E∩Z)(a) = 0 for all 0 ≤ a ∈ P. However, for every a ∈ P there is v ∈ V
such that 0 ≤ a + v. Hence

θ(E∩Z)(a) = θ(E∩Z)(a) + θ(E∩Z)(v) = θ(E∩Z)(a + v) = 0.

Thus θ(E∩Z) = 0. Every zero-set for Θ is therefore a zero-set for Θ∪{θ} as
well. Now let f ∈ F(|X|,Θ)(X,P) and let E ∈ R. According to Definition 5.3,
for every w ∈ W and ε > 0 there are functions f(w,ε) ∈ FR(X,P) and
s(w,ε) ∈ FR(X,V) such that

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) dϑ ≤ εw

for some 1 ≤ γ ≤ 1 + ε and all ϑ ∈ Θ. The almost everywhere relations
refer to the family Θ and by the above therefore also to Θ ∪ {θ}. Because
the function s(w,ε) ∈ FR(X,V) is integrable over E with respect to every
family of measures on R, we may use Part (b) of the lemma for
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∫

E

s(w,ε) dθ ≤ lim
n→∞

∫

E

s(w,ε) dθn ≤ εw.

This shows that the function f is indeed integrable over E with respect to
the family Θ ∪ {θ}. 
�

Example 5.15. The following example will demonstrate that a result corre-
sponding to 5.14(b) for upper convergence of measures is not available in gen-
eral, that is θn ↘ θ for measures θn, θ on R does not necessarily imply that
lim

n→∞

∫
E f dθn ≤

∫
E f dθ holds for every integrable function f ∈ F(X,P). For

this, let X = [0, 1], let R be the σ-algebra of all Borel sets on X, and let
θ be the Lebesgue measure. This may be considered as an L(P,Q)-valued
measure if we set P = Q = R (see Examples I.2.1). We define the measures
θn as θn(E) =

√
n θ

(
E ∩ [0, 1

n ]
)

for E ∈ R. This yields θn(E) ≤ 1√
n

for
all E ∈ R and n ∈ N, hence θn −→ 0, that is the zero measure on R.
Now consider the function f on X defined as f(x) = 1√

x
for x > 0 and

f(0) = 0. As f is positive and measurable, it is contained in FR(X,P),
hence in F(E,Θ)(X,P), where Θ is the equibounded family {θn}n∈N. We

calculate
∫

X f dθn =
√

n
∫ 1

n

0 f dθ = 2, hence
∫

X f dθn �→
∫

X f d 0 = 0, in-
deed. Note that Part (c) of Lemma 5.14 does not apply in this case. The
function f is in fact invertible in F(X,P) and its inverse −f is integrable
with respect to each of the measures θn. Indeed, given ε > 0 we may choose
fε(x) = −f(x) for x ≥ ε and fε(x) = 0 else. Then fε is bounded below,
hence in FR(X,P), and we have −f ≤ fε ≤ −f + sε, where sε(x) = 0 for
x = 0 or x ≥ ε, and sε(x) = f(x) else. (This function sε is

(
V∪{0}

)
-valued

as required in Definition 4.12, since the neighborhood system V of R consists
of all strictly positive reals.) For ε ≤ 1

n we calculate
∫

X sε dθn = 2
√

nε. Thus
−f ∈ F(E,θn)(X,P) for all n ∈ N, but −f is not contained in F(E,Θ)(X,P)
as required in 5.14(c).

5.16 Residual Components. Let (θn)n∈N be an equibounded sequence
of measures, let F ∈ AR and f ∈ F(F,{θn})(X,P). We define the residual
component of f on F with respect to (θn)n∈N as follows: Let F be the
collection of all sequences (En)n∈N of sets in R such that En ⊂ F, En ⊃
En+1 and

⋂
n∈N

En = ∅. Recall that integrability for a function f ∈ F(X,P)
over F requires integrability over all subsets E ∈ R of F. Thus for f ∈
F(F,{θn})(X,P) we define

Rs
(
θn, F, f

)
= sup

(Em)∈F

{
lim

m→∞

(
lim

n→∞

∫

Em

f dθn

)}
.

This appears to be a rather unwieldy expression. It will however turn out to
be useful for our continuing investigations.
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Lemma 5.17. Let (θn)n∈N be an equibounded sequence of measures, and let
F ∈ AR. Then

(a) Rs
(
θn, F, f

)
≥ 0 for all f ∈ F(F,{θn})(X,P).

(b) If θn ≤ ω for a measure ω and all n ∈ N, then
Rs
(
θn, F, f

)
≤ O

(∫
F f dω

)
for all f ∈ F(|F |,{θn,ω})(X,P).

Proof. Part (a) is trivial, as we may choose the stationary sequence
(Em)m∈N ∈ F, where Em = ∅ for all n ∈ N. For Part (b), suppose that
θn ≤ ω holds for a measure ω on R and all n ∈ N, let Θ = {θn, ω}n∈N,
let f ∈ F(F,Θ)(X,P) and (Em)m∈N ∈ F. For every w ∈ W there is by
Proposition 5.4 a function s ∈ FR(X,V) and λ ≥ 0 such that 0 ≤

a.e.E1 f + s
and

∫
E1

s dϑ ≤ λw for all ϑ ∈ Θ. Because s ≥ 0, this yields for all m ∈ N

lim
n→∞

∫

Em

f dθn ≤ lim
n→∞

∫

Em

(f + s) dθn ≤
∫

Em

(f + s) dω.

Thus by Proposition 4.18(b) and Proposition I.5.11

lim
m→∞

(
lim

n→∞

∫

Em

f dθn

)
≤ lim

m→∞

∫

Em

(f + s) dω

≤ O

(∫

E1

(f + s) dω

)

= O

(∫

E1

f dω

)
+ O

(∫

E1

s dω

)

≤ O

(∫

E1

f dω

)
+ w,

since O

(∫
E1

s dω
)
≤ εw for all ε > 0. Because w ∈ W was arbitrarily

chosen, and because Q carries the weak preorder, this yields

lim
m→∞

(
lim

n→∞

∫

Em

f dθn

)
≤ O

(∫

E1

f dω

)
.

Furthermore, Proposition 4.15(c) states that O

(∫
E1

f dω
)
≤ O

(∫
F f dω

)
.

Now combining all of the above, we have indeed

Rs
(
θn, F, f

)
= sup

(Em)∈F

{
lim

m→∞

(
lim

n→∞

∫

Em

f dθn

)}
≤ O

(∫

F

f dω

)
,

as claimed. 
�

Lemma 5.17(b) implies in particular that for a stationary sequence (θn)n∈N

of measures, that is θn = θ for all n ∈ N, we have Rs
(
θn, F, f

)
≤

O
(∫

F f dθ
)

for all f ∈ F(|F |,θ)(X,P). This leads to the following notation:
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For a set F ∈ AR, and an equibounded sequence (θn)n∈N of measures, a
measure θ and a family F of functions in F(F,{θn,θ})(X,P) we shall denote

(θn) F

F
≺ θ if Rs

(
θn, F, f

)
≤ O

(∫

F

f dθ

)

holds for all f ∈ F. Setwise convergence of the measures θn towards θ, that
is θn −→ θ, does however not necessarily imply that (θn) F

{f}≺ θ holds for ev-
ery integrable function f ∈ F(|F |,{θn,θ})(X,P), as our preceding Example 5.15
can demonstrate. Indeed, let us calculate the residual component of the func-
tion f in 5.15 on the interval F = [0, 1] with respect to the given sequence
(θn)n∈N of measures on [0, 1]. First, let (Em)m∈N be a sequence of Borel
sets in [0, 1] such that Em ⊃ Em+1 and

⋂
m∈N

Em = ∅. Then
∫

Em

f dθn ≤
∫

[0,1]
f dθn ≤ 2

for all k, l ∈ N. This shows Rs
(
θn, F, f

)
≤ 2. For Em =

[
0, 1

m

]
, on the

other hand, we have Em ⊃ Em+1 and
⋂

m∈N
Em = ∅, and

∫
Em

f dθn = 2
whenever n ≥ m. Thus lim

n→∞

∫
Em

f dθn ≥ 2 for all m ∈ N, and therefore

Rs
(
θn, F, f

)
≥ 2. Together with the above, this yields Rs

(
θn, F, f

)
= 2.

But we have θn −→ 0.
A stronger requirement on the integrability of the function f will however

avoid such cases.

5.18 Strongly Integrable Functions. Let Θ be a an equibounded family
of measures, and let E ∈ R. We shall say that a function f ∈ F(X,P) is
strongly integrable over E with respect to Θ if it is integrable over E
in the sense of 5.3, and if in addition, for every w ∈ W there is a step
function h ∈ SR(X,P) such that

∫
G f dθ ≤

∫
G h dθ + w and

∫
G h dθ is w-

bounded relative to
∫

G f dθ in Q, for all θ ∈ Θ and every subset G ∈ R

of E. Note that this requirement strengthens the corresponding property
from Theorem 5.7 which holds for integrable functions in general.

Similarly, for a set F ∈ AR, a function f ∈ F(X,P) is strongly integrable
over F with respect to Θ if it is integrable over F in the sense of 5.3 and
strongly integrable over the sets E ∩ F for all E ∈ R. Because strong
integrability over a set E ∈ R obviously implies strong integrability over
every subset G ∈ R of E, this last part of our definition is consistent with
the first one.

It is straightforward to verify that the strongly integrable functions form
a subcone of F(F,Θ)(X,P).

Lemma 5.19. Let Θ = {θ, θn}n∈N be equibounded measures on R such that
θn ↘ θ. Let F ∈ AR, and suppose that the function f ∈ F(|F |,Θ)(X,P) is
strongly integrable over F with respect to Θ. Then (θn) F

{f}≺ θ.
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Proof. Let Θ = {θ, θn}n∈N be equibounded measures such that θn ↘ θ. As
in the first step of the proof of Lemma 5.14, one easily verifies that

lim
n→∞

∫

G

h dθn ≤
∫

G

h dθ

holds for every step function h ∈ SR(X,P) and all G ∈ AR. Let F ∈ AR

and suppose that the function f ∈ F(F,Θ)(X,P) is strongly integrable over
F with respect to Θ. Let Em ∈ R for m ∈ N be subsets of F such
that Em ⊃ Em+1 and

⋂
m∈N

Em = ∅. Following 5.18, the function f is
strongly integrable over the set E = E1. Given w ∈ W, we choose a step
function h =

∑n
i=1 χGi

⊗ai ∈ SR(X,P) as in the first part of 5.18, that is∫
G h dθ ∈ Bw

( ∫
G f dθ

)
, and

∫
G f dθ ≤

∫
G h dθ + w holds for all θ ∈ Θ and

every subset G ∈ R of E, in particular
∫

Em

f dθn ≤
∫

Em

h dθn + w

holds for all m,n ∈ N. Thus

lim
n→∞

∫

Em

f dθn ≤ lim
n→∞

∫

Em

h dθn + w ≤
∫

Em

h dθ + w

for every m ∈ N, and consequently

lim
m→∞

(
lim

n→∞

∫

Em

f dθn

)
≤ lim

m→∞

∫

Em

h dθ + w ≤ O

(∫

E

h dθ
)

+ w

by Proposition 4.18(b). Because
∫

E h dθ is w-bounded relative to
∫

E f dθ,
and because

∫
E f dθ is bounded relative to

∫
F f dθ by Proposition 4.15(c),

we have O
( ∫

E h dθ
)

�w O
( ∫

F f dθ
)

by Proposition I.5.13(a). The latter
implies

O
( ∫

E

h dθ
)
≤ O

( ∫

F

f dθ
)

+ w.

Thus, summarizing,

lim
m→∞

(
lim

n→∞

∫

Em

f dθn

)
≤ O

(∫

F

f dθ
)

+ 2w.

This holds for all w ∈ W and all sequences of sets Ek ∈ R such that
Ek ⊂ F and

⋂
k∈N

Ek, and therefore demonstrates

Rs
(
θn, F, f

)
≤ O

(∫

F

f dθ
)
,

our claim. 
�
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Lemma 5.20. Let Θ = {θ, θn}n∈N be equibounded L(P,Q)-valued measures
on R such that θn ↘ θ. Let E ∈ R.

(a) Let fn, f, f ∗ ∈ F(E,Θ)(X,P) and v ∈ V. If both fn(x) �v f(x) and
fn(x) �v f ∗(x) holds Θ-almost everywhere on E for all n ∈ N, then
lim

n→∞

∫
E fn dθn ≤

∫
E f dθ + Rs

(
θn, E, f ∗

)
+ O

(
sup{θE(v) | θ ∈ Θ}

)
.

(b) Let f ∈ F(E,Θ)(X,P). If (θn) E
{f}≺ θ, then lim

n→∞

∫
E f dθn ≤

∫
E f dθ.

Proof. Let Θ = {θ, θn}n∈N be equibounded measures such that θn ↘ θ. As
seen before, this implies

lim
n→∞

∫

G

h dθn ≤
∫

G

h dθ

for every step function h ∈ SR(X,P) and every G ∈ AR. Let E ∈ R, v ∈
V, and let fn, f, f ∗ ∈ F(E,Θ)(X,P) such that both fn �v f and fn �v f ∗

holds Θ-almost everywhere on E for all n ∈ N. Let us abbreviate

d = O
(
sup{θE(v) | θ ∈ Θ}

)
∈ Q.

Recall from Proposition I.5.11(b) that αd = d for all α > 0. Given w ∈ W
and ε > 0, we shall use Corollary 5.8 for the function f, with P0 = P and
V0 = V, in order to obtain a sequence (hk)k∈N of step functions satisfying
5.8(i), (ii) and (iii). We set

Gm = {x ∈ E | f(x) �v hk(x) for all k ≥ m}

for m ∈ N. Following Theorem 1.6, the sets Gm are contained in R, and
we have Gm ⊂ Gm+1. If we set G =

⋃
m∈N

Gm, then 5.8(ii) implies that
E \G ∈ Z(Θ), that is

∫
E g dϑ =

∫
G g dϑ for the functions g = fn, f, f ∗ and

all ϑ ∈ Θ. Because fn(x) �v hm(x) holds Θ-almost everywhere on Gm,
and fn(x) �v f ∗(x) holds Θ-almost everywhere on E for all n ∈ N, and
because O

(
ϑE(v)

)
≤ d for all θ ∈ Θ, Proposition 4.16 yields

∫

Gm

fn dϑ ≤
∫

Gm

hm dϑ + d and
∫

(G\Gm)
fn dϑ ≤

∫

Gm

f ∗ dϑ + d.

for all ϑ ∈ Θ and n ∈ N. Thus
∫

E

fn dθn =
∫

Gm

fn dθn +
∫

(G\Gm)
fn dθn

≤
∫

Gm

hm dθn +
∫

(G\Gm)
f ∗ dθn + d

holds for all m,n ∈ N. Let Em = G \ Gm. Then Em ⊃ Em+1 and⋂
m∈N

Em = ∅. Using this, we proceed with our argument. For a fixed m ∈ N,
we let n tend to infinity in the preceding inequality, and obtain
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lim
n→∞

∫

E

f dθn ≤ lim
n→∞

∫

Gm

hm dθn + lim
n→∞

∫

Em

f ∗ dθn + d

≤
∫

Gm

hm dθ + lim
n→∞

∫

Em

f ∗ dθn + d

≤ γ

∫

Gm

f dθ + lim
n→∞

∫

Em

f ∗ dθn + d + w.

with some 1 ≤ γ ≤ 1 + ε. Finally, we let m tend to infinity as well and use
Proposition 4.18(a) for

lim
m→∞

∫

Gm

f dθ =
∫

G

f dθ =
∫

E

f dθ.

Thus

lim
n→∞

∫

E

f dθn ≤ γ

∫

E

f dθ + lim
m→∞

(
lim

n→∞

∫

Em

f ∗ dθn

)
+ d + w

≤ γ

∫

E

f dθ + Rs
(
θn, E, f ∗

)
+ d + w

≤ γ

(∫

E

f dθ + Rs
(
θn, E, f ∗

)
+ d

)
+ w.

The last inequality holds for all w ∈ W and ε > 0, hence

lim
n→∞

∫

E

f dθn ≤
∫

E

f dθ + Rs
(
θn, E, f ∗

)
+ d,

since Q is endowed with the weak preorder.
For Part (b), we set fn = f = f ∗ in Part (a). If (θn) E

{f}≺ θ, that is
Rs
(
θn, E, f

)
≤ O

( ∫
E f dθ

)
holds in addition, then

∫

E

f dθ + Rs
(
θn, E, f

)
≤
∫

E

f dθ + O

(∫

E

f dθ

)
=
∫

E

f dθ

follows from Proposition I.5.14. Given w ∈ W, we choose v ∈ V such that
θE(v) ≤ w for all θ ∈ Θ. Then obviously O

(
sup{θE(v) | θ ∈ Θ}

)
≤ w

holds as well. Part (a) therefore yields

lim
n→∞

∫

E

f dθn ≤
∫

E

f dθ + Rs
(
θn, E, f

)
+ w ≤

∫

E

f dθ + w

for all w ∈ W. Thus indeed

lim
n→∞

∫

E

f dθn ≤
∫

E

f dθ,

since Q carries the weak preorder. 
�
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Our upcoming convergence theorems will imply that the statements of
Lemmas 5.14 and 5.20 do indeed extend to integrals over sets F ∈ AR, if
the concerned functions are contained in F(|F |,{θn,θ})(X,P).

Lemma 5.21. Let Θ = {θn}n∈N be equibounded L(P,Q)-valued measures
on R such that θn −→ θ for a measure θ. Let F ∈ AR. If f ∈
F(F,Θ)(X,P), then f ∈ F(F,Θ∪{θ})(X,P).

Proof. We may assume that F = X, since for a function f ∈ F(X,P)
integrability over F means equivalently that the function χF ⊗f is integrable
over X. Let f ∈ F(X,Θ)(X,P). Then f ∈ F(E,Θ)(X,P) for every E ∈ R,
hence f ∈ F(E,Θ∪{θ})(X,P) by Lemma 5.14(a). Now let E0 ∈ R and v ∈ V
be as in Definition 5.13(ii), that is θ|(X\E0) = θn|(X\E0) holds for all n ∈ N.
Let E ∈ R such that E0 ⊂ E and fix n0 ∈ N. Then

∫

E

f dθ =
∫

E0

f dθ +
∫

E\E0

f dθ =
∫

E0

f dθ +
∫

E\E0

f dθn0 .

Hence

lim
E∈R

∫

E

f dθ =
∫

E0

f dθ + lim
E∈R

∫

E\E0

f dθn0 =
∫

E0

f dθ +
∫

X\E0

f dθn0 .

The function f is therefore indeed integrable over X with respect to θ, and
we infer that f ∈ F(E,Θ∪{θ})(X,P). 
�
5.22 Convergence of Sequences in F(X, P). In Section 3 we intro-
duced several notions of pointwise convergence for sequences of P-valued
functions. They refer to the lower and upper relative topologies of P, that
is for a subset F of X, a sequence (fn)n∈N and a function f in F(X,P)
we denote fn ↗F f or fn ↘F f if for every x ∈ F, v ∈ V and ε > 0 there
is n0 such that

f(x) ∈ vε

(
fn(x)

)
or fn(x) ∈ vε

(
f(x)

)

for all n ≥ n0, respectively. fn →F f means that both fn ↗F f and fn ↘F f.
Correspondingly, if Θ is a family of measures on R, then we shall denote
fn ↗a.e.F f, fn ↘a.e.F f or fn −→a.e.F f if this convergence holds Θ-almost ev-
erywhere on F, that is on a subset F \ Z with some Z ∈ Z(Θ).

The following version of Fatou’s lemma is the first of our main convergence
theorems. It refers to lower convergence for both functions and measures.

Theorem 5.23. Let Θ = {θ, θn}n∈N be equibounded L(P,Q)-valued mea-
sures on R such that θn ↗ θ. Let F ∈ AR, and let fn, f, f∗, f∗∗ ∈
F(|F |,Θ)(X,P) such that (θn) F

{f∗}≺ θ. Suppose that f∗∗ ≤a.e.F fn + f∗ for all
n ∈ N, and that fn ↗a.e.F f. Then

∫

F

f dθ ≤ lim
n→∞

∫

F

fn dθn + O

(∫

F

f∗ dθ

)
.
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Proof. Without loss of generality, we may assume that F = X. Indeed, the
respective integrals over F ∈ AR equal the integrals over X for the products
of the concerned functions with χF , and these products satisfy the conditions
of the theorem with X in place of F. Also, we may assume that the required
convergence and boundedness properties hold everywhere on X instead of
Θ-everywhere. Indeed, let Z(Θ) be the family of zero subsets of X. Then
fn ↗a.e.X f means that fn ↗(X\Y ) f for some Y ∈ Z(θ). Using the fact that
Z(Θ) contains countable unions of its members, we can find Y ′ ∈ Z(Θ) such
that χ(X\Y ′)⊗f∗∗ ≤ χ(X\Y ′)⊗(fn + f∗) holds for all n ∈ N everywhere on X.
Let Z = Y ∪Y ′ ∈ Z(Θ). The functions f ′n = χ(X\Z)⊗fn, f ′ = χ(X\Z)⊗f and
f ′∗ = χ(X\Z)⊗f∗, then fulfill everywhere all the assumptions of the theorem
and their respective integrals coincide with those of the given functions.

We shall proceed using these simplified assumptions of the theorem for the
measures θn and θ and the functions fn, f, f∗∗ and f∗. In a first step of
this proof we shall discuss the respective integrals of the functions involved
over a set E ∈ R. Let w ∈ W be fixed. Following Proposition 5.4, there is
s ∈ FR(X,V) and λ > 0 such that

∫
E s dϑ ≤ λw for all ϑ ∈ Θ and both

0≤a.e.E f +s. Using a similar argument as above, that is the replacement of the
functions fn and f by suitable functions f ′n and f ′ which agree with the
former ones Θ-almost everywhere, we may also assume that the last relation
holds indeed everywhere on E. Next we choose 0 < ε < min{1, 1

3λ} .
According to Definition 5.3 (see also 4.12), we may assume that s(x) ∈ V

for all x ∈ X. Thus, under the (now simplified) assumptions of the theorem,
for every x ∈ E there is n0 ∈ N such that f(x) ∈

(
s(x)

)
ε

(
fn(x)

)
that is

f(x) ≤ γfn(x) + εs(x) for all n ≥ n0 with some 1 ≤ γ ≤ 1. According to
Lemma I.4.1(c), the latter implies that

f(x) ≤ (1 + ε)fn(x) + ε(1 + 1 + ε)s(x) ≤ (1 + ε)fn(x) + 3εs(x)

for all n ≥ n0. We choose a neighborhood v ∈ V such that ϑE(v) ≤ w for
all ϑ ∈ Θ. Following Theorem 1.6, all the sets

Em = {x ∈ E | f(x) �v (1 + ε)fn(x) + 3εs(x) for all n ≥ m}

are in R, we have Em ⊂ Em+1, and
⋃

m∈N
Em = E by the above. Thus

f(x) �v (1 + ε)fn(x) + 3εs(x)

for all x ∈ Em and n ≥ m. Now Proposition 4.16 yields that
∫

Em

f dϑ ≤ (1 + ε)
∫

Em

fn dϑ + 3ε

∫

Em

s dϑ + O
(
ϑ(Em, v)

)

≤ (1 + ε)
∫

Em

fn dϑ + w
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holds for all ϑ ∈ Θ. The last part of the inequality follows, since
∫

Em
s dϑ ≤∫

E s dϑ ≤ λw, 3ελ < 1 and O
(
ϑ(Em, v)

)
≤ O

(
ϑ(E, v)

)
≤ ε′w for all ε′ > 0.

Next we use f∗∗ ≤a.e.X fn + f∗ for
∫

E\Em

f∗∗ dϑ ≤
∫

E\Em

fn dϑ +
∫

E\Em

f∗ dϑ,

multiply the latter by (1 + ε) and add it to the preceding inequality for

∫

Em

f dϑ + (1 + ε)
∫

E\Em

f∗∗ dϑ ≤ (1 + ε)
(∫

E

fn dϑ +
∫

E\Em

f∗ dϑ

)
+ w.

The latter holds true for all m ∈ N, n ≥ m and ϑ ∈ Θ. For fixed m ∈ N,
Lemma 5.14(b) yields together with I.5.19

∫

Em

f dθ + (1 + ε)
∫

E\Em

f∗∗ dθ ≤ lim
n→∞

∫

Em

f dθn + (1 + ε) lim
n→∞

∫

E\Em

f∗∗ dθn

≤ lim
n→∞

(∫

Em

f dθn + (1 + ε)
∫

E\Em

f∗∗ dθn

)

≤(1+ε)
(

lim
n→∞

∫

E

fn dθn + lim
n→∞

∫

E\Em

f∗ dθn

)

+ w.

Now we let m tend to infinity and apply Proposition 4.18(a) for

lim
m→∞

∫

Em

f dθ =
∫

E

f dθ

and 4.18(b) for

0 ≤ lim
m→∞

∫

(E\Em)
f∗ dθ.

Moreover, the definition of the residual component in 5.16 together with our
assumption (θn) F

{f∗}≺ θ yields

lim
n→∞

(
lim

n→∞

∫

E\Em

f∗ dθn

)
≤ Rs

(
θn,X, f∗

)
≤ O

(∫

X

f∗ dθ

)
.

The preceding inequality therefore leads to
∫

E

f dθ ≤ lim
m→∞

∫

Em

f dθ + (1 + ε) lim
m→∞

∫

(E\Em)
f∗ dθ

≤ (1 + ε) lim
n→∞

∫

E

fn dθn + O

(∫

X

f∗ dθ

)
+ w.
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Because this last inequality holds for all w ∈ W and ε > 0, and as Q
carries the weak preorder, we infer that

∫

E

f dθ ≤ lim
n→∞

∫

E

fn dθn + O

(∫

X

f∗ dθ

)
.

Now in the second step of our proof, we shall extend the preceding in-
equality from integrals over sets E ∈ R to the corresponding integrals over
X. By our assumption there is E0 ∈ R such that θ|(X\E0) ≤P θn|(X\E0)
holds for all n ∈ N. Following Proposition 5.12(c), the latter implies that∫

F g dθ ≤
∫

F g dθn for every F ∈ AR such that F ⊂ X \ E0 and
g ∈ F(F,Θ)(X,P). Recall that all functions involved in the theorem are in
F(|X|,Θ)(X,P0), hence are integrable over complements of all sets in R. Us-
ing this, for every E ∈ R such that E0 ⊂ E we infer that

∫

(X\E)
f∗∗ dθ ≤

∫

(X\E)
fn dθ +

∫

(X\E)
f∗ dθ ≤

∫

(X\E)
fn dθn +

∫

(X\E)
f∗ dθ,

hence ∫

E

fn dθn +
∫

(X\E)
f∗∗ dθ ≤

∫

X

fn dθn +
∫

(X\E)
f∗ dθ

for all n ∈ N. Thus using the above and the result of our first step we obtain

∫

E

f dθ +
∫

(X\E)
f∗∗ dθ ≤ lim

n→∞

(∫

E

fn dθn +
∫

(X\E)
f∗∗ dθ

)
+ O

(∫

X

f∗ dθ

)

≤ lim
n→∞

∫

X

fn dθn +
∫

(X\E)
f∗ dθ + O

(∫

X

f∗ dθ

)
.

Now we use the definition of the integral for
∫

X

f dθ = lim
E∈R

∫

E

f dθ

and Proposition 4.19 for

0 ≤ lim
E∈R

∫

(X\E)
f∗∗ dθ and lim

E∈R

∫

(X\E)
f∗ dθ ≤ O

(∫

X

f∗ dθ

)
.

Finally, taking the limit over E ∈ R, and combining all of the above yields
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∫

X

f dθ ≤ lim
E∈R

∫

E

f dθ + lim
E∈R

∫

(X\E)
f∗∗ dθ

≤ lim
E∈R

(∫

E

f dθ +
∫

(X\E)
f∗∗ dθ

)

≤ lim
n→∞

∫

X

fn dθn + O

(∫

X

f∗ dθ

)
,

since O
(∫

X f∗ dθ
)
+O

(∫
X f∗ dθ

)
= O

(∫
X f∗ dθ

)
by Proposition I.5.11. This

completes our proof. 
�

Because cone-valued functions do in general not have additive inverses,
we require a result corresponding to Theorem 5.23 with respect to upper
convergence for both measures and functions.

Theorem 5.24. Let Θ = {θ, θn}n∈N be equibounded L(P,Q)-valued mea-
sures on R such that θn↘θ. Let F ∈ AR, and let fn, f, f ∗ ∈ F(|F |,Θ)(X,P)
such that (θn) F

{f∗}≺ θ. Suppose that fn
≤

a.e.F f ∗ for all n ∈ N, and that
fn ↘a.e.F f. Then

lim
n→∞

∫

F

fn dθn ≤
∫

F

f dθ + O

(∫

F

f ∗ dθ

)
.

Proof. Our argument will follow the lines of the proof of Theorem 5.23,
though some substantial adaptations will be required. For the reasons given
in 5.23, without loss of generality, we may assume that F = X, and that
the stated convergence and boundedness properties hold everywhere on X
instead of Θ-everywhere.

Suppose that the functions f, fn, f ∗ and the measures Θ = {θ, θn} fulfill
these simplified assumptions of the theorem. Again, in a first step we shall
discuss the respective integrals of the functions involved over a set E ∈
R. For this, let w ∈ W be fixed. Following Proposition 5.4, there is s ∈
SR(X,V) and λ > 0 such that both 0 ≤

a.e.E f + s and 0 ≤
a.e.E f ∗ + s and∫

E s dϑ ≤ λw for all ϑ ∈ Θ. Moreover, we have fn
≤

a.e.E f ∗ for all n ∈ N by or
assumption. Using a similar argument as before, we may assume that all these
relations hold indeed everywhere on E. Next we choose 0 < ε < min{1, 1

2λ} .
We may assume that s(x) ∈ V for all x ∈ X (see 5.3 and 4.12). Thus,

under the (now simplified) assumptions of the theorem, for every x ∈ E there
is n0 ∈ N such that fn(x) ∈

(
s(x)

)
ε

(
f(x)

)
that is fn(x) ≤ γf(x) + εs(x)

for all n ≥ n0 with some 1 ≤ γ ≤ 1. According to Lemma I.4.1(b), the
latter implies that

fn(x) ≤ (1 + ε)f(x) + 2εs(x)

for all n ≥ n0. We choose a neighborhood v ∈ V such that ϑE(v) ≤ w for
all ϑ ∈ Θ. Following Theorem 1.6, all the sets

Em = {x ∈ E | fn(x) �v (1 + ε)f(x) + 2εs(x) for all n ≥ m}
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are in R, we have Em ⊂ Em+1, and
⋃

m∈N
Em = E by the above. Thus

fn(x) �v (1 + ε)f(x) + 2εs(x) and fn(x) ≤ f ∗(x)

holds Θ-almost everywhere on Em for all n ≥ m. We fix m ∈ N, recall
that δ(1 − 2ελ) > 0, and that O

(
sup{θE(v) | θ ∈ Θ}

)
≤ δw for all δ > 0,

and use Lemma 5.20(a) for

lim
n→∞

∫

Em

fn dθn ≤
∫

Em

(
(1 + ε)f + 2εs

)
dθ + Rs

(
θn, Em, f ∗

)
+ (1− 2ελ)w

≤ (1 + ε)
∫

Em

f dθ + O

(∫

X

f ∗ dθ

)
+ w.

The last part of this inequality follows, since
∫

Em
s dθ ≤

∫
E s dθ ≤ λw, and

since

Rs
(
θn, Em, f ∗

)
≤ Rs

(
θn,X, f ∗

)
≤ O

(∫

X

f ∗ dθ

)

by our assumption on the function f ∗. Next we use fn
≤

a.e.E f ∗ for∫
(E\Em) fn dϑ ≤

∫
(E\Em) f ∗ dϑ, and Lemma 5.20(b) for

lim
n→∞

∫

(E\Em)
fn dθn ≤ lim

n→∞

∫

(E\Em)
f ∗ dθn ≤

∫

(E\Em)
f ∗ dθ.

Thus, using the limit rules from Lemma I.5.19, we obtain

lim
n→∞

∫

E

fn dθn ≤ lim
n→∞

∫

Em

fn dθn + lim
n→∞

∫

(E\Em)
fn dθn

≤ (1 + ε)
∫

Em

f dθ +
∫

(E\Em)
f ∗ dθ + O

(∫

X

f ∗ dθ

)
+ w.

This holds true for all m ∈ N. Now we let m tend to infinity and apply
Proposition 4.18(a) for

lim
m→∞

∫

Em

f dθ =
∫

E

f dθ

and 4.18(b) and Proposition I.5.11 for

lim
m→∞

∫

(E\Em)
f ∗ dθ ≤ O

(∫

E

f ∗ dθ

)

≤ O

(∫

E

f ∗ dθ

)
+ O

(∫

(X\E)
f ∗ dθ

)
= O

(∫

X

f ∗ dθ

)
.
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Combining all of the above, we obtain

lim
n→∞

∫

E

fn dθn ≤ (1 + ε)
∫

E

f dθ + O

(∫

X

f ∗ dθ

)
+ w.

Because this inequality holds for all w ∈ W and ε > 0, and as Q carries
the weak preorder, we infer that

lim
n→∞

∫

E

fn dθn ≤
∫

E

f dθ + O

(∫

X

f ∗ dθ

)
.

Now in a second step, we shall extend the preceding inequality from inte-
grals over sets E ∈ R to the corresponding integrals over X. Following our
definition of the convergence of measures in 5.13, there is E0 ∈ R such that
θn|(X\E0) ≤P θ|(X\E0) holds for all n ∈ N. Following Proposition 5.12(c),
the latter implies that

∫
F g dθn ≤

∫
F g dθ for every F ∈ AR such that

F ⊂ X \ E0 and g ∈ F(F,Θ)(X,P). Using this, for every E ∈ R such that
E0 ⊂ E we infer that

∫

X

fn dθn =
∫

E

fn dθn +
∫

(X\E)
fn dθn ≤

∫

E

fn dθn +
∫

(X\E)
f ∗ dθ

for all n ∈ N. Thus using the above and the result of our first step we obtain

lim
m→∞

∫

X

fn dθn ≤ lim
m→∞

∫

E

fn dθn +
∫

(X\E)
f ∗ dθ

≤
∫

E

f dθ +
∫

(X\E)
f ∗ dθ + O

(∫

X

f ∗ dθ

)
.

Now we use the definition of the integral for

lim
E∈R

∫

E

f dθ =
∫

X

f dθ

and Proposition 4.19 for

lim
E∈R

∫

(X\E)
f ∗ dθ ≤ O

(∫

X

f ∗ dθ

)
.

Combining all of these observations and taking the limit over E ∈ R in the
above inequality yields

lim
m→∞

∫

X

fn dθn ≤
∫

X

f dθ + O

(∫

X

f ∗ dθ

)
,

since

O

(∫

X

f ∗ dθ

)
+ O

(∫

X

f ∗ dθ

)
= O

(∫

X

f ∗ dθ

)

by Proposition I.5.1. This completes our proof. 
�
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Note that for measures θn ↘ θ and a stationary sequence of functions,
that is fn = f ∗ = f ∈ F(|F |,Θ)(X,P), such that (θn) F

{f}≺ θ, Theorem 5.24
yields

lim
m→∞

∫

F

f dθn ≤
∫

F

f dθ,

since
∫

F f dθ + O
(∫

F f dθ
)

=
∫

F f dθ by Proposition I.5.14.
The combination of Theorems 5.23 and 5.24 leads to a version of Lebesgue’s

theorem on dominated convergence (see Proposition 18 in Chapter 11 of
[178]). It refers to symmetric convergence for both measures and functions.

Theorem 5.25. Let Θ = {θn}n∈N be equibounded L(P,Q)-valued mea-
sures on R such that θn −→ θ for a measure θ. Let F ∈ AR, and let
fn, f, f∗∗, f∗, f

∗∗, f ∗ ∈ F(|F |,Θ)(X,P) such that (θn) F
{f∗,f∗}≺ θ. Suppose that

f∗∗ ≤a.e.F fn + f∗ and fn + f ∗∗ ≤
a.e.F f ∗ for all n ∈ N, and that fn −→a.e.F f. Then
∫

F

f dθ ≤ lim
n→∞

∫

F

fn dθn + O

(∫

X

f∗ dθ

)

and lim
n→∞

∫

F

fn dθn ≤
∫

F

f dθ + O

(∫

F

f ∗ dθ

)
.

Proof. Let the functions fn, f, f∗∗, f∗, f∗∗f
∗ and the measures Θ = {θn}n∈N

and θ be as in the assumptions of the theorem. Following Lemma 5.21,
integrability with respect to Θ implies integrability with respect to Θ̄ =
Θ ∪ {θ}. Our assumptions therefore imply those of Theorem 5.23, and we
conclude that

∫

F

f dθ ≤ lim
n→∞

∫

F

fn dθn + O

(∫

F

f∗ dθ

)
.

In order to apply Theorem 5.24 we set gn = fn + f ∗∗ and g = f + f ∗∗ Then
gn, g ∈ F(|F |,Θ̄)(X,P) and gn

≤
a.e.F f ∗ for all n ∈ N. Moreover, fn ↘a.e.X f

implies that gn ↘a.e.X g, since the relative topologies were seen to be com-
patible with the algebraic operations in P (see Section I.4). The functions
gn, g therefore fulfill the assumptions of Theorem 5.24, and we infer that

lim
n→∞

∫

F

fn dθn + lim
n→∞

∫

F

f ∗∗ dθn ≤ lim
n→∞

∫

F

(fn + f ∗∗) dθn

≤
∫

F

f dθ +
∫

F

f ∗∗dθ + O

(∫

F

f ∗ dθ

)
.

Lemma 5.14(b) yields
∫

F

f ∗∗ dθ ≤ lim
n→∞

∫

F

f ∗∗ dθn.
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Thus using the cancellation law in I.5.10(a), we obtain

lim
n→∞

∫

F

fn dθn ≤
∫

F

f dθ + O

(∫

F

f ∗ dθ

)
+ O

(∫

F

f ∗∗ dθ

)
.

Finally, the relations fn+f ∗∗ ≤
a.e.F f ∗ and fn ↗a.e.F f imply that f(x)+f ∗∗(x) �

f ∗(x) holds θ-almost everywhere on F, and therefore
∫

F

f dθ +
∫

F

f ∗∗ dθ ≤
∫

F

f ∗ dθ

by Proposition 4.17. The element
∫

F f ∗∗ dθ of Q is therefore bounded relative
to the element

∫
F f ∗dθ (see Proposition I.4.11(b)), and Proposition I.5.14

yields that

O

(∫

F

f ∗∗ dθ

)
+ O

(∫

F

f ∗ dθ

)
= O

(∫

F

f ∗ dθ

)
,

thus completing our argument. 
�

We may use the notions of boundedness from Chapter I.4.24 to formulate a
special case of Theorem 2.25 that allows a stronger conclusion. Corresponding
to I.4.24(iv) we shall say that a subset A of F(X,P) is bounded above
relative to a function f ∈ F(X,P) if for every inductive limit neighborhood
v there are λ, ρ ≥ 0 such that g ≤ ρf + λv holds for all g ∈ A. Similarly
we define boundedness below and (relative) boundedness almost everywhere
on a set F ∈ AR, as well as boundedness for nets and sequences in F(X,P).
Recall the notations from I.4.24 and I.4.25.

Corollary 5.26. Let θ be a bounded L(P,Q)-valued measure on R. Let
F ∈ AR, and let fn, f ∗ ∈ F(|F |,θ)(X,P) such that

∫
F f ∗ dθ ∈ B

( ∫
F f dθ

)
.

Let (fn)n∈N be a sequence in F(|F |,θ)(X,P) that is θ-almost everywhere on
F bounded below and bounded above relative to f ∗. If fn −→a.e.F f, then

lim
n→∞

∫

F

fn dθ =
∫

F

f dθ.

Proof. This is an immediately consequence of Theorem 5.25: We set Θ = {θ}
and f∗∗ = f ∗∗ = 0. Given w ∈ W there are λ, ρ ≥ 0 and n0 ∈ N such that
0≤a.e.F fn + λvw and fn

≤
a.e.F ρf ∗ + λvw holds for all n ≥ n0. This means

0≤a.e.F fn + λs and fn
≤

a.e.F ρf ∗ + λt for functions s, t ∈ SR(X,V) such that
both

∫
X s dθ ≤ w and

∫
X t dθ ≤ w. Now we apply Theorem 5.25 with λs in

place of f∗ and ρf ∗+λt in place of f ∗ from 5.25. Then O
( ∫

F λs dθ
)
≤w and

O
( ∫

F (ρf ∗ + λt) dθ
)
≤ O

(
f ∗
)

+ w by Proposition I.5.11. Because
∫

F fdθ +
O
(
f ∗
)

=
∫

F f dθ by Proposition I.5.14 and our assumption on the function
f ∗, and because the neighborhood w ∈ W was arbitrarily chosen, our claim
follows. 
�
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An elementary function is a function f = ϕ⊗a ∈ F(X,P), where ϕ is
a bounded measurable non-negative real-valued function supported by a set
E ∈ R, and a is an element of P. Note that elementary functions are con-
tained in FR(X,P). Indeed, χE⊗a ∈ FR(X,P) implies ϕ⊗a = ϕ⊗(χE⊗a) ∈
FR(X,P) by Lemma 2.6. We make the following observations:

Lemma 5.27. Let ϕ be a bounded measurable non-negative real-valued func-
tion supported by a set in R. There is a sequence (ϕn)n∈N of real-valued step
functions converging uniformly on X to ϕ and such that 0 ≤ ϕn ≤ ϕ for
all n ∈ N.

Proof. Let the function ϕ be as stated, supported by the set E ∈ R. With-
out loss of generality, we may assume that 0 ≤ ϕ ≤ 1. For n ∈ N and
i = 1, . . . n we set

Ei
n =

{
x ∈ E

∣
∣
∣

i− 1
n

< ϕ(x) ≤ i

n

}
∈ R

and ϕn =
∑n

i=1
i−1
n χEi

n
. Then 0 ≤ ϕn(x) ≤ ϕ(x) ≤ ϕn(x) + 1/n holds for

all x ∈ X. 
�
Corollary 5.28. Let θ be a bounded L(P,Q)-valued measure. Let ϕ be
a bounded non-negative real-valued function supported by a set in R, and
let (ϕn)n∈N be a sequence of measurable real-valued functions such that
0 ≤ ϕn ≤

a.e.X
ϕ for all n ∈ N, converging θ-almost everywhere to ϕ. Then

for every a ∈ P the sequence (ϕn⊗a)n∈N in F(X,P) is bounded be-
low and θ-almost everywhere bounded above relative to ϕ⊗a, the sequence( ∫

X ϕn⊗a dθ
)
n∈N

in Q is bounded below and bounded above relative to the
element

∫
X ϕ⊗a dθ, and

ϕn⊗a −→a.e.X ϕ⊗a and lim
n→∞

∫

X

ϕn⊗a dθ =
∫

X

ϕ⊗a dθ.

Proof. Let the function ϕ be as stated, supported by the set E ∈ R. We
may assume that 0 ≤ ϕn

≤
a.e.X ϕ ≤ 1 holds for all n ∈ N. For a ∈ P we

have ϕn⊗a ∈ FR(X,P) for all n ∈ N by Lemma 2.6. There is a set Z ∈ AR

of measure 0 such that the functions ϕ̃n = χ(X\Z)⊗ϕn converge pointwise
everywhere to ϕ̃ = χ(X\Z)⊗ϕ and that ϕ̃n ≤ ϕ̃ ≤ 1 holds for all n ∈ N.
(For this, recall that a countable union of zero sets is again a zero set.)
Theorem 1.7 guarantees that ϕ̃ is measurable, hence ϕ̃⊗a ∈ FR(X,P), and
the function ϕ⊗a is integrable by 4.12. Let x ∈ X \ Z. If ϕ(x) = 0, then
that ϕn(x) = 0 for all n ∈ N as well. If ϕ(x) > 0, then, given v ∈ V
and ε > 0, there is λ ≥ 1 such that 0 ≤ a + λv and n0 ∈ N such that
ϕn(x) ≤ ϕ(x) ≤ (1 + ε)ϕn(x) for all n ≥ n0. Thus

ϕn(x)(a + λv) ≤ ϕ(x)(a + λv) ≤ ϕ(x)(a) + (1 + ε)λϕn(x)v
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and

ϕ(x)(a + λv) ≤ (1 + ε)ϕn(x)(a + λv) ≤ (1 + ε)ϕn(x)(a) + (1 + ε)λϕ(x)v.

Now the cancellation law for positive elements (Lemma I.4.2 in [100]) yields

ϕn(x)a ≤ ϕ(x)a + 2ελϕn(x)v ≤ ϕ(x)a + 2ελv

and
ϕ(x)a ≤ (1 + ε)ϕn(x)a + 2ελϕ(x)v ≤ ϕn(x)a + 2ελv.

This shows ϕn(x)a ∈ vs
2ελ

(
ϕ(a)

)
for all n ≥ n0 and demonstrates

ϕn(x)a −→ ϕ(x)a

in the symmetric relative topology of P. Thus ϕn⊗a −→a.e.X ϕ⊗a holds as
claimed.

Furthermore, given an inductive limit neighborhood v there is v ∈ V
such that χE⊗v ≤ v and λ ≥ 0 such that 0 ≤ a + λv. Then

0 ≤ ϕn⊗(a + λv) ≤ ϕn⊗a + λv

and
ϕn⊗a ≤ ϕn⊗(a + λv)≤a.e.X ϕ⊗(a + λv) ≤ ϕ⊗a + λv

for all n ∈ N. The sequence (ϕn⊗a)n∈N in F(X,P) is therefore bounded
below and θ-almost everywhere bounded above relative to the function
ϕ⊗a. Furthermore, for any w ∈ W we may choose the inductive limit
neighborhood vw. Then the above yields 0 ≤

∫
X ϕn⊗a dθ + λw as well

as
∫

X ϕn⊗a dθ ≤
∫

X ϕ⊗a dθ + λw for all n ∈ N. Hence the sequence( ∫
X ϕn⊗a dθ

)
n∈N

in Q is seen to be bounded below and bounded above rel-
ative to the element

∫
X ϕ⊗a dθ. The convergence statement for the sequence

of integrals follows from Corollary 5.26. 
�
Corollary 5.28 in combination with Lemma 5.27 yields a strengthen-

ing of the result of Corollary 5.9, that is the approximation of integrable
functions by a net of step functions, for elementary functions
f = ϕ⊗a ∈ F(X,P) : There is a sequence (hn)n∈N of step functions that is
bounded below and bounded above relative to f such that

hn −→ f and lim
n→∞

∫

X

hn dθ =
∫

X

f dθ.

5.29 Remarks. (a) If (Q,W) is the (simplified) standard lattice comple-
tion (see I.57) of some subcone (Q0,W0), that is if (Q,W) is a cone of
R-valued functions on P∗, then for elements l,m, n ∈ Q the statement
l ≤ m + O(n) means that l(μ) ≤ m(μ) holds for all μ ∈ P∗ such that
n(μ) < +∞. The convergence statements of Theorems 5.23 to 5.25 can then
be read in this light. The conclusion of Theorem 5.25 means for example that
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(∫

F

f dθ

)
(μ) ≤ lim

n→∞

(∫

F

fn dθn

)
(μ)

holds for all μ ∈ P∗ such that
(∫

F f∗ dθ
)
(μ) < +∞ , and

lim
n→∞

(∫

F

fn dθn

)
(μ) ≤

(∫

F

f dθ

)
(μ)

for all μ ∈ P∗ such that
(∫

F f ∗ dθ
)
(μ) < +∞ .

(b) The convergence statements in the preceding Theorems 5.23 to 5.25
refer to order convergence in Q for the concerned sequences of integrals.
Stronger claims than those might state convergence in the lower, upper and
symmetric topologies of Q, respectively. In the context of our approach, such
claims are however not valid in general, even for stationary sequences of mea-
sures, as the following simple example can show: Let R be the σ-algebra of
all Borel sets in X = [0, 1], let P = R with its usual order and locally convex
cone topology. Let Q be the cone of all bounded below R-valued functions
on X, endowed with the pointwise operations and order and the strictly
positive constant functions w as neighborhoods. Clearly (Q,W) is a locally
convex complete lattice cone, and order convergence in Q means pointwise
convergence for the concerned functions. We define an L(P,Q)-valued mea-
sure θ on R, setting θE(α) = αχE ∈ Q for E ∈ R and α ∈ P. It is then
straightforward to check that

∫
X h dθ = h holds for every P-valued step

function h on X, that is the integral over θ yields the identity operator
from F(|X|,θ)(X,P) into Q. Now, if we consider the stationary sequences
ϑn = θn = θ in Theorems 5.23 to 5.25, a review of the assumptions there
reveals that only pointwise convergence is required for the sequences of func-
tions (fn)n∈N and (gn)n∈N in F(|X|,θ)(X,P). Thus only pointwise, that
is order convergence will result for their integrals in general. Note that in
this example the measure θ is countably additive only with respect to or-
der convergence in Q, not with respect to the weak (see Section I.4.6) or
indeed the symmetric relative topology of Q. We shall demonstrate below
(Theorem 5.36) that countable additivity for a measure with respect to the
symmetric relative topology of Q in this situation would indeed imply the
above stronger statement of convergence for the corresponding sequence of
integrals. This shows in particular that no such measure can represent the
identity operator from F(|X|,θ)(X,P) into Q.

We shall in the following discuss some special cases where convergence with
respect to the symmetric topology does indeed result from Theorems 5.23
to 5.25. For the sake of simplicity we shall restrict ourselves to stationary
sequences of measures θn = θ in this context. The preceding Remark 5.29(b)
suggests that we shall need to impose further conditions for this purpose. One
of these conditions will refer to the countable additivity of the measure θ,
another one will require the availability of sufficiently many order continuous
linear functionals on Q.
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5.30 Strong Additivity. Countable additivity of an L(P,Q)-valued mea-
sure θ as introduced in Section 3 is meant with respect to order convergence
in the locally convex complete lattice cone (Q,W). In Theorem 3.11 we
verified that in special cases this implies convergence in a stronger sense.
In this context, we shall say that an L(P,Q)-valued measure θ is strongly
additive if for every decreasing sequence (En)n∈N of sets in R such that⋂

n∈N
En = ∅, for a ∈ P and w ∈ W there is n0 ∈ N such that

θEn
(a) ≤ O

(
θE1 (a)

)
+ w

holds for all n ≥ n0. Similarly, we shall say that a family Θ of L(P,Q)-
valued measures is uniformly strongly additive if it is equibounded and if the
above property holds with the same n0 for all θ ∈ Θ.

Note that for strong additivity we do not require that a measure is count-
ably additive with respect to the symmetric topology of Q, since this would
be overly restrictive. For Q = R, for example, the element +∞ is iso-
lated, that is both open and closed in the symmetric topology of R. Thus,
for a disjoint union E =

⋃
i∈N

Ei of sets in R such that θE(a) = +∞
for a ∈ P, countable additivity with respect to the symmetric topology
would require that θ(∪n

i=1Ei)(a) = +∞ for all n greater than some n0 ∈ N.
Lemma 5.31(b) will however imply that for a uniformly strongly additive
family Θ of L(P,Q)-valued measures a requirement corresponding to 5.30
holds indeed with respect to the symmetric topology of Q; more precisely:
Given a decreasing sequence (En)n∈N of sets in R such that

⋂
n∈N

En = ∅,
a ∈ P and w ∈ W, there is n0 ∈ N such that

0 ≤ θEn
(a) + w and θEn

(a) ≤ O
(
θE1 (a)

)
+ w

holds for all θ ∈ Θ and n ≥ n0.
There are several well-known results about strong additivity. Our ver-

sion of Pettis’ theorem, that is Theorem 3.11, (see Theorem IV.10.1 in [55]),
states that in case that (P,V) is a locally convex topological vector space
and (Q,W) is the standard lattice completion of some subcone (Q0,W),
every L(P,Q0)-valued measure is also strongly additive. The Vitali-Hahn-
Saks theorem see Theorem III.7.2 in [55]) implies a theorem by Nikodým
which states that every setwise convergent sequence of real- or Banach space-
valued measures is in fact uniformly strongly additive (see Corollary III.7.4
and Theorem IV.10.6 in [55]). We shall investigate a few implications of
strong additivity. Lemmas 5.31 and 5.32 will strengthen the corresponding
statements from Proposition 4.18.

Lemma 5.31. Suppose that the family Θ of L(P,Q)-valued measures is
uniformly strongly additive. Let E ∈ R and f ∈ F(E,Θ)(X,P).

(a) If En ∈ R such that En ⊂ En+1 for all n ∈ N, and E =
⋃

n∈N
En,

then for every w ∈ W there is n0 ∈ N such that∫
En

f dθ ≤
∫

E f dθ + w for all θ ∈ Θ and n ≥ n0.
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(b) If En ∈ R such that E ⊃ En ⊃ En+1 for all n ∈ N, and
⋂

n∈N
En = ∅,

then for every w ∈ W there is n0 ∈ N such that
0 ≤

∫
En

f dθ + w for all θ ∈ Θ and n ≥ n0.

Proof. We shall first prove Part (b) of the lemma. Let En ∈ R for n ∈ N be
subsets of E ∈ R such that En ⊃ En+1 and

⋂
n∈N

En = ∅. In a first step,
we shall consider a function f ∈ FR(X,P). Let w ∈ W. Because the family
Θ is supposed to be equibounded, there is v ∈ V such that θE(v) ≤ w for
all θ ∈ Θ. This implies O

(
θE(v)

)
≤ εw for all θ ∈ Θ and ε > 0. Following

Lemma 2.4(b), there is λ ≥ 0 such that 0 ≤ χE⊗f + λχE⊗v. By 5.30 there
is n0 ∈ N such that

θEn
(v) ≤ O

(
θE(v)

)
+

1
2λ

w ≤ 1
λ

w

for all θ ∈ Θ and n ≥ n0. This yields

0 ≤
∫

En

(χE⊗f + λχE⊗v) dθ =
∫

En

f dθ + λθEn
(v) ≤

∫

En

f dθ + w

for all θ ∈ Θ and n ≥ n0. Now in the second and general step, let f ∈
F(E,Θ)(X,P). Given w ∈ W and 0 < ε ≤ 1/2, let the functions f(w,ε) ∈
FR(X,P) and s(w,ε) ∈ FR(X,V) be as in the definition of integrability
in 5.3, that is

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) dθ ≤ εw

for some 1 ≤ γ ≤ 1 + ε and all θ ∈ Θ. Following our first step, there is
n0 ∈ N such that 0 ≤

∫
En

f(w,ε) dθ + w/2, hence 0 ≤ γ
∫

En
f dθ +

( 1
2 + ε

)
w

for all θ ∈ Θ and n ≥ n0. Because γ ≥ 1 and ε ≤ 1/2 this yields

0 ≤
∫

En

f dθ + w

for all θ ∈ Θ and n ≥ n0, our claim in Part (b). For Part (a), let En ∈ R

such that En ⊂ En+1 for all n ∈ N, and E =
⋃

n∈N
En. We set Fn =

E \ En ∈ R and have Fn ⊃ Fn+1 and
⋂

n∈N
Fn = ∅. For a function f ∈

F(E,Θ)(X,P) we may now use Part (b) of the lemma: Given w ∈ W, there
is n0 ∈ N such that 0 ≤

∫
Fn

f dθ +w holds for all θ ∈ Θ and n ≥ n0. This
yields ∫

En

f dθ ≤
∫

En

f dθ +
(∫

Fn

f dθ + w

)
=
∫

E

f dθ + w

for all θ ∈ Θ and n ≥ n0, our claim in Part (a). 
�

Lemma 5.32. Suppose that the family Θ of L(P,Q)-valued measures is
uniformly strongly additive and that the function f ∈ F(X,P) is strongly
integrable over E ∈ R with respect to Θ.
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(a) If En ∈ R are such that En ⊂ En+1 for all n ∈ N, and E =
⋃

n∈N
En,

then for every w ∈ W there is n0 ∈ N such that∫
E f dθ ≤

∫
En

f dθ + O
(∫

E f dθ
)

+ w for all θ ∈ Θ and n ≥ n0.
(b) If En ∈ R are such that E ⊃ En ⊃ En+1 for all n ∈ N, and

⋂
n∈N

En =
∅, then for every w ∈ W there is n0 ∈ N such that∫

En
f dθ ≤ O

(∫
E f dθ

)
+ w for all θ ∈ Θ and n ≥ n0.

Proof. Again, we shall first prove Part (b) of the Lemma. Let f ∈ F(X,P)
be strongly integrable over E ∈ R with respect to Θ. For w ∈ W, according
to 5.18 there is a step function h =

∑m
i=1 χFi

⊗ai ∈ SR(X,P) such that
∫

G

f dθ ≤
∫

G

h dθ + w/3

and such that
∫

G h dθ is w-bounded relative to
∫

G f dθ for all θ ∈ Θ and
every subset G ∈ R of E. Let En ∈ R for n ∈ N be subsets of E such
that En ⊃ En+1 and

⋂
n∈N

En = ∅. For every n ∈ N and θ ∈ Θ, we
calculate ∫

En

h dθ =
m∑

i=1

θ(En∩Fi)(ai).

The measures in Θ are supposed to be uniformly strongly additive. Thus
there is n0 ∈ N such that

θ(En∩Fi)(ai) ≤ O
(
θ(E∩Fi)(ai)

)
+

1
3m

w

for all n ≥ n0, θ ∈ Θ and i = 1, . . . ,m. Thus, using Proposition I.5.11

∫

En

h dθ ≤
m∑

i=1

O
(
θ(E∩Fi)(ai)

)
+

1
3
w = O

(∫

E

h dθ

)
+

1
3

w

and ∫

En

h dθ ≤ O

(∫

E

f dθ

)
+

2
3

w,

since
∫

E h dθ ∈ Bw

(∫
E f dθ

)
, which by Proposition I.5.13(a) implies that

O
(∫

E h dθ
)
≤ O

(∫
E h dθ

)
+ εw for all ε > 0. Thus for all n ≥ n0 and

θ ∈ Θ we infer that
∫

En

f dθ ≤
∫

En

h dθ +
1
3
w ≤ O

(∫

E

f dθ

)
+ w,

that is Part (b) of our claim. For Part (a), let En ∈ R such that En ⊂ En+1
for all n ∈ N, and E =

⋃
n∈N

En. We set Fn = E \ En ∈ R and have
Fn ⊃ Fn+1 and

⋂
n∈N

Fn = ∅. For a function f ∈ F(X,P) that is strongly
integrable over E ∈ R with respect to Θ we may now use Part (b) of the
lemma: Given w ∈ W, there is n0 ∈ N such that

∫
Fn

f dθ ≤ O
(∫

E f dθ
)
+w
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for all θ ∈ Θ and n ≥ n0. This yields
∫

E

f dθ =
∫

En

f dθ +
∫

Fn

f dθ ≤
∫

En

f dθ + O

(∫

E

f dθ

)
+ w

for all θ ∈ Θ and n ≥ n0, our claim in Part (a). 
�

5.33 Weakly Sequentially Compact Sets of Measures. A family Θ of
L(P,Q)-valued measures is said to be weakly sequentially compact if every
sequence (θn)n∈N in Θ contains a setwise convergent subsequence (θnk

)k∈N,
that is θnk

−→ θ for some measure θ on R (see Definition II.3.18 in [55]).
Note that we do not require that θ ∈ Θ. As a consequence, every subset of
a sequentially compact set is again sequentially compact.

Theorem IV.9.1 in [55] provides a well-known criterion for weak sequential
compactness of a family of finite real-valued measures defined on a σ-algebra
R : Such a family Θ is weakly sequentially compact if and only if (i) Θ is
equibounded, that is the total variation of its elements is bounded on X,
and (ii) Θ is uniformly (strongly) additive. We shall use this to establish a
criterion for sequential compactness of a family of functional-valued measures,
that is for the case Q = R.

Lemma 5.34. Suppose that all elements of P are bounded and that P is
separable in the symmetric relative v-topology for every v ∈ V. Suppose that
X ∈ R. Then every uniformly strongly additive family of P∗-valued measures
on R is weakly sequentially compact.

Proof. Let Θ be a uniformly strongly additive family of P∗-valued measures
on R. Because we assume that X ∈ R, and because uniform strong additiv-
ity includes equiboundedness (see 5.30), there is v ∈ V such that θX(v) ≤ 1
for all θ ∈ Θ. In a first step of our argument we fix an element a ∈ P and
choose λ ≥ 0 such that both 0 ≤ a + λv and a ≤ λv. The latter is possible
because all elements of P are supposed to be bounded, which implies in par-
ticular that ϑE(a) < +∞ for every P∗-valued measure ϑ and E ∈ R. For
every θ ∈ Θ we may therefore define a real-valued measure θa on R, setting
θa(E) = θE(a) for every E ∈ R. The above implies that θa(E) ≤ λθE(v)
and 0 ≤ θa(E) + λθE(v), hence |θa(E)| ≤ λθE(v) < λθX(v) ≤ λ. Using
this, we can estimate the usual (total) variation var (θa,X) of this measure
(see Definition III.1.4 in [55]) as follows: For disjoint sets E1, . . . , En ∈ R we
have

n∑

i=1

|θEi
(a)| ≤ λ

n∑

i=1

θEi
(v) = λθ(∪n

i=1Ei)(v) ≤ λ,

hence

var (θa,X) = sup

{
n∑

i=1

|θa(Ei)| | E1, . . . , En ∈ R, disjoint

}

≤ λ.
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Thus for the family Θa = {θa | θ ∈ Θ} of real-valued measures, firstly the
total variation of its elements is bounded by λ, and secondly, the countable
additivity on R is uniform with respect to all measures in Θa. The latter fol-
lows from our requirement that the family Θ is uniformly strongly countably
additive. Indeed, let En ∈ R such that En ⊃ En+1 and

⋂
n∈N

En = ∅. Fol-
lowing 5.30, given ε > 0, there is n0 ∈ N such that θEn

(a) ≤ O
(
θE(a)

)
+ ε

for all n ≥ n0 and θ ∈ Θ. Because θE(a) is finite, we have O
(
θE(a)

)
= 0.

Thus
θa(En) = θEn

(a) ≤ ε

holds for all θa ∈ Θa and n ≥ n0. Now the criterion from Theorem IV.9.1 in
[55] (see the remark following 5.33) for weak sequential compactness of finite
real-valued measures yields that the set Θa is indeed weakly sequentially
compact. Now in the second step of our argument, following our assumption
of the separability of P, we choose a countable subset {an}n∈N of P that
is dense with respect to the symmetric relative v-topology. Let (θn)n∈N be a
sequence in Θ. We shall apply a diagonal procedure in order to construct a
weakly convergent subsequence of (θn)n∈N. For each n ∈ N, the set Θan

of
real-valued measures was seen to be weakly sequentially compact. Thus there
is a subsequence (θ1

n)n∈N of (θn)n∈N and a real-valued measure ϑ1 such that
θ1

n E(a1) → ϑ1(E) for all E ∈ R. Likewise, there is a subsequence (θ2
n)n∈N

of (θ1
n)n∈N and a real-valued measure ϑ2 such that θ2

n E(a2) → ϑ2(E) for
all E ∈ R. And so on... We choose the subsequence (θn

n)n∈N of (θn)n∈N

and claim that this subsequence converges setwise towards some P∗-valued
measure ϑ. Indeed, for every i ∈ N we have by our construction θn

n E(ai)→
ϑi(E) for all E ∈ R. Let P0 be the subcone of P spanned by the elements
{an}n∈N. By our assumption P0 is dense in P with respect to the symmetric
relative v-topology. For a fixed E ∈ R and a =

∑n
i=1 λiai ∈ P0 for λi ≥ 0,

set
ϑE(a) = lim

n→∞
θn

n E(a) =
n∑

i=1

λiϑ
i(E) ∈ R.

Clearly, ϑE is a linear functional on P0, and a ≤ b+v for a, b ∈ P0 implies
that

θE(a) ≤ θE(b) + θE(v) ≤ θE(b) + 1,

for all θ ∈ Θ. Using the limit rules, this shows in turn that ϑE(a) ≤ ϑE(b)+1
holds as well. The linear functional ϑE : P0 → R is therefore continuous
with respect to the locally convex topology on P generated by the single
neighborhood v ∈ V, that is the neighborhood system Vv = {αv | α > 0},
and can therefore be uniquely extended to a continuous linear functional
on the whole cone P (see Theorem I.5.56). Moreover, for every a ∈ P and
0 < ε ≤ 1 there is some b ∈ P0 such that both a ∈ vε(b) and b ∈ vε(a). This
implies by the above that θn

n E(a) ∈ vε

(
θn

n E(b)
)

and θn
n E(b) ∈ vε

(
θn

n E(a)
)

for all n ∈ N. There is n0 ∈ N such that for all n ≥ n0 we have θn
n E(b) ∈

vε

(
ϑE(b)

)
and ϑE(b) ∈ vε

(
θn

n E(a)
)
. Now combining all of the above yields

with Lemma I.4.1(a)
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θn
n E(a) ∈ vε

(
θn

n E(b)
)
⊂ v3ε

(
ϑE(b)

)
⊂ v7ε

(
ϑE(a)

)

and likewise

ϑE(a) ∈ vε

(
ϑE(b)

)
⊂ v3ε

(
θn

n E(b)
)
⊂ v7ε

(
θn

n E(a)
)

for all n ≥ n0. This demonstrates that θn
n E(a) → ϑE(a) for all a ∈ P. All

left to show is that the mapping E �→ ϑE : R → P∗ is countably additive,
that is ϑ is indeed a P∗-valued measure on R. For this, let a ∈ P, and let
Ei ∈ R, for i ∈ N, be disjoint sets. Using the additivity of the measures θn

n

and the limit rules, we have

ϑ(∪i0
i=1Ei)

(a) = lim
n→∞

(
θ n

n (∪i0
i=1Ei)

(a)
)

=
i0∑

i=1

(
lim

n→∞
θn

n Ei
(a)
)

=
i0∑

i=1

ϑEi
(a).

for every i0 ∈ N. This shows finite additivity in particular. Given ε > 0,
it follows from the uniform strong additivity of the measures in Θ together
with Lemma 5.31(b) that there is i0 ∈ N such that |θ(∪∞i=i0+1Ei)(a)| ≤ ε holds
for all θ ∈ Θ, hence also |ϑ(∪∞i=i0+1Ei)(a)| ≤ ε. This yields with the above

∣
∣
∣ϑ(∪∞i=1Ei)(a)−

i0∑

i=1

ϑEi
(a)
∣
∣
∣ =

∣
∣
∣ϑ(∪∞i=1Ei)(a)− ϑ(∪i0

i=1Ei)
(a)
∣
∣
∣

=
∣
∣
∣ϑ(∪∞i=i0+1Ei)(a)

∣
∣
∣ ≤ ε.

Because ε > 0 was arbitrarily chosen, this yields

ϑ(∪∞i=1Ei)(a) =
∞∑

i=1

ϑEi
(a).

Summarizing, we have verified that the subsequence
(
θn

n

)
n∈N

of
(
θn

)
n∈N

converges setwise towards the P∗-valued measure ϑ. 
�
In Section 3.9 we introduced the composition of an operator-valued mea-

sure θ with two linear operators. We shall now investigate integrals with
respect to this type of measures. Let us recall our notations: Let (P,V) and
(P̃, Ṽ) be full locally convex cones, and let (Q,W) and (Q̃, W̃) be locally
convex complete lattice cones. For an L(P,Q)-valued measure θ, a contin-
uous linear operator S ∈ L(P̃,P) and an order continuous linear operator
U ∈ L(Q, Q̃), the L(P̃, Q̃)-valued measure (U ◦ θ ◦ S) was defined as the
set function

E �→ (U ◦ θE ◦ S) : R → L(P̃, Q̃).

For a P̃-valued function f ∈ F(X, P̃) and a linear operator S ∈ L(P̃,P)
we denote by S ◦ f ∈ F(X,P) the P-valued function

x �→ S
(
f(x)

)
: X → P.
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Theorem 5.35. Let (P,V) and (P̃, Ṽ) be full locally convex cones, and let
(Q,W) and (Q̃, W̃) be locally convex complete lattice cones. Let Θ be an
equibounded family of L(P,Q)-valued measures, and let Υ ⊂ L(Q, Q̃) be an
equicontinuous family of continuous and order continuous linear operators.
Let S ∈ L(P̃,P) such that S is onto and S(Ṽ ) ⊂ V. Let

Θ̃ =
{
(U ◦ θ) | U ∈ Υ, θ ∈ Θ} and Θ̂ =

{
(θ ◦ S) | θ ∈ Θ}

be the corresponding families of L(P, Q̃)- and L(P̃,Q)-valued composition
measures on R. Let F ∈ AR. If the function f ∈ F(X, P̃) is integrable
over F with respect to Θ̂, then the function S ◦ f ∈ F(X,P) is integrable
over F with respect to Θ̃, and

∫

F

(S ◦ f) d(U ◦ θ) = U

(∫

F

f d(θ ◦ S)
)

holds for all θ ∈ Θ and U ∈ Υ.

Proof. We may assume that F = X. Let Θ, Υ, S and Θ̃, Θ̂ be as stated, and
let θ ∈ Θ and U ∈ Υ. First, for a step function h =

∑n
i=1 χEi

⊗ãi ∈ SR(X, P̃)
we have

∫

X

(S ◦ h) d(U ◦ θ) =
n∑

i=1

(
U ◦ θ

)
Ei

(
S(ãi)

)

=
n∑

i=1

U
(
θEi

(S(ãi))
)

= U

(
n∑

i=1

(
θ ◦ S

)
Ei

(ãi)

)

= U

(∫

X

h d(θ ◦ S)
)

.

Next we consider a function f ∈ FR(X, P̃). According to Theorem 1.8(c) the
function S ◦ f ∈ FR(X,P) is also measurable. Let v be an inductive limit
neighborhood for F(X,P). Then for every E ∈ R there is vE ∈ V such
that χE⊗vE ≤ v. Correspondingly, there is ṽE ∈ Ṽ such that S(ṽE) ≤ vE

(see 2.2). Hence S ◦ (χE⊗ṽE) ≤ χE⊗vE ≤ v. This shows that the convex
set ṽ of all measurable Ṽ-valued functions s̃ such that S ◦ s̃ ≤ v is a
corresponding inductive limit neighborhood for FR(X, P̃). By 2.3 there is a
step function h ∈ SR(X, P̃) such that h ≤ f + ṽ. Then S ◦ h ∈ SR(X,P)
and S ◦ h ≤ S ◦ f + v. This shows S ◦ f ∈ FR(X,P). Now let E ∈ R

and (U ◦ θ) ∈ Θ̃. Given w̃ ∈ W̃ and ε > 0 we choose w ∈ W such that
U(s) ≤ U(t) + w̃ whenever s ≤ t + w for s, t ∈ Q. Correspondingly, there
is v ∈ V such that θE(v) ≤ w, and ṽ ∈ Ṽ such that S(ṽ) ≤ v. According
to Corollary 2.8, given the inductive limit neighborhood ṽ = {χX⊗ṽ} there
is 1 ≤ γ ≤ 1 + ε and a bounded below sequence (hn)n∈N of step functions
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in SR(X, P̃) such that: (i) hn ≤ γf + χX⊗ṽ for all n ∈ N and (ii) for
every x ∈ E there is n0 ∈ N such that f(x) ≤ hn(x) for all n ≥ n0. Thus
(i˜) S◦hn ≤ γ(S◦f)+χX⊗v for all n ∈ N and (ii˜) for every x ∈ E there is
n0 ∈ N such that (S ◦ f)(x) ≤ (S ◦ hn)(x) for all n ≥ n0. As (θ ◦ S)E(ṽ) =
θE

(
S(ṽ)

)
≤ θE(v) ≤ w and (U ◦θ)E(v) = U

(
θE(v)

)
≤ U(w) ≤ w̃, this yields

∫

E

hn d(θ ◦ S) ≤ γ

∫

E

f d(θ ◦ S) + w

and ∫

E

(S ◦ hn) d(U ◦ θ) ≤ γ

∫

E

(S ◦ f) d(U ◦ θ) + w̃

for all n ∈ N, as well as
∫

E

f d(θ ◦ S) ≤ lim
n→∞

∫

E

hn d(θ ◦ S)

and ∫

E

(S ◦ f) d(U ◦ θ) ≤ lim
n→∞

∫

E

(S ◦ hn) d(U ◦ θ)

with Theorem 5.23. Using our observation for order continuous linear oper-
ators from I.5.29 and the latter we infer that

U

(∫

E

f d(θ ◦ S)
)
≤ U

(
lim

n→∞

∫

E

hn d(θ ◦ S)
)

≤ lim
n→∞

U

(∫

E

hn d(θ ◦ S)
)

= lim
n→∞

∫

E

(S ◦ hn) d(U ◦ θ)

≤ γ

∫

E

(S ◦ f) d(U ◦ θ) + w̃

and
∫

E

(S ◦ f) d(U ◦ θ) ≤ lim
n→∞

∫

E

(S ◦ hn) d(U ◦ θ)

= lim
n→∞

U

(∫

E

hn d(θ ◦ S)
)

≤ γ U

(∫

E

f d(θ ◦ s)
)

+ w̃.

This holds true for all w̃ ∈ W̃ and ε > 0 and therefore demonstrates
∫

E

(S ◦ f) d(U ◦ θ) = U

(∫

E

f d(θ ◦ S)
)

for all f ∈ FR(X, P̃) and θ ∈ Θ and U ∈ Υ.
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Next we observe that any set in AR of measure zero with respect to Θ̂
is also of measure zero with respect to Θ̃. Indeed, if (θ ◦ S)E = 0 for a set
E ∈ R and all θ ∈ Θ, then θE

(
S(ã)

)
= 0 for all ã ∈ P̃. As the operator

S is supposed to be surjective, this yields θE(a) = 0 for all a ∈ P, hence
θE = 0 and (U ◦ θ)E = 0 for all U ∈ Υ. Now let f ∈ F(X,Θ̂)(X, P̃). Let

E ∈ R, let w̃ ∈ W̃ and ε > 0. Because the family Υ was supposed to be
equicontinuous, there is w ∈ W such that U(s) ≤ U(t) + w̃ holds for all
U ∈ Υ whenever s ≤ t+w for s, t ∈ Q. Our definition in 5.3 of integrability
with respect to the family Θ̂ over the set E ∈ R requires that there are
functions f(w,ε) ∈ FR(X, P̃) and s(w,ε) ∈ FR(X, Ṽ) such that

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε) and
∫

E

s(w,ε) d(θ ◦ S) ≤ εw

for some 1 ≤ γ ≤ 1 + ε and all θ ∈ Θ. Then S ◦ f(w,ε) ∈ FR(X,P) and
S ◦ s(w,ε) ∈ FR(X,V) by our assumption that S(Ṽ) ⊂ V. By the above we
have

S ◦ f ≤a.e.E S ◦ f(w,ε)
≤

a.e.E γ(S ◦ f) + (S ◦ s(w,ε))

and
∫

E

(S ◦ s(w,ε)) d(U ◦ θ) = U

(∫

E

s(w,ε) d(θ ◦ S)
)
≤ εw̃

for all f ∈ FR(X, P̃) and θ ∈ Θ and U ∈ Υ. By Definition 5.3, the function
S ◦ f is therefore also integrable over E with respect to the family Θ̃, and
we have

∫

E

(S ◦ f) d(U ◦ θ) = lim
ε>0

w∈W

∫

E

(S ◦ f(w,ε)) d(U ◦ θ)

= lim
ε>0

w∈W
U

(∫

E

f(w,ε) d(θ ◦ S)
)

= U

(

lim
ε>0

w∈W

∫

E

f(w,ε) d(θ ◦ S)

)

= U

(∫

E

f d(θ ◦ S)
)

for every θ ∈ Θ and U ∈ Υ. Finally, we verify the second part of
Definition 5.3, that is integrability over F = X. We have
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∫

X

(S ◦ f) d(U ◦ θ) = lim
E∈R

∫

E

(S ◦ f) d(U ◦ θ)

= lim
E∈R

U

(∫

E

f d(θ ◦ S)
)

= U

(
lim
E∈R

∫

E

f d(θ ◦ S)
)

= U

(∫

X

f d(θ ◦ S)
)

for all θ ∈ Θ and U ∈ Υ. Thus S ◦ f ∈ F(X,Θ̃)(X,P), hence our claim. 
�

We shall in the following mainly use this result for the special case P̃ = P
and the identity operator for S, for Q̃ = R and an equicontinuous set Υ of
order continuous linear functionals in P∗.

Recall from Section I.5.32 that the order continuous linear functionals are
said to support the separation property for a locally convex complete lattice
cone (Q,W) if for every neighborhood w ∈ W we have l ≤ m + w for
l,m ∈ Q whenever μ(l) ≤ μ(m) + 1 holds for all order continuous lattice
homomorphisms μ ∈ w◦.

We are now prepared to formulate and prove a combined version of the
Convergence Theorems 5.23, 5.24 and 5.25, that under additional assump-
tions yields convergence with respect to the upper, lower and symmetric
topologies of Q, respectively, for the concerned sequence of integrals. Be-
cause we shall deal only with bounded elements of Q, we do not need to
consider the relative topologies, since they coincide locally with the given
topologies in this case (see Section I.4). Recall that for a sequence (an)n∈N

in Q convergence towards a ∈ Q in the upper, or lower topology of Q
means that for every w ∈ W there is n0 ∈ N such that

an ≤ a + w, or a ≤ an + w

holds for all n ≥ n0, respectively. Because these topologies are generally far
from Hausdorff, limits need not be unique. Convergence in the symmetric
topology combines convergence in both the upper and lower topologies.

Theorem 5.36. Suppose that the order continuous linear functionals support
the separation property for Q. Let θ be a strongly additive L(P,Q)-valued
measure on R, and let E ∈ R. Let fn, f, f∗∗, f∗, f

∗∗, f ∗ ∈ F(X,P) be
bounded-valued measurable functions, and suppose that for every w ∈ W
there is v ∈ V such that θE(v) ≤ w and such that these functions
are (P,V0)-based integrable over E with respect to θ for the subsystem
V0 = {ρv | ρ > 0} of V. Suppose that the functions f∗ and f ∗ are strongly
integrable over E with respect to θ and that their respective integrals are
bounded in Q.
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(a) If f∗∗ ≤a.e.E fn + f∗ for all n ∈ N, and fn ↗a.e.E f, then
∫

E

f dθ = lim
n→∞

∫

E

fn dθn

with respect to the lower topology of Q.
(b) If fn

≤
a.e.E f ∗ for all n ∈ N, and fn ↘a.e.E f, then

∫

E

f dθ = lim
n→∞

∫

E

fn dθn

with respect to the upper topology of Q.
(c) If f∗∗ ≤a.e.E fn + f∗ and fn + f ∗∗ ≤

a.e.E f ∗ for all n ∈ N, and fn −→a.e.E f, then
∫

E

f dθ = lim
n→∞

∫

E

fn dθn

with respect to the symmetric topology of Q.

Proof. We shall deal with Parts (a), (b) and (c) simultaneously. By restricting
the measure θ and all the functions involved to the set E, we may assume
that X = E ∈ R. Let G = {fn, f, f∗∗, f∗, f

∗∗f ∗} be the family of the functions
used in our statement. This family is countable.

Suppose that contrary to our claim, the sequence
(∫

E fn dθ
)
n∈N

does not
converge towards

∫
E f dθ in the (a) lower, (b) upper or (c) symmetric topol-

ogy of Q. Then there is w ∈ W and a subsequence (fnk
)k∈N of (fn)n∈N

such that either

(a)
∫

E

f dθ �≤
∫

E

fnk
dθ + w or (b)

∫

E

fnk
dθ �≤

∫

E

f dθ + w,

respectively, holds for all k ∈ N. In case (c), we can find a subsequence
(fnk

)k∈N of (fn)n∈N either as in (a) or in (b). We have μ
(∫

E f dθ
)

< +∞
for all μ ∈ Q∗ since the integral of f is supposed to be bounded in Q.
Let Υ be the family of all order continuous linear functionals in w◦ and
Ω be the corresponding set {μ ◦ θ | μ ∈ Υ, } of P∗-valued measures on R.
Theorem 5.35 yields that the functions in G are integrable over E with
respect to the family Ω and that μ

(∫
E g dθ

)
=
∫

E g d(μ ◦ θ) holds for all
g ∈ G and μ ∈ Υ. By our assumption the order continuous linear functionals
support the separation property for Q, thus there are functionals μk ∈ Υ ⊂
w◦ such that either

(a)
∫

X

f d(μk◦θ) = μk

(∫

X

f dθ

)
> μk

(∫

X

fnk
dθ

)
+1 =

∫

X

fnk
d(μk◦θ)+1

or

(b)
∫

X

fnk
d(μk◦θ) = μk

(∫

X

fnk
dθ

)
> μk

(∫

X

f dθ

)
+1 =

∫

X

f d(μk◦θ)+1

holds for all k ∈ N, respectively. We shall proceed as follows:
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There is v ∈ V such that θE(v) ≤ w and such that the functions in G
are (P,V0)-based integrable over E with respect to θ for the subsystem
V0 = {ρv | ρ > 0} of V. All functions in G are supposed to be measur-
able, thus their ranges are separable with respect to the symmetric relative
v-topology by (M2) in Section 1.2. For every g ∈ G, let A(g) be a countable
dense subset in the range of g. Recall that by our assumption all elements of
A(g) are bounded in P. Following Definition 5.6, that is the (P,V0)-based
integrability of the functions in G, for every g ∈ G and n ∈ N there is a
function gn ∈ FR(X,P) and sn ∈ FR(X,V0) such that

g ≤a.e.E gn + sn, gn
≤

a.e.E γng + sn and
∫

E

sn dθ ≤ 1
n

w

for some 1 ≤ γn ≤ 1 + 1/n. The latter implies that
∫

E sn dω ≤ 1/n for
all ω ∈ Ω. Again, measurability guarantees that there are countable dense
subsets A(gn) in the respective ranges of the functions gn. Now, recalling the
definition of the cone FR(X,P) in Section 2.3, for every n ∈ N and m ∈ N

there is a step function hm
gn
∈ SR(X,P) such that hm

gn
(x) ≤ gn(x)+ (1/m)v

for all x ∈ E. Obviously, the range A(hm
gn

) of hm
gn

is finite. We denote by B
the union of all the sets A(g), A(gn) and A(hm

gn
), for g ∈ G and n,m ∈ N,

and by

C =

{
n∑

i=1

ρibi + δv | bi ∈ B, 0 ≤ ρi ∈ Q, 0 < δ ∈ Q

}

.

This set is also countable, and all its elements are v-bounded in P by our
assumption on the functions g ∈ G. Finally, let P0 be the closure of C in
P with respect to the symmetric relative v-topology. Then P0 is a subcone
of P, separable, and all of its elements are v-bounded, that is bounded
with respect to the neighborhood subsystem V0, which itself is contained in
P0. Moreover, the above shows that all functions in G are indeed (P0,V0)-
based integrable (see 5.6) over E, hence over all subsets G ∈ R of E, with
respect to the family Ω of P∗-valued measures. Proposition 5.10 now yields
that all these functions are contained in F(E,Ω0)(X,P0), where Ω0 denotes
the family of the restrictions to P0 of the measures in Ω, and that

∫

G

g d(μ ◦ θ)0 =
∫

G

g d(μ ◦ θ) = μ

(∫

G

g dθ

)

holds for all g ∈ G, μ ∈ Υ and subsets G ∈ R of E.
We proceed to apply Lemma 5.34 to the cone (P0,V0) in order to show

that the family Ω0 of P∗0 -valued measures is weakly sequentially compact.
As we mentioned before, the elements of P0 are bounded, and P0 is separa-
ble in the symmetric relative v-topology. For equiboundedness of the family
Ω0, let ε > 0 be a neighborhood for R. Correspondingly, we choose the
neighborhood εv ∈ V0 and conclude that
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(μ ◦ θ)0E(v) = μ
(
θE(v)

)
≤ μ(εw) ≤ ε

for all (μ ◦ θ)0 ∈ Ω0, since all functionals μ ∈ Υ involved are contained
in w◦. This shows that Ω0 is indeed equibounded. Likewise, Ω0 is seen to
be uniformly strongly additive. Indeed, let En ∈ R such that En ⊃ En+1
and

⋂
n∈N

En = ∅. Following 5.30, given ε > 0, there is n0 ∈ N such that
θEn

(v) ≤ εw for all n ≥ n0 and θ ∈ Θ. Thus

(μ ◦ θ)0 En
(v) = (μ ◦ θ)En

(v) = μ
(
θEn

(v)
)
≤ μ

(
θEn

(v)
)
≤ ε

for all (μ ◦ θ)0 ∈ Ω0 and n ≥ n0. Thus, following Lemma 5.34, the family
Ω0 of P∗0 -valued measures is weakly sequentially compact.

We may therefore assume that the sequence
(
(μk ◦ θ)0

)
k∈N

from the first
part of this proof converges setwise to some bounded P∗0 -valued measure ω.
We abbreviate ωk for (μk ◦ θ)0 and recall that either

(a)
∫

X

f dωk >

∫

X

fnk
dωk + 1 or (b)

∫

X

fnk
dωk >

∫

X

f dωk + 1

holds for all k ∈ N, respectively.
Next we shall argue that (ωk) E

{f∗,f∗}≺ ω. In fact, we shall demonstrate
that Rs

(
ωk, E, g

)
= 0 for every g ∈ {f∗, f ∗}. For this, let Em ∈ R for

m ∈ N be subsets of E such that Em ⊃ Em+1 and
⋂

n∈N
Em = ∅. Let

ε > 0. Because the function g is supposed to be strongly integrable over E
with respect to θ, Lemma 5.32(b) yields that for ε > 0 there is m0 ∈ N

such that
∫

Em
g dθ ≤ O

(∫
E g dθ

)
+ εw for all m ≥ m0. Because the element∫

E g dθ is supposed to be bounded in Q, we infer that O
(∫

E g dθ
)

= 0
(
see

Proposition I.5.10(c)
)
. We have

∫

Em

g dωk = μk

(∫

Em

g dθ

)
≤ ε

for all m ≥ m0 and k ∈ N, since μk ∈ w◦. Thus

lim
m→∞

(
lim
k→∞

∫

Em

g dωk

)
≤ ε

for all ε > 0, hence

lim
m→∞

(
lim
k→∞

∫

Em

g dωk

)
≤ 0.

This shows

Rs
(
ωk, E, g

)
= sup

(Em)∈F

{
lim

m→∞

(
lim
k→∞

∫

Em

g dωk

)}
= 0.
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Now, finally, our preceding convergence theorems will yield a contra-
diction. We shall apply them to the cones P0 and R, the sequence of
measures (ωk)k∈N and ω, and the given functions fn, f, f∗∗, f∗, f

∗∗f ∗. First,
Lemma 5.14(a) states that all functions involved are in F(E,Ω0∪{ω})(X,P0).
Moreover, Lemmas 5.14(b) and 5.20(b) demonstrate that

∫

E

f dω = lim
k→∞

∫

E

f dωk.

In case (a), Theorem 5.23 yields
∫

F

f dω ≤ lim
k→∞

∫

F

fnk
dωk

since O
(∫

F f∗ dθ
)

= 0, contradicting our assumption at the start of this
argument. Similarly, in case (b), Theorem 5.24 leads to

lim
k→∞

∫

F

fnk
dωk ≤

∫

F

f dω,

contradicting the corresponding assumption for this case. In case (c), finally,
Theorem 5.25 yields ∫

F

f dω = lim
k→∞

∫

F

fnk
dωk,

contradicting the assumptions of both cases (a) and (b). This completes our
argument. 
�

As we established in I.5.57, every locally convex cone can be canonically
embedded into a larger locally convex complete lattice cone whose order con-
tinuous lattice homomorphisms support the separation property. The corre-
sponding requirement in Theorem 5.36 can therefore be met if we use this
standard lattice completion for Q. In Section 6 below we shall identify sev-
eral special cases where Theorem 5.36 can be applied.

6. Examples and Special Cases

The generality of our approach to measures and integrals allows a wide range
of settings, depending on the choices for the locally convex cones (P,V) and
(Q,W). We shall present a selection of these special cases in this section.
Throughout the following, we shall assume that (P,V) is a quasi-full lo-
cally convex cone and that (Q,V) is a locally convex complete lattice cone.
(PV ,V) shall denote the standard full extension of (P,V) into a full cone,
as elaborated in Section 6 of Chapter I. (Q0,W0), on the other hand, will
stand for a locally convex cone whose standard lattice completion in the sense
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of I.5.57 is (Q,W). We shall generally use the notations of the preceding
sections. In particular, R stands for a weak σ-ring of subsets of a set X,
and θ is a bounded measure on R. The concepts of the preceding Sections 4
and 5, in particular our notions of integrability, will be applied to the full
cone (PV ,V) instead of (P,V).

Some of our general notions are considerably simplified in special cases. In
the first set of examples we shall discuss the specific insertions for P and Q
that lead to classical integration theory.

6.1 The case Q = R. If we choose Q = R with the canonical order and
the neighborhoods V = {ε ∈ R | ε > 0}, then the values of the measure
θ are linear functionals in the dual cone P∗ of P, and for each a ∈ P the
mapping

E �→ θE(a) : R → R

is an extended real-valued measure on R. The modulus of the measure θ is
given by

|θ|(E, v) = sup

{
n∑

i=1

θEi
(si)

∣
∣
∣ si ∈ P, si ≤ v, Ei ∈ R disjoint subsets ofE

}

,

which is an element of R, for E ∈ R and v ∈ V. Boundedness therefore
means that for every E ∈ R there is v ∈ V such that |θ|(E, v) < +∞. This
coincides with Prolla’s notion of finite p-semivariation in [155] (Ch. 5.5).
A bounded measure can be extended to the full cone (PV ,V) as elaborated
in Section 3.8. Integrals of P-valued functions with respect to an L(P, R)-,
that is P∗-valued measure are also in R. For a meaningful statement in our
Convergence Theorems 5.22, 5.24 and 5.25 we need to enforce that

∫
F f∗ dθ <

+∞ and
∫

F f ∗ dθ < +∞ in this case.

6.2 Extended Positive-Valued Functions and Measures. We obtain
classical integration theory for extended positive-valued functions with re-
spect to extended positive-valued measures if we choose P = R+, endowed
with the singleton neighborhood system V = {0} (see Example 1.2(b) in
Chapter I), and Q = R. The dual R

∗
+ of R+ consists of all elements of

R+ (via the usual multiplication) and the singular functional 0̄ such that
0̄(α) = 0 for all α ∈ R+ and 0̄(+∞) = +∞. Every R

∗
+-valued measure θ

is therefore R-bounded and can be expressed as the sum of an R+-valued
measure θ1 in the usual sense and a measure θ0 that takes only the values
0 and 0̄.

Because the symmetric relative topology renders the Euclidean topology
on the interval (0,+∞), and the elements 0 and ∞ as isolated points

(
see

Example 4.18(a) in Chapter I
)
, R+ is separable in this topology. Our notion

of measurability from Section 1 for R+-valued functions therefore coincides
with the usual one in this case. Continuity for an R+-valued function defined
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on a topological space X does however require that this function takes the
values 0 and +∞ only on respective subsets of X that are both open and
closed.

Because v = 0 is the only neighborhood for R+, according to Section 4,
the integral of a measurable function f over a set F ∈ AR with respect to
a measure θ is defined as

∫

F

f dθ = sup
{∫

F

h dθ
∣
∣ h ∈ SR(X,P), h ≤ f

}
,

that is the classical definition of the integral.

6.3 Extended Real-Valued Functions and Positive-Valued Mea-
sures. We obtain classical integration theory for R-valued functions with
respect to positive-valued measures if we choose P = Q = R. The dual R

∗

of R consists of all positive reals (via the usual multiplication) and the sin-
gular functional 0̄ such that 0̄(α) = 0 for all α ∈ R and 0̄(+∞) = +∞.
Every R

∗
-valued measure θ is therefore R-bounded and can be expressed as

the sum of a positive real-valued measure θ1 in the usual sense and a mea-
sure θ0 that takes only the values 0 and 0̄. The notion of measurability
from Section 1 for R-valued functions coincides with the usual one.

Let f be a measurable and bounded below R-valued function, and let
F ∈ AR. For a neighborhood w = ε ∈ W the step functions s ∈ vε are
invertible, and for a step function h ∈ SR(X, R) such that h ≤ f + vε we
have h′ ≤ f with h′ = h − s ∈ SR(X, R) and

∫
F h dθ ≤

∫
F h dθ + ε. This

shows ∫ (ε)

F

f dθ ≤ sup
{∫

F

h dθ
∣
∣ h ∈ SR(X,P), h ≤ f

}
+ ε

and consequently
∫

F

f dθ = sup
{∫

F

h dθ
∣
∣ h ∈ SR(X,P), h ≤ f

}
,

the usual definition.

6.4 Real- or Complex-Valued Functions and Measures. In the pre-
ceding example we integrated R-valued functions with respect to positive
real-valued measures. Alternatively, we may consider real- or complex-valued
functions, that is P = K for K = R or K = C with the usual Euclidean
topology and the equality as order. The vector space dual P∗

K
, of K is of

course K itself, whereas its dual P∗ as a locally convex cone consists of the
real parts of these evaluations

(
see Example I.2.1(c)

)
. For Q we choose the

simplified standard lattice completion K̂ of K which consists of all bounded
below R-valued functions on Γ, the unit circle of K, endowed with the
(strictly) positive constants as neighborhoods

(
see Example I.5.62(f)

)
.
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We consider K-valued measures E �→ θK E : R → K in this case, yielding
continuous linear operators θE from K to K̂ via the convention

θE

(
a
)
(γ) = �e(γa θK E)

for E ∈ R, a ∈ K and γ ∈ Γ. According to 3.2 we calculate the modulus
of such a measure for every E ∈ R as

|θ|
(
E, B

)
(γ) = sup

{
n∑

i=1

�e(γa θK E)
∣
∣
∣ |ai| ≤ 1, Ei ∈ R disjoint subsets of E

}

= sup

{
n∑

i=1

|θEi
|
∣
∣
∣ Ei ∈ R disjoint subsets of E

}

for all γ ∈ Γ, where B ∈ V stands for the unit ball in K. This is of course the
usual notation for the total variation var(θ,E) of a real- or complex-valued
measure on a set E (see III.1.4 in [55] or Section 6.1 in [179]). A simple
argument (see Lemmas III.1.5 and III.4.5 in [55]) shows that

|θ|(E, B) ≤ 4 sup
{
|θG| | G ∈ R, G ⊂ E

}
< +∞

for every E ∈ R in this case. Hence any K-valued measure is R-bounded in
the sense of Section 3.6 and may therefore be extended to the standard full
extension

PV = {a + αB | a ∈ K, α ≥ 0}
of P = K, setting

θE

(
a + αB

)
(γ) = θE

(
a
)
(γ) + α|θ|(E, B) = �e(γa θK E) + α|θ|(E, B)

for all γ ∈ Γ. The notion of measurability from Section 1 for K-valued
functions coincides with the usual one. A measurable function f is contained
in FR(X, K) if on every set E ∈ R it can be uniformly approximated by
a sequence of step functions. It follows from our convergence theorems that
the integral of f over E is the limit of the integrals of this sequence of step
functions. Integrability in the sense of 4.12 and 4.13, however reaches beyond
this requirement. Integrals of K-valued functions are evaluated in K̂, that is
as R-valued functions on Γ. However, since according to Corollary 5.9 these
integrals are elements of the order closure of the embedding of K into K̂,
hence are K-linear by I.5.60(b). We may therefore identify the integral in the
usual way with a number in K, setting

〈∫

F

f dθ

〉

R

=
(∫

F

f dθ

)
(1)

in the real, and
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〈∫

F

f dθ

〉

C

=
(∫

F

f dθ

)
(1)− i

(∫

F

f dθ

)
(i)

in the complex case, respectively. Moreover, given γ ∈ Γ we have
〈∫

F

γh dθ

〉

K

= γ

〈∫

F

f dθ

〉

K

for every step function h ∈ SR(X, K). Because h ≤ f +vw holds if and only
if γh ≤ γf + vw for h ∈ SR(X, K) and f ∈ FR(X, K), we have

〈∫ (w)

F

γf dθ

〉

K

= γ

〈∫ (w)

F

f dθ

〉

K

.

Consequently, F(F,θ)(X, K) is a vector space over K , and the mapping

f �→
〈∫

F

f dθ

〉

K

: F(F,θ)(X, K) → K

is linear over K.

6.5 The Case that Q Is the Standard Lattice Completion of Some
Subcone Q0. Suppose that (Q,W) is the standard lattice completion of
a locally convex cone (Q0,W0) (see I.5.57), and suppose that the measure
θ is indeed L(P,Q0)-valued. The closure of Q0 in Q with respect to the
order topology was seen to be a subcone of the second dual Q∗∗

0
(
see Sec-

tions I.5.60 and I.7.3
)

in this case, and following Corollary 5.9, integrals of
(P,V)-based integrable functions in F(X,P) are therefore elements of Q∗∗

0 .
Stronger statements can be obtained for certain types of integrable functions.
We shall develop these in the following remarks:

Remarks 6.6. Let A be a relatively bounded subset of P, that is, A is
bounded below, and bounded above relative to some element a0 ∈ P. Let
E ∈ R. We observe the following:

(a) The convex hull of A ∪ {0}, that is the set

Ã =

{
n∑

i=1

αiai

∣
∣
∣
∣ ai ∈ A, 0 ≤ αi ∈ R,

n∑

i=1

αi ≤ 1

}

is also bounded below and bounded above relative to a0. Indeed, given v ∈ V
let λ, ρ ≥ 0 such that 0 ≤ a0 + λv, 0 ≤ a + λv and a ≤ ρa0 + λv for all
a ∈ A. Then for any choice of ai ∈ A and 0 ≤ αi ∈ R such that

∑n
i=1 αi ≤ 1

we have

0 ≤
n∑

i=1

αi(ai + λv) ≤
n∑

i=1

αiai + λv
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and
n∑

i=1

αiai ≤
n∑

i=1

αi(ρa0 + λv) + ρ
(
1−

n∑

i=1

αi

)
(a0 + λv) ≤ ρa0 + λ(1 + ρ)v.

This yields our claim.
(b) For every E ∈ R the set

Z(A,E) =

{
n∑

i=1

θEi
(ai) | ai ∈ A, Ei ∈ R disjoint subsets of E

}

is bounded below, and bounded above relative to the element θE(a0), hence
Z(A,E) is a relatively bounded subset of Q0. Indeed, given w ∈ W there
is v ∈ V such that |θ|(E, v) = θE(v) ≤ w. In turn, there are λ, ρ ≥ 0 such
that 0 ≤ a + λv and a ≤ ρa0 + λv for all a ∈ A. We may also assume that
0 ≤ ρa0 + λv. Now let a1, . . . , an ∈ A and let E1, . . . , En ∈ R be disjoint
subsets of E. Then

0 ≤
n∑

i=1

θEi
(ai + λv) =

n∑

i=1

θEi
(ai) + λ

n∑

i=1

θEi
(v) ≤

n∑

i=1

θEi
(ai) + λw

and
n∑

i=1

θEi
(ai) ≤

n∑

i=1

θEi
(ρa0 + λv) ≤ θE(ρa0 + λv) ≤ ρθE(a0) + λw.

The set Z(A,E) is therefore bounded below and bounded above relative to
the element θE(a0), thus relatively bounded in Q0.

(c) Now recall from Section I.5.57 that the order topology of the stan-
dard lattice completion Q of Q0 coincides with the topology of pointwise
convergence on the elements of Q∗0. Thus, according to I.7.3 the limit in Q
with respect to order convergence of any net in the relatively bounded set
Z(A,E) ⊂ Q0 ⊂ Q from (b) is contained in the relative strong second dual
(Q0)∗∗sr of Q0.

(d) Let E ∈ R, let ϕ1, . . . , ϕn be non-negative measurable real-valued
functions such that

∑n
i=1 ϕi ≤ χE and let a1, . . . , an ∈ A. For each i =

1, . . . , n let (ψi
k⊗ai)k∈N be a sequence of step functions approximating ϕi⊗ai

as in 5.27 and 5.28, that is

0 ≤ ψi
k ≤ ϕi and lim

k→∞

∫

X

ψi
k⊗ai dθ =

∫

x

ϕi⊗ai dθ.

According to 5.27, these step functions ψi
k⊗ai are of the type
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k∑

j=1

χ
E

(i,k)
j

⊗(αjai),

with disjoint sets E
(i,k)
j ∈ R whose union is E, with 0 ≤ αj ≤ 1 and such

that
∑k

j=1 αjχE
(i,k)
j

≤ ϕi. For every k ∈ N let

hk =
n∑

i=1

ψk
i ⊗ai =

n∑

i=1

k∑

j=1

χ
E

(i,k)
j

⊗(αjai).

As
n∑

i=1

k∑

j=1

αjχE
(i,k)
j

≤
n∑

i=1

ϕi ≤ χE ,

the step function hk can be expressed as

hk =
p∑

l=1

χFl
⊗bl,

where F1, . . . , Fp ∈ R are disjoint subsets of E and b1, . . . , bp are suitable
convex combinations of the elements of the relatively bounded set Ã = A∪{0}(
see 6.6(a)

)
; more precisely

bl =
n∑

i=1

βiai,

where βi is the sum of all those αj , for j = 1, . . . , k, such that Fl ⊂ E
(i,k)
j .

Thus the integral
∫

X

hk dθ =
p∑

l=1

θFl
(bl)

is contained in the relatively bounded subset

Z(Ã, E) =

{
n∑

i=1

θEi
(ai)

∣
∣
∣ ai ∈ Ã, Ei ∈ R disjoint subsets of E

}

of Q0. We have

∫

X

(
n∑

i=1

ϕi⊗ai

)

dθ = lim
k→∞

∫

X

hk dθ,
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hence according to (c), the integral of the function
∑n

i=1 ϕi⊗ai is contained in
the relative strong second dual (Q0)∗∗sr of Q0. The same applies to integrals
of this function over sets F ∈ AR, since the functions ϕi may be replaced
by the functions χF ϕi in the preceding argument.

(e) If for a function f ∈ F(F,θ)(X,P) there is a net (fj)j∈J consisting
of functions

∑n
i=1 ϕi⊗ai as in (d) such that

∫
F f dθ = limj∈J

∫
F fj dθ, then

according to (c),
∫

F f dθ is also contained in (Q0)∗∗sr.

We summarize:

Proposition 6.7. Let (P,V) and (Q0,W0) be locally convex cones such that
(P,V) is quasi-full, and let θ be an L(P,Q0)-valued measure. Let F ∈ AR.

(a) For every (P,V)-based integrable function in f ∈ F(F,θ)(X,P) the inte-
gral

∫
F f dθ is contained in Q∗∗

0 , the second dual of Q0.
(b) Let E ∈ R and let A be a relatively bounded subset of P. If for

f ∈ F(F,θ)(X,P) there is a net (fj)j∈J consisting of functions∑n
i=1 ϕi⊗ai, where ϕi are non-negative measurable real-valued functions

such that
∑n

i=1 ϕi ≤ χE and ai ∈ A, and such that
∫

F f dθ =
limj∈J

∫
F fj dθ, then

∫
F f dθ is contained in (Q0)∗∗sr.

We shall obtain a further strengthening of these observations in some spe-
cial cases.

6.8 Compact and Weakly Compact Measures. Let θ be an L(P,Q0)-
valued measure, where (P,V) is a quasi-full and (Q0,W0) is a locally convex
cone such that (Q,W) is its standard lattice completion. Such a measure
θ is called compact (or weakly compact) if for every E ∈ R and every
relatively bounded subset A of P the subset

Z(A,E) =

{
n∑

i=1

θEi
(ai)

∣
∣
∣ ai ∈ A, Ei ∈ R disjoint subsets of E

}

of Q0 is relatively compact in the symmetric relative topology
(
or in the

weak topology σ(Q0,Q∗0)
)

of Q0 (see I.4.6).
Recall from Lemma I.4.7 that the symmetric relative topology is finer than

σ(Q0,Q∗0), and from I.5.57 that σ(Q0,Q∗0) is finer than the induced order
topology on Q0 which is however still Hausdorff. The latter two topologies
coincide, if all elements ofQ0 are bounded (see I.5.57). Moreover, σ(Q0,Q∗0)
coincides with its own relative topology (see I.4.6). We observe that every
subset Z of Q0 which is relatively compact in the symmetric relative topol-
ogy is also relatively weakly compact. Indeed, the closure Z of Z with
respect to the symmetric relative topology is contained in its closure Zw

with respect to the weak topology. Z is compact in the former, hence also
in the latter topology, thus weakly closed since σ(Q0,Q∗0) is Hausdorff. We
infer that Z = Zw

, and our claim follows. Every compact measure θ is
therefore also weakly compact.
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For a set E ∈ R and a relatively bounded subset A ∈ P we denote by

I(A,E)=

{∫

X

(
n∑

i=1

ϕi⊗ai

)

dθ

∣
∣
∣
∣ ai ∈ A, 0 ≤ ϕi measurable,

n∑

i=1

ϕi ≤ χE

}

.

Clearly Z(A,E) ⊂ I(A,E) ⊂ Q. Conversely, we observed in Remark 6.6(d)
that I(A,E) is contained in the closure of Z(A,E) with respect to the order
topology of Q. If the measure θ is compact (or a weakly compact), then
the (weak) closure Z(A,E)

w
of Z(A,E) is weakly compact and therefore

also compact in the coarser induced order topology, and indeed closed in Q
as the order topology is Hausdorff in this case. This demonstrates that

I(A,E) ⊂ Z(A,E)
w ⊂ Q0

in this case. Consequently the set I(A,E) is also (weakly) compact in Q0.
We summarize:

Proposition 6.9. Let (P,V) and (Q0,W0) be locally convex cones such that
(P,V) is quasi-full. An L(P,Q0)-valued measure θ is compact (or weakly
compact), if and only if for every E ∈ R and for every relatively bounded
subset A of P,

{∫

X

(
n∑

i=1

ϕi⊗ai

)

dθ

∣
∣
∣
∣ ai ∈ A, 0 ≤ ϕi measurable,

n∑

i=1

ϕi ≤ χE

}

is a relatively compact (or relatively weakly compact) subset of Q0.

Corollary 6.10. Let (P,V) and (Q0,W0) be locally convex cones such that
(P,V) is quasi-full and let θ be an L(P,Q0)-valued relatively compact mea-
sure. Let E ∈ R, F ∈ AR and let A be a relatively bounded subset of
P. If for f ∈ F(F,θ)(X,P) there is a net (fj)j∈J consisting of functions∑n

i=1 ϕi⊗ai, where ϕi are non-negative measurable real-valued functions such
that

∑n
i=1 ϕi ≤ χE and ai ∈ A, and such that

∫
F f dθ = limj∈J

∫
F fj dθ,

then
∫

F f dθ is contained in Q0.

The following consequence of Theorem 3.15 yields that in certain special
circumstances every bounded measure is weakly compact.

Proposition 6.11. Suppose that (P, ‖ ‖) is a finite dimensional normed
space and that (Q,W) is the standard lattice completion of a Banach space
(Q0, ‖ ‖). Then every bounded L(P,Q0)-valued measure is weakly compact.

Proof. Let (P, ‖ ‖) and (Q0, ‖ ‖) be as stated and let θ be a bounded
L(P,Q0)-valued measure on R. We consider both P and Q0 as normed
spaces over R. Given a basis {b1, . . . , bm} of P, there is a constant ρ > 0
such that
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∥
∥
∥
∥
∥

m∑

k=1

βkbk

∥
∥
∥
∥
∥
≥ ρ

(
max

k=1,...,m
|βk|

)

for every choice of scalars β1, . . . , βm ∈ R
(
see for example Lemma 2.4.1

in [107]
)
. Now let E ∈ R and let A be a bounded subset of P. According

to the above then there exists λ > 0 such that

A ⊂
{

m∑

k=1

βkbk

∣
∣
∣ βk ∈ R, |βk| ≤ λ

}

.

We fix 1 ≤ k ≤ m. Theorem 3.15 yields that the set

Zk = {θG(bk) | G ∈ R, G ⊂ E}

is relatively compact in Q0 with respect to the weak topology σ(Q0,Q∗0).
Now let Ei ∈ R, for i = 1, . . . , n, be disjoint subsets of E and in a first
step let 0 ≤ β1

k ≤ β2
k . . . ≤ βn

k ≤ 1. Set F1 =
⋃n

i=1 Ei, F2 =
⋃n

i=2 Ei, and so
on, and Fn = En. Then

n∑

i=1

βi
kθEi

(bk) = β1
kθF1 (bk) +

n∑

i=2

(βi
k − βi−1

k )θFi
(bk).

The element
∑n

i=1 βi
kθEi

(bk) is therefore contained in the convex hull Z̃k

of the set Zk. Following a well-known theorem due to Krein
(
see Theorem

IV.11.4 in [185]
)

this convex hull is again relatively weakly compact in Q0.

So, obviously is the set −Z̃k. Using this, we infer that indeed for every choice
of βi

k ∈ R such that |βi
k| ≤ 1 for all i = 1, . . . , n the element

∑n
i=1 βi

kθEi
(bk)

is contained in relatively weakly compact set Yk = Z̃k + (−Z̃k).
Thus for every choice of elements ai =

∑m
k=1 βi

kbk ∈ A and disjoint subsets
Ei ∈ R of E we have |βi

k| ≤ λ for all i = 1, . . . , n and k = 1, . . . ,m, hence

n∑

i=1

θEi
(ai) =

m∑

k=1

n∑

i=1

βi
kθEi

(bk) ∈ λ

(
m∑

k=1

Yk

)

.

As a finite sum of relatively weakly compact sets
(
see I.V.2 in [185]

)
, the

set on the right-hand side is also relatively weakly compact in Q0, and our
claim follows. 
�

6.12 The Case that P Is a Locally Convex Vector Space. Let (P,V)
be a locally convex topological vector space over K = R or K = C, endowed
with a basis V of balanced convex neighborhoods, that is subsets of P.
Equality is the order on P, and involving the neighborhoods we have a ≤
b + v if a− b ∈ v for a, b ∈ P and v ∈ V. As a locally convex cone (P,V)
is of course quasi-full (see I.6.1). The modulus of an L(P,Q)-valued measure
θ is given by
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|θ|(E, v) = sup

{
n∑

i=1

θEi
(si)

∣
∣
∣ si ∈ v, Ei ∈ R disjoint subsets of E

}

∈ Q.

According to Lemma 2.5, the cone FR(X,P) as introduced in 2.3 consists
of those P-valued functions that vanish outside some set E ∈ R and may
be uniformly approximated on X by step functions; more precisely: for f ∈
FR(X,P) there is E ∈ R such that f(x) = 0 for all x ∈ X \ E and for
every v ∈ V there exists a step function h ∈ SR(X,P) such that h(x) −
f(x) ∈ v for all x ∈ X. Any such function f is measurable by Theorem 1.7.
Consequently, the functions in FR(X,P) are uniformly bounded on all sets
in R. We have αf ∈ FR(X,P) whenever f ∈ FR(X,P) and α ∈ K. Every
measurable neighborhood-valued function s ∈ F(X,PV ) is however contained
FR(X,PV ), since its values are positive. For a positive real-valued measurable
function ϕ and a neighborhood v ∈ V, for example, the function ϕ⊗v is
measurable, hence in F(X,PV). Recall that V-valued measurable functions
are integrated using the canonical extension of the measure θ to the full cone
(PV ,V) as elaborated in Section 3.8.

According to 4.12, a P-valued function f is integrable over a set E ∈ R

if for every w ∈ W and ε > 0 there are functions f(w,ε) ∈ FR(X,PV ) and
s(w,ε) ∈ FR(X,V) such that

f ≤a.e.E f(w,ε)
≤

a.e.E γf + s(w,ε)

and
∫

E s(w,ε) dθ ≤ εw for some 1 ≤ γ ≤ 1 + ε. A straightforward argument
involving the uniform boundedness of the functions in FR(X,P) leads to a
slight simplification in this case, avoiding the relative topologies: A function
f ∈ F(X,PV) is integrable over a set E ∈ R if for every w ∈ W there are
functions fw ∈ FR(X,PV ) and sw ∈ FR(X,V) such that

(I) f ≤a.e.E fw
≤

a.e.E f + sw and
∫

E

sw dθ ≤ w.

The function αf is integrable over E for any α ∈ K, whenever f is. A
function f ∈ F(X,P) is (P,V)-based integrable over E ∈ R (see 5.6) if
there are fw ∈ FR(X,P) and sw ∈ FR(X,V) such that

f ≤a.e.E fw + sw, fw
≤

a.e.E f + sw and
∫

E

sw dθ ≤ w.

Considering that the functions in FR(X,P) can be approximated by step
functions, this is equivalent to the following condition for integrability which
is only slightly stronger than (I):

For every w ∈ W there is a step function hw ∈ SR(X,P) and sw ∈
FR(X,V) such that

(BI 1) f(x)− hw(x) ∈ sw(x) a.e. on E and
∫

E

sw dθ ≤ w.
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(Set fw = hw + sw ∈ FR(X,PV ) in order to satisfy (I).) Condition (BI 1)
yields indeed strong integrability in the meaning of Section 5.18, since it
obviously implies that f ≤ hw + sw, hence

∫

G

f dθ ≤
∫

G

hw dθ +
∫

G

sw dθ ≤
∫

G

hw dθ + w

for all subsets G ∈ R of E. Somewhat stronger than (BI 1) is the following
sufficient integrability condition: For v ∈ V let ‖ ‖v denote the correspond-
ing seminorm on P, that is ‖a‖v = inf{λ ≥ 0 | a ∈ λv}. We require that for
every v ∈ V and w ∈ W there is a step function h(v,w) ∈ SR(X,P) such
that the positive real-valued function x �→ ‖f(x)−h(v,w)(x)‖v is measurable
and

(BI 2)
∫

E

‖f − h(v,w)‖v ⊗ v dθ ≤ w.

Condition (BI 2) obviously implies (BI 1) since, given w ∈ W we choose
any v ∈ V and set sw(x) = ‖f(x) − h(v,w)(x)‖ v. Then obviously f(x) −
h(v,w)(x) ∈ sw(x) holds for all x ∈ E, hence (BI 1). Moreover, a function f ∈
F(X,P) satisfying (BI 2) is (P,V0)-based integrable over E with respect to
θ for every one-dimensional neighborhood subsystem V0 = {ρv0 | ρ > 0}, for
v0 ∈ V. This is one of the requirements in Theorem 5.36. In the special case
that (P,V) is a normed space, that is V = {ρB | ρ > 0}, where B is the
unit ball in P, condition (BI 2) leads to the well-known notion of Bochner (or
Dunford and Schwartz) integrability (see for example III.2.17 in [55] or II.2
in [43]). This will be further elaborated in Section 6.18 below.

In all of the above cases, integrability is then extended to sets F ∈ AR

as in 4.13. Convergence for sequences of P-valued functions as required in
Theorems 5.23 to 5.25 and 5.34 refers to pointwise convergence with respect
to the vector space topology of P. If the measure θ is strongly additive and if
the order continuous linear functionals on the locally convex complete lattice
cone (Q,W) support the separation property (see I.5.32), then the strong
convergence statements of Theorem 5.36 apply to functions satisfying (BI 2).

We already observed that the functions which are integrable over a set
E ∈ R with respect to any of the above criteria form also a vector space over
K in this case.

Now suppose in addition to the above that (Q,W) is the standard lattice
completion of some subcone (Q0,W0) and the measure θ is L(P,Q0)-valued
(see 6.5). Then, according to Theorem 3.11 countable additivity for θ refers
to the strong operator topology of L(P,Q0). Moreover, following Proposi-
tion 6.7(a), integrals of (P,V)-based integrable functions in F(X,P) are
elements of the second dual Q∗∗

0 of Q0. We shall make a few supplementary
observations for the case that (Q0,W0) is indeed a vector space over K = R

or K = C :
(i) If (Q0,W0) is a locally convex topological vector space over K,

then the (P,V)-based integrable functions in F(X,P) form a vector space
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F(F,θ,BI1)(X,P) over K. The integrals of functions in F(F,θ,BI1)(X,P) for
F ∈ AR are contained in the order closure of Q0 in Q, hence are K-linear(
see I.5.60(b)

)
and therefore elements of the second vector space dual Q∗∗

0K

of Q0.
(ii) If the locally convex space Q0 is indeed topologically complete, and

if a function f ∈ F(X,P) fulfills the integrability criterion (BI1), then for
every E ∈ R its integral

∫
E f dθ in Q may be approximated in the symmet-

ric (modular) topology of Q by a net
(∫

E hi dθ
)
i∈I of integrals over step

functions. Integrals over step functions are however contained in the com-
plete subspace Q0 of Q. The Cauchy sequence

(∫
E hn dθ

)
n∈N

is therefore
convergent in Q0 and its limit, that is

∫
E f dθ is also contained in Q0.

(iii) If the locally convex space Q0 is reflexive, then every bounded
L(P,Q0)-valued measure θ is seen to be weakly compact. Indeed, for ev-
ery E ∈ R and every bounded subset A of P the set

Z(A,E) =

{
n∑

i=1

θEi
(ai)

∣
∣
∣ ai ∈ A, Ei ∈ R disjoint subsets of E

}

from 6.8 is bounded in Q0
(
see Remark 6.8(a)

)
, hence relatively weakly

compact, since this holds for all bounded subsets in reflexive spaces.
(iv) If both P and Q0 are locally convex topological vector spaces

over K, then we denote by LK(P,Q0) the space of all continuous K-linear
operators from P into Q0. If the measure θ is indeed LK(P,Q0)-valued,
then for every F ∈ AR the operator

f �→
∫

F

f dθ : F(F,θ,BI1)(X,P) → Q∗∗
0K

is also linear over K. According to I.5.60(d) we need to verify two conditions
for this. The first one is obvious, because the additivity of the operator is
given. Likewise, the second condition in I.5.60(d) is evident for all α ≥ 0.
Thus all left to verify is that

(∫

F

γf dθ

)
(μ) =

(∫

F

f dθ

)
(γμ).

holds for all f ∈ F(F,θ,BI1)(X,P), μ ∈ Q∗0 and γ ∈ Γ, the unit circle in
K. Indeed, this obviously holds true for every step function h ∈ SR(X,P).
Because the neighborhoods in V and in W are supposed to be balanced,
h ≤ f + vw holds for h ∈ SR(X,P) and f ∈ FR(X,P) if and only if γh ≤
γf +vw. Therefore and because the lattice operations are taken pointwise in
Q, we infer that

(∫ (w)

F

γf dθ

)

(μ) =

(∫ (w)

F

f dθ

)

(γμ).

Now Definition 4.13 yields our claim. We shall formulate this special case as
a separate Proposition:
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Proposition 6.13. Let (P,V) and (Q0,W0) be locally convex topological
vector spaces over K = R or K = C and let θ be a bounded LK(P,Q0)-val-
ued measure. Then the functions in F(X,P) satisfying (BI1) form a vector
space F(F,θ,BI1)(X,P) over K, their integrals are contained in the second
vector space dual Q∗∗

0K
of Q0, and the operator

f �→
∫

F

f dθ : F(F,θ,BI1)(X,P) → Q∗∗
0K

is linear over K.

6.14 Algebra Homomorphisms. Let us consider a special case of 6.13.
Suppose that the locally convex vector spaces (P,V) and (Q0,W) are in-
deed topological algebras over K, and that (Q,W) is the standard lattice
completion of Q0. A topological algebra P is an algebra and a locally con-
vex topological vector space such that for a fixed element a ∈ P (or b ∈ P)
the linear operator c �→ ac (or c �→ cb) from P into P is continuous (see
for example 8.1 in [137]). Recall that for a linear operator continuity implies
weak continuity. Thus P is also a topological algebra in its weak topology.
Indeed, for a fixed a ∈ P and μ ∈ P∗, the mapping c �→ μ(ac) : P → R

is a continuous linear functional. Thus, if the net (ci)i∈I in P converges
weakly to c ∈ P, then μ(aci)i∈I converges to μ(ac) in R. The net (aci)i∈I
therefore converges weakly to ac ∈ P.

Now suppose that θ is an R-bounded measure such that its values θE

for all E ∈ R of are continuous K-linear operators from P to Q0 satisfying
the following condition:

(A) θE(a) θE(b) = θE(ab) and θE(a) θG(b) = 0 for all a, b ∈ P and
disjoint sets E,G ∈ R.

Both requirements in Condition (A) may be reformulated and combined as

(A’) θE(a) θG(b) = θ(E∩G)(ab) for all E,G ∈ R and a, b ∈ P.

Indeed, (A’) implies (A), and if (A) holds, then for a, b ∈ P and E,G ∈ R

we have

θE(a) θG(b) =
(
θ(E\G)(a) + θ(E∩G)(a)

) (
θ(G\E)(b) + θ(E∩G)(b)

)
= θ(E∩G)(ab),

hence (A’). Endowed with the canonical, that is pointwise multiplication, the
P-valued step functions form an algebra, and we obtain

∫

X

(hl) dθ =
(∫

X

h dθ

)(∫

X

l dθ

)

for all h, l ∈ SR(X,P) as an immediate consequence of (A). Indeed, the func-
tions h and l can be expressed as h =

∑n
i=1 χEi

⊗ai and l =
∑n

i=1 χEi
⊗bi

with disjoint sets Ei ∈ R and elements ai, bi ∈ P. Then hl =
∑n

i=1 χEi
⊗aibi

and
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n∑

i=1

θEi
(aibi) =

(
n∑

i=1

θEi
(ai)

)(
n∑

i=1

θEi
(bi)

)

,

that is our claim.
Now let us denote by ER(X,P) the vector subspace of F(X,P) generated

by all elementary functions. Recall that elementary functions are of the type
ϕ⊗a, where ϕ is a bounded non-negative measurable real-valued function
supported by a set in R, and a is an element of P. Obviously, ER(X,P)
forms also an algebra, as the product of two elementary functions ϕ⊗a and
ψ⊗b is the elementary function (ϕψ)⊗(ab). We would like to establish that
the integral defines a multiplicative operator on ER(X,P) as well. However,
because integrals of these functions are generally contained in the strong
second dual Q∗∗

0 of Q0 rather than in Q0 itself, we shall a introduce a
continuation of the multiplication to Q∗∗

0 ⊂ Q in the following way: For
elements l,m ∈ Q we denote by l •m the set of all elements q ∈ Q for which
we can find nets (li)i∈I and (mj)j∈J in Q0 ⊂ Q such that limi∈I li = l,
limj∈J mj = m and

lim
i∈I

lim
j∈J

limj = lim
i∈I

lim
j∈J

limj = lim
j∈J

lim
i∈I

limj = lim
j∈J

lim
i∈I

limj = q.

Our introductory remark shows that for elements l,m ∈ Q0 we have l •m =
{lm}, since on Q0 ⊂ Q weak and order convergence coincide (see I.5.57).
In general, the set l •m may be empty or contain more than one element of
Q. However, if q ∈ l •m and if μ ∈ Q∗ is a multiplicative linear functional,
then

q(μ) = lim
i∈I

lim
j∈J

(
limj

)
(μ) = lim

i∈I
lim
j∈J

li(μ)mj(μ) = l(μ)m(μ).

Now let f = ϕ⊗a and g = ψ⊗b be two elementary functions. Their product
fg is the elementary function (ϕψ)⊗(ab). Let (ϕn)n∈N and (ψn)n∈N be the
sequences of real-valued step functions converging to ϕ and ψ as in 5.27
and 5.28. Thus

lim
n→∞

∫

X

ϕn⊗a dθ =
∫

X

f dθ and lim
n→∞

∫

X

ψn⊗b dθ =
∫

X

g dθ

by 5.28. For every fixed m ∈ N the sequence (ϕmψn)n∈N converges pointwise
to the function ϕmψ, and we have 0 ≤ ϕmψn ≤ ϕmψ for all n ∈ N. This
shows

lim
n→∞

{(∫

X

ϕm⊗a

)(∫

X

ψn⊗b dθ

)}

= lim
n→∞

∫

X

(ϕmψn)⊗(ab) dθ=
∫

X

(ϕmψ)⊗(ab) dθ

by Corollary 5.28 and the above. Furthermore, the sequence (ϕmψ)m∈N con-
verges pointwise to the function ϕψ, and we have 0 ≤ ϕmψ ≤ ϕψ for all
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m ∈ N. Again using 5.28, this yields

lim
m→∞

∫

X

(ϕmψ)⊗(ab) dθ =
∫

X

(ϕψ)⊗(ab) dθ =
∫

X

(fg) dθ,

hence

lim
m→∞

lim
n→∞

{(∫

X

ϕm⊗a

)(∫

X

ψn⊗b dθ

)}

=
∫

X

(fg) dθ.

Similarly, one verifies

lim
n→∞

lim
m→∞

{(∫

X

ϕm⊗a

)(∫

X

ψn⊗b dθ

)}

=
∫

X

(fg) dθ.

Thus indeed ∫

X

(fg) dθ ∈
(∫

X

f dθ

)
•

(∫

X

g dθ

)
.

Finally, let f, g ∈ ER(X,P), that is f =
∑i0

i=1 fi and g =
∑k0

k=1 fk with ele-
mentary functions fi, gk. For each of these functions there are approximating
sequences (hi

n)n∈N and (ek
n)n∈N of step functions as in the preceding step

of our argument. We set hn =
∑i0

i=1 f i
n and en =

∑k0
k=1 ek

n. The sequences
(∫

X

hn dθ

)

n∈N

and
(∫

X

en dθ

)

n∈N

in Q0 then converge to
∫

X f dθ and
∫

X g dθ, respectively. For all n,m ∈ N

we have (∫

X

hm dθ

)(∫

X

en dθ

)
=

io∑

i=1

k0∑

k=1

∫

X

(hi
mek

n) dθ,

and for fixed i and k

lim
n→∞

lim
n→∞

∫

X

hi
mek

n dθ =
∫

X

(figk) dθ

by the above. This yields

lim
m→∞

lim
n→∞

{(∫

X

hm dθ

)(∫

X

en dθ

)}

=
io∑

i=1

k0∑

k=1

∫

X

(figk) dθ =
∫

X

(fg) dθ.

Reversing the parts of n and m leads to the same result. Thus indeed
∫

X

(fg) dθ ∈
(∫

X

f dθ

)
•

(∫

X

g dθ

)

holds for all f, g ∈ ER(X,P), provided that the measure θ satisfies (A).
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If both (P,V) and (Q0,W) are topological algebras with an involution,
that is a continuous operator a �→ a∗ such that (a + b)∗ = a∗ + b∗, (αa)∗ =
ᾱa∗, (a∗)∗ = a and (ab)∗ = b∗a∗ for a, b in P or in Q0, respectively, and if
the L(P,Q0)-valued measure θ satisfies

(A*) θE(a∗) =
(
θE(a)

)∗
for all E ∈ R and a ∈ P

in addition to (A), then a similar property can be derived for the integrals of
functions in ER(X,P). Analogously to the above extension of the multipli-
cation in Q0, for an elements l ∈ Q we denote by l� the set of all elements
q ∈ Q for which we can find a net (li)i∈I in Q0 ⊂ Q such that limi∈I li = l
and

lim
i∈I

l∗i = q.

The continuity of the involution in Q0 shows that for l ∈ Q0 we have
l� = {l∗}. Otherwise, the set l� may be empty or contain more than one
element of Q. Canonically, for a function f ∈ F(X,P) we denote by f ∗ ∈
F(X,P) the function x �→

(
f(x)

)∗
. Then an argument similar to that for

the multiplication yields

∫

X

f ∗ dθ ∈
(∫

X

f dθ

)�

for all f ∈ ER(X,P) and every L(P,Q0)-valued measure θ which satis-
fies (A) and (A*).

Because both χF ⊗f, χF ⊗g ∈ ER(X,P) whenever f, g ∈ ER(X,P) and
F ∈ AR, and because

∫
F f dθ =

∫
X χF ⊗f dθ, the above properties apply

also to integrals over measurable subsets F of X.
We formulate this as a further proposition:

Proposition 6.15. Let (P,V) and (Q0,W0) be topological algebras over
K = R or K = C and let θ be a bounded LK(P,Q0)-valued measure such
that θE(a) θG(b) = θ(E∩G)(ab) holds for all E,G ∈ R and a, b ∈ P. Then

∫

X

(fg) dθ ∈
(∫

X

f dθ

)
•

(∫

X

g dθ

)

holds for all f, g ∈ ER(X,P). If both (P,V) and (Q0,W) are topological
algebras with an involution a �→ a∗ and if θ satisfies θE(a∗) =

(
θE(a)

)∗ for
all E ∈ R and a ∈ P, then

∫

X

f ∗ dθ ∈
(∫

X

f dθ

)�

holds for all f ∈ ER(X,P).



224 II Measures and Integrals. The General Theory

The case that Q0 = K. If Q0 = K, that is if the values θE of the measure
θ are K-linear functionals on the algebra P, then Condition (A) means
that all functionals θE are multiplicative and that for disjoint sets E,G ∈
R we have either θE = 0 or θG = 0. Thus θ takes at most one non-
zero value, that is some multiplicative K-linear functional in P∗. In special
cases (see also Section 4.7 in Chapter III below) we infer that θ is indeed
some point evaluation measure. Condition (A*) for an algebra with involution
means that θE(a∗) = θE(a) holds for all E ∈ R and a ∈ P.

6.16 Lattice Homomorphisms. In Section 5.1 of Chapter I we defined a
locally convex ∨-semilattice cone to be a locally convex cone (P,V) with the
following properties: The order in P is antisymmetric, for any two elements
a, b ∈ P their supremum a ∨ b exists in P and

(∨1) (a + c) ∨ (b + c) = a ∨ b + c holds for all a, b, c ∈ P.
(∨2) a ≤ c + v and b ≤ c + w for a, b, c ∈ P and v, w ∈ V implies that

a ∨ b ≤ c + (v + w).

In case that the locally convex cone (P,V) is quasi-full, (∨2) may be replaced
by the somewhat simpler condition

(∨2′) a ≤ v for a ∈ P and v ∈ V implies that a ∨ 0 ≤ v.

Indeed, suppose that (∨1) and (∨2′) hold in a quasi-full cone (P,V), and
that a ≤ c + v and b ≤ c + w for a, b, c ∈ P and v, w ∈ V. Then a ≤ c + s
and b ≤ c+t for some elements s ≤ v and t ≤ w by (QF1) in I.6.1. By (∨2′)
we have s ∨ 0 ≤ v and t ∨ 0 ≤ w as well. Now a ≤ c + s ∨ 0 + t ∨ 0 and
b ≤ c + s ∨ 0 + t ∨ 0 implies

a ∨ b ≤ c + s ∨ 0 + t ∨ 0 ≤ c + (v + w)

as required in (∨2). Recall from Proposition I.5.2 that in a locally convex
∨-semilattice cone the lattice operation, that is the mapping (a, b) �→ a∨ b :
P × P → P is continuous with respect to the symmetric relative topology.

Topological vector lattices and locally convex complete lattice cones in the
sense of I.5 are locally convex ∨-semilattice cones. Further specific examples
include R and R+

(
Examples I.1.4(a) and (b)

)
and cones of non-empty

convex subsets of a topological vector space with the set-inclusion as order(
Example I.1.4(c)

)
. The supremum of two convex sets is their convex hull in

this case while infima do not always exist.
In the following let us suppose that (P,V) is a quasi-full locally convex

∨-semilattice cone and that θ is an R-bounded L(P,Q)-valued measure
whose values θE for all E ∈ R of are continuous linear operators from P
to Q satisfying the following condition:

(L) θE(a) ∨ θE(b) = θE(a ∨ b) and θE(a) ∨ θG(b) = θE(a) + θG(b)
for all a, b ≥ 0 in P and disjoint sets E,G ∈ R.

We shall verify below that (L) implies that its first requirement, that is to
say
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θE(a) ∨ θE(b) = θE(a ∨ b),

holds indeed for all, not only the positive elements of P. First we observe
that Condition (L) implies

(i) θE(a) ∧ θG(b) ≤ O (θE(a) ∨ θG(b))

for disjoint sets E,G ∈ R and 0 ≤ a, b ∈ P, as well as

(ii) sup
i=1,...,n

θEi
(ai) =

n∑

i=1

θEi
(ai)

for disjoint sets Ei ∈ R and ai ≥ 0 in P. For (i), let E,G ∈ R be disjoint
and 0 ≤ a, b ∈ P. Then

θE(a) ∨ θG(b) = θE(a) + θG(b) = θE(a) ∨ θG(b) + θE(a) ∧ θG(b)

by (L) and Proposition I.5.3. This yields our claim via the cancellation rule
in I.5.10(a). We shall prove (ii) by induction: For n = 1 there is nothing to
prove. Suppose our claim holds for n ∈ N, and let E1, . . . , En+1 ∈ R be
disjoint sets, and 0 ≤ a1, . . . , an+1 ∈ P. The inequality

sup
i=1,...,n+1

θEi
(ai) ≤

n+1∑

i=1

θEi
(ai)

is obvious. For the converse, using Proposition I.5.3 we infer

n+1∑

i=1

θEi
(ai) = sup

i=1,...,n
θEi

(ai) + θEn+1(an+1)

= sup
i=1,...,n+1

θEi
(ai) + sup

i=1,...,n
θEi

(ai) ∧ θEn+1(an+1).

We have

sup
i=1,...,n

θEi
(ai) ∧ θEn+1(an+1)

≤ sup
i=1,...,n

(
θEi

(ai) ∧ θEn+1(an+1)
)

+ O

(
sup

i=1,...,n+1
θEi

(ai)
)

by Proposition I.5.15(b), and for each i = 1, . . . , n

θEi
(ai) ∧ θEn+1(an+1) ≤ O (θEi

(ai) ∨ θEn+1(an+1)) ≤ O

(
sup

i=1,...,n+1
θEi

(ai)
)

by (i). Thus Propositions I.5.10(c) and I.5.11 yield

n+1∑

i=1

θEi
(ai) ≤ sup

i=1,...,n+1
θEi

(ai)
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as claimed. Next we shall verify that

(iii)

(
n∑

i=1

θEi
(ai)

)

∨
(

n∑

i=1

θEi
(bi)

)

=
n∑

i=1

θEi
(ai ∨ bi)

holds for disjoint sets Ei ∈ R and ai, bi ∈ P. Indeed, let E =
⋃n

i=1 Ei.
Given w ∈ W there is v ∈ V such that θE(v) ≤ w and λ ≥ 0 such that
0 ≤ ai + λv and 0 ≤ bi + λv for all i = 1, . . . , n. Because the locally convex
cone P is supposed to be quasi-full, there are si, ti ∈ P such that si, ti ≤ λv
and 0 ≤ ai +si and 0 ≤ bi + ti. Then si∨0, ti∨0 ≤ λv by our assumptions
for a semi lattice cone. We set s =

∑n
i=1(si ∨ 0) + (ti ∨ 0) and conclude that

0 ≤ s ≤ nλ v as well as 0 ≤ ai + s and 0 ≤ bi + s for all i = 1, . . . , n. Using
this and (ii) from above, we conclude that

(
n∑

i=1

θEi
(ai)

)

∨
(

n∑

i=1

θEi
(bi)

)

+ θE(s)

=

(
n∑

i=1

θEi
(ai + s)

)

∨
(

n∑

i=1

θEi
(bi + s)

)

= sup
i=1,...,n

θEi
(ai + s) ∨ sup

i=1,...,n
θEi

(bi + s)

= sup
i=1,...,n

θEi
(ai + s) ∨ θEi

(bi + s)

= sup
i=1,...,n

θEi

(
(ai + s) ∨ (bi + s)

)

=
n∑

i=1

θEi

(
(ai + s) ∨ (bi + s)

)

=
n∑

i=1

θEi
(ai ∨ bi) + θE(s).

Considering that O
(
θE(s)

)
≤ w and that w ∈ W was arbitrarily chosen,

now the cancellation law from Proposition I.5.10(a) yields (iii). Note that (iii)
implies a strengthening of the first requirement in (L): θE(a)∨θE(b)=θE(a∨b)
holds for all E ∈ R and all (not necessarily positive) elements a, b ∈ P.

The supremum f ∨ g ∈ F(X,P) of two functions f, g ∈ F(X,P) is
canonically defined as the mapping x �→ f(x)∨ g(x). If we take into account
the continuity of the lattice operation in P, then Theorem 1.4 yields imme-
diately that the supremum of two measurable functions is again measurable,
and consequently, a brief review of 2.3 confirms that the subcone FR(X,P)
of F(X,P) is closed for suprema. As an immediate consequence of (iii) we
infer that ∫

X

(h ∨ l) dθ =
(∫

X

h dθ

)
∨
(∫

X

l dθ

)

holds for all step functions h, l ∈ SR(X,P). Now let us denote by Sσ
R(X,P)

the subcone of all functions f ∈ FR(X,P) for which there exists a sequence
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(hn)n∈N of step functions that is bounded below and bounded above relative
to f and such that hn −→ f. According to Corollary 5.26, this implies
lim

n→∞

∫
X hn dθ =

∫
X f dθ. Lemma 5.27 and Corollary 5.28 yield in particular

that ER(X,P), the subcone generated by all elementary functions, is con-
tained in Sσ

R(X,P). We proceed to establish that the integral with respect to
a measure satisfying (L) defines a ∨-semilattice homomorphism (see I.5.30)
from Sσ

R(X,P) into Q :
Let f, g ∈ Sσ

R(X,P), and let (hn)n∈B and (ln)n∈B be the corresponding
sequences of step functions approaching f and g as required above. Because
of the continuity (with respect to the symmetric relative topology) of the
lattice operation in P, this implies hn ∨ ln −→ f ∨ g, that is the sequence
(hn ∨ ln)n∈N of step functions converges pointwise to the function f ∨ g ∈
F(X,P). We shall proceed to verify that this sequence is bounded below and
bounded above relative to f ∨ g, hence the function f ∨ g is also contained
in Sσ

R(X,P). Indeed, let v be an inductive limit neighborhood for F(X,P).
There are λ, ρ, σ ≥ 0 such that all of the following hold true: 0 ≤ f + λv,
0 ≤ g + λv

(
see Lemma 2.4(a)

)
, as well as 0 ≤ hn + λv, 0 ≤ ln + λv,

hn ≤ ρf + λv and ln ≤ σg + λv for all n ∈ N. We may indeed assume that
σ = ρ, since otherwise, for example if σ < ρ, we can suitably adjust

ln ≤ (σg + λv) + (ρ− σ)(g + λv) = ρg + λ′v.

Using this, we argue as follows: Firstly, the preceding conditions imply that
0 ≤ hn ∨ ln +λv holds for all n ∈ N. Secondly, there are V-valued functions
sn, tn ∈ v such that hn ≤ ρf + λsn and ln ≤ ρg + λtn. Let x ∈ X.
Because P is quasi-full, there are 0 ≤ un, vn ∈ P such that un ≤ sn(x),
vn ≤ tn(x) and hn(x) ≤ ρf(x) + λun and ln(x) ≤ ρg(x) + λvn. Thus both
hn(x), ln(x) ≤ ρ

(
f ∨ g

)
(x) + λ(un + vn) and therefore

(
hn ∨ ln

)
(x) ≤ ρ

(
f ∨ g

)
(x) + λ(un + vn) ≤ ρ

(
f ∨ g

)
(x) + λ

(
sn + tn

)
(x).

This shows hn ∨ ln ≤ ρ(f ∨ g) + 2λv for all n ∈ N and verifies our claim.
We therefore have

lim
n→∞

∫

X

hn dθ =
∫

X

f dθ, lim
n→∞

∫

X

ln dθ =
∫

X

g dθ

and
lim

n→∞

∫

X

hn ∨ ln dθ =
∫

X

f ∨ g dθ

by Corollary 5.26. As

lim
n→∞

∫

X

hn ∨ ln dθ = lim
n→∞

((∫

X

hn dθ

)
∨
(∫

X

ln dθ

))

= lim
n→∞

(∫

X

hn dθ

)
∨ lim

n→∞

(∫

X

ln dθ

)
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by the above and by Proposition I.5.25(a), we conclude that
∫

X

(f ∨ g) dθ =
(∫

X

f dθ

)
∨
(∫

X

g dθ

)

holds for all functions f, g ∈ Sσ
R(X,P), provided that the measure θ

satisfies (L). In other words, the integral with respect to θ defines a ∨-
semilattice homomorphism from Sσ

R(X,P) to Q in the sense of I.5.30. Be-
cause both functions χF ⊗f and χF ⊗g are elements of Sσ

R(X,P) whenever
f, g ∈ ER(X,P) and F ∈ AR, and because

∫
F f dθ =

∫
X χF ⊗f dθ, this

applies also to integrals over measurable subsets F of X.
We summarize:

Proposition 6.17. Let (P,V) be a quasi-full locally convex ∨-semilattice
cone and let θ be a bounded LK(P,Q0)-valued measure such that θE(a) ∨
θE(b) = θE(a ∨ b) and θE(a) ∨ θG(b) = θE(a) + θG(b) for all a, b ≥ 0 in P
and disjoint sets E,G ∈ R Then

∫

X

(f ∨ g) dθ =
(∫

X

f dθ

)
∨
(∫

X

g dθ

)

holds for all functions f, g ∈ Sσ
R(X,P).

The case that Q = R. If Q = R, that is if the values θE of the measure
θ are elements of P∗, then Condition (L) means that (i) all functionals θE

are lattice homomorphisms and (ii) for disjoint sets E,G ∈ R we have either
θE = 0 or θG = 0.

Similar concepts and results could obviously developed for locally convex
∧-semilattice cones as defined in Section I.5.1 and ∧-semilattice homomor-
phisms (see I.5.30).

6.18 Cone-Valued Functions and Positive Real-Valued Measures.
If P is a subcone of Q, and if the topology induced onto P by the neigh-
borhood system W of Q is equivalent to the topology induced by its given
neighborhood system V, then for every ρ ∈ R+ the mapping

a �→ ρa : P → Q,

defines a continuous linear operator. Thus every R+-valued measure θ on
R, that is

E �→ θE : R → R+

is an operator-valued measure in the sense of Section 3. In particular,
σ-additivity in our sense follows from σ-additivity for the R+-valued mea-
sure θ in the usual sense using Proposition I.5.22. Indeed, let Ei ∈ R be
disjoint sets, E =

⋃∞
i=1 Ei and set Fn =

⋃n
i=1 Ei. Then θE = lim

n→∞
θFn

∈ R+.

For σ-additivity of θ as an L(P,Q)-valued measure, we shall first consider
the case that θE = 0. Then θFn

= 0 for all n ∈ N, as this sequence is
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increasing. For any a ∈ P this means

∞∑

i=1

θEi
(a) = lim

n→∞
θFn

(a) = θE(a) = 0.

Otherwise, Proposition I.5.22 yields

∞∑

i=1

θEi
(a) = lim

n→∞
θFn

(a) = lim
n→∞

(
θFn

a
)

=
(

lim
n→∞

θFn

)
a = θE a = θE(a)

as well. For E ∈ R and w ∈ W there is v ∈ V such that a ≤ b + v for
a, b ∈ P implies a ≤ b + w. Then the modulus of the measure θ is given by

|θ|(E, v) = sup

{
n∑

i=1

θEi
si

∣
∣
∣ si ≤ v, Ei ∈ R disjoint subsets of E

}

≤ sup

{
n∑

i=1

θEi

∣
∣
∣ Ei ∈ R disjoint subsets of E

}

w ≤ θE w.

The L(P,Q)-valued measure θ is therefore bounded in the sense of
Section 3.6 and can be extended to the full cone (PV ,V) (see Section 3.8).
In case that (Q,W) is indeed the standard lattice completion of (P,V) as
introduced in I.5.57, then Corollary 5.9 (see also 6.5) yields that the integrals
of integrable functions in F(X,P) are indeed elements of the second dual
P∗∗ of P.

6.19 Vector-Valued Functions and Real- or Complex-Valued Mea-
sures. Let (P,V) be a locally convex topological vector space over K = R

or K = C, endowed with a basis V of balanced convex neighborhoods, and
let (Q,W) be the standard lattice completion of (P,V), as defined in Sec-
tion 5.57 of Chapter I. Then the topology induced by W onto the embedding
of P into Q is equivalent to the topology induced by its given neighborhood
system V (see I.5.57). For each ρ ∈ K the mapping

a �→ ρa : P → Q,

is therefore a continuous linear operator. Thus every K-valued measure θ on
R, that is

E �→ θE : R → K

is an operator-valued measure in the sense of Section 3. For σ-additivity,
let Ei ∈ R be disjoint sets, E =

⋃∞
i=1 Ei and set Fn =

⋃n
i=1 Ei. Then

θE = lim
n→∞

θFn
∈ K, and lim

n→∞

(
θFn

a
)

=
(

lim
n→∞

θFn

)
a holds for all a ∈ P,

since (P,V) is a topological vector space, hence the scalar multiplication is
continuous. The L(P,Q)-valued measure θ is indeed strongly additive in
the sense of 5.32 since for every decreasing sequence (En)n∈N of sets in R
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such that
⋂

n∈N
En = ∅ and ε > 0 there is n0 ∈ N such that |θEn

| ≤ ε for
all n ≥ n0. Because for a ∈ P and w ∈ W there is v ∈ V and λ ≥ 0 such
that a ≤ λv ≤ λw, hence

θEn
(a) = θEn

a ≤ λw,

holds for all n ≥ n0. The latter follows since the neighborhoods in V are
balanced and convex for P. Recall from 6.4 that the total variation var(θ,E)
of a real- or complex-valued measure θ on is always finite. For E ∈ R and
w ∈ W there is v ∈ V such that a ≤ b + v, that is a − b ∈ v for a, b ∈ P
implies a ≤ b + w. We have γs ∈ |γ|v for all γ ∈ K whenever s ∈ v for
s ∈ P and v ∈ V. According to 6.12 the modulus of the L(P,Q)-valued
measure θ is therefore given by

|θ|(E, v) = sup

{
n∑

i=1

θEi
si

∣
∣
∣ si ∈ v, Ei ∈ R disjoint subsets of E

}

≤ sup

{
n∑

i=1

|θEi
|
∣
∣
∣ Ei ∈ R disjoint subsets of E

}

w

= var(θ,E) w.

The L(P,Q)-valued measure θ is therefore bounded in the sense of
Section 3.6.

Integrability for P-valued functions had been characterized in 6.12. In-
tegrals of functions that satisfy Condition (BI 1) are elements of the second
vector space dual P∗∗

K
of P

(
see 6.12(i)

)
. According to 6.12(iv), the operator

f �→
∫

F

f dθ : F(F,θ,BI1)(X,P) → P∗∗
K

is linear over K. Integrals of functions that satisfy Condition (BI 2) from 6.12
are indeed elements of the closure with respect to the symmetric topology of
P in P∗∗

K
. In case of a topologically complete locally convex vector space P,

this closure coincides with P.
Neighborhood-valued measurable functions are integrated using the canon-

ical extension of the measure θ to the full cone (PV ,V) as elaborated in
Section 3.8. For a positive real-valued measurable function ϕ and a neigh-
borhood v ∈ V, for example, the function ϕ⊗v is measurable, hence in
F(X,PV). According to the above for every F ∈ R its integral may be
estimated as

∫
F ϕ⊗v dθ ≤

(∫
F ϕ d var(θ)

)
w, where var(θ) is the positive

real-valued measure E �→ var(θ,E) : R → R and w ∈ W is a neighborhood
such that a ≤ b + v, that is a− b ∈ v for a, b ∈ P implies a ≤ b + w.

Because the locally convex complete lattice cone (Q,W) allows suffi-
ciently many order continuous linear functionals, that is the order continuous
lattice homomorphisms on Q support the separation property (see I.5.32
and I.5.57), the strong convergence statements of Theorem 5.36 apply to
functions satisfying Condition (BI 2) from 6.12.
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Let us consider the special case that (P,V) is a normed space, that is V =
{ρB | ρ > 0}, where B is the unit ball in P. A vector-valued function f ∈
F(X,P) is called Bochner (or Dunford and Schwartz) integrable over a set
E ∈ R with respect to a scalar-valued measure θ (see for example III.2.17
in [55] or II.2 in [43]) if for every ε > 0 there is a step function hε ∈ SR(X,P)
such that the mapping x �→ ‖f(x)− hε(x)‖ is measurable and

∫

E

‖f − hε‖ d var(θ) ≤ ε.

Indeed, if the P-valued function f is Bochner integrable, then given w ∈ W
there is ε > 0 such that a ≤ b + εB, that is ‖a − b‖ ≤ εB for a, b ∈ P
implies a ≤ b + w. We set h(B,w) = hε ∈ SR(X,P) and compute

∫

E

‖f − hε‖ ⊗B d θ ≤
∫

E

‖f − hε‖ d var(θ) ≤ w

by our preceding considerations, hence (BI 2) from 6.12 holds for f.

6.20 Operator-Valued Functions and Operator-Valued Measures.
Let N and H be cones, and let Z and Y be families of subsets of N
and of H, directed upward by set inclusion. Furthermore, let (M,U) and
(L,R) be two locally convex cones, and for the respective cones L(N ,M)
and L(H,L) of linear operators consider the neighborhoods V(Z,u) for Z ∈ Z

and u ∈ U , and W(Y,r) for Y ∈ Y and r ∈ R (see Section I.7); that is
S ≤ U + V(Z,u) or R ≤ T + W(Y,r) for operators S,U ∈ L(N ,M) or
R, T ∈ L(H,L), respectively, if

S(z) ≤ U(z) + u for all z ∈ Z, or R(y) ≤ T (y) + r for all y ∈ Y.

Let H(N ,M) be a subcone of L(N ,M) such that all its elements are
bounded below with respect to the neighborhoods V(Z,u) and such that
the resulting locally convex cone

(
H(N ,M),V

)
is quasi-full. Similarly, let

H(H,L) be a subcone of L(H,L) whose elements are bounded below with
respect to the neighborhoods W(Y,r) and denote the resulting locally convex
cone by

(
H(H,L),W

)
. Let

(
Ĥ(H,L), Ŵ

)
be a locally convex complete lat-

tice cone containing the latter, for example its (simplified) standard lattice
completion (see Sections I.5.57 and I.7). Now in the context of our general
theory we may consider integrals for H(N ,M)-valued functions with respect
to bounded L

(
H(N ,M), Ĥ(H,L)

)
-valued measures.

This is indeed a rather unwieldy setting. It does however facilitate a
considerably wider choice of applications for our theory, as we shall see in
Sections 6.22 to 6.23 below. Moreover, note that this point of view generalizes
our original one since the given cones (P,V) and (Q,W) may be consid-
ered as cones of linear operators from R+ to P or to Q, respectively

(
see

Example I.7.1(c)
)
.
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We shall study two useful special cases in further detail:

(i) The case N = H and Z = Y. In this case every linear operator
T ∈ L(M,L) may be reinterpreted as a linear operator T from H(N ,M)
into L(N ,L) mapping the operator U ∈ H(N ,M) into the operator T ◦U ∈
L(N ,L); that is

(
T ◦ U

)
(z) = T

(
U(z)

)
∈ L for all z ∈ N .

In order to guarantee that the operator T ◦U is bounded below with respect
to the neighborhoods W(Y,r) ∈W, and that the operator

T : H(N ,M) → L(N ,L)

is continuous with regard to the respective neighborhood systems for these
cones, we shall require that T itself is continuous from (M,U) into (L,R),
that is T ∈ L(M,L). Indeed, for Z ∈ Z and r ∈ R there is u ∈ U such
that T (a) ≤ T (b) + r whenever a ≤ b + u for a, b ∈M. Then for operators
S,U ∈ H(N ,M) such that S ≤ U + V(Z,u) we have S(z) ≤ U(z) + r, hence(
T ◦S

)
(z) ≤

(
T ◦U

)
(z)+r for all z ∈ Z. This shows T (S) ≤ T (U)+W(Z,r).

Moreover, as for every S ∈ H(N ,M) we have 0 ≤ S + λV(Z,u) for some
λ ≥ 0, the above implies that 0 ≤ T (S) + λW(Z,r).

In this way, an L(M,L)-valued measure θ on R may be reinterpreted
as an L

(
H(N ,M), Ĥ(N ,L)

)
-valued measure, where (Ĥ(N ,L),W) is a lo-

cally convex complete lattice cone containing all the operators θE ◦ U for
E ∈ R and U ∈ H(N ,M). We are using the above identification of a
continuous linear operator T ∈ L(M,L) with a continuous linear operator
T ∈ L

(
H(N ,M), Ĥ(N ,L)

)
. We proceed to calculate the modulus of such a

measure: For E ∈ R and V(Z,u) ∈ V we have

|θ|
(
E, V(Z,u)

)

= sup

{
n∑

i=1

θEi
◦ Si

∣
∣
∣ Si ≤ V(Z,u), Ei ∈ R disjoint subsets of E

}

.

The supremum on the right-hand side is taken in the locally convex com-
plete lattice cone Ĥ(N ,L). For R-boundedness of this measure we re-
quire that for every r ∈ R and Z ∈ Z there is u ∈ U such that
|θ|
(
E, V(Z,u)

)
≤ W(Z,r). Note that for N = R+ and Z =

{
{1}

}
, that is

for
(
H(N ,M),V

)
and

(
H(N ,L),W

)
being isomorphic to the given cones

(M,U) and (L,R) we have |θ|
(
E, V({1},u)

)
= |θ|(E, u)|. Countable additiv-

ity for the L
(
H(N ,M), Ĥ(N ,L)

)
-valued measure θ requires that for disjoint

sets Ei ∈ R for every U ∈ H(N ,M) the series

θ(
⋃

i∈N

Ei) ◦ U =
∞∑

i=1

(
θEi

◦ U
)
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is order convergent in Ĥ(N ,L). In case that Ĥ(N ,L) is the simplified stan-
dard lattice completion of H(N ,L) as constructed in I.7.1, this means that
for disjoint sets Ei ∈ R

μ
(
θ(
⋃

i∈N

Ei)
(
U(a)

))
=

∞∑

i=1

μ
(
θEi

(
U(a)

))

holds for all U ∈ H(N ,M), a ∈
⋃

Z∈Z
Z and μ ∈ L∗. Also in this

case, Corollary 5.9 yields together with Remark I.7.1 that integrals of(
H(N ,M),V

)
-based integrable functions are indeed linear operators from

N into L∗∗, the second dual of L.
(ii) The case M = L and U = R. In this case every linear operator

T∈L(H,N ) may be reinterpreted as a linear operator T̃ from H(N ,M) into
L(H,M), mapping the operator U ∈ H(N ,M) into the operator U ◦ T ∈
L(H,M); that is

(
U ◦ T

)
(z) = U

(
T (z)

)
∈M for all z ∈ H.

In order to guarantee that the operator U ◦T is bounded below with respect
to the neighborhoods W(Y,r) ∈W, and that the operator

T̃ : H(N ,M) → L(H,M)

is continuous with regard to the respective neighborhood systems, we shall
require that for every Y ∈ Y there is some Z ∈ Z such that f(Y ) ⊂ Z.
Indeed, for Y ∈ Y and u ∈ U let Z ∈ Z such that f(Y ) ⊂ Z. Then
for operators S,U ∈ H(N ,M) such that S ≤ U + V(Z,u) we have S(z) ≤
U(z)+u for all z ∈ Z, hence

(
S ◦T

)
(y) ≤

(
U ◦T

)
(z)+u for all y ∈ Y. This

shows T̃ (S) ≤ T̃ (U)+W(Y,u). Moreover, as for every S ∈ H(N ,M) we have
0 ≤ S +λV(Z,u) for some λ ≥ 0, the above implies that 0 ≤ T (S)+λW(Y,u).

In this way, an L(H,N )-valued measure θ satisfying the above require-
ment may be reinterpreted as an L

(
H(N ,M), Ĥ(H,M)

)
-valued measure,

where (Ĥ(H,M), Ŵ) is a locally convex complete lattice cone containing all
the operators U ◦ θE for E ∈ R and U ∈ H(N ,M), and using the above
identification. The modulus of such a measure is calculated for E ∈ R and
V(Z,u) ∈ V as

|θ|
(
E, V(Z,u)

)
=sup

{
n∑

i=1

Si ◦ θEi

∣
∣
∣Si≤V(Z,u), Ei ∈ R disjoint subsets of E

}

.

The supremum on the right-hand side is taken in the locally convex complete
lattice cone Ĥ(H,M). For R-boundedness of this measure we require that
for every u ∈ U and Y ∈ Y there is Z ∈ Z such that |θ|

(
E, V(Z,u)

)
≤

W(Y,u). Countable additivity for the measure θ requires that for disjoint
sets Ei ∈ R for every U ∈ H(N ,M) the series
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U ◦ θ(
⋃

i∈N

Ei) =
∞∑

i=1

(
U ◦ θEi

)

is order convergent in H(H,M). In case that Ĥ(H,M) is the simplified stan-
dard lattice completion of H(H,M) as constructed in I.7.1, Corollary 5.9 and
Remark I.7.1 yield that integrals of

(
H(N ,M),V

)
-based integrable functions

are linear operators from H into M∗∗, the second dual of M. If both H
and M are vector spaces over K = R or K = C, then these integrals are
indeed K-linear operators from M into the second vector space dual M∗∗

K

of M (see I.7.1).

6.21 Positive, Real or Complex-Valued Functions and Operator-
Valued Measures. This is a special case for the preceding section. Let
(P,V) and (Q,W) be locally convex cones, and let K = R+, or K = R

or K = C if P and Q are indeed locally convex topological vector spaces
over R or C, respectively, endowed with their symmetric topologies. We
choose N = M = P and H(N ,M) = K in the setting of Section 6.20.
Depending on the suitable choice for the family Z of bounded below subsets
of P, the following upper neighborhoods for an element α ∈ K will render
K into a quasi-full locally convex

(
see Example I.7.2(c)

)
: For K = R+ the

family of all B
u
ε (α) = [0, α + ε] for ε > 0, or the single neighborhood and

B
u
0 (α) = [0, α], both yielding the natural order; for K = R or K = C the

Euclidean neighborhoods Bε(α) = {β ∈ K | |β−α| ≤ ε} with equality as the
order on K. In order to deal with these cases simultaneously, let us denote by
B either B

u
1 (0), Bu

0 (0) or B1(α), that is the respective unit neighborhoods
of 0 ∈ K, and let Γ = {0},Γ = {0, 1} or Γ = {γ ∈ K | |γ| = 1}} be the
corresponding units spheres.

We set L = Q and use the special case (i) in Section 6.20 in order to
integrate K-valued functions with respect to an L(P,Q)-valued measure.
For Ĥ(P,Q) we choose the simplified standard lattice completion of L(P,Q).
For E ∈ R and the above neighborhoods we calculate the modulus of an
L(P,Q)-valued measure θ as follows:

|θ|(E, B) = sup

{
n∑

i=1

γiθEi

∣
∣
∣ γi ∈ Γ, Ei ∈ R disjoint subsets of E

}

.

The supremum on the right-hand side of these expressions is taken in the
locally convex complete lattice cone Ĥ(P,Q), that is a cone of R-valued
functions with the pointwise algebraic and lattice operations. For K = R+

and B = B
u
0 we have of course |θ|(E, B) = 0. For the remaining cases

boundedness of the L
(
K,L(P,Q)

)
-valued measure θ requires that for every

E ∈ R, the modulus |θ|(E, B) is bounded in Ĥ(P,Q) with respect to all
neighborhoods W(Z,w) for Z ∈ Z and w ∈ W. Let us recall the construction
in I.7 of the standard lattice completion Ĥ(P,Q) of L(P,Q) to understand
this further: The elements of Ĥ(P,Q) are R-valued functions on the set
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Υ =
(⋃

Z∈Z
Z
)
×Q∗. An element ϕ ∈ Ĥ(P,Q), that is an R-valued function

on Υ is bounded relative to a neighborhood W(Z,w) if there is λ ≥ 0 such
that ϕ(a, μ) ≤ λ holds for all a ∈ Z and μ ∈ w◦. Thus for boundedness of
the measure θ we require that for every choice of disjoint subsets Ei ∈ R

of E and γi ⊂ Γ we have

n∑

i=1

μ
(
γiEi(a)

)
=

n∑

i=1

�e(γi)μ
(
Ei(a)

)
≤ λ

for all a ∈ Z and μ ∈ w◦; or equivalently, that for every Z ∈ Z the subset
{

n∑

i=1

θEi
(a)

∣
∣
∣ Ei ∈ R disjoint subsets of E, a ∈ Z

}

is bounded above in Q. Indeed, in case that K = R or K = C, both (P,V)
and (Q,W) are locally convex vector spaces, and we have γμ ∈ w◦ for all
γ ∈ Γ whenever μ ∈ w◦ for w ∈ W.

Recall that all sets Z ∈ Z are required to be bounded below in P. The
choice of all these sets for Z results in the uniform operator topology for
L(P,Q)

(
see I,7.1(i)

)
. If the sets in Z are also bounded above (as is indeed

implied in the case that P is a locally convex vector space in its symmetric
topology), then boundedness of θ as an L

(
K,L(P,Q)

)
-valued measure is

already implied by its boundedness as an L(P,Q)-valued measure. Indeed,
given E ∈ R and w ∈ W there is v ∈ V such that |θ|(E, v) ≤ w (see
Sections 3.2 to 3.6). Then for every Z ∈ Z there is λ ≥ 0 such that z ≤ λv
for all z ∈ Z. This implies the above condition for the boundedness of θ.

If Z consists of all finite subsets of P, that is if we consider the strong
operator topology for L(P,Q)

(
see I,7.1(ii)

)
, then boundedness is a much

weaker condition for θ : For every a ∈ P the subset
{

n∑

i=1

θEi
(a)

∣
∣
∣ Ei ∈ R disjoint subsets of E

}

is required to be bounded above in Q.
Countable additivity for the L

(
K,L(P,Q)

)
-valued measure θ demands

that for disjoint sets Ei ∈ R

μ
(
θ(
⋃

i∈N

Ei)(a)
)

=
∞∑

i=1

μ
(
θEi

(a)
)

holds for all a ∈
⋃

Z∈Z
Z and μ ∈ Q∗.

Our notion of measurability for K-valued functions coincides with the
usual one (see also Examples 6.3 and 6.4). For K = R+ all measurable K-val-
ued functions are in F(X, K), hence integrable. For K = R or K = C with
the Euclidean topology, a measurable K-valued function is in F(X, K) if on
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every set E ∈ R it can be uniformly approximated by step functions. This
implies of course strong integrability in the sense of 5.18. Because Ĥ(P,Q)
was supposed to be the simplified standard lattice completion of L(P,Q),
the integral to a function ϕ ∈ F(X, K) with respect to an L(P,Q)-valued
measure over a set E ∈ R is a linear operator from P into Q∗∗, contained
in the closure of L(P,Q) in Ĥ(P,Q) with respect to the symmetric relative
topology. Thus, if the cone L(P,Q) is topologically complete with respect
to this topology, then this integral is indeed an element of L(P,Q).

Let us proceed to discuss the convergence theorems from Section 5: For the
sake of simplicity we shall restrict ourselves to the case of a single measure,
that is θn = θ for all n ∈ N in Theorems 5.23 to 5.25: Let (ϕn)n∈N be
a sequence of integrable K-valued functions that converges pointwise θ-al-
most everywhere on a set F ∈ AR to a function ϕ in the symmetric relative
topology of K. This is of course the usual (Euclidean) notion of convergence,
except for the case of K = R+ endowed with the neighborhood B

u
0 which

renders 0 ∈ R+ into an isolated point
(
see Example I.4.37(b)

)
. The bounded-

ness conditions from Theorem 5.25 for the sequence (ϕn)n∈N read somewhat
differently for the different choices for K : We set ϕ∗∗ = ϕ∗ = 0 in all cases.
For K = R+ we require that ϕn

≤
a.e.F ϕ∗ holds for all n ∈ N with some inte-

grable function ϕ∗. For K = R or K = C with the Euclidean topology and
the order we use an integrable positive-valued function ϕ∗ and the function
f ∗ = ϕ∗⊗B whose values are in the full cone KV = {α+ρB | α ∈ K, ρ ≥ 0} to
which Theorem 5.25 applies in this case. We therefore require that |ϕn| ≤a.e.F ϕ∗

holds for all n ∈ N in this case. The assumptions of Theorem 5.25 are
now satisfied. Let Tn =

∫
F ϕn dθ, T =

∫
F ϕdθ and T ∗ =

∫
F ϕ∗ dθ, or

T ∗ =
∫

F (ϕ∗⊗B) dθ in case K = R or K = C. These integrals are in general
elements of Ĥ(P,Q). The conclusion of Theorem 5.25 now states that

T ≤ lim
n→∞

Tn and lim
n→∞

Tn ≤ T + O (T ∗)

in Ĥ(P,Q), that is
T (a, μ) ≤ lim

n→∞
Tn(a, μ)

for all a ∈
⋃

Z∈Z
Z and μ ∈ P∗, and indeed

T (a, μ) = lim
n→∞

Tn(a, μ)

whenever T ∗(a, μ) < +∞. Note that for linear operators T ∈ L(P,Q) as
elements of Ĥ(P,Q) we have T (a, μ) = μ

(
T (a)

)
.

Now let us investigate the additional assumptions of Theorem 5.36 which
will lead to convergence of (Tn)n∈N towards T in the symmetric topology
of Ĥ(P,Q) : We require that F = E is in R. Strong additivity of the
L
(
K,L(P,Q)

)
-valued measure θ in the sense of 5.30 means that for every

decreasing sequence (En)n∈N of sets in R such that
⋂

n∈N
En = ∅, for
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Z ∈ Z and w ∈ W there is n0 ∈ N such that

θEn
(a) ≤ O

(
θE1 (a)

)
+ w

holds for all a ∈ Z and n ≥ n0. Recall that in case K = R or K = C we as-
sume that both P and Q are locally convex vector spaces in their respective
symmetric topologies, thus O

(
θE1 (a)

)
= 0, and θEn

(a) ≤ w implies that
θEn

(γa) ≤ w for all γ ∈ Γ. The above therefore means that the sequence
(θEn

)n∈N of linear operators converges to 0 in the symmetric topology of(
L(P,Q),W

)
. We also need to require that the functions ϕn, ϕ and ϕ∗ or

ϕ∗⊗B are (K,V)-based integrable in the sense of 5.6. Measurability in the
classical sense and boundedness below almost everywhere on the set E is
sufficient for this. This condition also yields strong integrability for the func-
tions ϕ∗ or ϕ∗⊗B. Finally, according to 5.36 we require that the element
T ∗ =

∫
E ϕ∗ dθ or T ∗ =

∫
E(ϕ∗⊗K) dθ is bounded in Ĥ(P,Q). Under these

additional assumptions then Theorem 5.36 yields

T = lim
n→∞

Tn

in the symmetric topology of Ĥ(P,Q). If as in most cases of interest the inte-
grals Tn and T are actually elements of L(P,Q), then we infer convergence
in the symmetric operator topology of (L(P,Q),W).

Operator algebras. If H = P = Q is a locally convex topological vec-
tor space, then the space of continuous linear operator L(P,P) forms a
topological algebra, endowed with the composition of operators as its mul-
tiplication (see 6.4). We integrate K-valued functions with respect to an
L(P,P)-valued measure θ in this case. The values of the integrals are con-
tained in the simplified standard completion Ĥ(P,P) of L(P,P). For the
integral to determine a multiplicative linear operator from ER(X, K) =
FR(X, K) into Ĥ(P,P) in the sense of Example 6.14 we need to require
that the measure θ satisfies Condition (A), that is θE(a) θE(b) = θE(ab)
and θE(a) θG(b) = 0 holds for all a, b ∈ K and disjoint sets E,G ∈ R. As
θE(a) = aθE in this case, Condition (A) reads as follows:

(A) (θE)2 = θE and θE θG = 0 for disjoint sets E,G ∈ R,

that is the operators θE ∈ L(P,P) are required to be idempotent and pair-
wise orthogonal for disjoint sets E,G ∈ R.

Spectral Measures. For a concrete example, let H = P = Q be a complex
Hilbert space with unit ball U and the neighborhood system V={ρU | ρ>0}.
Let R be a weak σ-ring, and as in spectral theory, let θ be a projection-
valued measure on R. We consider θ as an L

(
C,L(H,H)

)
-valued measure

in the above sense. Such a measure is seen to be R-bounded, even if we
choose the uniform operator topology for L(H,H)

(
see I.7.2(i)

)
, that is the

family of all bounded subsets of H for Z. Indeed, let a ∈ H such that
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‖a‖ ≤ 1 and let Ei ∈ R, for i = 1, . . . , n be disjoint sets. For a spectral
measure the θEi

are projections onto mutually orthogonal subspaces of P.
Thus the elements ai = θEi

(a) are orthogonal and
∑n

i=1 ‖ai‖2 ≤ ‖a‖2 = 1
by the Bessel inequality

(
see Theorem 1 in I.5 of [82]

)
. Thus

∥
∥

n∑

i=1

θEi
(a)
∥
∥2 =

∥
∥

n∑

i=1

ai

∥
∥2 =

n∑

i=1

‖ai‖2 ≤ 1.

The set
{

n∑

i=1

θEi
(a)

∣
∣
∣ Ei ∈ R disjoint subsets of E, a ∈ H, ‖a‖ ≤ 1

}

is therefore indeed bounded above in H. Countable additivity for a spec-
tral measure is however required only with respect to the strong operator
topology for L(H,H), which arises if we choose the family of all finite sub-
sets of H for Z. (Because projection operators in L(H,H) are of norm 1,
countable additivity with respect to the uniform operator topology can of
course only apply to finite sums of such operators.) Theorem 5.36 therefore
yields convergence in the strong but not in the uniform operator topology of
L(H,H) for spectral measures.

Spectral measures satisfy Condition (A) from above and also Condi-
tion (A*) from 6.14, that is θE(a∗) =

(
θE(a)

)∗ for all E ∈ R and a ∈ P.

As θE(a∗) = āθE and
(
θE(a)

)∗ =
(
aθE

)∗ = ā
(
θE

)∗ in this case, this is
equivalent to

(A*) θE =
(
θE

)∗
for all E ∈ R.

This condition holds because the projection operators θE ∈ L(H,H) are self-
adjoint. The linear operator f �→

∫
X f dθ is therefore multiplicative on the

space FR(X, C) of bounded measurable K-valued functions and preserves
the involution, that is

∫
X f ∗ dθ =

( ∫
X f dθ

)∗
.

6.22 Operator-Valued Functions and Cone-Valued Measures. This
is again a special case of 6.20. Let P be a cone, (Q,W) a locally convex
complete lattice cone. We choose N = P, M = L = Q and H = R+ in
the setting of 6.20 and use the special case (ii). For Z we choose a family
of subsets of P, directed upward by set inclusion such that

⋃
Z∈Z Z = P,

and suppose that the locally convex cone (H(P,Q),V) of linear operators
from P into Q is quasi-full. Let Y consist of the singleton subset {1} of
R+. Then the locally convex cone

(
L(R+,Q), W) is isomorphic to (Q,W)(

see Example I.7.2(d)
)
, hence a locally convex complete lattice cone. Simi-

larly, because the cone P can be identified with the cone L(R+,P), we may
consider the elements of P to be linear operators from some quasi-full cone
H(P,Q) into L(R+,Q), that is into Q. Our choice for the families Z and
Y guarantees that these operators are continuous

(
see 6.20 (ii)

)
. Using these
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settings, case (ii) from 6.20 therefore permits us to consider H(P,Q)-valued
functions together with P-valued measures. Countable additivity requires for
a P-valued measure θ that for disjoint sets Ei ∈ R and for every linear
operator T ∈ H(P,Q) the series

T
(
θ(
⋃

i∈N

Ei)

)
=

∞∑

i=1

T
(
θEi

)

is order convergent in Q. The modulus of θ is calculated for E ∈ R and
V(Z,w) ∈ V as

|θ|
(
E, V(Z,w)

)

= sup

{
n∑

i=1

Ti

(
θEi

) ∣∣
∣ Ti ≤ V(Z,w), Ei ∈ R disjoint subsets of E

}

.

R-boundedness in the sense of Section 3.6 requires that for every E ∈ R

and u ∈ W there is V(Z,w) ∈ V such that |θ|
(
E, V(Z,w)

)
≤ u. A bounded

P-valued measure then integrates H(P,Q)-valued functions, and the values
of these integrals are elements of L(R+,Q), that is Q itself. If (Q,W) is
indeed the standard lattice completion of some locally convex cone Q0 and
if the concerned function is

(
H(P,Q0)

)
-based integrable, then its integral is

an element of the subcone Q∗∗
0 of Q.

Let us further consider the special case that (P,V) is a locally convex vec-
tor space, that (Q,W) is the standard lattice completion of a locally convex
vector space (Q0,W0) and that H(P,Q) ⊂ L(P,Q0). Then countable addi-
tivity of an P-valued measure θ is guaranteed by weak convergence of the
concerned series

∑n
i=1 θEi

in P in this case. Indeed, weak convergence in P
implies weak convergence in Q for the series

∑n
i=1 θEi

(T ) =
∑n

i=1 T (θEi
) for

every operator T ∈ L(P,Q0). (see IV.2.1 in [185]). Weak convergence in Q0,
however, coincides with order convergence in Q in this case (see I.5.57) as re-
quired for countable additivity. Moreover, Theorem 3.11 (or Corollary 3.13),
that is our version of Pettis’ theorem yields that for a vector-valued measure,
countable additivity with respect to weak convergence implies countable ad-
ditivity with respect to strong convergence, that is convergence in the sym-
metric topology of P. Every such measure is therefore strongly additive in
the sense of 5.30.

6.23 Positive, Real or Complex-Valued Functions and Cone- or
Vector-Valued Measures. This is a special case for the preceding section.
Let (P,V) be a locally convex cone and let and (Q,W) be its standard lat-
tice completion, Let K = R+, or K = R or K = C if P is indeed a locally
convex vector space over R or C, respectively, endowed with its symmetric
topology. We choose H(P,Q) = K endowed with one of the suitable topolo-
gies arising from the choice for the family Z of bounded below subsets of P
(see Example I.7.2(c) and 6.21 above), that is topologies generated by the
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neighborhoods B as discussed for the respective cases in 6.21. We shall also
use the notation for the unit sphere Γ from 6.21. Using this, the modulus of
a P-valued measure θ is given by

|θ|(E, B) = sup

{
n∑

i=1

γiθEi

∣
∣
∣ γi ∈ Γ, Ei ∈ R disjoint subsets of E

}

.

The supremum on the right-hand side of this expression is taken in the lo-
cally convex complete lattice cone Q, that is a cone of R-valued functions
with the pointwise algebraic and lattice operations. Boundedness is of course
guaranteed in the case of B = B

u
0 . In the remaining cases it requires (see the

corresponding detailed argument in 6.21) that the set
{

n∑

i=1

θEi

∣
∣
∣ Ei ∈ R disjoint subsets of E

}

is bounded in P. We will be able to verify that every P-valued measure θ is
R-bounded in this instance. For this call to mind that the elements θE ∈ P,
for all E ∈ R, are considered to be continuous linear operators from K

into N , thus are required to be bounded elements of P. Furthermore, recall
from I.5.57 that the neighborhood system V for P is a generating subset of
the neighborhood system W for the standard lattice completion Q of P.
For E ∈ R let us consider the subset

A = {θE′ | E ′ ∈ R, E′ ⊂ E}

of P. We shall use Proposition I.4.25 (which is derived from the Uniform
Boundedness Theorem 3.4 in [172]) in order to verify that A is bounded
above in P. For this, let μ ∈ P∗. Because the elements of P∗ are also
order continuous linear functionals on the standard lattice completion Q of
P, we know from 3.9 that μ ◦ θ is an L(K, R)-valued, that is an R-valued
measure on R. This measure is indeed real-valued, since the elements θE′ ,
for all E′ ∈ R, were seen to be bounded elements of P. A countably additive
real-valued measure is however known to be bounded, that is

{
μ(a) | a ∈ A

}
=
{
(μ ◦ θ)E′ | E ′ ∈ R, E′ ⊂ E

}

is a bounded subset of R. Because this holds true for all linear functionals
μ ∈ P∗, Proposition I.4.25 yields that the set A is bounded above relative to
0 ∈ P, that is bounded above, as claimed. Thus, given v ∈ V, there is indeed
λ ≥ 0 such that θE′ ≤ λv holds for all subsets E′ ∈ R of E. We claim that
this implies |θ|(E, V ) ≤ 4λv. For this let us recall the construction of the
standard lattice completion (Q,W) of (P,V). Its elements are R-valued
functions ϕ on the dual P∗ of P, and we have ϕ ≤ v if ϕ(μ) ≤ 1 for all
μ ∈ v◦. For any such μ ∈ v◦, μ ◦ θ was seen to be a real-valued countably
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additive measure on R. As (μ ◦ θ)E′ ≤ λ for all subsets E ′ ∈ R of E, we
know that is total variation on E, that is var

(
μ ◦ θ, E

)
is bounded by the

constant 4λ (see 6.4). Thus
∣
∣θ
∣
∣(E, V

)
(μ) = var

(
μ ◦ θ, E

)
≤ 4λ

for all μ ∈ v◦. This demonstrates |θ|(E, V ) ≤ 4λv, as claimed.
Integrals of K-valued functions with respect to a P-valued measure θ

were seen to be elements of P∗∗. If (P,V) is indeed a locally convex vector
space that is complete in its symmetric topology and if as required in some
integrability conditions in the literature (see for example IV.10.7 in [55]) the
K-valued function ϕ can be approximated by a sequence of step functions
converging pointwise almost everywhere towards ϕ and such that the se-
quence of integrals over these step functions is convergent in P, then this
additional requirement guarantees that the value of the integral of ϕ is also
contained in P rather than in P∗∗.

Let us discuss the convergence theorems from Section 5: Let (ϕn)n∈N be a
sequence of integrable K-valued functions that converges pointwise θ-almost
everywhere on a set F ∈ AR to a function ϕ in the symmetric relative
topology of K. This is the usual notion of convergence, except for the case
of K = R+ endowed with the neighborhood B

u
0 which renders 0 ∈ R+ as an

isolated point. The boundedness conditions from Theorem 5.25 are as follows:
We set ϕ∗∗ = ϕ∗ = 0 in all cases. For K = R+ we require that ϕn

≤
a.e.F ϕ∗

holds for all n ∈ N with some integrable function ϕ∗. For K = R or K = C

with the Euclidean topology and the order we use an integrable positive-
valued function ϕ∗ and the function f ∗ = ϕ∗⊗B whose values are in the full
cone KV = {α + ρB | α ∈ K, ρ ≥ 0} to which Theorem 5.25 applies. We
require that |ϕn| ≤a.e.F ϕ∗ holds for all n ∈ N in this case. The assumptions
of Theorem 5.25 are now satisfied. Let an =

∫
F ϕn dθ, a =

∫
F ϕdθ and

a∗ =
∫

F ϕ∗ dθ, or a∗ =
∫

F (ϕ∗⊗K) dθ in case K = R or K = C. These
integrals are in general elements of P∗∗. The conclusion of Theorem 5.25
now states that

a ≤ lim
n→∞

an and lim
n→∞

an ≤ a + O (a∗)

in P∗∗, that is
a(μ) ≤ lim

n→∞
an(μ)

for all μ ∈ P∗, and indeed

a(μ) = lim
n→∞

an(μ)

whenever a∗(μ) < +∞. For elements a ∈ P ⊂ P∗∗ we have a(μ) = μ(a).
If (P,V) is indeed a locally convex topological vector space and if F =
E ∈ R, then the assumptions of Theorem 5.36 apply: The measure θ is
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strongly additive by Theorem 3.11. Measurability in the classical sense and
boundedness below almost everywhere on the set E is sufficient for the
functions ϕn, ϕ and ϕ∗⊗B to be (K,V)-based integrable in the sense of 5.6.
The latter is indeed strongly integrable in the sense of 5.18. All integrals
involved are elements of P and Theorem 5.36 yields

a = lim
n→∞

an

in the symmetric, that is the given topology of P.

Algebra-valued measures. If P is a topological algebra, that is a locally con-
vex topological vector space over K = R or K = C with a compatible
multiplication, then Conditions (A) and (A*) from 6.14 read as follows:

(A) (θE)2 = θE and θE θG = 0 for disjoint sets E,G ∈ R.
(A*) (θE)∗ = θE for all E ∈ R.

According to 6.14, Condition (A) guarantees the multiplicativity of the
integral as an operator from ER(X, K) = FR(X, K) into P∗∗, that is∫

X(fg) dθ ∈
(∫

X f dθ
)

•
(∫

X g dθ
)
, Condition (A*) the compatibility with

an involution, that is
∫

X f ∗ dθ =
(∫

X f dθ
)∗ for K-valued functions f, g ∈

FR(X, K).

Lattice-valued measures. Now suppose that P is a lattice cone over K = R

or K = R+ in the sense of 6.16, that is a quasi-full locally convex cone contain-
ing suprema for any two of its elements and satisfying the properties specified
in 6.16. For the integral to determine a ∨-semilattice homomorphism from
ER(X, K) = FR(X, K) into P∗∗ in the sense of 6.16 we need to require that
the measure θ satisfies Condition (L), that is θE(a)∨ θE(b) = θE(a∨ b) and
θE(a) ∨ θG(b) = θE(a) + θG(b) holds for all 0 ≤ a, b ∈ K and disjoint sets
E,G ∈ R. As θE(a) = aθE in this case, Condition (L) reads as follows:

(L) θE ≥ 0 and θE ∨ θG = θE + θG for disjoint sets E,G ∈ R,

that is the elements θE ∈ P are positive and mutually disjoint for disjoint
sets E,G ∈ R. According to 6.16, Condition (L) guarantees that the integral
as an operator from Sσ

R(X, K) = FR(X, K) into P∗∗ is a ∨-semilattice
homomorphism, that is

∫
X(f ∨ g) dθ =

(∫
X f dθ

)
∨
(∫

X g dθ
)

for functions
f, g ∈ FR(X, K).

6.24 Positive Linear Operators on Cones of R-Valued Functions.
Let P = R, let X and R be as before, and let W be a neighborhood
system for F(X, R), consisting of non-negative functions w ∈ F(X, R). Let
Q = FW(X, R) be the subcone of functions in F(X, R) that are bounded
below with respect to W. Then

(
FW(X, R),W

)
is a full locally convex com-

plete lattice cone, provided that for every x ∈ X there is w ∈ W such that
w(x) < +∞ (see Example I.5.7(c)). There are two distinct types of con-
tinuous linear operators from R into FW(X, R). Firstly, for a non-negative
real-valued function ϕ such that both ϕ,−ϕ ∈ FW(X, R), let Tϕ(a) = aϕ
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for a ∈ R. (In particular, this means Tϕ(+∞)(x) = +∞ for all x ∈ X
such that ϕ(x) > 0 and Tϕ(+∞)(x) = 0 else.) Secondly, for a function
ψ ∈ FW(X, R) that takes only the values 0 and +∞, set T 0

ψ(a) = 0 for
a ∈ R and T 0

ψ(+∞) = ψ. Then every linear operator T ∈ L
(
R,FW(X, R)

)

can be expressed as T = Tϕ+T 0
ψ with some ϕ,ψ ∈ FW(X, R) as above. Con-

sequently, an L
(
R,FW(X, R)

)
-valued measure θ on R can be expressed as

a sum of two FW(X, R)-valued measures θ1 and θ0, both yielding functions
in FW(X, R), and such that for each E ∈ R the function θ1

E is positive
and both θ1

E ,−θ1
E ∈ FW(X, R), and the function θ0

E takes only the values
0 and +∞. For a step function

h =
n∑

i=1

χEi
ai ∈ SR(X, R),

where a1, . . . , an ∈ R, we have in particular
∫

X

h dθ =
n∑

i=1

aiθ
1
Ei

+
∑

i=1,...,n
s.th.ai=+∞

θ0
Ei

∈ FW(X, R).

On FR(X, R), the mapping

f �→
∫

X

f dθ : FR(X, R) → FW(X, R)

defines a linear operator, continuous with respect to the locally convex cone
topologies induced by the neighborhood system W, that is

∫

X

f dθ ≤
∫

X

g dθ + w whenever f ≤ g + vw,

for f, g ∈ FR(X, R). Recall from Section 4 that vw consists of all step func-
tions s =

∑n
i=1 χEi

⊗ai for 0 < ai ∈ R such that
∫

X s dθ =
∑n

i=1 aiθ
1
Ei
≤ w.

According to 6.17, the linear operator determined by the integral is indeed
a ∨-semilattice homomorphism, if Condition (L) holds, that is if θE(a) ∨
θE(b) = θE(a ∨ b) and θE(a) ∨ θG(b) = θE(a) + θG(b) for all a, b ≥ 0 in
R and disjoint sets E,G ∈ R. The first part of this condition holds always
true for an L

(
R,FW(X, R)

)
-valued measure θ as introduced above, since the

operators involved, Tϕ and T 0
ψ, are defined using non-negative functions ϕ

and ψ. Let us investigate the second part of the condition in (L): For disjoint
sets E,G ∈ R let θE = TϕE

+T 0
ψE

and θG = TϕG
+T 0

ψG
. Then (L) requires

that the functions ϕE and ϕG are orthogonal, that is ϕE(x)ϕG(x) = 0 for
all x ∈ X. (There are no additional conditions for the functions ψE and
ψG.) If this condition is satisfied, then we have

∫

X

(f ∨ g) dθ =
(∫

X

f dθ

)
∨
(∫

X

g dθ

)

for all f, g ∈ FR(X, R).
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6.25 Bounded Linear Operators on Spaces of Real- or Complex-
Valued Functions. Now let P = K for K = R or K = C, endowed with
the equality as order and the usual topology, that is V = {ρB | ρ > 0}, and
a ≤ b+ρB if |a−b| ≤ ρ for a, b ∈ K. Let X and R be as before. Let W be
a system of nonnegative R-valued functions on X, closed for addition and
multiplication by (strictly) positive scalars and directed downward. Suppose
that for every x ∈ X there is v ∈ V such that v(x) < +∞. Let Q0 =
FW(X, K) be the vector space over K of all functions f ∈ F(X, K) that are
bounded with respect to the functions in W, that is for every w ∈ W there
is λ ≥ 0 such that |f(x)| ≤ λw(x) for all x ∈ X. The above condition on
W guarantees that for every x ∈ X the point evaluation εx is contained in
the vector space dual Q∗0K

of Q0. Let Q be the standard lattice completion
of Q0. We shall consider an L(K,Q0)-valued measure θ such that for all
E ∈ R the operators θE ∈ L(K,Q0) are linear over K. According to 6.12(iii)
then the operator

f �→
∫

X

f dθ : FR(X, K) → Q

is linear over K in the sense that
(∫

X

af dθ

)
(μ) =

(∫

X

f dθ

)
(aμ)

for every f ∈ F(F,θ)(X,P), μ ∈ Q∗0 and a ∈ K. If we set
(∫

F

f dθ

)
(x) ≡

(∫

F

f dθ

)
(εx)− i

(∫

F

f dθ

)
(iεx)

for x ∈ X, then these integrals may be reinterpreted as K-valued functions
on X and the integral is a K-linear operator from FR(X, K) into FW(X, K).
Moreover, ∣

∣
∣
∣

∫

F

f dθ

∣
∣
∣
∣ ≤ w holds whenever f ≤ vw

for f ∈ FR(X, K) and w ∈ W. (Recall that vw consists of all step
functions s =

∑n
i=1 αiχEi

⊗B for 0 < αi ∈ R such that
∫

X s dθ =∑n
i=1 αi|θ|(Ei, B)≤w.)
Obviously, K-linear operators in L

(
K,FW(X, K)

)
correspond to functions

ϕ ∈ FW(X, K). They operate as

Tϕ(a) = aϕ for a ∈ K.

An L
(
K,FW(X, K)

)
-valued measure θ on R may therefore be considered as

an FW(X, K)-valued set function on R. Boundedness means that for every
E ∈ R and w ∈ W there is ρ ≥ 0 such that
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|θ|(E, B) = sup

{
n∑

i=1

|θEi
|
∣
∣
∣ Ei ∈ R disjoint subsets of E

}

≤ ρw.

Measurability for a function in F(X, K) in the sense of Section 1 coincides
with measurability in the usual sense.

Both P = K and Q0 = FW(X, K) are indeed topological algebras. Thus
according to 6.14, the integral is an algebra homomorphism if Condition (A)
holds, that is if θE(a)θE(b) = θE(ab) and θE(a)θG(b) = 0 holds for all
a, b ∈ K and disjoint sets E,G ∈ R. The first part of this condition means
that the function θE ∈ FW(X, K) takes only the values 0 or 1, i.e. is
the characteristic function of some subset Φ(E) of X. The second part
of (A) requires that for disjoint sets E,G ∈ R the functions θE and θG

are orthogonal, that is θE(x)θG(x) = 0 for all x ∈ X, that is the sets Φ(E)
and Φ(G) are disjoint. If this condition is satisfied, then we have

∫

X

(fg) dθ =
(∫

X

f dθ

)(∫

X

g dθ

)

for all f, g ∈ FR(X, K). The extension of the multiplication from Q0 to
Q that was introduced in 6.14 implies pointwise multiplication for the cor-
responding K-valued functions. Thus, under Condition (A) the integral de-
fines a K-linear bounded and multiplicative operator from FR(X, K) into
FW(X, K). It also preserves the involution since Condition (A*) is obviously
implied by (A).

7. Extended Integrability

We can further extend integrability to a wider class of functions f ∈ F(X,P).
Obviously, if there is g ∈ F(F,θ)(X,P) such that both f + g and g are
contained in F(F,θ)(X,P) and if the element

∫
F g dθ is invertible in Q,

then we may set ∫

F

f dθ =
∫

F

(f + g) dθ −
∫

F

g dθ.

The class of these functions f ∈ F(X,P) will be denoted by F(F,θ)(X,P).
The following is straightforward to verify:

Theorem 7.1. F(F,θ) is a subcone of F(X,P) containing F(F,θ)(X,P).
If f, g ∈ F(F,θ) and 0 ≤ α ∈ R, then

(a)
∫

F (αf) dθ = α
∫

F f dθ
(b)

∫
F (f + g) dθ =

∫
F f dθ +

∫
F g dθ

(c)
∫

F f dθ ≤
∫

F g dθ + w whenever f ≤ g + vw for w ∈ W.
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8. Notes and Remarks

The beginnings of modern measure theory date back to the late 19th century,
some of the foundations being laid by Riemann, Harnack, Peano, Jordan,
Borel, Baire, Lebesgue, Carathéodory and Radon, to name just a few of the
mathematicians involved. Excellent expositions about the early history of
measure theory can be found in the works of Lebesgue [114], [115] and [116],
Carathéodory [30], Hahn and Rosenthal [80], Halmos [83] and Saks [182].
Vector-valued measure theory originated in the first half of the twentieth cen-
tury in treatises by Clarkson, Bochner, Dunford, Morse, Pettis and Gelfand
among others. Since its appearance in 1977 the book by Diestel and Uhl [43]
about vector measures has become a standard reference on the subject and is
also often cited in this text. It contains various sections with detailed surveys
of the history of the field. There is also an extensive literature on finitely
additive measures. The books by Dunford and Schwartz [55], [56], [57] and
Diestel and Uhl [43] contain some sections about these. However, finitely
additive measures appear to be less suitable for analytic purposes, and we
therefore do not address them in this text.

The (total) variation of a Banach space-valued measure θ on a σ-field R

is usually defined as the positive R-valued set-function |θ| by

|θ|(E) = sup

{
n∑

i=1

‖θ(Ei)‖
∣
∣
∣ EiıR disjoint subsets of E

}

for E ∈ R (See III.1.4 in [55] or I.1.4 in [43]). The semivariation of a vector-
valued measure was introduced by Gowurin [74] and is given by

‖θ‖(E) = sup

{∥
∥
∥
∥

n∑

i=1

γiθ(Ei)
∥
∥
∥
∥

∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

}

,

Clearly ‖θ‖(E) ≤ |θ|(E), and every countably additive vector measure is
known to be bounded, that is |θ|(X) < +∞ (see IV.10.2 in [55]). The set-
function |θ| is seen to be σ-additive, whereas ‖θ‖ is generally only subaddi-
tive. On the other hand, the definition of the modulus of θ from Section 3.2,
if applied to this situation, reads as

|θ|(E, B) = sup

{
n∑

i=1

γiθEi

∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

}

,

where B denotes the unit ball of P = R or P = C. Recall that |θ|(E, B)
is an element of the standard lattice completion of the given Banach space,
that is an R-valued function on its dual unit ball B

∗. Since this function
is non-negative, it cannot be considered as an element of the second dual of
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this Banach space. However, its supremum norm
∥
∥ |θ|(E, B)

∥
∥ as a function

on B
∗ is the semivariation of the measure. Indeed,

∥
∥|θ|(E, B)

∥
∥

= sup
μ∈B∗

(

sup

{
n∑

i=1

γiθEi

∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

})

(μ)

= sup
μ∈B∗

sup

{(
n∑

i=1

γiθEi

)

(μ)
∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

}

= sup

{

sup
μ∈B∗

(
n∑

i=1

γiθEi

)

(μ)
∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

}

= sup

{∥
∥
∥
∥

n∑

i=1

γiθEi

∥
∥
∥
∥

∣
∣
∣ |γi| ≤ 1, Ei ∈ R disjoint subsets of E

}

= ‖θ‖(E).

This observation establishes the relationship between the modulus of a
vector-valued measure according to Section 3.6 and its classical semivaria-
tion. However, while the modulus is a countably additive set-function, the
semivariation, as its norm is only subadditive. Boundedness in the sense of
Section 3.6 means that supμ∈B∗ |θ|(X, B)(μ) < +∞, hence that the semi-
variation ‖θ‖(X) is finite. Boundedness guarantees that the linear operators
from P into Q which are the values of the measure can be extended to
linear operators from the standard full extension PV into Q.

In the literature there is no shortage of different concepts of integrability
for scalar-valued functions with respect to vector-valued functions or mea-
sures and variations in the resulting definitions of the integral. The best
known are perhaps those by Bochner [19], Pettis [144], Bartle [8], [9] and
Dunford and Schwartz [55]. There are also some corresponding differences in
the definition of measurability. Again, a comprehensive treatment of the rel-
evant definitions and their implications can be found in Chapter II of Diestel
and Uhl [43]. Due to its well-understood properties, the Bochner integral is
probably most used in applications. Not surprisingly, our very general ap-
proach in this chapter covers many of the above-mentioned notions. This
is because we are using locally convex cones in our settings and order con-
vergence for most of our definitions and results, and order convergence is
generally weaker than the originally given topological convergence. Stronger
results are pointed out when possible. Since Q, the range of the integrals, is
required to be a locally convex complete lattice cone, if applied to the case of
a vector space, the results of this chapter often refer to the second dual of this
vector space (Section 6.5). This situation is well-understood for vector-valued
measures.

It would probably be worthwhile, though demanding, to explore the
Radon-Nikodým property in the settings of this chapter. This refers to a
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special case of the Application 6.20 from above. Let P and Q be locally
convex cones satisfying our standard assumptions, and let μ be a scalar-
valued (positive, real or complex-valued) measure on R. These scalars can
be interpreted as linear operators from L(P,Q) into itself. One can there-
fore integrate certain L(P,Q)-valued functions with respect to μ, and the
integral is evaluated in the standard completion L̂(P,Q) of L(P,Q). Given
a suitable function ϕ of this type, this can be used to define an L(P,Q)-
valued set function by

θE =
∫

E

ϕdμ for E ∈ R.

The convergence theorems then will guarantee that θ is countably additive
and indeed an L(P,Q)-valued measure. Now investigations would have to be
carried out, under which conditions a given L(P,Q)-valued measure θ can
be expressed in this way using a given scalar-valued measure μ and some
L(P,Q)-valued density function ϕ.




