
Chapter I

Locally Convex Cones

The purpose of this chapter is twofold: Firstly, to provide the tools and the
settings for the integration theory which will be developed in Chapters II
and III, and secondly, to introduce the theory of locally convex cones to
a wider audience. This theory generalizes locally convex topological vector
spaces and has (in the author’s opinion, quite unsurprisingly) not yet received
the attention that it deserves. Locally convex cones permit many more and
substantially different examples and applications than locally convex vector
spaces. In the aspects of the theory that have been developed so far, the
increase in generality leads only to minor, if any at all, compromises with
respect to the depth of its results. While some of the methods and arguments
employed may at times appear rather technical and indeed counterintuitive,
this is largely the consequence of the inclusion of infinity-type unbounded
elements and the general non-availability of the cancellation law.

So why is it worth the effort? Endowed with suitable topologies, vector
spaces yield rich and well-studied structures. Locally convex topological vec-
tor spaces permit an extensive duality theory whose study gives valuable
insight into the spaces themselves. Some important mathematical settings,
however, while close to the structure of vector spaces do not allow subtraction
of their elements or multiplication by negative scalars. Examples are certain
classes of functions that may take infinite values or are characterized through
inequalities rather than equalities. They arise naturally in integration theory,
potential theory and in a variety of other settings. Likewise, families of con-
vex subsets of vector spaces which are of interest in various contexts, do not
form vector spaces. If the cancellation law fails, domains of this type can
not be embedded into vector spaces in order to apply the results and tech-
niques from classical functional analysis. The inclusion of these and similar
examples into an analytical theory merits the investigation of a more general
structure. Apart from being useful in this sense, the theory of locally con-
vex cones allows for some interesting and occasionally insightful and elegant
mathematics.
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10 I Locally Convex Cones

The first three sections of this chapter present a review of some of the
main concepts of this theory while often referring to [100] and other sources
for details and proofs. A brief survey of the subject can also be found in [169].
Section 4 introduces the relative topologies of a locally convex cone and pro-
vides definitions and investigations of different types of boundedness and con-
nectedness components. Locally convex lattice cones, quasi-full locally convex
cones and cones of linear operators, are studied in Sections 5, 6 and 7, respec-
tively. These will be used extensively in the integration theory of Chapters II
and III. Some of the more specialized parts of Sections 4 to 7 are included
for reference in the later stages of Chapters II and III and may be skipped
at first reading.

1. Locally Convex Cones

A cone is a set P endowed with an addition (a, b) �→ a + b and a scalar
multiplication (α, a) �→ αa for real numbers α ≥ 0. The addition is supposed
to be associative and commutative, and there is a neutral element 0 ∈ P.
For the scalar multiplication the usual associative and distributive properties
hold, that is α(βa) = (αβ)a, (α + β)a = αa + βa, α(a + b) = αa + αb,
1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0. The cancellation law,
stating that a+ c = b+ c implies a = b, however, is not required in general.
It holds if and only if the cone P can be embedded into a real vector space.

An ordered cone P carries a reflexive transitive relation ≤ such that
a ≤ b implies a + c ≤ b + c and αa ≤ αb for all a, b, c ∈ P and α ≥ 0.
Equality on P is obviously such an order. Note that anti-symmetry is not
required for the relation ≤ .

The theory of locally convex cones as developed in [100] uses order theoret-
ical concepts to introduce a quasiuniform topological structure on an ordered
cone. In a first approach, the resulting topological neighborhoods themselves
will be considered to be elements of the cone. In this vein, a full locally convex
cone (P,V) is an ordered cone P that contains an abstract neighborhood
system V, that is a subset of positive elements which is directed downward,
closed for addition and multiplication by strictly positive scalars. The ele-
ments v of V define upper, resp. lower neighborhoods for the elements of
P by

v(a) = { b ∈ P | b ≤ a + v } resp. (a)v = { b ∈ P | a ≤ b + v },

Their intersection vs(a) = v(a)∩(a)v is the corresponding symmetric neigh-
borhood of a. These neighborhoods create the upper, lower and symmetric
topologies on P, respectively. All elements of P are supposed to be bounded
below, that is for every a ∈ P and v ∈ V we have 0 ≤ a + λv for some
λ ≥ 0.
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Finally, a locally convex cone (P,V) is a subcone of a full locally convex
cone not necessarily containing the abstract neighborhood system V. Every
locally convex ordered topological vector space is a locally convex cone in
this sense, as it can be canonically embedded into a full locally convex cone(
see Example 1.4(c) below, or Example I.2.7 in [100]

)
.

A subset V0 of the neighborhood system V is called a basis for V if for
every v ∈ V there is v0 ∈ V0 and α > 0 such that αv0 ≤ v.

An element a of a locally convex cone (P,V) is called bounded (above)
if for every v ∈ V there is λ ≥ 0 such that a ≤ λv. All invertible elements
of P are bounded. Indeed, if −a ∈ P for some a ∈ P, then given v ∈ V
there is λ ≥ 0 such that 0 ≤ (−a)+λv since all elements of P are required
to be bounded below. This yields a ≤ λv.

For later reference we shall list a few basic properties of locally convex
cone topologies. We shall use the following standard notations: A subset A
of P is called

decreasing if b ∈ A whenever b ≤ a for some a ∈ A,
increasing if b ∈ A whenever b ≥ a for some a ∈ A, or
order convex if b ∈ A whenever a ≤ b ≤ c for some a, c ∈ A.
balanced if b ∈ A whenever b = λa or b + λa = 0

for some a ∈ A and 0 ≤ λ ≤ 1.

The last of these definitions is of course derived from corresponding one for
real vector spaces, that is the requirement that λa ∈ A whenever a ∈ A
and −1 ≤ λ ≤ 1.

Proposition 1.1. Let (P,V) be a locally convex cone. The upper (lower or
symmetric) topology of P satisfies the following:

(i) Every element of P admits a basis of convex and decreasing (increas-
ing or order convex) neighborhoods. The symmetric neighborhoods in the
basis for 0 ∈ P are also balanced.

(ii) The mapping (a, b) �→ a + b : P × P → P is continuous.
(iii) The mapping (α, a) �→ αa : [0,+∞)×P → P is continuous at all points

(α, a) ∈ [0,+∞)× P such that a ∈ P is bounded.

Proof. Clearly, for a ∈ P and v ∈ V the neighborhoods v(a), (a)v or
vs(a) are convex and decreasing, increasing or order convex, respectively.
The symmetric neighborhoods of 0 ∈ P are also balanced. Indeed, let v ∈ V
and let a ∈ vs(0). Then a ≤ v and 0 ≤ a + v. Let 0 ≤ λ ≤ 1. Then
λa ∈ vs(0) follows from the convexity of vs(0) since λa = λa + (1− λ)0. If
on the other hand b + λa = 0 for b ∈ P, then

b ≤ b + λ(a + v) = (b + λa) + v = v and 0 = b + λa ≤ b + v

Hence b ∈ v(0) holds in this case as well.
For property (ii), let a, b ∈ P and v ∈ V and set u = (1/2)v ∈ V.

Then for c ∈ u(a) and d ∈ u(b), that is c ≤ a + u and d ≤ b + u we
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have c + d ≤ (a + b) + v, hence c + d ∈ v(a + b). This shows continuity
of the addition with respect to the upper topology. Likewise, c ∈ (a)u and
d ∈ (b)u, that is a ≤ c + u and b ≤ d + u′ implies that a + b ≤ (c + d) + v,
hence c + d ∈ (a + b)v. This yields continuity of the addition with respect
to the lower topology. Combining the preceding arguments, we realize that
c ∈ us(a) and d ∈ us(b) implies c + d ∈ vs(a + b), which proves continuity
with respect to the symmetric topology.

For Part (iii) let (α, a) ∈ [0,+∞) × P for a bounded element a ∈ P
and let v ∈ V. There is λ > 0 such that both 0 ≤ a + λv and a ≤ λv.
Set ε = min

{
1, 1/(2λ), 1/(2α + 2)

}
> 0 and α0 = max{α − ε, 0} and

α1 = α + ε. The interval [α0, α1] then is a neighborhood for α in [0,+∞).
For every α0 ≤ β ≤ α we observe that

αa = βa + (α− β)a ≤ βa + (α− β)λv ≤ βa + ελv ≤ βa +
1
2
v

and

βa ≤ βa + (α− β)(a + λv) = αa + (α− β)λv ≤ αa +
1
2
v.

Likewise, for α ≤ β ≤ α1 we have

αa ≤ αa + (β − α)(a + λv) = βa + (β − α)λv ≤ αa +
1
2
v

and
βa = αa + (β − α)a ≤ αa + (β − α)λv ≤ βa +

1
2
v.

Thus
αa ≤ βa +

1
2
v and βa ≤ αa +

1
2
v

holds for all β ∈ [α0, α1]. Now let u = εv ∈ V. Then for every b ∈ u(a) and
every β ∈ [α0, α1] we have

βb ≤ β(a + u) = βa + εβv

≤
(

αa +
1
2
v

)
+ ε(α + ε)v ≤ αa +

1
2
v +

1
2
v ≤ αa + v

by our construction of ε > 0. Thus βb ∈ v(αa). This shows continuity of
the mapping (α, a) �→ αa : [0,+∞)× P → P at (α, a) with respect to the
upper topology of P. Likewise, for b ∈ (a)u and β ∈ [α0, α1] we infer using
the above

αa ≤ βa +
1
2
v ≤ β(b + u) +

1
2
v ≤ βb + ε(α + ε)v +

1
2
v ≤ βb + v.

This yields βb ∈ (αa)v and continuity of the mapping (α, a) �→ αa:
[0,+∞)× P → P at (α, a) with respect to the lower topology of P. Com-
bining the preceding arguments, we realize that b ∈ us(a) and β ∈ [α0, α1]
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implies βb ∈ vs(αa), which proves continuity with respect to the symmetric
topology. �

On the subcone P0 of all invertible elements in a locally convex cone
(P, V ) the scalar multiplication can be canonically extended to all real num-
bers if we set αa = (−α)(−a) for α < 0 and a ∈ P0. Proposition 1.1 then
yields

Corollary 1.2. Let (P,V) be a locally convex cone and let P0 be the subcone
of all invertible elements of P. The mapping (α, a) �→ αa : R× P0 → P0 is
continuous with respect to the symmetric topology of P.

Proof. First we observe that a ∈ vs(b) if and only if −a ∈ vs(−b) for
a, b ∈ P0 and v ∈ V. Thus ai → a for a net (ai)i∈I in P0 implies that
(−ai) → (−a) . Next suppose that αi → α ∈ R for 0 ≤ αi ∈ R and ai → a
for ai, a ∈ P0. Then αiai → αa by 1.1(iii) since every invertible element
is bounded. Now finally, let αi → α in R and ai → a for ai, a ∈ P0. Let
βi = αi ∨ 0 and γi = −(αi ∧ 0). Then βi, γi ≥ 0 and αi = βi− γi. We have
βiai → βa and γi(−ai) → γ(−a), where β = α ∨ 0 and γ = −(α ∧ 0), by
the preceding. Thus

αiai = βiai + γi(−ai) → βa + γ(−a) = αa,

again by 1.1(ii), as claimed. �

1.3 Locally Convex Cones via Convex Quasiuniform Structures. As
a subcone of a full locally convex cone, a locally convex cone (P,V) inherits
both its order, algebraic structure and neighborhood system from the former.
While this approach elegantly permits the use of the order structure of the
full cone to describe the topologies of P, it is not always very practical,
because for concrete examples such a full cone may be difficult to access.
Quite frequently, the topology of a locally convex cone is more visible as a
convex quasiuniform structure as described in I.5 of [100]. This is a straight-
forward generalization of the uniform structures that define the topologies
of locally convex topological vector spaces. In this vein, a neighborhood is a
convex subset v of P2, where P is an ordered cone, satisfying the following
conditions:

(U1) If a ≤ b for a, b ∈ P, then (a, b) ∈ v.
(U2) If (a, b) ∈ λv and (b, c) ∈ ρv for a, b, c ∈ P and λ, ρ > 0, then

(a, c) ∈ (λ + ρ)v.
(U3) For every a ∈ P there is λ ≥ 0 such that (0, a) ∈ λv.

If a family V of such neighborhoods fulfills the usual conditions for a quasi-
uniform structure (see [135]), that is

(U4) For u, v ∈ V there is w ∈ V such that w ⊂ u ∩ v,
(U5) If v ∈ V and λ > 0, then λv ∈ V,
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then a straightforward procedure (see I.5 in [100]) allows the embedding of
P and V into a full locally convex cone (P̂, V̂) whose neighborhood system
V̂ is generated by the elements of V, and such that (a, b) ∈ v for a, b ∈ P
and v ∈ V means a ≤ b+v in P̂. Convex quasiuniform structures therefore
yield an equivalent approach to locally convex cones.

Examples 1.4. (a) In the extended real number system R = R ∪ {+∞} we
consider the usual order and algebraic operations, in particular a+∞ = +∞
for all a ∈ R, α·(+∞) = +∞ for all α > 0 and 0·(+∞) = 0. Endowed with
the neighborhood system V = {ε ∈ R | ε > 0}, R is a full locally convex
cone. For a ∈ R the intervals (−∞, a + ε] are the upper and the intervals
[a− ε,+∞] are the lower neighborhoods, while for a = +∞ the entire cone
R is the only upper neighborhood, and {+∞} is open in the lower topology.
The symmetric topology is the usual topology on R with +∞ as an isolated
point. It is finer than the usual topology of R, where the intervals [a,+∞]
are the neighborhoods of +∞.

(b) For the subcone R+ = {a ∈ R | a ≥ 0} of R we may also consider
the singleton neighborhood system V = {0}. The elements of R+ are obvi-
ously bounded below even with respect to the neighborhood v = 0, hence R+
is a full locally convex cone. For a ∈ R the intervals (−∞, a] and [a,+∞]
are the only upper and lower neighborhoods, respectively. The symmetric
topology is the discrete topology on R+.

(c) Let (E,≤) be a locally convex ordered topological vector space. Re-
call that equality is an order relation, hence this example will cover locally
convex spaces in general. In order to interpret E as a locally convex cone
we shall embed it into a larger full cone. This is done in a canonical way: Let
P = Conv(E) be the cone of all non-empty convex subsets of E, endowed
with the usual addition and multiplication of sets by non-negative scalars,
that is αA = {αa | a ∈ A} and A + B = {a + b | a ∈ A and b ∈ B} for
A,B ∈ P and α ≥ 0. We define the order on P by

A ≤ B if A ⊂ ↓B,

where ↓B = {x ∈ E | x ≤ b for some b ∈ B} is the decreasing hull of the
set B in E. Note that ↓B is again a convex subset of E. The requirements
for an ordered cone are easily checked. The neighborhood system in P is
given by a basis V ⊂ P of convex and balanced neighborhoods of the origin
in E. That is

A ≤ B + V if A ⊂ ↓(B + V )

for A,B ∈ P and V ∈ V. We observe that for every A ∈ P and V ∈ V
there is ρ > 0 such that ρV ∩ A �= ∅. This yields 0 ∈ A + ρV. Therefore
{0} ≤ A + ρV, and every element A ∈ P is indeed bounded below. Thus
(P,V) is a full locally convex cone.

Via the embedding x �→ {x} : E → P of its elements onto singleton
subsets, the locally convex ordered topological vector space E itself may be



1. Locally Convex Cones 15

considered as a subcone of P. This embedding preserves the order of E,
and on its image in P, the upper or lower topologies of P reflect the order
structure of E in the following sense: All upper or lower neighborhoods are
decreasing or increasing, respectively, that is for elements a, b ∈ E and a
neighborhood V ∈ V we have

a ≤ b + V if a− b ∈ ↓V.

For a linear operator T : E → E in particular, continuity with respect to
either the induced upper or lower topology requires that T is monotone (see
Section 2 below). The symmetric topology of P, on the other hand induces
a locally convex vector space topology on E in the usual sense. It coincides
with the given topology of E if the neighborhoods V ∈ V are also order
convex, that is if c ∈ V whenever a ≤ c ≤ b for a, b ∈ V and V ∈ V. If the
given order on E is indeed the equality, then the upper, lower and symmetric
topologies of P all coincide on E with the given topology since a ≤ b + V
for a, b ∈ E and V ∈ V means that a − b ∈ V in this case, and since the
neighborhoods in V were supposed to be balanced. In this way, every locally
convex ordered topological vector space, endowed with a basis V of balanced,
convex and order convex neighborhoods, is a locally convex cone, but not a
full cone.

Other subcones of P that merit further investigation are those of all
closed, closed and bounded, or compact convex sets in P, respectively. Note
that closed and bounded convex sets satisfy the cancellation law. Details on
those and further related examples can be found in [100], I.1.7, I.2.7 and I.2.8.

This example can be further generalized if we replace the vector space E
by a locally convex cone.

(d) If (P,V) is a locally convex cone and if P is indeed a vector space
over R, that is the scalar multiplication in P is extended to all reals, then
all elements of P are obviously bounded, as boundedness from above for
the element a ∈ P follows from boundedness from below for the element
−a ∈ P. We have a ∈ v(b) for a, b ∈ P and v ∈ V in this case if and only
if a − b ∈ v(0). While the multiplication by negative scalars is in general
not continuous with respect to the upper and lower topologies on P, the
symmetric topology generated by the neighborhoods of the origin

vs(0) = {a ∈ P | a ≤ v and − a ≤ v}

is a locally convex vector space topology in the usual sense (see Corollary 1.2).
If P is indeed a vector space over C, then we need to consider the modular

symmetric topology instead (see Section 2 in [168]). It is generated by the
neighborhoods of the origin

vsm(0) = {a ∈ P | γa ≤ v for all γ ∈ Γ },
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where Γ = {γ ∈ C | |γ| = 1} denotes the unit circle of C. It is easy
to verify that these sets are convex, balanced and absorbing. The modular
symmetric topology is therefore a locally convex vector space topology in the
usual sense and yields continuity for the multiplication by all scalars in C.
Thus endowed with the modular neighborhoods Vm = {vsm | v ∈ V} and
the equality as its order, (P,Vm) is again a locally convex cone, and we have
a ≤ b + vsm for a, b ∈ P and v ∈ V if γ(a− b) ≤ v for all γ ∈ Γ.

In the sequel, we shall say that a locally convex cone (P,V) is a locally
convex topological vector space over R or C if P is a vector space over R

or C, endowed with the equality as order and a system V of neighborhoods
such that v(0) = vsm(0) holds for all v ∈ V. The subsets v(0) of P then
are convex, balanced and absorbing, and P carries its modular symmetric
topology.

(e) Let (P,V) be a locally convex cone, X a set and let F(X,P) be
the cone of all P-valued functions on X, endowed with the pointwise op-
erations and order. If P̂ is a full cone containing both P and V, then we
may identify the elements v ∈ V with the constant functions v̂ on X, that
is x �→ v for all x ∈ X. Hence V̂ = {v̂ | v ∈ V} is a subset and a neighbor-
hood system for F(X, P̂). A function f ∈ F(X, P̂) is uniformly bounded
below, if for every v̂ ∈ V̂ there is ρ ≥ 0 such that 0 ≤ f + ρv̂. These func-
tions form a full locally convex cone

(
Fb(X, P̂), V̂

)
, carrying the topology of

uniform convergence. As a subcone,
(
Fb(X,P), V̂

)
is a locally convex cone.

Alternatively, a more general neighborhood system V̂ for F(X,P) may be
created using a family of V-valued functions on X, where V = V ∪ {0,∞}
consists of the neighborhood system V for P augmented by 0 ∈ P and a
maximal element ∞. (We use a +∞ = v +∞ = α · ∞ = ∞ and a ≤ ∞
for all a ∈ P, v ∈ V and α > 0.) The neighborhoods v̂ ∈ V̂ are defined for
functions f, g ∈ F(X,P) as

f ≤ g + v̂ if f(x) ≤ g(x) + v̂(x) for all x ∈ X.

In this case we consider the subcone FV̂b
(X,P) of all functions in F(X,P)

that are bounded below relative to the functions in V̂, that is f ∈ FV̂b
(X,P)

if for every v̂ ∈ V̂ there is λ ≥ 0 such that 0 ≤ f + λv̂. In this way(
FV̂b

(X,P), V̂
)

forms a locally convex cone. Of particular interest is the case
when V̂ is generated by a suitable family Y of subsets Y of X and the
V-valued functions v̂Y (x) = v for x ∈ Y and v̂Y (x) =∞, else, correspond-
ing to some v ∈ V and Y ∈ Y. In this case

(
FV̂b

(X,P), V̂
)

carries the
topology of uniform convergence on the sets in Y.

If X is a topological space, then suitable subcones for further investigation
are those of continuous functions with respect to any of the given (upper,
lower or symmetric) topologies on P. We shall explore different notions
of continuity for cone-valued functions and discuss an even wider range of
suitable locally convex cone topologies in Chapter III.
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Occasionally in applications of this type (see for example the proof of
Proposition 5.37 and the construction of the standard lattice completion in
5.57 below) the family V̂ of V-valued functions under consideration is not
naturally closed for addition, and including all pointwise sums of the functions
in V̂ might not be desirable. This situation can often be remedied if we
consider V̂ as a system of abstract neighborhoods instead, with a suitably
modified addition ⊕ for which V̂ is closed and which is compatible with the
scalar multiplication. The neighborhoods v̂ ∈ F(X,P) are defined as above
using associated V-valued functions which for simplicity we also denote by
v̂. The latter amounts to a slight abuse of notation, since for this concept
to work we need to allow that the association between neighborhoods and
V-valued functions is not one-to-one. In order to create a convex quasiuniform
structure in the sense of 1.3, hence a locally convex cone

(
FV̂b

(X,P), V̂
)
, we

require that û ⊕ v̂ ≥ û + v̂ holds for all û, v̂ ∈ V̂, where + stands for
the pointwise sum of the associated V-valued functions. We shall use this
approach in 5.37 and 5.57 below.

(f) For x ∈ R denote x+ = max{x, 0} and x− = −min{x, 0}. For
1 ≤ p ≤ +∞ and a sequence (xi)i∈N in R let ‖(xi)‖p denote the usual lp

norm, that is ‖(xi)‖p =
(∑∞

i=1 |xi|p
)(1/p) ∈ R for p < +∞ and ‖(xi)‖∞ =

sup{|xi| | i ∈ N} ∈ R. Now let lp be the cone of all sequences (xi)i∈N in
R such that ‖(x−i )‖p < +∞. We use the pointwise order in lp and the
neighborhood system Vp = {ρvp | ρ > 0}, where

(xi)i∈N ≤ (yi)i∈N + ρvp

means that ‖(xi − yi)+‖p ≤ ρ. (In this expression the lp norm is evaluated
only over the indexes i ∈ N for which yi < +∞.) It can be easily verified
that (lp,Vp) is a locally convex cone. In fact (lp,Vp) can be embedded into
a full cone following a procedure analogous to that in 1.4(c). The case for
p = +∞ is of course already covered by Example 1.4(e).

2. Continuous Linear Operators and Functionals

For cones P and Q a mapping T : P → Q is called a linear operator if

T (a + b) = T (a) + T (b) and T (αa) = αT (a)

holds for all a, b ∈ P and α ≥ 0. If both P and Q are indeed vector spaces
over R, then 0 = T (a− a) = T (a)+T (−a) implies that such an operator is
linear over R. If both P and Q are ordered, then T is called monotone, if
a ≤ b implies T (a) ≤ T (b). If both (P,V) and (Q,W) are locally convex
cones, the operator T is called (uniformly) continuous if for every w ∈ W
one can find v ∈ V such that T (a) ≤ T (b) + w whenever a ≤ b + v for
a, b ∈ P. A family T of linear operators is called equicontinuous if the above
condition holds for every w ∈ W with the same v ∈ V for all T ∈ T.



18 I Locally Convex Cones

Uniform continuity is not just continuity. It is immediate from the defi-
nition that it implies and combines continuity for the operator T : P → Q
with respect to the upper, lower and symmetric topologies on P and Q,
respectively.

A linear functional on P is a linear operator μ : P → R. The dual cone
P∗ of a locally convex cone (P,V) consists of all continuous linear functionals
on P and is the union of all polars v◦ of neighborhoods v ∈ V, where μ ∈ v◦

means that μ(a) ≤ μ(b) + 1, whenever a ≤ b + v for a, b ∈ P. Continuity
implies that a linear functional μ is monotone, and for a full cone P it
requires just that μ(v) ≤ 1 holds for some v ∈ V in addition. Continuous
linear functionals can take only finite values on bounded elements. Indeed,
let μ ∈ v◦ for some v ∈ V and let a ∈ P be a bounded element. Then
a ≤ λv for some λ ≥ 0, hence μ(a) ≤ λ as claimed. We endow P∗ with
the canonical algebraic operations and the topology w(P∗,P) of pointwise
convergence on the elements of P, considered as functions on P∗ with values
in R with its usual topology. As in locally convex topological vector spaces,
the polar v◦ of a neighborhood v ∈ V is seen to be w(P∗,P)-compact and
convex ( [100], Theorem II.2.4).

Examples 2.1. Revisiting the preceding Examples 1.4 we observe the follow-
ing:

(a) The dual cone R
∗

of R
(
see 1.4(a)

)
consists of all positive reals (via

the usual multiplication), and the singular functional 0̄ such that 0̄(a) = 0
for all a ∈ R and 0̄(+∞) = +∞.

(b) Likewise, in 1.4(b), the continuous linear functionals on R+, en-
dowed with the neighborhood system V = {0}, are the positive reals together
with 0̄, but further include the element +∞, acting as +∞(0) = 0 and
+∞(a) = +∞ for all 0 �= a ∈ R+. This functional is obviously contained in
the polar of the neighborhood 0 ∈ V.

(c) If both (P,V) and (Q,W) are locally convex cones and ordered vec-
tor spaces over K = R or K = C, let us also consider the modular symmetric
topologies on P and Q which are defined by the modular symmetric neigh-
borhoods vsm and wsm corresponding to the given neighborhoods v ∈ V
and w ∈ W, respectively. Recall from 1.4(d) that a ≤ b + vsm for a, b ∈ P
and v ∈ V means that γ(a − b) ≤ v for all γ ∈ K such that |γ| = 1. The
modular topologies were seen to be locally convex vector space topologies. If
a linear operator T : P → Q is continuous with respect to the given locally
convex cone topologies and indeed linear over K, then it is straightforward to
verify that T is also continuous with respect to the respective modular sym-
metric topologies of P and Q. The converse does not hold true in general.
For Q = R, however, that is for linear functionals, we have the following:
If P∗ denotes the given dual of P, and if P∗m denotes the dual of P if
endowed with the modular symmetric neighborhoods, then P∗ ⊂ P∗m since
the latter topology is finer that the given one. According to Theorem 3.3
in [168], for every linear functional μ ∈ P∗m there are μi ∈ P∗ for i = 1, 2
in the real or i = 1, 2, 3, 4 in the complex case such that



2. Continuous Linear Operators and Functionals 19

μ(a) = μ1(a) + μ2(−a) or μ(a) = μ1(a) + μ2(−a) + μ3(ia) + μ4(−ia)

for all a ∈ P, respectively.
(d) Let (P,V) be a locally convex vector space over K, that is a locally

convex cone which is a vector space over K and carries the modular sym-
metric topology. The functionals in the dual cone P∗ of P are real-valued,
but there exists a canonical correspondence between the dual cone P∗ and
the usual dual space P∗

K
of P as a locally convex topological vector space.

P∗
K

consists of all K-valued continuous K-linear functionals on P. In the
real case this correspondence is obvious, as P∗ and P∗

K
coincide. (If both

a,−a ∈ P, then μ(a) + μ(−a) = 0 for every μ ∈ P∗, hence μ is linear
over R.) In the complex case there is an established correspondence between
P∗ and P∗

K
: The real part μ of every continuous complex linear func-

tional μK on P is in P∗ and, conversely, for every μ ∈ P∗, the mapping
a �→ μ(a)− i μ(ia) defines a continuous complex linear functional μK ∈ P∗K.
P∗

K
is again a vector space over K, and for μK and α ∈ K the respective

projections μ and (αμ) into P∗ of the functionals μK and αμK relate as
(
αμ
)
(a) = �e

(
(αμK)(a)

)
= �e

(
μK(αa)

)
= μ(αa).

The above formula effectively extends the multiplication by non-negative
reals in P∗ to all scalars in K in such a way that the mapping μK →
μ : P∗

K
→ P∗ becomes a vector space isomorphism. Similarly, every element

ϕK of the (algebraic) second vector space dual P∗∗
K

of PK corresponds to a
real-linear functional ϕ on the dual cone P∗ by

ϕ(μ) = �e
(
ϕK(μK)

)

for μ ∈ P∗. On the other hand, every functional ϕ on P∗ that is linear with
respect to the non-negative reals corresponds to a K-valued linear functional
ϕK ∈ P∗∗K

on P∗
K

by

ϕK(μK) = ϕ(μ) or ϕK(μK) = ϕ(μ)− iϕ(iμ)

for μK ∈ P∗
K

in the real or complex case, respectively. Here we use the
above defined extension of the scalar multiplication in P∗. K-linearity for
ϕK is easily checked. Indeed, additivity is obvious for ϕK. For compatibility
with the scalar multiplication, the real case follows from ϕ(μ)+ϕ

(
(−1)μ

)
=

ϕ(0) = 0, hence ϕ
(
(−1)μ

)
= −ϕ(μ). In the complex case we calculate for

μK ∈ P∗K and α = x + iy ∈ C

ϕK

(
(x + iy)μK

)
= ϕ

(
(x + iy)μ

)
− iϕ

(
(x + iy)iμ

)

= (x + iy)ϕ(μ) + (y − ix)ϕ(iμ)

= (x + iy)
(
ϕ(μ)− iϕ(iμ)

)

= (x + iy)ϕK(μK).
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Thus there is also a canonical correspondence between P∗∗, the cone of all
real-valued linear functionals on P∗

(
see 7.3(i) below

)
and the second vector

space dual P∗∗
K

of PK.
(e) In 1.4(c) and (e) on the other hand, due to the generality of the set-

tings, a complete description for the respective dual cones is not immediately
available. We may, however, identify some of their elements: In 1.4(c), let
μ be a continuous monotone linear function on the locally convex ordered
topological vector space (E,≤). Then the mapping

A �→ sup{μ(a) | a ∈ A} : Conv(E) → R

is seen to be an element of Conv(E)∗.
(f) In 1.4(e), if μ ∈ v◦ ⊂ P∗ for some v ∈ V, and if v̂(x) ≤ v for some

v ∈ V̂ and x ∈ X, then the mapping μx : FV̂b
(X,P) → R such that

μx(f) = μ
(
f(x)

)
for all f ∈ FV̂b

(X,P)

is a continuous linear functional on FV̂b
(X,P); more precisely μx ∈ v̂◦.

(g) In 1.4(g), for p < +∞ the dual cone of lp consists of all sequences
(yi)i∈N such that yi ≥ 0 for all i ∈ N and ‖(yi)‖q < +∞, where q is the
conjugate index of p.

2.2 Embeddings. We have intuitively used the term embedding before.
Let us now establish a precise definition: Let (P,V) and (Q,W) be locally
convex cones. A linear operator Φ : P → Q is called an embedding of (P,V)
into (Q,W) if it can be extended to a mapping Φ : (P ∪ V) → (Q ∪ W)
such that Φ(V) =W and

a ≤ b + v holds if and only if Φ(a) ≤ Φ(b) + Φ(w)

for all a, b ∈ P and v ∈ V.
This condition implies that Φ is continuous, and in case that Φ is one-to-

one, that the inverse operator Φ−1 : Φ(P) → P is also continuous. It is easily
verified that the composition of two embeddings is again an embedding in this
sense. Embeddings are meant to preserve not just the topological structure,
but also the particular neighborhood system of a locally convex cone.

Lemma 2.3. Let (P,V) and (Q,W) be locally convex cones and let Φ :
P → Q be an embedding of (P,V) into (Q,W). If the symmetric topology
of P is Hausdorff, then Φ is one-to-one.

Proof. Under the assumptions of the Lemma, suppose that Φ(a) = Φ(b)
holds for a, b ∈ P. Then a ≤ b + v and b ≤ a + v, hence a ∈ vs(b) for all
v ∈ V follows from 2.2. This yields a = b since the symmetric topology of
P is supposed to be Hausdorff. �
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An embedding Φ of (P,V) into (Q,W) is called an isomorphism if the
mapping Φ : (P ∪ V) → (Q ∪W) is invertible. Then Φ−1 is an embedding
of (Q,W) into (P,W).

Hahn-Banach type extension and separation theorems for linear function-
als are most important for the development of a powerful duality theory for
locally convex cones. We shall mention a few results from [100] and [172].
A sublinear functional on a cone P is a mapping p : P → R such that

p(αa) = αp(a) and p(a + b) ≤ p(a) + p(b)

holds for all a, b ∈ P and α ≥ 0. Likewise, an extended superlinear func-
tional on P is a mapping q : P → R = R ∪ {+∞,−∞} such that

q(αa) = αq(a) and q(a + b) ≥ q(a) + q(b)

holds for all a, b ∈ P and α ≥ 0. (We set α + (−∞) = −∞ for all α ∈ R,
α · (−∞) = −∞ for all α > 0 and 0 · (−∞) = 0 in this context.) We cite
Theorem 3.1 from [172]:

Sandwich Theorem 2.4. Let (P,V) be a locally convex cone, and let
v ∈ V. For a sublinear functional p : P → R and an extended superlin-
ear functional q : P → R there exists a linear functional μ ∈ v◦ such that
q ≤ μ ≤ p if and only if q(a) ≤ p(b) + 1 holds whenever a ≤ b + v for
a, b ∈ P.

This theorem is the basic tool for the development of a duality theory for
locally convex cones. It leads to a variety of Hahn-Banach type extension and
separation results, the most general ones being Theorems 4.1 and 4.4 in [172].
For future use we shall quote both of these:

Extension Theorem 2.5. Let (P,V) be a locally convex cone, C and D
non-empty convex subsets of P, and let v ∈ V. Let p : P → R be a sublinear
and q : P → R an extended superlinear functional. For a convex function
f : C → R and a concave function g : D → R there exists a monotone linear
functional μ ∈ v◦ such that

q ≤ μ ≤ p , g ≤ μ on D and μ ≤ f on C

if and only if

q(a) + ρg(d) ≤ p(b) + σf(c) + 1 whenever a + ρd ≤ b + σc + v

for a, b ∈ P, c ∈ C, d ∈ D and ρ, σ ≥ 0.

In the context of this theorem (Theorem 4.1 in [172]), an R-valued function
f defined on a convex subset C of an ordered cone P is called convex if

f
(
λc1 + (1− λ)c2

)
≤ λf(c1) + (1− λ)f(c2)
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holds for all c1, c2 ∈ C and λ ∈ [0, 1]. Likewise, f : C → R is called concave
if

f
(
λc1 + (1− λ)c2

)
≥ λf(c1) + (1− λ)f(c2)

holds for all c1, c2 ∈ C and λ ∈ [0, 1]. An affine function f : C → R is both
convex and concave.

The generality of Theorem 2.5 leads to a wide variety of applications and
special cases. An extension theorem in the true meaning of the words can
be obtained by identifying the convex sets C and D and the functions f
and g. For the following (still very general) corollary we shall also leave out
(by setting them equal to +∞ and −∞ outside 0 ∈ P, respectively) the
functionals p and q.

Corollary 2.6. Let (P,V) be a locally convex cone, C a non-empty convex
subsets of P, and let v ∈ V. For an affine function f : C → R there exists
a monotone linear functional μ ∈ v◦ such that μ = f on C if and only if

ρf(d) ≤ σf(c) + 1 whenever ρd ≤ σc + v

for c, d ∈ C, and ρ, σ ≥ 0.

If C is indeed a subcone of P, that is (C,V) is a locally convex subcone
of (P,V), then the condition of Corollary 2.6 reduces to: f(0) = 0 and
f(d) ≤ f(c)+ 1 holds whenever d ≤ c+ v for c, d ∈ C. But this means that
the affine function f is indeed a linear functional on C and contained in
the polar of the neighborhood v ∈ V. This observation leads to the following
most frequently used consequence of Theorem 2.5 (see also Theorem II.2.9
in [100]).

Corollary 2.7. Let (N ,V) be a subcone of the locally convex cone (P,V).
Every continuous linear functional on N can be extended to a continuous
linear functional on P; more precisely: For every μ ∈ v◦N there is μ̂ ∈ v◦P
such that μ̂ coincides with μ on N .

Theorem 4.4 in [172] deals with the separation of convex sets by continuous
linear functionals, a result that can also be obtained by special insertions in
Theorem 2.5.

Separation Theorem 2.8. Let (P,V) be a locally convex cone, C and D
non-empty convex subsets of P, and let v ∈ V. For α ∈ R there exists a
monotone linear functional μ ∈ v◦ such that

μ(c) ≤ α ≤ μ(d) for all c ∈ C and d ∈ D

if and only if

αρ ≤ ασ + 1 whenever ρd ≤ σc + v

for c ∈ C, d ∈ D and ρ, σ ≥ 0.
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In a special case, this leads to a separation result for points and closed
convex sets

(
see Corollary 4.6 in [172]

)
:

Corollary 2.9. Let A be a non-empty convex subset of a locally convex cone
(P,V) such that 0 ∈ A.

(i) If A is closed with respect to the lower topology on P, then for every
element b /∈ A in P there exists a monotone linear functional μ ∈ P∗
such that

μ(a) ≤ 1 ≤ μ(b) for all a ∈ A

and indeed 1 < μ(b) if b is bounded above.
(ii) If A is closed with respect to the upper topology on P, then for every

element b /∈ A in P there exists a monotone linear functional μ ∈ P∗
such that

μ(b) < −1 ≤ μ(a) for all a ∈ A.

In view of the corresponding separation results for locally convex topolog-
ical vector spaces, Corollary 2.9 is not entirely satisfying, in particular since
it requires that 0 ∈ A. A stronger and more suitable separation statement
will be derived in Section 4 (Theorem 4.30). It will make use of the relative
topologies of a locally convex cone which are to be introduced below.

We shall quote and make use of another result from [172]. The Range
Theorem (Theorem 5.1 in [172]) describes the scope of all linear functionals
whose existence is guaranteed by the Sandwich Theorem. It is a powerful
and indeed non-trivial consequence even in the special case of vector spaces,
where its formulation can however be considerably simplified.

Range Theorem 2.10. Let (P,V) be a locally convex cone. Let p and q
be sublinear and extended superlinear functionals on P and suppose that
there is at least one linear functional μ ∈ P∗ satisfying q ≤ μ ≤ p. Then
for all a ∈ P

sup
μ∈P∗

q≤μ≤p

μ(a) = sup
v∈V

inf {p(b)− q(c) | b, c ∈ P, q(c) ∈ R, a + c ≤ b + v},

and for all a ∈ P such that μ(a) is finite for at least one μ ∈ P∗ satisfy-
ing q ≤ μ ≤ p

sup
μ∈P∗

q≤μ≤p

μ(a) = inf
v∈V

sup {q(c)− p(b) | b, c ∈ P, p(b) ∈ R, c ≤ a + b + v}.

3. Weak Local and Global Preorders

In addition to the given order ≤ on a locally convex cone, we shall frequently
use the weak (global) preorder � (for details, see [175] and Section 4 below)
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which is slightly weaker then the given order and defined for a, b ∈ P by

a � b if a ≤ γb + εv

for all v ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε. This order represents a
closure of the given order with respect to the linear and topological structures
of P. It is obviously coarser than the given order, that is a ≤ b implies a � b
for a, b ∈ P. In the preceding Examples 1.4(a) and (b), however, both orders
coincide. In 1.4(e) this depends on the order in P and the neighborhood-
valued functions in V̂. If P = R and if for every x ∈ X there is v̂ ∈ V̂ such
that v̂(x) < +∞, then the given and the weak preorder coincide. In 1.4(c),
on the other hand, we have A � B if A ⊂ ↓B , where ↓B denotes the
topological closure in E of the decreasing hull ↓B of B. Note that ↓B
is again a convex subset of E. In 1.4(d), that is the case of a vector space
P over R or C, the weak preorder is given by a � b if a − b ∈ v(0) for
all v ∈ V. In this way (P,�) becomes a locally convex ordered topological
vector space in the usual sense if endowed with the (modular) symmetric
topology resulting from the neighborhood system.

The weak preorder on P is again compatible with the algebraic operations,
as Lemma 4.1 below will imply. In Corollary 4.31 below (see also Theorem 3.1
in [175]) we shall establish that the weak preorder on a locally convex cone P
is entirely determined by its dual cone P∗, that is a � b holds for a, b ∈ P
if and only if μ(a) ≤ μ(b) for all μ ∈ P∗. The weak preorder may also
be used in a full cone containing P and V. Consequently, the respective
relation involving the neighborhoods in V is defined for elements a, b ∈ P
and v ∈ V as

a � b + v if a ≤ γ(b + v) + εu

for all u ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε. This condition can be
slightly simplified:

Lemma 3.1. Let a, b ∈ P and v ∈ V. We have a � b + v if and only if for
every ε > 0 there is 1 ≤ γ ≤ 1 + ε such that a ≤ γb + (1 + ε)v.

Proof. Let a, b ∈ P and v ∈ V. Suppose that a � b + v and let ε > 0.
According to the preceding definition of the weak preorder involving neigh-
borhoods, for u = v and ε/2 in place of ε, there is 1 ≤ γ ≤ 1 + ε/2 such
that a ≤ γ(b+v)+(ε/2)v ≤ γb+εv. For the reverse implication suppose that
the condition of the Lemma holds, and let u ∈ V and ε > 0. There is λ ≥ 0
such that 0 ≤ b + λu. Choose 0 < δ ≤ ε/λ. Then there is 1 ≤ γ ≤ 1 + δ
such that

a ≤ γb + (1 + δ)v
≤ γb + (1 + δ)v + (1 + δ − γ)(b + λu)
≤ (1 + δ)(b + v) + δλ u

≤ (1 + δ)(b + v) + εu.

This shows a � b + v. �
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Endowed with the weak preorder (P,V) forms again a locally convex cone.
For details we refer to [175]. In Corollary 4.34 below (see also Theorem 3.2
in [175]) we shall demonstrate that for a, b ∈ P and a neighborhood v ∈ V,
we have a � b + v if and only if μ(a) ≤ μ(b) + 1 holds for all μ ∈ v◦. The
neighborhoods with respect to the weak preorder in P are therefore entirely
determined by their polars.

Given a neighborhood v ∈ V the weak local preorder (see [175]) �v on
P is the weak (global) preorder with respect to the neighborhood subsystem
Vv = {αv | α > 0}. That is, for a, b ∈ P we have

a �v b if a ≤ γb + εv

for all ε > 0 with some 1 ≤ γ ≤ 1 + ε. Corollary 4.31 below (see also
Theorem 3.1 in [175]) states that a �v b if and only if μ(a) ≤ μ(b) holds
for all μ ∈ v◦.

Lemma 3.2. Let a, b ∈ P.

(a) a � b if and only if for every v ∈ V and ε > 0 there is 1 ≤ γ ≤ 1 + ε
such that a � γb + εv.

(b) a �v b for v ∈ V if and only if for every ε > 0 there is 1 ≤ γ ≤ 1 + ε
such that a � γb + εv.

Proof. Part (a) follows from Part (b) as a � b holds if and only if a �v b
for all v ∈ V. For Part (b) let a, b ∈ P and v ∈ V such that the second
condition in (b) holds. Given ε > 0 set δ = min{ε/3, 1}. Then a � γb + δv
holds with some 1 ≤ γ ≤ 1 + δ. We infer from Lemma 3.1 that there is
1 ≤ γ′ ≤ 1 + δ such that a ≤ (γ′γ)b + (1 + δ)δv. Since (1 + δ)δ ≤ ε and
1 ≤ γ′γ ≤ (1 + δ)2 ≤ 1 + ε, and since ε > 0 was arbitrarily chosen, we
conclude that a �v b. The reverse implication is trivial since a ≤ γb + εv
implies that a � γb + εv. �

Lemma 3.2 shows in particular that the second iteration of the weak pre-
order, that is the second weak preorder generated by the first one does indeed
coincide with the first one.

We observe that for a linear operator T between locally convex cones
(P,V) and (Q,W), continuity with respect to the given orders implies con-
tinuity and monotonicity with respect to the respective weak preorders on P
and Q. Indeed, suppose that for v ∈ V and w ∈ W we have T (a) ≤ T (b)+w
whenever a ≤ b + v for a, b ∈ P. Let a � b + v and let ε > 0. According
to Lemma 3.1 there is 1 ≤ γ ≤ 1 + ε such that a ≤ γb + (1 + ε)v. Thus
T (a) ≤ γT (b) + (1 + ε)w. Since ε > 0 was arbitrarily chosen, we conclude
that T (a) � T (b) + w, thus establishing our claim.

The weak preorder may also be used to establish a representation for a
locally convex cone (P,V) as a cone of continuous R-valued functions on
some topological space and as a cone of convex subsets of some locally convex
topological vector space, respectively. We shall cite Theorem 4.1 from [175].
Recall the definition of an embedding from 2.2.
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Theorem 3.3. Every locally convex cone (P,V) can be embedded with re-
spect to its weak preorder into

(i) a locally convex cone of continuous R-valued functions on some topolog-
ical space X, endowed with the pointwise order and operations and the
topology of uniform convergence on a family of compact subsets of X.

(ii) a locally convex cone of convex subsets of a locally convex topological vec-
tor space, endowed with the usual addition and multiplication by scalars,
the set inclusion as order and the neighborhoods inherited from the vector
space.

4. Boundedness and the Relative Topologies

While all elements of a locally convex cone are bounded below by definition,
they need not to be bounded above. Given a neighborhood v ∈ V, an element
a of a locally convex cone (P,V) is called v-bounded (above) (see [100],
I.2.3) if there is λ ≥ 0 such that a ≤ λv. The subset Bv ⊂ P of all
v-bounded elements is a subcone and even a face of P. Correspondingly, by
B =

⋂
v∈V Bv we denote the subcone (and face) of all bounded elements of

P (see Section 1 and Proposition 4.11 below). All invertible elements of P
were seen to be bounded, and continuous linear functionals take only finite
values on bounded elements (see Section 2).

The presence of unbounded elements constitutes a significant difference
between locally convex cones and locally convex topological vector spaces. It
tends to make matters more interesting, but also considerably more compli-
cated. If, for example, the element a ∈ P is not bounded, then the mapping
α �→ αa : [0,+∞) → P, is not necessarily continuous if we consider the
usual topology of [0,+∞) and any of the given (upper, lower or symmetric)
topologies on P

(
see Proposition 1.1(iii)

)
. Hence these topologies appear to

be rather restrictive. For similar reasons, our upcoming definition of measura-
bility for P-valued functions in Chapter II would turn out to be very limiting
if applied to the given topologies of a locally convex cone. We shall therefore
introduce slightly coarser neighborhoods on P which take unbounded ele-
ments suitably into account. Given a neighborhood v ∈ V and ε > 0, we
define the corresponding upper and lower relative neighborhoods vε(a) and
(a)vε for an element a ∈ P by

vε(a) = { b ∈ P | b ≤ γa + εv for some 1 ≤ γ ≤ 1 + ε }
(a)vε = { b ∈ P | a ≤ γb + εv for some 1 ≤ γ ≤ 1 + ε }.

Their intersection vs
ε(a) = vε(a) ∩ (a)vε is the corresponding symmetric

relative neighborhood. These are of course convex subsets of P. Note that
for a positive element a ∈ P the above expressions somewhat simplify. Since
γa ≤ (1 + ε)a in this case, we have vε(a) = { b ∈ P | b ≤ (1 + ε)a + εv} and
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(a)vε = { b ∈ P | a ≤ (1 + ε)b + εv}. We shall frequently use the following
observations:

Lemma 4.1. Let a, b, c, ai, bi ∈ P, v ∈ V, λ ≥ 0 and ε, δ > 0.

(a) If a ∈ vε(b) and b ∈ vδ(c), then a ∈ v(ε+δ+εδ)(c).
(b) If a ∈ vε(b) and 0 ≤ b + λv, then a ≤ (1 + ε)b + ε(1 + λ)v.
(c) If a ∈ vε(b) and 0 ≤ a + λv, then a ≤ (1 + ε)b + ε(1 + λ + ε)v

and 0 ≤ b + (λ + ε)v.
(d) If ai ∈ vε(bi) and if 0 ≤ bi + λv for i = 1, . . . , n, then

(a1 + . . . + an) ∈ vεn(1+λ)(b1 + . . . + bn).

Proof. For (a), let a ∈ vε(b) and b ∈ vδ(c), that is a ≤ γb + εv and b ≤
λc+δv for some 1 ≤ γ ≤ 1+ε and 1 ≤ λ ≤ 1+δ. Then a ≤ γλc+(γδ+ε)v.
As

γδ + ε ≤ (1 + ε)δ + ε = ε + δ + εδ

and
1 ≤ γλ ≤ (1 + ε)(1 + δ) = 1 + ε + δ + εδ,

we have a ∈ v(ε+δ+εδ)(c). For (b), let a ∈ vε(b), that is a ≤ γb + εv for
some 1 ≤ γ ≤ 1 + ε. If 0 ≤ b + λv, then

a ≤ γb + εv + (1 + ε− γ)(b + λv) ≤ (1 + ε)b + (ε + ελ)v.

For (c), let a ∈ vε(b) and λ ≥ 0 such that 0 ≤ a + λv. Then a ≤ γb + εv
with some 1 ≤ γ ≤ 1+ε, hence 0 ≤ γb+(ε+λ)v, and indeed 0 ≤ b+ ε+λ

γ v ≤
b+(ε+λ)v. Part (b) yields a ≤ (1+ε)b+ε(1+λ+ε)v. For (d), let ai ∈ vε(bi)
and 0 ≤ bi + λv. Then ai ≤ (1 + ε)bi + ε(1 + λ)v by Part (b). This yields

a1 + . . . + an ≤ (1 + ε)(b1 + . . . + bn) + nε(1 + λ)v,

hence our claim. �

Property 4.1(a) implies in particular that vε(a) ⊂ v3ε(c) whenever a ∈
vε(b) and b ∈ vε(c) for a, b, c ∈ P and 0 < ε ≤ 1. Similar statements as in
Lemma 4.1 hold for the lower and for the symmetric relative neighborhoods.

For elements a, b ∈ P the weak local and global preorders on P as defined
in Section 3 can be recovered as

a �v b if a ∈ vε(b)

for some v ∈ V and all ε > 0, and

a � b if a ∈ vε(b)

for all ε > 0 and v ∈ V. Lemma 4.1(d) implies that these orders are com-
patible with the algebraic operations in P.
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For varying v ∈ V and ε > 0 the neighborhoods vε(·), (·)vε and vs
ε(·)

create the upper, lower and symmetric relative topologies on P, respectively.
We notice that a ≤ b + v for a, b ∈ P and v ∈ V implies that a �

b + v, and for a given ε > 0, with δ = min{1, ε/2}, we notice that a �
b + δv implies a ≤ γb + (1 + δ)δv ≤ γb + εv for some 1 ≤ γ ≤ 1 +
δ
(
see Lemma 3.1

)
, hence b ∈ vε(a). This observation demonstrates that

the given upper, lower and symmetric topologies on P are finer than those
induced by the same neighborhood system using the weak preorder, and that
in turn these topologies are finer than the above defined relative topologies.

However, while the relative neighborhoods form convex subsets of P, they
do in general not create a locally convex cone topology. Indeed, the sets{
(a, b) | a ∈ vε(b)

}
are not necessarily convex in P2, hence do not establish

a convex semiuniform structure on P in the sense of 1.3.
For later reference we shall list some further properties of the relative

topologies and use the earlier introduced standard notations for subsets of P
(see 1.1).

Proposition 4.2. Let (P,V) be a locally convex cone. The upper (lower or
symmetric) relative topology of P is coarser than the given upper (lower or
symmetric) topology and satisfies the following:

(i) Every element of P admits a basis of convex and decreasing (increasing
or order convex) neighborhoods. The symmetric relative neighborhoods in
the basis for 0 ∈ P are also balanced.

(ii) The mapping (a, b) �→ a + b : P × P → P is continuous.
(iii) The mapping (α, a) �→ αa : [0,+∞)×P → P is continuous at all points

(α, a) ∈ [0,+∞)× P such that either α > 0 or a ∈ P is bounded.
(iv) For bounded elements of P the neighborhoods in the upper (lower or

symmetric) relative topology are equivalent to the neighborhoods in the
given upper (lower or symmetric) topology.

Proof. We observed before that the relative topologies are coarser than the
given topologies on P. Clearly, for a ∈ P, v ∈ V and ε > 0 the relative
neighborhoods vε(a), (a)vε or vs

ε(a) are convex and decreasing, increasing
or order convex, respectively. The symmetric relative neighborhoods of 0 ∈ P
are also balanced. Indeed, let v ∈ V and ε > 0 and let a ∈ vs

ε(0). Then
a ≤ εv and 0 ≤ γa+ εv for some 1 ≤ γ ≤ 1+ ε. Thus 0 ≤ a+ (ε/γ)v ≤
a+ εv. Let 0 ≤ λ ≤ 1. Then λa ∈ vs

ε(0) follows from the convexity of vs
ε(0)

since λa = λa + (1− λ)0. If on the other hand b + λa = 0 for b ∈ P, then

b ≤ b + λ(a + εv) ≤ εv and 0 = b + λa ≤ b + εv

Hence b ∈ vε(0) holds in this case as well.
For property (ii), let a, b ∈ P, v ∈ V and ε > 0. There is λ ≥ 0

such that 0 ≤ a + λv and 0 ≤ b + λv. Choose δ = ε/(2λ + 4). Then
for c ∈ vδ(a) and d ∈ vδ(b) we have c + d ∈ v2δ(1+λ)(a + b) = vε(a + b)
by Lemma 4.1(d). This shows continuity of the addition with respect to the
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upper relative topology. Next with the same choice for δ, let c ∈ (a)vδ and
d ∈ (b)vδ, that is a ∈ vδ(c) and b ∈ vδ(d). Then we have a ≤ γc + δv for
some 1 ≤ γ ≤ 1+δ, hence 0 ≤ γc+(λ+δ)v and 0 ≤ c+(λ+1)v. Likewise,
0 ≤ d + (λ + 1)v. Now 4.1(d) yields a + b ∈ v2δ(2+λ)(c + d) ⊂ vε(c + d). Thus
c + d ∈ (a + b)vε. This shows continuity of the addition with respect to the
lower relative topology. Combining the preceding arguments, we realize that
c ∈ vs

δ(a) and d ∈ vs
δ(b) yields c + d ∈ vs

ε(a + b), which proves continuity
with respect to the symmetric relative topology.

Next we shall argue Part (iv): Let a ∈ P be a bounded element, let v ∈ V
and ε > 0. There is λ ≥ 0 such that a ≤ λv. We shall verify that

(εv)(a) ⊂ vε(a) ⊂ (ρv)(a) and (a)(εv) ⊂ (a)vε(a) ⊂ (a)(ρv).

with ρ = ε(1 + λ). Indeed, the inclusions (εv)(a) ⊂ vε(a) and (εv)(a) ⊂
vε(a) are obvious. Moreover, for b ∈ vε(a) we have b ≤ γa + εv with
some 1 ≤ γ ≤ 1 + ε. Then γa = a + (γ − 1)a ≤ a + ελv implies that
b ≤ a + ε(1 + λ)v = a + ρv, hence b ∈ (ρv)(a). For b ∈ (a)vε on the other
hand, we have a ≤ γb + εv with 1 ≤ γ ≤ 1 + ε. Then γa ≤ a + ελv implies
γa ≤ γb+ ε(1+λ)v = γb+ρv, hence a ≤ b+(ρ/γ)v ≤ b+ρv, and therefore
b ∈ (a)(ρv).

For the first case in Part (iii) let (α, a) ∈ (0,+∞)×P. For v ∈ V and ε> 0
let λ ≥ 0 such that 0 ≤ a+λv. For 0 < δ < min

{
1, ε/3, ε/

(
2α(1+λ)

)}
we

consider the neighborhoods uδ(α) =
[
α/(1 + δ) , α(1 + δ)

]
of α in [0,+∞)

and vδ(a) of a in P. For every b ∈ vδ(a) we have b ≤ (1 + δ)a + δ(1 + λ)v
by 4.1(b). For β ∈ uδ(α) we set γ = β(1 + δ)/α and estimate

βb ≤ β(1 + δ)a + βδ(1 + λ)v = γ(αa) + βδ(1 + λ)v.

Now α/(1+δ) ≤ β ≤ α(1+δ) and our choice for δ implies 1 ≤ γ ≤ (1+δ)2 ≤
1 + ε as well as βδ(1 + λ) ≤ α(1 + δ)δ(1 + λ) ≤ 2αδ(1 + λ) ≤ ε. Thus
βb ∈ vε(αa). This shows continuity for the scalar multiplication at (α, a)
with respect to the upper relative topology. For the lower topology, with the
same choice for δ, let b ∈ (a)vδ and β ∈ uδ(α). Then a ≤ (1+δ)b+δ(2+λ)v
by 4.1(c). We set γ = α(1 + δ)/β and obtain

αa ≤ α(1 + δ)b + αδ(2 + λ)v = γ(βb) + αδ(2 + λ)v.

We verify 1 ≤ γ ≤ 1 + ε and αδ(2 + λ) ≤ ε and infer that αa ∈ (βb)vε,
hence βb ∈ (αa)vε. This shows continuity with respect to the lower relative
topology. The combination of both arguments yields continuity with respect
to the symmetric relative topology.

The second case of Part (iii), that is the continuity of the scalar multi-
plication at (α, a) ∈ [0,+∞) × P for a bounded element a ∈ P, follows
directly from Part (iv) and from Part (iii) of Proposition 1.1. Indeed, the
given and the relative upper (lower or symmetric) topologies coincide locally
at a ∈ P by (iv), thus continuity with respect to any of the given topologies



30 I Locally Convex Cones

which was established in Proposition 1.1(iii) implies continuity with respect
to the corresponding relative topology. �

For P = R, in particular, Part (iv) of the preceding proposition implies
that the given and the relative topologies coincide on all reals. They also
coincide on the element +∞, thus everywhere, as can be easily verified (for
details on this, see Example 4.37(a) below).

Part (iv) together with Corollary 1.2 also yields:

Corollary 4.3. Let (P,V) be a locally convex cone and let P0 be the subcone
of all invertible elements of P. The mapping (α, a) �→ αa : R× P0 → P0 is
continuous with respect to the symmetric relative topology of P.

We observe that the given upper (lower or symmetric) topologies do of
course satisfy the properties listed in Proposition 4.2 with the exception
of 4.2(iii). More precisely, we take note:

Proposition 4.4. Let (P,V) be a locally convex cone. The upper (or lower)
relative topology is the finest topology on P which is coarser than the given
upper (or lower) topology and satisfies property (iii) from Proposition 4.2.

Proof. Let τ be any topology on P which is finer than the upper (or lower)
topology and satisfies property (iii) from Proposition 4.2. Let a ∈ P and
let U(a) be a neighborhood in τ for a. We shall show that U(a) contains
some upper (or lower) relative neighborhood of a. The mapping (α, b) �→
αb : [0,+∞) × P → P is continuous with respect to τ at the point (1, a).
Thus there is a neighborhood V (a) in τ and 0 < ε ≤ 1 such that βb ∈ U(a)
for all b ∈ V (a) and β ∈ [1−ε, 1+ε]. Moreover, since τ is coarser than the
upper (or lower) topology of P there is v ∈ V such that v(a) ⊂ V (a)

(
or

(a)v ⊂ V (a)
)
. In the case of the upper topology, then for every c ∈ vε(a)

we have c ≤ γa + εv for some 1 ≤ γ ≤ 1 + ε. Thus d ≤ a + (ε/γ)v ≤ a + v
for d = (1/γ)c. We infer that d ∈ v(a) ⊂ V (a), hence c = γd ∈ U(a) since
γ ∈ [1 − ε, 1 + ε]. This shows vε(a) ⊂ U(a). Likewise, in the case of the
lower topology, for c ∈ (a)vε we have a ≤ γc + εv for some 1 ≤ γ ≤ 1 + ε,
hence d = γc ∈ (a)(v) ⊂ V (a). This yields c = (1/γ)d ∈ U(a) since
(1/γ) ∈ [1− ε, 1 + ε]. We conclude that (a)vε ⊂ U(a) in this case. �

Proposition 4.5. Let (P,V) and (Q,W) be locally convex cones. A con-
tinuous linear operator T : P → Q is also continuous if both P and Q
are endowed with either their respective upper, lower or symmetric relative
topologies.

Proof. Let T : P → Q be a continuous linear operator. Given w ∈ W , there
is v ∈ V such that a ≤ b+v implies T (a) ≤ T (b)+w for elements a, b ∈ P.
Thus a ∈ vε(b), that is a ≤ γb + εv with some 1 ≤ γ ≤ 1 + ε, implies
T (a) ≤ γT (b) + εw, hence T (a) ∈ wε

(
T (b)

)
. A similar argument shows

continuity with respect to either the lower or symmetric relative topologies
of P and Q. �
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For Q = R, in particular, we remarked earlier (see also Example 4.37(a)
below) that the given and the relative topologies coincide. A linear functional
μ ∈ P∗ is therefore also continuous if we endow P with either of its relative
and R with the corresponding given topology.

We shall also use the (upper, lower, symmetric) relative v-topologies on
P, generated by the relative neighborhoods for a fixed v ∈ V. The symmetric
relative v-topology, in particular, is induced by the pseudometric

dv(a, b) = inf
{
1,
√

ε | a ∈ vs
ε(b)

}
.

The properties of a pseudometric (see Section 2.1 in [198]) are readily
checked for this expression: We obviously have dv(a, b) ≥ 0, dv(a, a) = 0
and dv(a, b) = dv(b, a) for a, b ∈ P. The triangular inequality, namely
dv(a, c) ≤ dv(a, b) + dv(b, c) for a, b, c ∈ P, holds trivially true if ei-
ther dv(a, b) = 1 or dv(b, c) = 1. Otherwise, if dv(a, b) < ε < 1 and
dv(b, c) < δ < 1, then a ∈ vs

ε2 (b) and b ∈ vs
δ2 (c) implies by Lemma 4.1(a)

that a ∈ vs
ρ(c), where ρ = ε2 + δ2 + ε2δ2 ≤ (ε + δ)2. Thus dv(a, c) ≤ ε + δ,

hence the triangular inequality holds. As a consequence of the availability of
a pseudometric for the symmetric relative v-topology, arbitrary subsets of
separable subsets of P remain separable (see 16G in [198]). We shall use this
fact in Chapter II.

The (upper, lower, symmetric) relative topologies on P are the common
refinements of all (upper, lower, symmetric) relative v-topologies.

4.6 The Weak Topology σ(P, P∗). The weak topology σ(P,P∗) on a
locally convex cone (P,V) is generated by its dual cone in the following way:
For an element a ∈ P an upper neighborhood VΥ (a), corresponding to a
finite subset Υ = {μ1, . . . , μn} of P∗, is given by

VΥ (a) =
{
b ∈ P | μi(b) ≤ μi(a) + 1 for all μi ∈ Υ

}
.

Endowed with these neighborhoods, P forms again a locally convex cone (see
Section II.3 in [100]). We are mostly interested in the resulting symmetric
topology σ(P,P∗) which is generated by the symmetric neighborhoods

Vs
Υ (a) =

{

b ∈ P
∣
∣
∣
∣
∣
|μi(b)− μi(a)|≤ 1 , if μi(a) < +∞

μi(b)= +∞ , if μi(a) = +∞

}

In this way weak convergence for a net (ai)i∈I in (P,V) means that(
μ(ai)

)
i∈I converges towards μ(a) in R (with respect to the symmetric

locally convex cone topology of R) for every continuous linear functional
μ ∈ P∗.

While the relative topologies of a locally convex cone are generally coarser
than the given ones, we observe from the preceding definition that the relative
upper, lower and symmetric weak topologies do indeed coincide with the
given upper, lower and symmetric weak topologies on P.
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Lemma 4.7. The weak topology σ(P,P∗) on a locally convex cone (P,V)
is coarser than the symmetric relative topology.

Proof. For this, let a ∈ P, let Υ be a finite subset of P∗ and consider the
weak neighborhood Vs

Υ (a) from above. Choose v ∈ V such that μi ∈ v◦

for all i = 1, . . . , n. We shall show that for a suitable ε > 0 the symmetric
neighborhood vs

ε(a) is contained in Vs
Υ (a). Indeed, let b ∈ vs

ε(a), that is

b ≤ γa + εv and a ≤ γ′b + εv

for some 1 ≤ γ, γ′ ≤ 1 + ε. Thus

μ(b) ≤ γμ(a) + ε and μ(a) ≤ γ′μ(b) + ε

for all μ ∈ Υ. If μ(a) = +∞, then μ(a) = +∞. Moreover, ε > 0 may be
chosen such that the above implies |μ(b)−μ(a)| ≤ 1 for all μ ∈ Υ such that
μ(a) < +∞. This shows b ∈ Vs

Υ (a). �

Proposition 4.8. Let (P,V) be a locally convex cone. The following state-
ments are equivalent:

(i) The symmetric relative topology on P is Hausdorff.
(ii) The weak topology on P is Hausdorff.
(iii) The weak preorder on P is antisymmetric.

Proof. Clearly, (ii) implies (i), since the symmetric relative topology is finer
than σ(P,P∗). If a � b and b � a for a, b ∈ P, then a ∈ vs

ε(b) for all v ∈ V
and ε > 0. If the symmetric relative topology is Hausdorff, then this implies
a = b. Thus (i) implies (iii). If the weak preorder is antisymmetric, then for
distinct elements a, b ∈ P we have either a �� b or b �� a, thus a �� b+v or
b �� a+v for some v ∈ V by Lemma 3.2. Then there exists a linear functional
μ ∈ v◦ such that μ(a) > μ(b) + 1 or μ(b) > μ(a) + 1, respectively (see
Section 3 and Corollary 4.34 below). The weak neighborhoods Vs

{(1/3)μ}(a)
and Vs

{(1/3)μ}(b) are therefore seen to be disjoint. Thus (iii) implies (ii) as
well. �

4.9 Boundedness Components. For an element a ∈ P we define the
upper and lower boundedness components of a as

B(a) =
⋂

v∈V

⋃

ε>0

vε(a) and (a)B =
⋂

v∈V

⋃

ε>0

(a)vε,

respectively. The elements of B(a) are called bounded above relative to a.
Correspondingly, the elements of (a)B are called bounded below relative
to a. By the definition of a locally convex cone we have 0 ∈ B(a) for all
a ∈ P, and B(0) = B consists of all bounded elements of P. We shall first
list a few basic properties of the upper boundedness components.
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Proposition 4.10. Let a, b,∈ P. The following are equivalent:

(i) b ∈ B(a).
(ii) B(b) ⊂ B(a).
(iii) For every v ∈ V there are α, β ≥ 0 such that b ≤ αa + βv.
(iv) The mapping

α �→ a + αb : [0,+∞) → P
is continuous with respect to the symmetric relative topology of P.

(v) For all μ ∈ P∗, μ(a) < +∞ implies μ(b) < +∞.

Proof. Let a, b ∈ P. We shall first establish the equivalence of (i), (ii)
and (iii): Suppose that b ∈ B(a) and let c ∈ B(b). Then for every
v ∈ V there are ε, δ > 0 such that c ∈ vε(b) and b ∈ vδ(a). Following
Lemma 4.1(a), this implies c ∈ v(ε+δ+εδ)(a). We conclude that c ∈ B(a),
hence B(b) ⊂ B(a), and (i) implies (ii). If B(b) ⊂ B(a), then b ∈ B(a) since
b ∈ B(b) trivially holds. Thus for every v ∈ V there is ε > 0 such that
b ∈ vε(a), that is b ≤ αa+βv for some α, β ≥ 0. Therefore (ii) implies (iii).
If, on the other hand, for some v ∈ V we have b ≤ αa + βv for α, β ≥ 0,
we choose λ ≥ 0 such that 0 ≤ a + λv. Then

b ≤ (αa + βv) + (a + λv) = (1 + α)a + (β + λ)v,

hence b ∈ vε(a) for every ε > max{α, β +λ}. If this argument can be made
for all v ∈ V, then we have b ∈ B(a), hence (iii) implies (i) as well, and the
Conditions (i), (ii) and (iii) are seen to be equivalent.

Next we shall verify that (iii) implies (iv): Following Proposition 4.2(iii), for
any choice of b ∈ P the mapping α �→ αb is continuous with respect to the
symmetric relative topology of P on the open interval (0,+∞). Likewise,
of course, is the constant mapping α �→ a. Thus by the continuity of the
addition in P

(
see Proposition 4.2(ii)

)
, the mapping f : [0,+∞) → P such

that
f(α) = a + αb

is also continuous on (0,+∞). In case that (iii) holds, we shall verify conti-
nuity at α = 0 as well: Given v ∈ V and ε > 0 there is λ > 0 such that
0 ≤ b + λv, and by (iii) there are γ, ρ ≥ 0 such that b ≤ γa + ρv. Then for
δ = min{ ε/γ, ε/ρ, ε/λ} and all α ∈ [0, δ) we have

a + αb ≤ a + α(γa + ρv) ≤ (1 + αγ)a + αρv.

Since our choice of δ guarantees that both αγ ≤ ε and αρ ≤ ε, we infer
that f(α) ∈ vε

(
f(0)

)
. Similarly, one observes that

a ≤ a + α(b + λv) ≤ (a + αb) + αλv

holds for all α ≥ 0. If indeed α ∈ [0, δ), then our choice for δ guarantees
that αλ ≤ ε. This shows f(0) ∈ vε

(
f(α)

)
, that is f(α) ∈

(
f(0)

)
vε, and
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together with the above, f(α) ∈ vs
ε

(
f(0)

)
for all α ∈ [0, δ). We infer con-

tinuity for the function f at α = 0 with respect to the symmetric relative
topology of P.

Next suppose that (iv) holds. Then for every linear functional μ ∈ P∗ the
mapping ϕ : [0,+∞) → R such that

ϕ(α) = μ(a + αb) = μ(a) + αμ(b)

is also continuous at α = 0 (see the remark after Proposition 4.5) if we
consider R in its symmetric topology, for which = ∞ is an isolated point
(see Example 4.37(a) below). Therefore μ(b) is finite whenever ϕ(0) = μ(a)
is finite, and we infer that (iv) implies (v).

Finally, suppose that Condition (iii) fails for the element b. Given a neigh-
borhood v ∈ V, we define a corresponding functional μv on P setting
μv(c) = 0 for all c ∈ P such that c ≤ αa + βv for some α, β ≥ 0, and
μv(c) = +∞, else. It is straightforward to check that μv is linear. Indeed,
if μv(c) = μv(d) = 0, that is c ≤ αa + βv and c ≤ γ + δv for some
α, β, γ, δ ≥ 0, then c+d ≤ (α+γ)a+(β + δ)v, hence μv(c+d) = 0 as well.
If, on the other hand, μv(c+d) = 0, that is c+d ≤ αa+βv for some α, β ≥ 0,
we choose λ ≥ 0 such that 0 ≤ d+λv and have c ≤ c+d+λv ≤ αa+(β+λ)v.
This shows μv(c) = 0. Similarly, one verifies that μv(d) = 0. Moreover, we
realize that μv is an element of the polar v◦ of v, as for c ≤ d + v, we
have μv(c) = 0 whenever μv(d) = 0, hence μv(c) ≤ μv(d) + 1 holds in any
case. Using this construction, we proceed with our argument: If (iii) fails for
b, then there is a neighborhood v ∈ V such that b � αa+βv for all choices
of α, β ≥ 0, hence μv(b) = +∞, while μv(a) = 0. Thus Condition (v) does
not hold either. This in turn shows that (v) implies (iii) and completes our
argument. �

Proposition 4.11. Let a, b, c ∈ P. Then

(a) B(a) is a subcone of P, and B ⊂ B(a).
(b) B(a) is a face in P, that is b + c ∈ B(a) implies both b, c ∈ B(a).
(c) B(αa) = B(a) for α > 0, and B(a) + B(b) ⊂ B(a + b).
(d) B(a) is closed in P with respect to the lower relative topology of P.

Proof. Part (a) is obvious from Proposition 4.10(iii), since b ≤ αa + βv and
c ≤ γa + δv for v ∈ V and α, β, γ, δ ≥ 0 implies that b + c ≤ (α +
γ)a + (β + δ)v and λb ≤ λαa + λβv for λ ≥ 0. Moreover, since 0 ∈ B(a),
Proposition 4.10(ii) yields that B = B(0) ⊂ B(a).

For (b), let b+c ∈ B(a), that is, given v ∈ V, we have b+c ≤ αa+βv for
some α, β ≥ 0. Because all elements of a locally convex cone are bounded
below, there is λ ≥ 0 such that 0 ≤ c + λv. Thus b ≤ b + c + λv ≤
αa + (β + λ)v. Hence b ∈ B(a). Similarly, one verifies that c ∈ B(a).

The first statement of (c) is obvious from 4.10(iii). For the second state-
ment, let c ∈ B(a), d ∈ B(b) and v ∈ V. Then c ≤ αa+βv and d ≤ γb+δv
for some α, β, γ, δ ≥ 0. Let λ ≥ 0 such that both 0 ≤ a+λv and 0 ≤ b+λv.
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In case that α ≤ γ, this yields c ≤ αa + βv + (γ − α)(a + λv) = γa + ρv,
where ρ = β + (γ − α)λ. Thus c + d ≤ γ(a + b) + (ρ + δ)v. In case that
α > γ, a similar argument leads to c + d ≤ α(a + b) + (ρ′ + β)v, where
ρ′ = δ + (α− γ)λ. This verifies c + d ∈ B(a + b).

Finally, for Part (c), we remarked before that a linear functional μ ∈ P∗ is
a continuous mapping from P into R if we endow P with either its upper,
lower or symmetric relative topology, and R with either its given upper,
lower or symmetric topology, respectively. We shall use this observation for
the functionals μv ∈ P∗ for v ∈ V, that we constructed in the argument for
the implication (v)⇒ (iii) in the proof of Proposition 4.10, that is μv(c) = 0
if c ≤ αa + βv for some α, β ≥ 0, and μ(c) = +∞, else. Because R is
a closed subset of R in the lower topology of R (see Example 1.4(a)), its
inverse image μ−1

v (R) under μv is closed in the lower relative topology of P.
We have B(a) =

⋂
v∈V μ−1

v (R) by Proposition 4.10(v). Thus B(a) is indeed
closed in the lower relative topology of P. �

We proceed to identify the corresponding properties of the lower bound-
edness components.

Proposition 4.12. Let a, b,∈ P. The following are equivalent:

(i) b ∈ (a)B.
(ii) a ∈ B(b).
(iii) B(a) ⊂ B(b).
(iv) (b)B ⊂ (a)B.
(v) For every v ∈ V there are α, β > 0 such that αa ≤ b + βv.
(vi) The mapping

α �→ αa + b : [0,+∞) → P
is continuous with respect to the symmetric relative topology of P.

(vii) For all μ ∈ P∗, μ(a) = +∞ implies μ(b) = +∞.

Proof. Let a, b ∈ P. First we observe that b ∈ (a)B holds for a, b ∈ P if
and only if for every v ∈ V there is ε > 0 such that b ∈ (a)vε, that is
a ∈ vε(b). The latter means that a ∈ B(b). Hence (i) and (ii) are indeed
equivalent.

The equivalence of (ii) and (iii) follows from the corresponding one in
Proposition 4.10: We have b ∈ (a)B if and only if a ∈ B(b) by the preceding
argument, and the latter holds if and only if B(a) ⊂ B(b) by 4.10.

Now suppose that B(a) ⊂ B(b) holds and let c ∈ (b)B. Then b ∈ B(c),
hence B(a) ⊂ B(b) ⊂ B(c) by 4.10(ii). Thus a ∈ B(c), hence c ∈ (a)B. This
shows (b)B ⊂ (a)B. For the converse suppose that (b)B ⊂ (a)B. This implies
b ∈ (a)B, hence a ∈ B(b) and B(a) ⊂ B(b) by 4.10(ii). Therefore (iii)
and (iv) are also equivalent.

Next suppose that for every v ∈ V there are α, β > 0 such that αa ≤ b+
βv. Then a ≤ (1/α)b+(β/α)v, hence a ∈ B(b) by 4.10(iii). For the converse,
let a ∈ B(b), that is a ∈ vε(b) for every v ∈ V with some ε > 0. This yields
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a ≤ γb+ εv for some 1 ≤ γ ≤ 1+ ε, hence (1/γ)a ≤ b+(ε/γ)v, as claimed.
We infer that (ii) and (v) are also equivalent. The remaining parts of this proof
require only little effort if we use the already established equivalence of (i)
and (ii) and the corresponding results for the upper boundedness components
in Proposition 4.10:

The equivalence of (ii) and (vi) follows from the equivalence of (i) and (iv)
in Proposition 4.10. The equivalence of Conditions (i) and (v) from 4.10,
on the other hand, yields that a ∈ B(b) if and only if μ(b) < +∞ implies
μ(a) < +∞ for every μ ∈ P∗. But the latter is equivalent to the formulation
of Condition (vii) in the present proposition. �

Proposition 4.13. Let a, b, c ∈ P. Then

(a) If b ∈ (a)B and c ∈ P, then βb + c ∈ (a)B for all β > 0.
(b) (αa)B = (a)B for α > 0, and (a + b)B = (a)B ∩ (b)B.
(c) (a)B is closed in P with respect to the upper relative topology of P.

Proof. For Part (a), let b ∈ (a)B, that is a ∈ B(b), let c ∈ P and β > 0.
4.11(c) shows that a ∈ B(βb), hence a ∈ B(βb) + B(c) ⊂ B(βb + c). Thus
βb + c ∈ (a)B.

The first part of (b) is obvious from 4.12(v). For the second part let c ∈
(a+ b)B. Then a+ b ∈ B(c), hence both a ∈ B(c) and b ∈ B(c), since B(c)
is a face in P by Proposition 4.11(b). Thus c ∈ (a)B ∩ (b)B. This argument
is indeed reversible: If c ∈ (a)B ∩ (b)B, then both a ∈ B(c) and b ∈ B(c).
This implies a+ b ∈ B(c), since B(c) is a subcone of P

(
see 4.11(a)

)
. Thus

c ∈ (a + b)B.
For Part (c) we recall that the singleton set {+∞} is closed in the upper

topology of R, hence its inverse image μ−1({+∞}) under any linear func-
tional μ ∈ P∗ is closed with respect to the upper relative topology of P. Fol-
lowing Proposition 4.12(vii), (a)B is the intersection of the sets μ−1({+∞})
for all μ ∈ P∗ such that μ(a) = +∞, hence (a)B is indeed closed for the
upper relative topology. �

The sets
Bs(a) = B(a) ∩ (a)B

are called the symmetric boundedness components of P. The elements of
Bs(a) are called bounded relative to a. The symmetric boundedness com-
ponents are of particular interest, since they will provide a natural partition of
a locally convex cone into boundedness equivalence classes. Before establish-
ing this feature, we shall list a few properties of the symmetric boundedness
components:

Proposition 4.14. Let a, b,∈ P. The following are equivalent:

(i) b ∈ Bs(a).
(ii) a ∈ Bs(b).
(iii) B(b) = B(a).
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(iv) (b)B = (a)B.
(v) Bs(b) = Bs(a).
(vi) For every v ∈ V there are α, β ≥ 0 such that both

b ≤ αa + βv and a ≤ αb + βv.

(vii) The mapping
α �→ αa + (1− α)b : [0, 1] → P

is continuous with respect to the symmetric relative topology of P.
(viii) For all μ ∈ P∗, μ(a) = +∞ if and only if μ(b) = +∞.

Proof. Let a, b ∈ P. If b ∈ Bs(a) = B(a) ∩ (a)B, then b ∈ B(a) and
a ∈ B(b). This implies B(a) = B(b) by 4.10(ii). On the other hand, if
B(a) = B(b), then b ∈ B(a) and a ∈ B(b), hence b ∈ B(a) ∩ (a)B. This
yields the equivalence of (i) and (iii).

The equivalence of (iii) and (iv) follows immediately from 4.12(iii) and (iv).
Conditions (iii) and (iv) are symmetric in a and b and therefore also

equivalent to (ii).
Conditions (iii) and (iv) imply (v), which in turn obviously renders (i),

since Bs(b) = Bs(a) implies b ∈ Bs(b) = Bs(a).
Clearly, (vi) implies (i), since by Proposition 4.10(iii) it yields b ∈ B(a)

and a ∈ B(b), hence b ∈ Bs(a). On the other hand, if b ∈ Bs(a), then b ∈
B(a) and a ∈ B(b), and by 4.10(iii), given v ∈ V, there are α′, α′′, β′, β′′ ≥ 0
such that

b ≤ α′a + β′v and a ≤ α′′b + β′′v.

There is λ ≥ 0 such that both 0 ≤ a + λv and 0 ≤ b + λv. Set α =
max{α′, α′′} and β = max{β′ + (α− α′)λ, β′′ + (α− α′′)λ }. Then

b ≤ (α′a + β′v) + (α− α′)(a + λv)
≤ αa +

(
β′ + (α− α′)λ

)
v ≤ αa + βv,

and, likewise,

a ≤ (α′′a + β′′v) + (α− α′′)(a + λv)
≤ αa +

(
β′′ + (α− α′′)λ

)
v ≤ αa + βv.

Therefore (i) implies (vi) as well.
Condition (viii) of this proposition is the combination of the corresponding

conditions in Propositions 4.10 and 4.12 and therefore also equivalent to
Conditions (i) to (vi). All left to show is that (vii) is equivalent to the rest.
First let us verify that (vii) implies (viii). If the mapping

α �→ αa + (1− α)b : [0, 1] → P
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is continuous with respect to the symmetric relative topology of P, then for
every linear functional μ ∈ P∗ the mapping ϕ : [0, 1] → R such that

ϕ(α) = μ
(
αa + (1− α)b

)
= αμ(a) + (1− α)μ(b)

is also continuous (see the remark after Proposition 4.5) if we consider R in
its symmetric topology, for which = ∞ is an isolated point. Therefore ϕ(0) =
μ(b) is finite if and only if ϕ(1) = μ(a) is finite. Hence (vii) implies (viii).
Finally, we shall demonstrate how the other conditions imply (vii). Following
Proposition 4.2(iii), for any choice of a, b ∈ P the mappings α �→ αa and
α �→ (1−α)b are continuous with respect to the symmetric relative topology
of P on the open intervals (0,+∞) and (−∞, 1), respectively. Thus by
Proposition 4.2(ii), that is the continuity of the addition in P, the mapping
f : [0, 1] → P such that

f(α) = αa + (1− α)b

is continuous on the interval (0, 1). In case that b ∈ Bs(a), we shall verify
continuity at the endpoints α = 0 and α = 1 as well: Proposition 4.12(vi),
if applied to the element (1/2)b ∈ (a)B, states that the mapping

α �→ αa +
1
2
b :

[
0,+∞

)
→ P

is continuous at α = 0. The mapping

α �→
(

1
2
− α

)
b :

(
−∞,

1
2

]
→ P,

on the other hand, is continuous at 0 by 4.2(iii). Thus the sum of these
mappings, that is the function f, is also continuous at 0. A similar argument
holds for α = 1. Following Propositions 4.10(iv) and 4.2(iii), respectively,
the mappings

α �→ 1
2
a + (1− α)b :

(
−∞, 1

]

and

α �→
(

α− 1
2

)
a :

[
1
2
,+∞

)
→ P

are continuous at α = 1. So is their sum, the function f. This concludes
our argument. �

Proposition 4.15. Let a, b, c ∈ P. Then

(a) If b, c ∈ Bs(a), then βb + γc ∈ Bs(a) for all β, γ > 0.
(b) Bs(αa) = Bs(a) for α > 0, and Bs(a + b) ⊃ Bs(a) ∩ Bs(b).
(c) Bs(a) is closed in P with respect to the symmetric relative topology of P.
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Proof. Part (a) follows directly from Propositions 4.11(a) and 4.13(a). The
first part of (b) follows from the first parts of 4.11(c) and 4.13(b). The same
sources yield the second part of (b) as well, since the relations (a + b)B =
(a)B ∩ (b)B and B(a + b) ⊃ B(a) + B(b) ⊃ B(a) ∩ B(b) imply that

Bs(a + b) = B(a + b)∩ (a + b)B ⊃ B(a)∩B(b)∩ (a)B ∩ (b)B = Bs(a)∩Bs(b).

Finally, by Propositions 4.11(d) and 4.13(c), the sets B(a) and (a)B are
closed in the lower and upper relative topologies of P, respectively. Conse-
quently, both of these sets as well as their intersection, that is Bs(a), are
also closed in the symmetric relative topology of P, which is finer than both
the upper and the lower relative topologies. �

Proposition 4.16. The symmetric boundedness components satisfy a ver-
sion of the cancellation law, that is a+ c � b+ c for elements a, b and c of
the same boundedness component implies that a � b.

Proof. Suppose that the elements a, b, c ∈ P are bounded relative to each
other and that a + c � b + c. Given v ∈ V there is λ ≥ 0 such that
0 ≤ c + λv. Thus a + (c + λv) � b + (c + λv). As we observed before,
(P,V) endowed with the weak preorder � forms again a locally convex
cone. Following Lemma I.4.2 in [100], if applied to this order and the positive
element (a + λv) of a full cone containing P, the above implies a � b +
ε(c + λv) for all ε > 0. By our assumption, there are α, β ≥ 0 such that
c ≤ αb + βv. Now combining the above yields

a � b + ε
(
αb + (β + λ)v

)
= (1 + εα)b + ε(β + λ)v

for all ε > 0. This shows a �v b by our definition of the weak local pre-
order in Section 3. Finally, because a �v b holds for all v ∈ V, we infer
that a � b. �

Proposition 4.17. The symmetric boundedness components furnish a parti-
tion of P into disjoint convex subsets that are closed and connected in the
symmetric relative topology.

Proof. Proposition 4.15(a) implies that the symmetric boundedness compo-
nents are convex subset of P. They are closed in the symmetric relative topol-
ogy by 4.15(c). Moreover, the equivalence of (i) and (v) in Proposition 4.14
shows that any two symmetric boundedness components of P either coin-
cide or are disjoint. For connectedness, let a ∈ P, and let b, c ∈ Bs(a).
Then Bs(a) = Bs(b) = Bs(b) by Proposition 4.14(v), and by the equivalent
condition in 4.14(vii), the mapping f : [0, 1] → Bs(a) such that

f(α) = αb + (1− α)c

is continuous with respect to the symmetric relative topology of P. As
f(0) = c and f(1) = b, this shows that Bs(a) is pathwise connected,
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hence connected in the symmetric relative topology of P (see Theorem 27.2
in [198]). �

We shall also consider the local boundedness components of a locally con-
vex cone P that arise if we endow P with the neighborhood subsystem
Vv = {αv | α > 0} consisting of the multiples of a single neighborhood
v ∈ V. For an element a ∈ P and a neighborhood v ∈ V, we define the
(local) upper, lower and symmetric v-boundedness components of a as

Bv(a) =
⋃

ε>0

vε(a), (a)Bv =
⋃

ε>0

(a)vε, and Bs
v(a) = Bv(a) ∩ (a)Bv,

respectively. The elements of Bv(a) are called v-bounded above relative
to a. Bv(0) = Bv consists of all v-bounded elements of P. The global
boundedness components may be recovered as

B(a) =
⋂

v∈V
Bv(a), (a)B =

⋂

v∈V
(a)Bv and Bs(a) =

⋂

v∈V
Bs

v(a),

respectively. Obviously, the statements of Propositions 4.10 to 4.17 apply also
to the local boundedness components, since we may replace the given neigh-
borhood system V by the subsystem Vv and consider the locally convex cone
(P,Vv) for this purpose. The cancellation law in Proposition 4.16 holds with
the weak local preorder �v in this case. The dual cone P∗ of (P,Vv) con-
sists only of the multiples of the functionals in v◦, and the relative topologies
of P are the relative v-topologies.

The main benefit in considering the local boundedness components as
compared to the global ones, is the following: We shall proceed to verify that
the disjoint partition of P into symmetric local boundedness components
provides indeed a topological partition as well.

Proposition 4.18. Let a ∈ P and v ∈ V.

(a) Bv(a) is open in P with respect to the upper, closed with respect to the
lower and both open and closed with respect to the symmetric relative
v-topology of P.

(b) (a)Bv is closed in P with respect to the upper, open with respect to the
lower and both open and closed with respect to the symmetric relative
v-topology of P.

Proof. Let a ∈ P and v ∈ V Proposition 4.11(d) states that Bv(a) is closed
in the lower relative v-topology of P. Let b ∈ Bv(a), that is b ≤ αb + βv
for some α, β ≥ 0, and let vε(b) be a lower neighborhood of b. Then for
c ∈ vε(b) we have c ≤ γb + εv with some 1 ≤ γ ≤ 1 + ε, and therefore
c ≤ (αγ)a + (βγ + ε)v. This shows c ∈ Bv(a), hence vε(b) ⊂ Bv(a), and
Bv(a) is seen to be open in the lower relative v-topology of P. Moreover,
because the symmetric relative v-topology is the common refinement of the
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upper and lower topologies, Bv(a) is indeed both open and closed in this
topology. This completes Part (a).

The argument for Part (b) is similar: Proposition 4.13(c) states that (a)Bv

is closed in the upper relative v-topology of P. Let b ∈ (a)Bv, that is
αa ≤ b + βv for some α, β > 0, and let (b)vε be a lower neighborhood
of b. Then for c ∈ (b)vε we have b ≤ γc + εv with some 1 ≤ γ ≤ 1 + ε,
and therefore αa ≤ γc + (ε + δ)v, hence (α/γ)a ≤ c + (ε + δ)/γv. This
shows c ∈ (a)Bv, hence (b)vε ⊂ (a)Bv, and (a)Bv is seen to be open in the
lower relative v-topology of P. Hence (a)Bv is both open and closed in the
symmetric relative v-topology. �

Propositions 4.18 and 4.17 now yield a topological and algebraic partition
of a locally convex cone into local boundedness components.

Proposition 4.19. For every neighborhood v ∈ V, the symmetric v-bound-
edness components furnish a partition of P into disjoint convex subsets that
are open, closed and connected in the symmetric relative v-topology.

A subset of P that is open or closed in any of the relative v-topologies is
of course also open or closed in the corresponding (global) relative topology
of P. The same statement does however not hold for connectedness.

4.20 Connectedness. Topological vector spaces are connected and all of
their elements are bounded. This does not hold for locally convex cones in
general. However, Propositions 4.17 and 4.19 suggest relations between the
boundedness and the connectedness components of a locally convex cone. Let
us recall some of the relevant concepts from topology: The quasi-component
of a point x in a topological space X is the intersection of all closed and
open subsets of X which contain x. The quasi-components constitute a
decomposition of X into pairwise disjoint and closed subsets (see VIII.26
in [198] or VI.1 in [59]). The component of a point x ∈ X, on the other
hand is the largest connected subset of X which contains the point x. The
components are subsets of the quasi-components and constitute a decomposi-
tion of X into pairwise disjoint, connected and closed subsets. A topological
space is locally connected, if each of its points has a basis of connected neigh-
borhoods. In locally connected spaces the quasi-components and components
coincide and are both open and closed (see Corollary 27.10 in [198]).

Proposition 4.21. Let (P,V) be a locally convex cone.

(a) In the symmetric relative topology of P the components, quasi-
components and the symmetric boundedness components coincide.

(b) For every neighborhood v ∈ V and the symmetric relative v-topology,
P is locally connected and the components, quasi-components and the
symmetric v-boundedness components coincide.

Proof. (a) For an element a ∈ P Proposition 4.17 implies that Bs(a) is
contained in its (connectedness) component. On the other hand, Bs(a) is
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the intersection of the sets Bs
v(a) for all v ∈ V, all of which are open

and closed in the respective symmetric relative v-topologies, hence in the
symmetric relative topology of P by Proposition 4.19. This shows that the
quasi-component of a is contained in Bs(a). Hence these three components
coincide.

For Part (b) let v ∈ V and a ∈ P. The v-boundedness component
Bs

v(a) of a contains all the neighborhoods vs
ε(a) for ε > 0. Convexity then

guarantees (see the corresponding argument in the proof of Proposition 4.17)
that these neighborhoods are pathwise connected in the symmetric relative v-
topology, hence P is locally connected. The components, quasi-components
and the symmetric v-boundedness components of P coincide by Part (a) if
we endow P with the neighborhood subsystem Vv = {αv | α > 0} . �

Proposition 4.22. A locally convex cone (P,V) is locally connected in its
symmetric relative topology if and only if every point a ∈ P has a basis of
symmetric relative neighborhoods that are contained in Bs(a).

Proof. Let a ∈ P. The argument in the proof of Proposition 4.17 shows
that every convex subset of Bs(a) is pathwise connected, hence connected in
the symmetric relative topology. On the other hand, every connected subset
of P containing the element a is a subset of Bs(a), the component of a
by 4.21(a). Because the symmetric relative neighborhoods of a are convex,
our claim follows. �

4.23 Locally Convex Cones with Uniform Boundedness Compo-
nents. We shall say that a locally convex cone (P,V) has uniform bounded-
ness components if the boundedness components of P for all neighborhoods
coincide, that is if Bs

v(a) = Bs(a) for all v ∈ V and a ∈ P. Locally con-
vex topological vector spaces are obviously of this type as all their elements
are bounded with respect to every neighborhood. Also, any locally convex
cone whose neighborhood system consists of the multiples of a single neigh-
borhood, has uniform boundedness components. Proposition 4.22 yields that
a locally convex cone with uniform boundedness components is locally con-
nected. Its global boundedness components are both open and closed in the
each of the symmetric relative v-topologies (Proposition 4.19), hence also in
the (global) symmetric relative topology.

Similar and related notions of boundedness components in locally convex
cones had previously been established in [170] and [176].

4.24 Bounded Subsets. We shall also use notions of boundedness for sub-
sets corresponding to those for elements of a locally convex cone (P,V). A
subset A of P is called

(i) bounded below if for every v ∈ V there is λ ≥ 0 such that 0 ≤ a + λv
for all a ∈ A;

(ii) bounded above if for every v ∈ V there is λ ≥ 0 such that a ≤ λv for
all a ∈ A;
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(iii) bounded if it is both bounded below and above;
(iv) bounded above relative to b ∈ P if for every v ∈ V there are λ, ρ ≥ 0

such that a ≤ ρb + λv for all a ∈ A;
(v) relatively bounded above if it is bounded above relative to some element

of P; and
(vi) relatively bounded if it is both bounded below and relatively bounded

above, that is if there is b ∈ P such that for every v ∈ V there are
λ, ρ ≥ 0 such that 0 ≤ a + λv and a ≤ ρb + λv for all a ∈ A.

All these notions do of course coincide in a locally convex topological vector
space. Similar concepts may be used to define local boundedness, that is
boundedness relative to a specific neighborhood v ∈ V, for subsets of P.

Note that a continuous linear operator T : P → Q, where both (P,V)
and (Q,W) are locally convex cones, maps bounded subsets of one of the
above types in P into bounded subsets of the same type in Q.

A Uniform-Boundedness-type theorem from [172] allows relative bound-
edness for subsets of a locally convex cone P to be characterized in terms of
its dual cone P∗.

Proposition 4.25. Let A be a subset of a locally convex cone (P,V), and
let b ∈ P. If for every linear functional μ ∈ P∗ such that μ(b) < +∞ the
set μ(A) is bounded in R, then A is bounded above relative to b.

Proof. Let A be a subset of P which is not bounded above relative to the
element b ∈ P. Then there is v ∈ V such that the condition in 4.24(iv) does
not hold for this neighborhood. We define a monotone sublinear functional
p : P → R by

p(a) = inf{λ + ρ | λ, ρ ≥ 0, a ≤ ρb + λv}

and observe that: (i) Let c ≤ d + v for c, d ∈ P. Then d ≤ ρb + λv for
λ, ρ ≥ 0 implies that c ≤ ρb + (λ + 1)v. Thus p(c) ≤ p(d) + 1, and the
functional p is seen to be continuous with respect to v in the sense of
Theorem 3.4 in [172]; (ii) p is unbounded on A. Assume to the contrary
that there is M > 0 such that p(a) < M for all a ∈ A. Let σ ≥ 0 such that
0 ≤ b + σv. Then for every a ∈ A there are λ, ρ ≥ 0 such that a ≤ ρb + λv
and λ + ρ ≤ M. Then

a ≤ (ρb + λv) + (M − ρ)(b + σv) ≤ Mb + M(1 + σ)v,

contradiction our assumption that A ⊂ P is not bounded above relative
to b. Now Theorem 3.4 from [172] yields the existence of a continuous linear
functional μ ∈ v◦ such that μ(c) ≤ p(c) for all c ∈ P, that is μ(b) ≤ 1 in
particular, and such that μ is unbounded on the set A. �

Similar notions of boundedness will be used for nets in a locally convex
cone, that is a net (ai)i∈I in P will be called bounded (below, above, relative
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to an element,...) if the corresponding requirements 4.24(i) to (vi) hold for
the set {ai | i ≥ i0} for some i0 ∈ I.

4.26 Closed Convex Sets. We shall proceed making some observations
regarding subsets of a locally convex cone which are closed either with respect
to the lower or the upper relative topology.

Lemma 4.27. Let (P,V) be a locally convex cone. Every subset of P that is
closed with respect to the lower (or the upper) relative topology is decreasing
(or increasing) with respect to the weak preorder.

Proof. Indeed, suppose that A ⊂ P is closed with respect to the lower
relative topology and let b � a for some b ∈ P and a ∈ A. Then b ∈ vε(a),
thus a ∈ (b)vε and (b)vε ∩ A �= ∅ for all v ∈ V and ε > 0. Thus b is in
the closure of A with respect to the lower relative topology which coincides
with A. Similarly one argues for a subset of P which is closed with respect
to the upper relative topology. �

For a subset A of a locally convex cone (P,V) we denote by A(l) and
A(u) its closure with respect to the lower and the upper relative topology of
P, respectively.

Proposition 4.28. Let A be a subset of a locally convex cone (P,V).

(a) The set A(l) consists of all elements b ∈ P such that for every v ∈ V
and ε > 0 there is some a ∈ A such that b ∈ vε(a).

(b) The set A(l) is convex whenever A is convex.
(c) The set A(l) is bounded above whenever A is bounded above.

Proof. (a) We have b ∈ A(l) if and only if (b)vε ∩ A �= ∅ for all v ∈ V and
ε > 0, that is if there is a ∈ A such that b ∈ vε(a). For Part (b) suppose
that A is convex and let b, b′ ∈ A(l) and b′′ = αb + (1 − α)b′ for some
0 ≤ α ≤ 1. Given v ∈ V and ε > 0, by Part (i) there are a, a′ ∈ A such
that b ∈ vε(a) and b′ ∈ vε(a′). Then b ≤ γa + εv and b′ ≤ γ′a′ + εv for
some 1 ≤ γ, γ′ ≤ 1 + ε. Set γ′′ = (αγ + (1− α)γ′). Then

a′′ =
αγ

γ′′
a +

(1− α)γ′

γ′′
a′ ∈ A

and b′′ ≤ γ′′a′′ + (1 + ε)v. Since 1 ≤ γ′′ ≤ 1 + ε, this demonstrates that
b′′ ∈ A(l), and therefore this set is also convex. For Part (c) suppose that A
is bounded above in the sense of 4.24(ii). Let v ∈ V and suppose that there
is λ ≥ 0 such that a ≤ λv for all a ∈ A. Then for every b ∈ A(l) there is
a ∈ A such that b ∈ v1(a). This means b ≤ γa + v for some 1 ≤ γ ≤ 2,
hence b ≤ (γλ + 1)v ≤ (2λ + 1)v. Our claim follows. �

In a similar way one proves corresponding statements for the closure of a
set with respect to the upper relative topology.
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Proposition 4.29. Let A be a subset of a locally convex cone (P,V).

(a) The set A(u) consists of all elements b ∈ P such that for every v ∈ V
and ε > 0 there is some a ∈ A such that a ∈ vε(b).

(b) The set A(u) is convex whenever A is convex.
(c) The set A(u) bounded below whenever A is bounded below.

Proposition 4.28(a) implies in particular that for a singleton set {a} we
have b ∈ {a}(l) if and only if b ∈ vε(a) for all v ∈ V and ε > 0, that is
b � a. Thus

{a}(l) = {b ∈ P | b � a}.

Likewise, Proposition 4.29(a) yields

{a}(u) = {b ∈ P | a � b}.

Theorem 4.30. Let A be a convex subset of a locally convex cone (P,V)
and let b ∈ P. Then

(a) b ∈ A(l) if and only if μ(b) ≤ sup{μ(a) | a ∈ A} for all μ ∈ P∗.
(b) b ∈ A(u) if and only if μ(b) ≥ inf{μ(a) | a ∈ A} for all μ ∈ P∗.

Proof. Let A ⊂ P be convex and let b ∈ P. We may assume that A �= ∅,
because for A = ∅ our claim is trivial. (As usual, we set inf ∅ = +∞ and
sup ∅ = −∞ and use the fact that for every a ∈ P there is some μ ∈ P∗
such that μ(a) < +∞.) For Part (a), let b ∈ A(l) and let μ ∈ P∗, that is
μ ∈ v◦ for some v ∈ V. Given ε > 0, according to Proposition 4.28(a) there
is a ∈ A and 1 ≤ γ ≤ 1+ε such that b ≤ γa+εv, hence μ(b) ≤ γμ(a)+ε ≤
γ sup{μ(a) | a ∈ A}+ ε. This shows μ(a) ≤ sup{μ(a) | a ∈ A}. The proof of
the converse implication will however require some advanced Hahn-Banach
type arguments that had been established in the [172] and quoted earlier in
Section 2: For a fixed number β ∈ R consider the sublinear functional p on
P defined for x ∈ P as

p(x) = inf{λβ | x = λa for some a ∈ A and λ ≥ 0},

together with the extended superlinear functional q(0) = 0 and q(x) = −∞
for x �= 0. Following Theorem 2.4 (a quote of Theorem 3.1 in [172]) there is
a linear functional μ ∈ P∗ such that q ≤ μ ≤ p if and only if we can find
a neighborhood v ∈ V such that q(x) ≤ p(y) + 1 whenever x ≤ y + v for
x, y ∈ P; that is in our particular case 0 ≤ λβ + 1 whenever 0 ≤ λa + v
for some a ∈ A and λ ≥ 0. For this we shall have to distinguish two cases:
(i) If for every v ∈ V there is a ∈ A such that 0 ≤ a + v, then we have
to require that β ≥ 0. (ii) If there is v ∈ V such that 0 �≤ a + v for all
a ∈ A, then for ε > 0 the condition 0 ≤ λa + εv can hold only for λ < ε .
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Thus we can choose any β = −(1/ε) for the neighborhood εv ∈ V. In other
words, in case (ii) for every β ∈ R we can find a neighborhood in V such
that the above condition is satisfied. Now we shall use Theorem 2.10 (a quote
of Theorem 4.23 in [172]), which describes the range of all linear functionals
μ ∈ P∗ such that q ≤ μ ≤ p on a fixed element b ∈ P. It states that if
there is at least one such linear functional μ, then

sup
μ∈P∗

q≤μ≤p

μ(b) = sup
v∈V

inf {p(x)− q(y) | x, y ∈ P, q(y) ∈ R, b + y ≤ x + v}.

With the particular insertions for p and q from above we need to consider
only the choice of y = 0 and obtain

sup
μ∈P∗

q≤μ≤p

μ(b) = sup
v∈V

inf {λβ | λ ≥ 0, b ≤ λa + v for some a ∈ A}.

Now let us assume that μ(b) ≤ sup{μ(a) | a ∈ A} holds for all μ ∈ P∗. As
q ≤ μ ≤ p implies that sup{μ(a) | a ∈ A} ≤ β, this yields

sup
v∈V

inf {λβ | λ ≥ 0, b ≤ λa + v for some a ∈ A} ≤ β

for all admissible values of β. We shall use 4.28(a) to derive b ∈ A(l) from
this. Let v ∈ V and ε > 0. We choose β = 1 in the above and observe that
there is a ∈ A and λ ≥ 0 such that

b ≤ λa +
ε

2
v and λ ≤ 1 + ε.

If 1 ≤ λ, this satisfies the criterion in 4.28(a). Otherwise we proceed distin-
guishing the above cases: In case (i) there is a′ ∈ A such that 0 ≤ a′+(ε/2)v.
Thus

b ≤ λa +
ε

2
v + (1− λ)

(
a′ +

ε

2
v
)
≤ a′′ + εv

with a′′ = λa + (1 − λ)a′ ∈ A, satisfying the requirement from 4.28(a). In
case (ii) we may use the above inequality for β = −1 as well. There is ρ > 0
such that 0 ≤ b + ρv. Set δ = min{1/2, ε/(4ρ + 2ε)}. We find a′ ∈ A and
λ′ ≥ 0 such that

b ≤ λ′a′ +
ε

2
v and − λ′ ≤ −1 + δ,

that is λ′ ≥ 1 − δ. Next we choose 0 ≤ α ≤ 1 such that 1 − δ ≤ λ′′ ≤ 1
holds for λ′′ = αλ + (1− α)λ′. (Recall that we are considering the case that
λ < 1, therefore such a choice of α is possible.) Then

b ≤ α
(
λa +

ε

2
v
)

+ (1− α)
(
λ′a′ +

ε

2
v
)
≤ λ′′a′′ +

ε

2
v
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with

a′′ =
αλ

λ′′
a +

(1− α)λ′

λ′′
a′ ∈ A.

From 0 ≤ b + ρv we infer that 0 ≤ λ′′a′′ + (ρ + ε/2)v. Our assumption that
δ ≤ 1/2 guarantees 1/2 ≤ λ′′ ≤ 1 and 1− λ′′ ≤ δ. Using this we infer

0 ≤ (1− λ′′)a′′ +
(1− λ′′)(2ρ + ε)

2λ′′
v

≤ (1− λ′′)a′′ + δ(2ρ + ε)v

≤ (1− λ′′)a′′ +
ε

2
v

since δ ≤ ε/(4ρ + 2ε). Now combining the above yields

b ≤ λ′′a′′ +
ε

2
v +

(
(1− λ′′)a′′ +

ε

2
v
)
≤ a′′ + εv,

again satisfying the requirement from 4.28(a). We conclude that b ∈ A(l), as
claimed.

The argument for Part (b) of the Theorem follows similar lines, but is suf-

ficiently different from the preceding one to be presented here too: If b ∈ A(u)

and if μ ∈ P∗, then a similar argument than before using Proposition 4.29(a)
yields μ(a) ≥ inf{μ(a) | a ∈ A}. For the converse implication we will again
employ Theorem 2.10. For fixed numbers 0 ≤ α ∈ R and β ∈ R consider
the sublinear functional p on P defined for x ∈ P as p(x) = ρα if x = ρb
and p(x) = +∞ else, together with the extended superlinear functional

q(x) = sup{λβ | x = λa for some a ∈ A and λ ≥ 0}.

There is μ ∈ P∗ such that q ≤ μ ≤ p if and only if there is v ∈ V such that
q(x) ≤ p(y) + 1 whenever x ≤ y + v for x, y ∈ P; that is in our particular
case λβ ≤ ρα + 1 whenever λa ≤ ρb + v for some a ∈ A and λ, ρ ≥ 0. For
this we shall again have to distinguish two cases:

(i) If for every v ∈ V and ε > 0 there is a ∈ A and 0 ≤ δ ≤ ε such that
a ≤ δb + v, then we have to require that β ≤ 0.

(ii) If there are v ∈ V and ε > 0 such that a �≤ δb + v for all a ∈ A and
0 ≤ δ ≤ ε, then the above condition holds for this neighborhood v with
any β ∈ R, provided that α ≥ 1/ε. Indeed, assume that λa ≤ ρb + v
for some a ∈ A and λ, ρ ≥ 0, but λβ > ρα + 1. Then

a ≤ ρ

λ
b +

1
λ

v ≤ ρb + v.

This shows ρ/λ > ε, hence

ρ > ελ > ερα + ε ≥ ρ + ε,
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a contradiction. In order to apply Theorem 2.10 we need to guarantee that
μ(b) < +∞ for at least one μ ∈ P∗ satisfying q ≤ μ ≤ p. Our insertions
for p and q imply that β ≤ inf{μ(a) | a ∈ a} and μ(b) ≤ α. We shall use
α = +∞ in 2.10, but the preceding discussion involving different choices for
α demonstrates that there is μ ∈ P∗ such that q ≤ μ ≤ p and μ(b) < +∞
in case (i), for any choice of β ≤ 0 and in case (ii) for any choice of β ∈ R.
Thus we may use Theorem 2.10 for

inf
μ∈P∗

q≤μ≤p

μ(b) = inf
v∈V

sup {q(x)− p(y) | x, y ∈ P, p(y) ∈ R, x ≤ b + y + v},

With the particular insertions for p and q from above we need to consider
only the choice of y = 0 and obtain

inf
μ∈P∗

q≤μ≤p

μ(b) = inf
v∈V

sup {λβ | λ ≥ 0, λa ≤ b + v for some a ∈ A}.

Now let us assume that μ(b) ≥ inf{μ(a) | a ∈ A} holds for all μ ∈ P∗. This
yields

inf
v∈V

sup {λβ | λ ≥ 0, λa ≤ b + v for some a ∈ A} ≥ β

for all admissible values of β. We shall use 4.29(a) to derive b ∈ A(u) from
this. Let v ∈ V and ε > 0. There is ρ > 0 such that 0 ≤ b+ρv. We choose
β = −1 in the above and observe that there is a ∈ A and λ ≥ 0 such that

λa ≤ b +
ε

2
v and − λ ≥ −1− ε

2ρ
that is λ ≤ 1 +

ε

2ρ
.

If 1 ≤ λ + 1 + (ε/2ρ), we proceed as follows:

λa ≤ b +
ε

2
v + (λ− 1)(b + ρv) ≤ λb + εv,

since
ε

2
+ (λ− 1)ρ ≤ ε

2
+

ε

2ρ
ρ = ε.

Thus
a ≤ b +

ε

λ
v ≤ b + εv,

demonstrating that a ∈ vε(b) as required in 4.29(b). Otherwise, that is if
λ < 1, we continue to distinguish the above cases: In case (i) we set δ =
ε/(2−2λ) and according to this case can find a′ ∈ A such that a′ ≤ δ′b+δv
for some 0 ≤ δ′ ≤ δ. Thus

a′′ = λa + (1− λ)a′ ≤
(
(1 + (1− λ)δ′)

)
b +

(ε

2
+ (1− λ)δ

)
v.

Since a′′ ∈ A, and since (1− λ)δ = ε/2 and
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1 ≤ 1 + (1− λ)δ′ ≤ 1 + (1− λ)δ ≤ 1 + (ε/2),

this shows a′′ ∈ vε(b) as required in 4.29(b). In case (ii) we may use the
above inequality for β = +1 as well. For σ = max{1/2, 1/(1 + ε)} < 1 we
find a′ ∈ A and λ′ ≥ 0 such that

λ′a′ ≤ b +
ε

2
v and λ′ ≥ σ.

We can choose 0 ≤ α ≤ 1 such that σ ≤ λ′′ ≤ 1 holds for λ′′ = αλ+(1−α)λ′.
(Recall that we are considering the case that λ < 1, therefore such a choice
of α is possible.) With

a′′ =
αλ

λ′′
a +

(1− α)λ′

λ′′
a′ ∈ A

we have
λ′′a′′ ≤ b +

ε

2
v,

hence
a′′ ≤ 1

λ′′
b + +

ε

2λ′′
v.

Because 1 ≤ 1/λ′′ ≤ 1/σ ≤ 1 + ε, and because ε/(2λ′′) ≤ ε/2σ ≤ ε we infer
that a′′ ∈ vε(b), again satisfying the requirement from 4.29(a). We conclude
that b ∈ A(u), as claimed. �

Theorem 4.30 is a generalization of Theorem 3.1 in [175] as the following
corollary will show.

Corollary 4.31. Let (P,V) be a locally convex cone. Then a � b holds for
a, b ∈ P if and only if μ(a) ≤ μ(b) for all μ ∈ P∗.

Proof. Let a, b ∈ P. We have a � b if and only if a ∈ {b}(l), and if and only
if b ∈ {a}(u). By Theorem 4.30, Parts (a) and (b), each of these statements
holds if and only if μ(a) ≤ μ(b) for all μ ∈ P∗. �

We proceed to define neighborhoods for subsets of a locally convex cone
(P,V). For a subset A ⊂ P, a neighborhood v ∈ V we define upper and
lower relative neighborhoods as subsets of P by

v(A) =
{

b ∈ P
∣
∣
∣

for every ε > 0 there is a ∈ A and 1 ≤ γ ≤ 1 + ε
such that b ≤ γa + (1 + ε)v

}

and

(
A
)
v =

{
b ∈ P

∣
∣
∣

for every ε > 0 there is a ∈ A and 1 ≤ γ ≤ 1 + ε
such that a ≤ γb + (1 + ε)v

}
.
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Note that this notation is consistent with the one earlier introduced for ele-
ments of P, as we have a � b+v if and only if a ∈ v

(
{b}

)
(see Lemma 3.1)

and if and only if b ∈
(
{a}

)
v.

Lemma 4.32. Let A be a subset of a locally convex cone (P,V) and let
v ∈ V.

(a) The upper neighborhood v
(
A
)

is closed in P with respect to the lower
relative topology.

(b) The lower neighborhood
(
A
)
v is closed in P with respect to the upper

relative topology.
(c) If A is convex, then both v

(
A
)

and (A)v are convex.

Proof. Let A ⊂ P and let b ∈ v
(
A
)(l). Given ε > 0, set δ = min{1, ε/4}.

According to 4.28(a) there is c ∈ v
(
A
)

such that b ∈ vδ(c), that is b ≤
γc + δv with some 1 ≤ γ ≤ 1 + δ. Moreover, we have c ≤ γ′a + (1 + δ)v for
some a ∈ A and 1 ≤ γ′ ≤ 1 + δ. Thus

b ≤ (γγ′)a +
(
γ(1 + δ) + δ

)
v ≤ γγ′a +

(
(1 + δ)2 + δ

)
v.

Since both 1 ≤ γγ′ ≤ (1 + δ)2 ≤ 1 + ε and (1 + δ)2 + δ ≤ 1 + ε, we infer
that b ∈ v

(
A
)
. Similarly one verifies Part (b) of the Lemma. For Part (c)

suppose that A is convex and let b, b′ ∈ v
(
A
)

and b′′ = αb + (1 − α)b′ for
some 0 ≤ α ≤ 1. Given v ∈ V and ε > 0 there are a, a′ ∈ A such that
b ≤ γa + (1 + ε)v and b′ ≤ γ′a′ + (1 + ε)v for some 1 ≤ γ, γ′ ≤ 1 + ε. Set
γ′′ = (αγ + (1− α)γ′). Then

a′′ =
αγ

γ′′
a +

(1− α)γ′

γ′′
a′ ∈ A

and b′′ ≤ γ′′a′′ + (1 + ε)v. Since 1 ≤ γ′′ ≤ 1 + ε, this demonstrates that
b′′ ∈ v

(
A
)
, and therefore this set is also convex. Similarly one argues for the

lower neighborhood
(
A
)
v. �

Theorem 4.33. Let A be a convex subset of a locally convex cone (P,V),
let v ∈ V and b ∈ P. Then

(a) b ∈ v
(
A
)

if and only if μ(b) ≤ sup{μ(a) | a ∈ A}+ 1 for all μ ∈ v◦.

(b) b ∈
(
A
)
v if and only if μ(b) ≥ inf{μ(a) | a ∈ A} − 1 for all μ ∈ v◦.

Proof. We may again assume that A �= ∅. For Part (a), suppose that b ∈
v
(
A
)

and let μ ∈ v◦. Given ε ≥ 0 there is a ∈ A such that b ≤ γa+(1+ε)v,
hence

μ(b) ≤ γ μ(a) + (1 + ε) ≤ γ sup{μ(a) | a ∈ A}+ (1 + ε)

for some 1 ≤ γ ≤ 1+ε. This shows μ(b) ≤ sup{μ(a) | a ∈ A}+1 since ε > 0
was arbitrarily chosen. In order to prove the converse implication we consider
a full locally convex cone (P̂,V) containing both P and the neighborhood
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system V. Then A ⊂ P̂. The lower neighborhood v̂
(
A
)

formed in P̂ is
larger than v

(
A
)

formed in P, but we have v
(
A
)

= v̂
(
A
)
∩ P. Thus if

b �∈ v
(
A
)

for b ∈ P we also have b �∈ v̂
(
A
)
. Since v̂

(
A
)

is a convex subset
of P̂ and closed with respect to the lower relative topology, according to
Theorem 4.30 there is μ ∈ P̂∗ such that μ(b) > sup{μ(c) | c ∈ v

(
A
)
}.

This implies in particular that sup{μ(c) | c ∈ v
(
A
)
} is finite, and since

a+v ∈ v
(
A
)

whenever a ∈ A we have μ(a+v) = μ(a)+μ(v) < +∞, hence
μ(v) < +∞. If μ(v) = 0, then λμ ∈ v◦ for all λ ≥ 0, and we may choose
λ such that

(λμ)(b) > sup{(λμ)(c) | c ∈ v
(
A
)
}+ 1 ≥ sup{(λμ)(a) | a ∈ A}+ 1.

If μ(v) > 0, we set λ = 1/μ(v) and have again λμ ∈ v◦. Then for every
a ∈ A we have a + v ∈ v

(
A
)
, hence

(λμ)(b) > (λμ)(a + v) = (λμ)(a) + 1

and therefore
(λμ)(b) > sup{(λμ)(a) | a ∈ A}+ 1.

Since the restriction of the functional λμ ∈ P̂∗ to P is an element of v◦ ⊂
P∗, this proves our claim for Part (a). The argument for Part (b) uses the
easily verified fact that b �∈

(
A
)
v implies that b + v �∈ A(u). Indeed, if

b + v ∈ A(u), then by 4.29(b) for every ε > 0 there is a ∈ A such that
a ≤ γ(b + v) + (ε/2)v with some 1 ≤ γ ≤ 1 + (ε/2). This shows

a ≤ γb +
(
γ + (ε/2)

)
v ≤ a ≤ γb + (1 + ε)v,

hence b ∈
(
A
)
v. The remainder of the argument is similar to that in

Part (a). �

Theorem 4.33 is a generalization of Theorem 3.2 in [175] as the following
corollary will show.

Corollary 4.34. Let (P,V) be a locally convex cone. Then a � b + v holds
for a, b ∈ P and v ∈ V if and only if μ(a) ≤ μ(b) + 1 for all μ ∈ v◦.

Proof. Let a, b ∈ P and v ∈ V We have a � b+ v if and only if a ∈ v
(
{b}

)

and if and only if b ∈
(
{a}

)
v. By Theorem 4.33, Parts (a) and (b), each of

these statements holds if and only if μ(a) ≤ μ(b) + 1 for all μ ∈ P∗. �

Corollary 4.35. Let (P,V) be a locally convex cone. Let a, b ∈ P and
v ∈ V such that the element a is v-bounded. Then a � b + v holds if and
only if μ(a) ≤ μ(b) + 1 for all extreme points μ of v◦.
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Proof. All left to show is the following: Let a, b ∈ P and v ∈ V such that a
is v-bounded. Then μ(a) < +∞ for all μ ∈ v◦. Thus the function

μ �→
(
μ(b)− μ(a)

)
: v◦ → R

is affine and continuous with respect to the topology w(P∗,P) (see Section 2).
According to Lemmas II.4.4 and II.4.5 in [100] this function attains its min-
imum value at some extreme point of v◦. If a �� b + v, then according to
Corollary 4.34 this minimum value is less than −1. Our claim follows. �

Remark 4.36. The following counterexample will demonstrate that the state-
ment of Theorem 4.30 does in general not hold true for convex subsets A ⊂ P
which are closed for the given lower or upper topologies rather than for the
(coarser) upper or lower relative topologies. For this, let (P,V) be the lo-
cally convex cone of all continuous real-valued and bounded below functions
on the interval [0,+∞), endowed with the positive constant functions v > 0
as its neighborhood system V.

(
see Example 1.4(e)

)
. Let the subset A ∈ P

consist of all functions in g ∈ P with the following properties: (i) g(x) ≤ x
for all x ∈ [0,+∞), and (ii) there is M ≥ 0 and α < 1 such that g(x) ≤ αx
for all x ∈ [M,+∞). We claim that A is closed in the given lower topol-
ogy. Indeed, let f ∈ P be in the closure of A. Then, given v > 0 there is
g ∈ (f)v ∩ A, that is f ≤ g + v, hence f(x) ≤ g(x) + v ≤ x + v for all
x ∈ [0,+∞). Thus f(x) ≤ x for all x ∈ [0,+∞), since v > 0 was arbitrar-
ily chosen, hence (i) holds for f. For (ii) let g ∈ A such that f(x) ≤ g(x)+1
for all x ∈ [0,+∞), and let M ≥ 0 and α < 1 such that g(x) ≤ αx for all
x ∈ [M,+∞). Choose N = max{M, 2/(1− α)}. Then for all x ∈ [N,+∞)
we have 2/(1− α) ≤ x, hence 1 ≤ (1− α)x/2 and

f(x) ≤ g(x) + 1 ≤ αx +
(1− α)

2
x ≤ (1 + α)

2
x.

Since (1 + α)/2 < 1, this shows f ∈ A, confirming that A is closed with
respect to the lower topology. The set A ⊂ P is however not closed with
respect to the coarser lower relative topology as the function f(x) = x is
contained in A(l). Indeed, given v > 0 and ε > 0, set α = 1/(1 + ε) < 1.
Then

f(x) = x = (1 + ε)αx ≤ (1 + ε)αx + εv for all x ∈ [0,+∞).

This shows g ∈ (f)vε ∩A �= ∅, where g(x) = αx. We therefore have μ(f) ≤
sup{μ(g) | g ∈ A} for all μ ∈ P∗, but f �∈ A.

Examples 4.37. (a) Let P = R, endowed with the neighborhood system
V = {ε ∈ R | ε > 0}

(
see Example 1.4(a)

)
. For the neighborhood v = 1 and

ε > 0 the relative neighborhoods of an element a ∈ R are

vε(a) =
(
−∞, (1 + ε)a + ε

]
or vε(a) =

(
−∞, a + ε

]
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if a ≥ 0 or if a < 0, respectively. Thus

(a)vε =
[

a−ε
1+ε , +∞

]
or (a)vε =

[
a− ε, +∞

]

if a ≥ ε or if a < ε, respectively. This yields

vs
ε(a) =

[
a−ε
1+ε , (1 + ε)a + ε

]
, vs

ε(a) =
[
a− ε, (1 + ε)a + ε

]
,

or
vs

ε(a) =
[
a− ε, a + ε

]

if a ≥ ε, if 0 ≤ a < ε , or if a < 0, respectively. The upper, lower and
symmetric relative topologies of R therefore coincide with the corresponding
given topologies.

(
see 1.4(a)

)
. The symmetric relative topology, in particular,

is the usual topology on R with +∞ as an isolated point.
(b) Let P = R+ = {a ∈ R | a ≥ 0}, endowed with the neighborhood

system V = {0}
(
see Example 1.4(b)

)
. For the only neighborhood v = 0 ∈ V

and ε > 0 the relative neighborhoods of an element a ∈ R+ are

vε(a) =
[
0, (1 + ε)a

]
, (a)vε =

[
a

1+ε , +∞
]

and vs
ε(a) =

[
a

1+ε , (1 + ε)a
]
.

The symmetric relative topology therefore coincides with the Euclidean topol-
ogy on (0,+∞), but renders 0 ∈ P and +∞ ∈ P as isolated points. Recall
from Example 1.4(b) that the symmetric given topology on R+, in contrast,
is the discrete topology. For the boundedness components of R+ we have

B(a) = [0,+∞), (a)B = (0,+∞] and Bs(a) = (0,+∞)

for a ∈ (0,+∞),

B(0) = {0}, (0)B = [0,+∞] and Bs(0) = {0},

and

B(+∞) = [0,+∞], (+∞)B = {∞} and Bs(+∞) = {∞}.

As claimed, the symmetric boundedness components furnish a partition of
P = R+ into disjoint subsets that are both open and closed in the symmetric
relative topology.

(c) Let us consider Example 1.4(e) with the special insertions for P = R

and the neighborhood system V̂ generated by a family Y of subsets of the
domain X as elaborated in 1.4(e). Recall that V̂ is spanned by the R-valued
functions v̂Y ∈ V̂, corresponding to some Y ∈ Y, and such that v̂Y (x) = 1
for x ∈ Y and v̂Y (x) = +∞, else. Thus

(
FV̂b

(X, R), V̂
)

is the locally
convex cone of all bounded below (on the sets in Y) R-valued functions on
X, carrying the topology of uniform convergence on the sets in Y. For a
function f ∈ FV̂b

(X, R) and a neighborhood v̂Y ∈ V̂, the v̂Y -boundedness
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component Bs
v̂Y

(f) consists of all g ∈ FV̂b
(X, R) such that

αf(x)− β ≤ g(x) ≤ γf(x) + δ

holds with some constants α, β, γ, δ > 0 for all x ∈ Y. Thus, obviously,
(v̂Y )s

ε(g) ⊂ Bs
v̂Y

(f) for all ε > 0 whenever g ∈ Bs
v̂Y

(f). This observation
confirms that the component Bs

v̂Y
(f) is both open and closed in the sym-

metric relative v̂Y -topology, which is the topology of uniform convergence
on Y. Yet the (global) boundedness component Bs(f) =

⋂
Y ∈Y Bs

v̂Y
(f) is in

general only closed in the symmetric relative topology, which is the topology
of uniform convergence on all sets Y ∈ Y. However, if the set X itself is con-
tained in Y, then the multiples of the neighborhood v̂X form already a basis
for V̂, and the v̂X -boundedness components coincide with the global ones.
Following Proposition 4.22, FV̂b

(X, R) is locally connected in this case. Its
boundedness components therefore coincide with the components and quasi-
components in the symmetric relative topology (Proposition 4.21) and are
both open and closed. If, for another special case, Y consists of all finite
subsets of X, then for Y ∈ Y the above condition yields that two functions
f, g ∈ FV̂b

(X, R) are contained in the same v̂Y -boundedness component if
and only if they take the value +∞ at exactly the same points of Y. The
symmetric relative v̂Y -topology is the topology of pointwise convergence on
the set Y in this case. Correspondingly, the global boundedness components
consist of functions that take the value +∞ at exactly the same points of X,
and the symmetric relative topology is the topology of pointwise convergence
on X. If X itself is an infinite set, then the global boundedness components
are seen to be closed but not open in this topology.

(d) Let (P,V) be a locally convex cone and let Q be the family of all
non-empty convex subsets of P which are closed with respect to the lower
relative topology. (See 4.26 to 4.35 before.) If we use the standard multi-
plication for sets by non-negative scalars and a slightly modified addition,
that is

A⊕B = (A + B)(l) for A,B ∈ Q,

then Q becomes a cone. Indeed, since the set A + B is obviously again
convex, so is its closure with respect to the lower relative topology by Propo-
sition 4.28(b). The neutral element of Q is given by {0}(l) = {b ∈ P | b � 0}.
We use the set inclusion as the order on Q and define neighborhoods corre-
sponding to those in P : We set

A ≤ B ⊕ v if A ⊂ v
(
B
)

for A,B ∈ Q and v ∈ V, that is if for every a ∈ A and ε > 0 there
is b ∈ B such that a ≤ γb + (1 + ε)v for some 1 ≤ γ ≤ 1 + ε. First we
observe that for every A ∈ Q and a fixed element a ∈ A v ∈ V there
is λ ≥ 0 such that 0 ≤ a + λv. Since {0}(l) = {b ∈ P | b � 0}, this
yields {0}(l) ≤ A⊕ (λ + 1)v. Indeed, for every b � 0, we have b ≤ v, hence
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b ≤ a+(λ+1)v. Thus every element A ∈ Q is seen to be bounded below and
(Q,V) satisfies the requirements for a locally convex cone. Next we observe
that the weak preorder on (Q,V) coincides with the given order. Indeed,
suppose that A � B, and let a ∈ A. Given v ∈ V and ε > 0 we set
δ = min{ε/3, 1} and have A ≤ γB ⊕ δv for some 1 ≤ γ ≤ 1 + δ. According
to Lemma 3.1 there is 1 ≤ γ′ ≤ 1 + δ such that a ≤ (γ′γ)b + (1 + δ)δv for
some b ∈ B. Since (1 + δ)δ ≤ ε, this yields a ≤ (γ′γ)b + εv, and since
1 ≤ γγ′ ≤ (1 + δ)2 ≤ 1 + ε, we have a ∈ vε(b) and infer from (i) that
a ∈ B(l) = B, hence A ≤ B. Therefore A � B holds if and only if A ≤ B.
A similar argument shows that A � B ⊕ v holds for A,B ∈ Q and v ∈ V
if and only if A ≤ B ⊕ v. An element A ∈ Q is bounded above in Q if for
every v ∈ V there is λ ≥ 0 such that A ≤ λv, that is a ≤ (λ + 1)v holds
for all a ∈ A, that is if the set A ⊂ P is bounded above in P in the sense
of 4.25(ii).

(e) Similarly, but less intuitively we may consider the family Q of all
convex subsets of a locally convex cone P which are closed with respect to the
upper relative topology and bounded below in the sense of 4.25(i). (See 4.26
to 4.35 before.) We use the standard multiplication for sets by non-negative
scalars and the addition

A⊕B = (A + B)(u) for A,B ∈ Q.

Since the sum of two bounded below convex subsets of P is obviously again
bounded below and convex, Proposition 4.29(b) and (c) guarantees that the
set A⊕B is indeed also bounded below and convex. Thus Q is a cone with
the neutral element {0}(u) = {b ∈ P | 0 � b}. In this example we use the
inverse set inclusion as the order on Q, that is

A ≤ B if B ⊂ A

and define neighborhoods corresponding to those in P by

A ≤ B ⊕ v if B ⊂
(
A
)
v

for A,B ∈ Q and v ∈ V, that is if for every b ∈ B, and ε > 0 there is
a ∈ A such that a ≤ γb+(1+ε)v for some 1 ≤ γ ≤ 1+ε. Because for every
A ∈ Q and v ∈ V there is λ > 0 such that 0 ≤ a + λv for all a ∈ A, we
have {0}(u) ≤ A ⊕ λv, and every element A ∈ Q is bounded below. Hence
(Q,V) is a locally convex cone. A similar argument than in (d) yields that
(Q,V) carries its weak preorder. Note that other than in (d) the empty set
is a member of Q, indeed its maximal element. We set A⊕∅ = ∅, α · ∅ = ∅
and 0 · ∅ = {0}(u) for all A ∈ Q and α > 0. An element A ∈ Q is bounded
above in Q if for every v ∈ V there is λ ≥ 0 such that A ≤ λv, that is
there is a ∈ A such that a ≤ λv.

Note that in both Examples (d) and (e) the given locally convex cone P
may be considered as a subcone of Q via the embedding a �→ {a}. This is
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an embedding of (P,V) into (Q,V) in the sense of 2.2, provided that P is
endowed with the weak preorder, that is {a} ≤ {b}+ v holds if and only if
a � b + v for a, b ∈ P and v ∈ V

(
see also 2.2(iii)

)
.

Remarks 4.38. (a) As a consequence of the last observation in 4.37(a) and
of Proposition 4.5 we infer that a continuous linear functional μ on a lo-
cally convex cone (P,V) is still continuous if we endow P with its relative
topologies. More precisely: Let μ ∈ v◦, that is the polar of some neighbor-
hood v ∈ V. Then μ is a continuous linear operator from (P,V0) to R,
where V0 consists of the multiples of the single neighborhood v. As shown
in 4.37(a), the relative topologies on R coincide with the given ones as de-
scribed in Example 1.4(a). Thus according to 4.5, the functional μ is also
continuous if we endow P with either the upper, lower or symmetric relative
v-topology and, correspondingly, R with its given upper, lower or symmetric
topology.

(b) We noted earlier that for a locally convex cone (P,V) the mapping

(α, a) �→ αa : [0,+∞)× P → P,

is generally not continuous with respect to any of the given topologies of R

and P. However, if we endow P with either of the relative topologies, this
mapping is continuous at all points (α, a) ∈ [0,+∞) × P such that either
α > 0 or a ∈ P is bounded. This was established in Proposition 4.2(iii).
Now using 4.37(b) we realize that this mapping is continuous at all points
of [0,+∞) × P if we consider the symmetric relative topology of R+(
see 4.37(b)

)
and any of the relative topologies on P instead. Indeed, the

symmetric relative topology of R+ coincides with the usual topology of R

on (0,+∞), hence continuity at all points (α, a) ∈ [0,+∞) × P such that
α > 0 follows from 4.2(iii). Continuity at the points (0, a) for all a ∈ P, on
the other hand is obvious, since 0 is an isolated element in the symmetric
relative topology of R+.

5. Locally Convex Lattice Cones

Our upcoming integration theory for cone-valued functions in Chapter II
deals with locally convex cones that contain suprema and infima for suffi-
ciently many of their subsets. Let us recall the classical concepts: A topolog-
ical vector lattice is a vector lattice and a locally convex topological vector
space E over R that possesses a neighborhood base of solid sets. (See for ex-
ample Chapter V.7 in [185], also [132] or [184]. Recall that a subset A of E is
called solid if b ∈ A whenever |b| ≤ |a| for b ∈ E and a ∈ A.) Some of the
following definitions and results are adaptations of the corresponding classical
ones. The presence of unbounded elements and the general unavailability of
negatives in locally convex cones, however, requires a more delicate approach.
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5.1 Locally Convex Lattice Cones. We shall say that a locally convex
cone (P,V) is a locally convex ∨-semilattice cone if its order is antisymmet-
ric and if for any two elements a, b ∈ P their supremum a ∨ b exists in P
and if

(∨1) (a + c) ∨ (b + c) = a ∨ b + c holds for all a, b, c ∈ P.
(∨2) a ≤ c + v and b ≤ c + w for a, b, c ∈ P and v, w ∈ V implies that

a ∨ b ≤ c + (v + w).

Likewise, (P,V) is a locally convex ∧-semilattice cone if its order is anti-
symmetric and if for any two elements a, b ∈ P their infimum a ∧ b exists
in P and if

(∧1) (a + c) ∧ (b + c) = a ∧ b + c holds for all a, b, c ∈ P.
(∧2) c ≤ a + v and c ≤ b + w for a, b, c ∈ P and v, w ∈ V implies that

c ≤ a ∧ b + (v + w).

If both sets of the above conditions hold, then (P,V) is called a locally
convex lattice cone. In case that (P,V) is indeed a locally convex topolog-
ical vector space, the existence of suprema implies the existence of infima
and vice versa, as a ∧ b = −

(
(−a) ∨ (−b)

)
. Conditions (∨1) and (∨2) then

are equivalent to (∧1) and (∧2) and consistent with the above mentioned
definition of a topological vector lattice. Indeed, a ≤ c + v and b ≤ c + w
means that a ≤ c + s b ≤ c + t in this case, for some elements s and t
of the neighborhoods v and w, respectively. Because these neighborhoods
are supposed to be solid, we have s ∨ 0 ≤ v and t ∨ 0 ≤ w as well. Now
a ≤ c + s ∨ 0 + t ∨ 0 and b ≤ c + s ∨ 0 + t ∨ 0 implies

a ∨ b ≤ c + s ∨ 0 + t ∨ 0 ≤ c + (v + w)

as required in (∨1).

Proposition 5.2. Let (P,V) be a locally convex ∨- (or ∧-) semilattice
cone. The lattice operation (a, b) �→ a ∨ b (or (a, b) �→ a ∧ b) is a con-
tinuous mapping from P × P to P if P is endowed with the symmetric
relative topology.

Proof. Suppose that (P,V) is a locally convex ∨-semilattice cone, and let
a ∈ vε(b) and c ∈ vε(d) for a, b, c, d ∈ P, v ∈ V and ε > 0. There is λ ≥ 0
such that both 0 ≤ b + λv and 0 ≤ d + λv. Then a ≤ (1 + ε)b + ε(1 + λ)v
and c ≤ (1 + ε)d + ε(1 + λ)v by Lemma 4.1(b). Thus

a ≤ (1 + ε)(b ∨ d) + ε(1 + λ)v and c ≤ (1 + ε)(b ∨ d) + ε(1 + λ)v,

hence
a ∨ c ≤ (1 + ε)(b ∨ d) + 2ε(1 + λ)v

by (∨2). This shows a ∨ c ∈ v(2ε(1+λ))(b ∨ d). Similarly, using 4.1(c) one ver-
ifies that a ∈ (b)vε and c ∈ (d)vε implies a ∨ c ∈ (b ∨ d)v(2ε(1+λ+ε))(b ∨ d).
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Combining these observations for both the upper and lower relative neigh-
borhoods then demonstrates that a ∈ vs

ε(b) and c ∈ vs
ε(d) implies a ∨ c ∈

vs
(2ε(1+λ+ε))(b ∨ d), hence our claim. A similar argument yields our claim for

locally convex ∧-semilattice cones. �
Proposition 5.3. Let (P,V) be a locally convex lattice cone. Then a + b =
a ∨ b + a ∧ b for all a, b ∈ P.

Proof. We observe that

a + b ≤ inf
{
a + a ∨ b , b + a ∨ b

}
= a ∧ b + a ∨ b

by (∧1), and by (∨1)

a ∨ b + a ∧ b = sup
{
a + a ∧ b , b + a ∧ b

}
≤ a + b.

As the order of P is supposed to by antisymmetric, this yields our
claim. �

Proposition 5.3 implies in particular that a = a∨0+a∧0 for all elements
a of a locally convex lattice cone.

Examples of locally convex lattice cones include classical topological vector
lattices and the cones R and R+ from Examples 1.4(a) and (b). If (P,V) is a
locally convex ∨- or ∧-semilattice cone, if X is a set, and if V̂ is a neighbor-
hood system consisting of

(
V∪{∞})-valued functions on X, then the locally

convex cone
(
FV̂b

(X,P), V̂
)

of P-valued functions from Example 1.4(e) is
also a semilattice cone of the same type. Suprema and infima are formed
pointwise in this case. The cones (lp,Vp) from 1.4(f) are locally convex lat-
tice cones. The locally convex cone of all non-empty convex subsets of some
locally convex topological vector space E

(
see Example 1.4(c)

)
is antisym-

metrically ordered by set inclusion (we assume that equality is the order in
E) and indeed a ∨-semilattice cone. The supremum of two convex subsets
of E is the convex hull of their union while infima, that is intersections, do
not always exist. Requirements (∨1) and (∨2) are readily checked.

5.4 Locally Convex Complete Lattice Cones. Later in this text, in
particular when developing our integration theory, we shall consider substan-
tially stronger properties concerning the lattice operations of a locally convex
cone. We shall require the existence of suprema and infima for bounded and
bounded below subsets, respectively. This assumption corresponds to the no-
tion of order completeness for ordered vector spaces. Moreover, the upper
or lower neighborhoods are supposed to be closed for suprema or infima of
their subsets, respectively. This requirement corresponds to the properties of
M-topologies in locally convex vector lattices.

We shall say that a locally convex cone (P,V) is a locally convex
∨

-
semilattice cone if P carries the weak preorder (that is the given order
coincides with the weak preorder for the elements and the neighborhoods in
P), this order is antisymmetric and if
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(∨
1
)

Every non-empty subset A ⊂ P has a supremum sup A ∈ P
and sup(A + b) = supA + b holds for all b ∈ P.(∨

2
)

Let ∅ �= A ⊂ P, b ∈ P and v ∈ V.
If a ≤ b + v for all a ∈ A, then supA ≤ b + v.

In particular, every
∨

-semilattice cone P contains a largest element, that
is +∞ = supP, which can be adjoined as a maximal element to any locally
convex cone with the convention that a + ∞ = +∞, α · (+∞) = +∞,
0 · (+∞) = 0 and that a ≤ +∞ for all a ∈ P and α > 0 . Likewise,
(P,V) is said to be a locally convex

∧
-semilattice cone if P carries the

weak preorder, this order is antisymmetric and if
(∧

1
)

Every subset A ⊂ P that is bounded below has an infimum inf A ∈ P
and inf(A + b) = inf A + b holds for all b ∈ P.(∧

2
)

Let A ⊂ P be bounded below, b ∈ P and v ∈ V.
If b ≤ a + v for all a ∈ A, then b ≤ inf A + v.

These requirements are obviously stronger then the corresponding ones
in 4.23, so every locally convex

∨
- (or

∧
-) semilattice cone is also a ∨- (or

∧-) semilattice cone. The assumptions
(∨

2
)
and

(∧
2
)
signify that the upper

or lower neighborhoods in P are closed for suprema or infima of their subsets,
respectively. If (P,V) is a full cone, then

(∨
2
)
is evident, and

(∧
2
)
follows

from
(∧

1
)
. Recall from our convention in 4.24(i) that a subset A of P is said

to be bounded below if for every v ∈ V there is λ ≥ 0 such that 0 ≤ a+λv
for all a ∈ A. This condition does in general not imply the existence of a
lower bound in P. However, if A has a lower bound b ∈ P, that is b ≤ a
for all a ∈ A, then A is bounded below in the above sense. Indeed, for every
v ∈ V there is λ ≥ 0 such that 0 ≤ b + λv, hence 0 ≤ a + λv holds for
all a ∈ A. Note that the empty set ∅ ⊂ P is bounded below, and we have
inf ∅ = +∞ (see the remark above).

Combining both of the above notions, we shall say that a locally con-
vex cone (P,V) is a locally convex complete lattice cone if P is both a∨

-semilattice cone and a
∧

-semilattice cone.
Corresponding to a family {Ai}i∈I of non-empty subsets of a locally con-

vex
∨

-semilattice cone P we denote the subset

∨

i∈I
Ai =

{∨

i∈I
ai

∣
∣
∣ (ai)i∈I ∈

∏

i∈I
Ai,

}
⊂ P.

Lemma 5.5. Let (P,V) be a locally convex
∨

-semilattice cone. Let A,B
and {Ai}i∈I be non-empty subsets of P. Then

(a) sup(A + B) = supA + supB.

(b) sup
(⋃

i∈I
Ai

)
= sup

(∨

i∈I
Ai

)
= sup

i∈I

{
supAi | i ∈ I

}
.

Proof. For Part (b) we observe that for every a ∈
⋃

i∈I Ai there is (ai)i∈I ∈∏
i∈I Ai such that a is one of the projections of (ai)i∈I onto the factor
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spaces Ai. This yields a ≤
∨

i∈I ai, hence

sup
(⋃

i∈I
Ai

)
≤ sup

(∨

i∈I
Ai

)
.

For every (ai)i∈I ∈
∏

i∈I Ai on the other hand, we have ai ≤ supAi for all
i ∈ I, hence

∨
i∈I ai ≤ supi∈I

{
supAi | i ∈ I

}
and

sup
(∨

i∈I
Ai

)
≤ sup

i∈I

{
supAi | i ∈ I

}
.

Finally, since supAi ≤ sup
(⋃

i∈I Ai

)
holds for all i ∈ I, we infer that

sup
i∈I

{
supAi | i ∈ I

}
≤ sup

(⋃

i∈I
Ai

)
.

Our claim in Part (b) now follows from the requirement that the order in P
is antisymmetric.

For Part (a) we argue as follows: If A and B are non-empty subsets of
P, then we use Part (b) and

(∨
1
)
for

sup(A + B) = sup
( ⋃

b∈B

(A + b)
)

= sup
b∈B

{
sup(A + b) | b ∈ B

}

= sup
b∈B

{
supA + b | b ∈ B

}

= supA + supB. �

Similarly, for a family {Ai}i∈I of subsets of a locally convex
∧

-semilattice
cone such that

⋃
i∈I Ai is bounded below in P we denote

∧

i∈I
Ai =

{∧

i∈I
ai

∣
∣
∣ (ai)i∈I ∈

∏

i∈I
Ai,

}
⊂ P

and obtain in analogy to Lemma 5.5:

Lemma 5.6. Let (P,V) be a locally convex
∧

-semilattice cone. Let A,B
and {Ai}i∈I be bounded below subsets of P and suppose that

⋃
i∈I Ai is

also bounded below. Then

(a) inf(A + B) = inf A + inf B.

(b) inf
(⋃

i∈I
Ai

)
= inf

(∧

i∈I
Ai

)
= inf

i∈I

{
inf Ai | i ∈ I

}
.

Remarks and Examples 5.7. (a) Every locally convex
∧

-semilattice cone P
contains also suprema for all of its non-empty subsets. Indeed, the set of all
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upper bounds for a non-empty subset A of P is bounded below, and its
infimum is the supremum of A in P. Requirement

(∨
1
)
does however not

necessarily follow (see Example (e) below). Likewise, every locally convex
∨

-semilattice cone has infima for subsets with lower bounds in P. (Recall the
before mentioned subtle difference between “bounded below” and “having a
lower bound”.) But again, requirement

(∧
1
)
does not follow (see (d) below).

(b) The locally convex cones R and R+
(
Examples 1.4(a) and (b)

)
are

of course complete lattices.
(c) If (P,V) is a locally convex

∨
-semilattice (or

∧
-semilattice) lat-

tice cone, if X is a set, and if V̂ is a neighborhood system consisting of(
V∪{∞}

)
-valued functions

(
see Example 1.4(e)

)
, then the locally convex cone(

FV̂b
(X,P), V̂

)
of P-valued functions from 1.4(e) is also a locally convex∨

-semilattice (or
∧

-semilattice) lattice cone, provided that for every x ∈ X

and v ∈ V there is v̂ ∈ V̂ such that v̂(x) ≤ v. (Using Lemma 3.2, this con-
dition guarantees that

(
FV̂b

(X,P), V̂
)

carries its weak preorder.) Suprema
and infima are formed pointwise. For P = R in particular,

(
FV̂b

(X, R), V̂
)

is a locally convex complete lattice cone, provided that for each x ∈ X there
is v̂ ∈ V̂ such that v̂(x) < +∞.

(d) Example 4.37(d) yields a locally convex
∨

-semilattice cone. The cone
(Q,V) of all non-empty closed (with respect to the lower relative topology)
convex subsets of a locally convex cone (P,V) is ordered by set inclusion
and carries the weak preorder which is antisymmetric

(
see 4.37(d)

)
. For a

non-empty family A ⊂ Q its supremum is given by

supA = conv
( ⋃

A∈A
A
)

(l)
,

where conv(C) denotes the convex hull of a set C ⊂ P, and the closure
is meant with respect to the lower relative topology of P. Condition (

∨
1)

can be readily checked: Let B ∈ P. Clearly A ⊕ B ⊂ supA ⊕ B for all
A ∈ A, hence sup{A⊕B | A ∈ A} ≤ supA⊕B. For the converse inequality

let c ∈ supA ⊕ B =
(
conv

(⋃
A∈AA

)
+ B

)(l) . Then for every lower relative
neighborhood (c)vε there is d ∈ (c)vε ∩

(
conv

(⋃
A∈AA

)
+ B

)
. This means

d =
∑n

i=1 αiai + b for some ai ∈ Ai ∈ A, b ∈ B and 0 ≤ αi such that∑n
i=1 αi = 1. Thus d =

∑n
i=1 αi(ai + b) ∈ sup{A⊕B | A ∈ A}. This implies

c ∈ sup{A⊕B | A ∈ A} as well, since this set is closed in the lower topology.
Our claim follows.

(e) A similar argument shows that Example 4.37(e) yields a locally con-
vex

∧
-semilattice cone. In this case Q consists of all bounded below closed

(with respect to the upper relative topology) convex subsets of P and is
ordered by the inverse set inclusion. For a bounded below family A ⊂ Q its
infimum is given by

inf A = conv
( ⋃

A∈A
A
)(u)

,
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where the closure is meant with respect to the upper relative topology of
P. It is easily checked that for such a bounded below family A ⊂ Q the
convex hull of its union is again a bounded below subset of P, hence by
Proposition 4.28 also the closure of the latter with respect to the upper
relative topology.

(f) Let X be a topological space, and let P be the cone of all R-
valued lower semicontinuous functions on X, where R is endowed with the
usual, that is the one-point compactification topology. P is endowed with the
pointwise operations and order and neighborhoods v ∈ V for P are given by
the strictly positive constant functions. Because the pointwise infimum of any
two functions as well as the pointwise supremum of any non-empty family
of functions in P is again an R-valued and lower semicontinuous function,
(P,V) forms a locally convex lattice as well as a

∨
-semilattice cone, however

in general not a locally convex complete lattice cone. Similarly, the cone of
all R-valued bounded below upper semicontinuous functions on X forms a
locally convex lattice and

∧
-semilattice cone.

5.8 Zero Components. Throughout the following we shall assume that
(P,V) is a locally convex

∧
-semilattice cone. We define the zero component

of an element a of a locally convex
∧

-semilattice cone P by

O(a) = inf
{
b ≥ 0 | a ∈ B(b)

}
.

This expression is well defined, and O(a) ≥ 0 for all a ∈ P. Recall from
Proposition 4.10 that a ∈ B(b) if and only if for every v ∈ V there are
α, β ≥ 0 such that a ≤ αb+βv. If (a)B does not contain a positive element,
then O(a) = inf ∅ = +∞ ∈ P.

The introduction of zero components is especially useful for the investiga-
tion of variations of the cancellation law in

∧
-semilattice cones.

Proposition 5.9. Let (P,V) be a locally convex
∧

-semilattice cone, and let
a, b, c ∈ P and v ∈ V. If a + c �v b + c, then a �v b + O(c).

Proof. Let a, b, c ∈ P and v ∈ V and suppose that a + c �v b + c. As we
observed before, the weak local preorder �v is compatible with the algebraic
operations in P. Following Lemma I.4.1 in [100] if applied to this order, the
above implies a + ρc � b + ρc for all ρ > 0. There is λ > 0 such that both
0 ≤ b + λv and 0 ≤ c + λv. Thus 0 ≤ (b + ρc) + 2λv for all 0 < ρ ≤ 1.
Next we recall that a + ρc �v b + ρc means that a + ρc ∈ vε(b + ρc) for all
ε > 0. Using Lemma 4.1(b) we infer that

a + ρc ≤ (1 + ε)(b + ρc) + ε(1 + 2λ)v

holds for all ε > 0 and 0 < ρ ≤ 1. Thus

a ≤ a + ρ(c + λv) ≤ (1 + ε)(b + ρc) + (ε + 2ελ + ρλ)v.

Let d ≥ 0 such that c ∈ B(d). Then c ≤ αd + βv holds for some α, β ≥ 0.
Consequently, for all ρ > 0 such that ρ ≤ max {(ε/λ), (1/α), (2ε/β)} we
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have
ρc ≤ (ρα)d + (ρβ)v ≤ d + 2εv

since d ≥ 0, and
(ε + 2ελ + ρλ)v ≤ 2ε(1 + λ)v,

hence

a ≤ (1 + ε)(b + ρc) + 2ε(1 + λ)v ≤ (1 + ε)(b + d) + 2ε(2 + λ)v.

Now we may use rules
(∧

1
)
and

(∧
2
)
and take the infimum over the right-

hand side of this inequality with respect to all d ≥ 0 such that c ∈ B(d).
This yields

a ≤ (1 + ε)
(
b + O(c)

)
+ 2ε(2 + λ)v.

This last inequality holds true for all ε > 0 and therefore demonstrates

a �v b + O(c). �

Proposition 5.10. Let (P,V) be a locally convex
∧

-semilattice cone, and
let a, b, c ∈ P.

(a) If a + c ≤ b + c, then a ≤ b + O(c).
(b) If a ∈ B(b), then O(a) ≤ O(b)
(c) If a is bounded, then O(a) = 0.

Proof. Let a, b, c ∈ P. Recall that a � b, that is a ≤ b in the case of a
completely ordered locally convex cone which is supposed to carry its weak
global preorder, means that a �v b holds for all v ∈ V. This yields Part (a)
as an immediate consequence of 5.9. For Part (b) suppose that a ∈ B(b).
Then for every c ≥ 0 such that b ∈ B(c) we have B(b) ⊂ B(c) by 4.10(ii),
hence a ∈ B(c) as well. This yields O(a) ≤ O(b). Part (c) follows from
Part (b) with b = 0. �

Proposition 5.11. Let (P,V) be a locally convex
∧

-semilattice cone, and
let a, b,∈ P. Then

(a) O(a + b) = O(a) + O(b).
(b) O(αa) = αO(a) = O(a) for all α > 0.
(c) If αa = a for all α > 0, then O(a) = a.

Proof. Let a, b,∈ P. Part (b) is obvious since for every α > 0 and every
c ∈ P we have αa ∈ B(c) if and only if a ∈ B(c) by 4.11(a). For Part (a) let
a ∈ B(c) and b ∈ B(d) for c, d ≥ 0. Then a + b ∈ B(c + d) by 4.11(c). This
shows O(a+b) ≤ O(a)+O(b). For the converse, given v ∈ V there is λ ≥ 0
such that 0 ≤ b+λv. Hence a ≤ (a+b)+λv, and we infer that a ∈ B(a+b).
Thus O(a) ≤ O(a+b) by 5.10(b), and likewise O(b) ≤ O(a+b). This yields

O(a) + O(b) ≤ 2O(a + b) = O(a + b).
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For Part (c) let a ∈ P such that αa = a for all α ≥ 0. For every v ∈ V
there is λ > 0 such that 0 ≤ a + λv, hence 0 ≤ (1/λ)a + v = a + v. This
shows 0 ≤ a, since P carries the weak preorder. Thus O(a) ≤ a. If on the
other hand a ∈ B(c) for some c ≥ 0, then there are α, β ≥ 0 such that
a ≤ αc + βv. Since εαc ≤ c for all 0 < ε ≤ 1/(α + 1), this implies

a = εa ≤ εαc + εβv ≤ c + εβv

for all such ε. This yields a ≤ c since P carries the weak preorder, and we
also have a ≤ O(a). �

Proposition 5.11(b) implies in particular that a linear functional μ ∈ P∗
can attain only the values 0 or +∞ at a zero component.

Some additional properties can be derived if P contains also suprema of
its elements, that is if (P,V) is also a locally convex lattice or indeed a
locally convex complete lattice cone

(
see Example 5.7(f)

)
.

Lemma 5.12. Suppose (P,V) is a locally convex lattice and
∧

-semilattice
cone. Then the zero component of an element a ∈ P can be alternatively
expressed as

O(a) = inf
ε>0

{
ε (a ∨ 0)

}
.

Proof. Let a ∈ P. Then 0 ≤ a ∨ 0 and a ≤ a ∨ b. Thus a ∈ B(a ∨ b).
This implies a ∈ B

(
ε (a ∨ 0)

)
for all ε > 0 by 4.11(c). Hence inf

{
b ≥ 0 |

a ∈ B(b)
}
≤ infε>0

{
ε (a ∨ 0)

}
. For the converse inequality let b ≥ 0 such

that a ∈ B(b). Given v ∈ V and ε > 0 there are α, β ≥ 0 such that
a ≤ αb + βv

(
see 4.10(iii)

)
. Condition (∨2) then yields a ∨ 0 ≤ αb + 2βv.

Thus for 0 < δ ≤ min{ ε
2β+1 ,

1
α+1} we have

δ(a ∨ 0) ≤ δαb + 2δβv ≤ b + εv,

since b ≥ 0 and δα ≤ 1 implies (δα)b ≤ b. This shows infε>0
{
ε (a∨ 0)

}
≤

b + εv, hence

inf
ε>0

{
ε (a ∨ 0)

}
≤ inf

{
b ≥ 0 | a ∈ B(b)

}
+ εv

by
(∧

2
)
. Because this holds for all v ∈ V and for all ε > 0, and because P

carries the weak preorder, we conclude that

inf
ε>0

{
ε (a ∨ 0)

}
≤ inf

{
b ≥ 0 | a ∈ B(b)

}
.

�
Proposition 5.13. Suppose (P,V) is a locally convex lattice and

∧
-

semilattice cone. Let a, b, c ∈ P and v ∈ V.

(a) If a ∈ Bv(b), then O(a) �v O(b) and b + O(a) �v b.
(b) If a is v-bounded, then O(a) �v 0.
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Proof. Let a, b, c ∈ P and v ∈ V. For Part (a) , suppose that a ∈ Bv(b).
There are α, β > 0 such that a ≤ αb+βv and λ ≥ 0 such that 0 ≤ a+λv,
hence also 0 ≤ a ∧ 0 + λv by

(∧
2
)
. Then

b + O(a) ≤ b + ε (a ∨ 0)
≤ b + ε (a ∨ 0) + ε

(
(a ∧ 0) + λv

)
= b + εa + ελv

≤ (1 + εα)b + ε(β + λ)v.

for all ε > 0 by Lemma 5.12. This shows b+O(a) �v b. Furthermore, using
the cancellation rule from Proposition 5.9 for the element b in O(a) + b �v

0 + b yields O(a) �v O(b) as claimed. Part (b) follows from Part (a) with
b = 0. �

Proposition 5.14. Suppose (P,V) is a locally convex lattice and
∧

-
semilattice cone. Then b + O(a) = b holds for all a, b ∈ P whenever
a ∈ B(b).

Proof. Let a, b ∈ P such that a ∈ B(b). Then a ∈ Bv(b), hence b+O(a) �v

b by Proposition 5.13, for all v ∈ V. Thus b+O(a) � b. Since P carries the
weak preorder which is supposed to be antisymmetric, and since b � b+O(a)
is evident, our claim follows. �

Proposition 5.15. Let (P,V) be a locally convex complete lattice cone, and
let A,B be non-empty subsets of P. Then

(a) inf(A ∨B) = inf A ∨ inf B if both A and B are bounded below.
(b) sup(A ∧B) ≤ supA ∧ supB ≤ sup(A ∧B) + O (sup(A ∨B)) .

Proof. We first observe that

inf A ∨ inf B ≤ a ∨ b and a ∧ b ≤ supA ∧ supB

holds for all a ∈ A and b ∈ B. Thus

inf A ∨ inf B ≤ inf(A ∨B) and sup(A ∧B) ≤ supB ∧ supA.

For Part (a) we assume that both sets A and B are bounded below and use
Proposition 5.3 for

inf(A ∨B) + inf(A ∧B) ≤ inf{a ∨ b + a ∧ b | a ∈ a, b ∈ B}
= inf(A + B)
= inf A + inf B

= inf A ∨ inf B + inf A ∧ inf B.

As inf(A ∧ B) = inf A ∧ inf B, the cancellation law in Proposition 5.10(a)
yields

inf(A ∨B) ≤ inf A ∨ inf B + O
(
inf(A ∧B)

)
.
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Similarly, one obtains

supA ∧ supB ≤ sup(A ∧B) + O (sup(A ∨B)) ,

that is Part (b). Finally, as inf(A ∧ B) = inf A ∧ inf B ≤ inf A ∨ inf B,
Proposition 5.14 shows

inf A ∨ inf B + O
(
inf A ∧ inf B

)
= inf A ∨ inf B.

This completes our proof of Part (a). �

We proceed to refine the cancellation rules in Proposition 5.10 further. Let
(P,V) be a locally convex lattice and

∧
-semilattice cone. We define the zero

component of an element a ∈ P relative to b ∈ P by

O(a � b) = inf
{
c ≥ 0 | c + O(b) ≥ O(a)

}
.

Obviously, O(a � 0) = O(a). Also, O(αa � βb) = αO(a � b) = O(a � b)
holds for all α, β > 0.

Proposition 5.16. Let (P,V) be a locally convex lattice and
∧

-semilattice
cone, and let a, b, c ∈ P.

(a) 0 ≤ O(a � b) ≤ O(a) ≤ O(a � b) + O(b).
(b) If a + c ≤ b + c, then a ≤ b + O(c � b).
(c) If a ∈ B(b), then O(a � b) = 0 and b + O(c) = b + O(c � a).

Proof. Part (a) follows directly from the definition of O(a�b) together with(∧
2
)
. For (b) we recall that a + c ≤ b + c implies a ≤ b + O(c) by 5.10(a).

As O(c) ≤ O(c � b) + O(b) by Part (a) and b + O(b) = b by 5.14, our
claim follows. For (c), let a ∈ B(b). Then O(a) ≤ O(b) by 5.10(b), and we
may use c = 0 in the definition of O(a � b). Thus indeed O(a � b) = 0.
Furthermore, we have

b + O(c) ≤ b +
(
O(c � a) + O(a)

)
=
(
b + O(a)

)
+ O(c � a) = b + O(c � a)

by Part (a) and 5.14. �

Examples 5.17. (a) If P = R or P = R+
(
see 1.4(a) and 1.4(b)

)
, then

O(a) = 0 for all a < +∞, and O(+∞) = +∞.
(b) Consider

(
FV̂b

(X,P), V̂
)
, where (P,V) is a locally convex

∧
-

semilattice cone, X a set, and V̂ is a neighborhood system consisting
of

(
V ∪ {∞}

)
-valued functions

(
see Example 1.4(e)

)
such that for every

x ∈ X and v ∈ V there is v̂ ∈ V̂ such that v̂(x) ≤ v
(
see 5.7(c)

)
. For

f ∈ FV̂b
(X,P) then O(f) is the mapping x �→ O

(
f(x)

)
. For P = R, in

particular, the zero component of an R-valued function f ∈ FV̂b
(X, R) is the

mapping O
(
f
)
(x) = 0 if f(x) < +∞, and O

(
f
)
(x) = +∞ else. The same
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observation applies to the second part of Example 5.7(f), that is the cone
of R-valued bounded below upper semicontinuous functions on a topological
space with the positive constants as neighborhoods. This was seen to be an
example of a locally convex lattice and

∧
-semilattice cone.

(c) Let us consider Example 4.37(e)
(
see also 5.7(e)

)
, that is the locally

convex
∧

-semilattice cone (Q,V) of all convex subsets locally convex cone
(P,V), which are bounded below and closed with respect to the upper relative
topology. Recall that the order in Q is the inverse set inclusion and the
neighborhoods are given by A ≤ B ⊕ v for A,B ∈ Q and v ∈ V, if for
every b ∈ B, and ε > 0 there is a ∈ A such that a ≤ γb + (1 + ε)v for
some 1 ≤ γ ≤ 1 + ε. The closed convex subsets (including the empty set) of

{0}(u) = {b ∈ P | 0 � b} are the positive elements in Q. We claim that for
an element A ∈ Q we have

O(A) = {b � 0 | Bv(b) ∩A �= ∅ for all v ∈ V}.

We shall argue for this using the following steps: Let B denote the set on
the right-hand side of the above equation.

(i) The set B ⊂ P is convex. Indeed, let b1, b2 ∈ B, 0 ≤ λ1, λ2 ≤ 1 such
that λ1+λ2 = 1 and b = λ1b1+λ2b2. Given v ∈ V there are a1 ∈ Bv(b1)∩A
and a2 ∈ Bv(b2) ∩ A. Set a = λ1a1 + λ2a2 ∈ A and choose α1, α2, β, ρ ≥ 0
such that

a1 ≤ α1b1 + βv, a2 ≤ α2b2 + βv, 0 ≤ b1 + ρv and 0 ≤ b2 + ρv.

Setting α = max{α1, α2} we have

a1 ≤
(
α1b1 + βv

)
+ (α− α1)(b1 + ρv) + α1ρv = αb1 + (β + αρ)v

and, likewise

a2 ≤
(
α2b1 + βv

)
+ (α− α2)(b2 + ρv) + α2ρv = αb2 + (β + αρ)v.

Thus

a ≤ λ1
(
αb1 + (β + αρ)v

)
+ λ2

(
αb1 + (β + αρ)v

)
= αb + (β + αρ)v.

We infer that a ∈ Bv(b) ∩ A, hence Bv(b) ∩ A �= ∅. Since this holds for all
v ∈ V and since b � 0 is evident from b1, b2 � 0, we conclude that b ∈ B.

(ii) The set B ⊂ P is closed with respect to the upper topology. Indeed,
let c ∈ B(u) and let v ∈ V. There is b ∈ v1(c)∩B, that is b ≤ γc+v for some
1 ≤ γ ≤ 2. There is a ∈ Bv(b) ∩A, that is a ≤ αb + βv for some α, β ≥ 0.
Combining these yields a ≤ αγc + (α + β)v. This shows Bv(c) ∩ A �= ∅ for
all v ∈ V. Furthermore, since B ⊂ {0}(u) = {b ∈ P | 0 � b} which is closed
with respect to the upper relative topology, we have c ∈ {0}(u) as well, hence
c � 0. Together with the above this yields c ∈ B. Since B ⊂ P is obviously
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bounded below (we have 0 ≤ b + v for all b ∈ P), we conclude from (i)
and (ii) that B ∈ Q.

(iii) We have A ∈ B
(
{b}(u)) for all b ∈ B. Indeed, let v ∈ V. Given

b ∈ B there is some a ∈ Bv(b) ∩ A, that is there are α, β, λ ≥ 0 such that
a ≤ αb + βv and 0 ≤ b + λv. Then for every c ∈ {b}(u), that is b � c, we
have b ∈ v1(c), hence b ≤ 2c + (2 + λ)v (see Lemma 4.1(c) with ε = 1).
This yields a ≤ 2αc + (2α + λα + β)v and A ≤ 2α {b}(u)⊕ (2α + λα + β)v,

hence A ∈ B
(
{b}(u)). Consequently,

O(A) ≤ inf
{
{b}(u) | b ∈ B

}
= conv

(⋃
b∈B {b}

(u))(u) = B.

(iv) On the other hand, let C ∈ Q such that C ≥ 0, that is C ⊂
{0}(u), and A ∈ B(C). Let c ∈ C. Given v ∈ V there are α, β ≥ 0 such
that A ≤ αC ⊕ βv. According to our definition of the neighborhoods in Q(
see 4.37(e)

)
, for ε = 1 we find a ∈ A such that a ≤ γ(αc) + 2(βv) with

some 1 ≤ γ ≤ 2. This yields Bv(b) ∩ A �= ∅ for all v ∈ V, hence c ∈ B
since c � 0. Thus

C = conv
(⋃

c∈C {c}
(u))(u) ⊂ B.

This shows O(A) ⊂ B, that is O(A) ≥ B, and our claim follows.
In particular, we have O(A) = {0}(u) if and only if Bv(0) ∩A �= ∅ for all

v ∈ V, that is if and only if for every v ∈ V there are a ∈ A and λ ≥ 0
such that a ≤ λv, that is if and only if the element A ∈ Q is bounded above(
see 4.37(e)

)
.

For a concrete example let P be the cone of all real-valued bounded below
continuous functions on the open interval (0, 1), endowed with the positive
constants as neighborhoods

(
see 1.4(e)

)
and let Q be as before. Consider

the subset

C =
{

f ∈ P
∣
∣
∣ f(x) ≥ 1

x
− 2 for all x ∈ (0, 1)

}
.

This set is convex, bounded below and closed with respect to the upper
relative topology, hence C ∈ Q. For a function g ≥ 0 in P, we have
B(g) ∩ C �= ∅ if and only if there are α, β ≥ 0 such that 1/x ≤ αg(x) + β
for all x ∈ (0, 1), that is if and only if the inferior limit of xg(x) at 0 is
greater than 0. Thus

O(C) = {g ∈ P
∣
∣
∣ g ≥ 0 and lim

x→0
xg(x) > 0}.

Now according to the cancellation rule in Proposition 5.10(a), if A,B ∈ Q
such that A + C ≤ B + C, that is B + C ⊂ A + C, then A ≤ B + O(c),
that is B + O(C) ⊂ A.
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5.18 Order Convergence. We proceed to define order convergence for nets
in a locally convex complete lattice cone (P,V). A net (ai)i∈I in P is called
bounded below if there is i0 ∈ I such that the set {ai | i ≥ i0} is bounded
below in the sense of 4.24(i). We define the superior and inferior limits of a
bounded below net (ai)i∈I in P by

lim
i∈I

ai = sup
i∈I

(
inf
k≥i

ak

)
and lim

i∈I
ak = inf

i∈I

(
sup
k≥i

ak

)
.

Because the order of P is supposed to be antisymmetric, both limits
are uniquely defined. Obviously, limi∈I ai ≤ limi∈I ai. If limi∈I ai and
limi∈I ai coincide, we shall denote their common value by limi∈I ai and
say that the net (ai)i∈I is order convergent. Obviously, every increasing or
decreasing bounded below net is order convergent in this sense, converging
towards the supremum or the infimum of the set of its elements, respectively.

Lemma 5.19. Let (P,V) be a locally convex complete lattice cone, and let
(ai)i∈I and (bi)i∈I be bounded below nets in P. Then

lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi) ≤ lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi) ≤ lim
i∈I

ai + lim
i∈I

bi.

Proof. For any bounded below net (ci)i∈I in P, for i ∈ I, let

s
(c)
i = inf

k≥i
ck and S

(c)
i = sup

k≥i
ck.

The nets (s(c)
i )i∈I and (S(c)

i )i∈I are increasing and decreasing, respectively,
and

lim
i∈I

ci = sup
i∈I

s
(c)
i and lim

i∈I
ci = inf

i∈I
S

(c)
i .

Now, using the nets (ai)i∈I , (bi)i∈I and (ai + bi)i∈I in place of (ci)i∈I we
observe that

s
(a+b)
i ≥ s

(a)
i + s

(b)
i and S

(a+b)
i ≤ S

(a)
i + S

(b)
i

for all i ∈ I. For every k ∈ I we have by
(∨

1
)

s
(a)
k + sup

i∈I
s

(b)
i = sup

i∈I
(s(a)

k + s
(b)
i ) ≤ sup

l∈I
(s(a)

l + s
(b)
l ),

as s
(a)
k + s

(b)
i ≤ s

(a)
l + s

(b)
l whenever i, k ≤ l. This shows

lim
i∈I

ai + lim
i∈I

bi = sup
k∈I

s
(a)
k + sup

i∈I
s

(b)
k ≤ sup

l∈I
(s(a)

l + s
(b)
l ) = lim

i∈I
(ai + bi),

the first part of our claim. A similar argument using the decreasing nets
(S(c)

i )i∈I yields
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lim
i∈I

ai + lim
i∈I

bi = inf
k∈I

S
(a)
k + inf

i∈I
S

(b)
k ≥ inf

l∈I
(S(a)

l + S
(b)
l ) = lim

i∈I
(ai + bi).

Finally, for all i, l ∈ I and j ≥ i, l we have

s
(a+b)
i = inf

k≥i
(ak + bk) ≤ inf

k≥j
(S(a)

l + bk) = S
(a)
l + inf

k≥j
bk ≤ S

(a)
l + lim

i∈I
bi,

hence

lim
i∈I

(ai + bi) = sup
i∈I

s
(a+b)
i ≤ inf

l∈I
S

(a)
l + lim

i∈I
bi = lim

i∈I
ai + lim

i∈I
bi.

A similar argument shows that

lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi).

�

Note that Lemma 5.19 implies in particular that

lim
i∈I

(a + bi) = a + lim
i∈I

bi and lim
i∈I

(a + bi) = a + lim
i∈I

bi

holds for a ∈ P and a bounded below net (bi)i∈I . We shall use Condi-
tions

(∨
2
)
and

(∧
2
)
for a comparison of the inferior and superior limits of

nets:

Lemma 5.20. Let (P,V) be a locally convex complete lattice cone, let
(ai)i∈I and (bj)j∈J be nets in P, and let v ∈ V.

(a) If for every i0 ∈ I there is j0 ∈ J such that for every j ≥ j0 there is
i ≥ i0 such that ai ≤ bj + v, then limi∈I ai ≤ limj∈J bj + v.

(b) If for every j0 ∈ J there is i0 ∈ I such that for every i ≥ i0 there is
j ≥ j0 such that ai ≤ bj + v, then limi∈I ai ≤ limj∈J bj + v.

(c) If I = J and if there is i0 ∈ I such that ai ≤ bi + v for all i ≥ i0,
then limi∈I ai ≤ limi∈I bi + v and limi∈I ai ≤ limi∈I bi + v.

(d) If (ail
)l∈L is a subnet of (ai)i∈I , then limi∈I ai ≤ liml∈L ail

and
liml∈L ail

≤ limi∈I ai.

Proof. (a) Given i0 ∈ I choose j0 ∈ J as in the assumption of Part (a).
Then infi≥i0 ai ≤ bj + v for all j ≥ j0, hence

inf
i≥i0

ai ≤ inf
j≥j0

bj + v ≤ lim
j∈J

bj + v

by
(∧

2
)
. Thus by

(∨
2
)
we have limi∈I ai ≤ limj∈J bj + v as well. The

argument for Part (b) is similar. The assumptions for Part (c) yield those for
Parts (a) and (b) with j0 = i0 and j = i. Part (d) follows from (a) and (b)
if we set J = L and bl = aij

. �
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Lemma 5.20(c) yields in particular that limi∈I ai ≤ limi∈I bi for order
convergent nets (ai)i∈I and (bi)i∈I whenever ai ≤ bi for all i ∈ I. Part (d)
implies that every subnet of an order convergent net is again order convergent
with the same limit.

Lemma 5.21. Let (P,V) be a locally convex complete lattice cone. Let
(ai)i∈I be a bounded below net in P, and let (αi)i∈I be a bounded net of
non-negative reals such that lim

i∈I
αi > 0. Then

(
lim
i∈I

αi

)(
lim
i∈I

ai

)
≤ lim

i∈I
(αiai) ≤ lim

i∈I
(αiai) ≤

(
lim
i∈I

αi

)(
lim
i∈I

ai

)
.

Proof. Obviously the net (αiai)i∈I is also bounded below in P. We set
α = lim

i∈I
αi > 0. Given v ∈ V there is λ ≥ 0 such that 0 ≤ ai + λv

for all i ∈ I. For ε > 0 we set γ = 1 + ε and find i0 ∈ I such that
(1/γ)α ≤ αi ≤ γα for all i ≥ i0. Thus

αiai +
α

γ
λv ≤ αi(ai + λv) ≤ γα(ai + λv),

hence, using the cancellation law for positive elements (see Lemma I.4.2 in
[100])

αiai ≤ γαai + αλ
(
γ − 1

γ

)
v + εv ≤ γαai + ε(2αλ + 1)v.

Using Lemma 5.20(c) we infer that

lim
i∈I

αiai ≤ γ
(
α lim

i∈I
ai

)
+ ε(2αλ + 1)v.

Since the latter holds for all ε > 0 and since P carries the weak preorder,
we conclude that

lim
i∈I

αiai ≤ α lim
i∈I

ai.

The first part of the inequality in our claim follows in a similar fashion. �

Proposition 5.22. Let (P,V) be a locally convex complete lattice cone. Let
(ai)i∈I and (bi)i∈I be order convergent nets in P, and let (αi)i∈I be a
bounded net of non-negative reals such that lim

i∈I
αi > 0. Then

lim
i∈I

(ai + bi) = lim
i∈I

ai + lim
i∈I

bi and lim
i∈I

(αiai) =
(

lim
i∈I

αi

)(
lim
i∈I

ai

)
.

The latter is an obvious consequence of our previous results 5.19 and 5.21.
Note that the requirement that limi∈I αi > 0 can not be omitted if the
elements of the net (ai)i∈I are not bounded in P : In the locally con-
vex complete lattice cone R choose an = +∞ and αn = (1/n). Then
lim

n→∞
(αnan) = +∞, but

(
lim

n→∞
αn

)(
lim

n→∞
an

)
= 0.
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The following will provide a useful criterion for the convergence of a given
net.

Proposition 5.23. Let (P,V) be a locally convex complete lattice cone, and
let (ai)i∈I be a bounded below net in P. If for every v ∈ V there is a
convergent net (bi)i∈I in P such that (ai + bi)i∈I is convergent and the
limit of (bi)i∈I is v-bounded, then the net (ai)i∈I is also convergent.

Proof. Let (ai)i∈I be a net in P and for v ∈ V let (bi)i∈I be as stated.
We use Lemma 5.19 for

lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi) ≤ lim
i∈I

ai + lim
i∈I

bi.

As b = lim
i∈I

bi is v-bounded, following Proposition 5.13(b) we have O(b) ≤ εv

for all ε > 0, hence
lim
i∈I

ai ≤ lim
i∈I

ai + εv.

by Proposition 5.10(a). Because this holds for all v ∈ V and ε > 0 and
because P is a complete lattice cone, we infer that

lim
i∈I

ai ≤ lim
i∈I

ai

holds as claimed. �

Proposition 5.24. Let (P,V) be a locally convex complete lattice cone, and
let (ai)i∈I be a bounded below net in P. Then

lim
i∈I

O(ai) ≤ O
(
lim
i∈I

ai

)
and lim

i∈I
O(ai) ≤ O

(
lim
i∈I

ai

)
.

Proof. Let (ai)i∈I be a bounded below net, let v ∈ V and λ ≥ 0 such that
0 ≤ ai + λv for all i ≥ i0 ∈ I . Then O(ai) ≤ ε(ai + λv) for all i ≥ i0 and
ε > 0, hence

lim
i∈I

O(ai) ≤ ε lim
i∈I

ai + ελv ≤ ε sup
{

lim
i∈I

ai , 0
}

+ ελv

by 5.20(a). Taking the infimum over all ε > 0 on the right-hand side we
obtain

lim
i∈I

O(ai) ≤ O

(
lim
i∈I

ai

)
+ O(λv) ≤ O

(
lim
i∈I

ai

)
+ v.

Because this last inequality holds for all v ∈ V and because P carries the
weak preorder, we conclude that

lim
i∈I

O(ai) ≤ O

(
lim
i∈I

ai

)
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holds as claimed. A similar argument demonstrates the same inequality for
the superior limits. �

A simple example can show that equality does in general not hold in the
expressions of Proposition 5.24: The locally convex cone P = R is a complete
lattice. Order convergence in R means convergence with respect to its usual
one-point compactification topology, which at the point +∞ differs from
the symmetric topology of R as a locally convex cone. For each n ∈ N let
an = n ∈ R. Then lim

n→∞
an = +∞ with respect to order convergence (but

not with respect to the symmetric topology). We therefore have O(an) = 0
for all n ∈ N, but O

(
lim

n→∞
an

)
= +∞.

We proceed to investigate continuity of the lattice operations with respect
to order convergence (c.f. Proposition 5.2).

Proposition 5.25. Let (P,V) be a locally convex complete lattice cone and
let (ai)i∈I and (bi)i∈I be convergent nets in P. Then

(a) lim
i∈I

(ai ∨ bi) =
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)
.

(b) lim
i∈I

(ai ∧ bi) ≤
(

lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)
≤ lim

i∈I
(ai ∧ bi) + O

(
lim
i∈I

(ai ∨ bi)
)
.

Proof. (a) Let (ai)i∈I and (bi)i∈I be convergent nets. Then

lim
i∈I

(ai ∨ bi) = inf
i∈I

(
sup
l≥i

(al ∨ bl)
)
≤ inf

i∈I

((
sup
l≥i

al

)
∨
(
sup
j≥i

bj

))
.

Because for any choice of i, k ∈ I and any p ∈ I such that both i ≤ p and
k ≤ p we have

(
sup
l≥p

al

)
∨
(
sup
j≥p

bj

)
≤
(
sup
l≥i

al

)
∨
(
sup
j≥k

bj

)
,

we realize that

inf
i∈I

((
sup
l≥i

al

)
∨
(
sup
j≥i

bj

))
≤ inf

i,k∈I

((
sup
l≥i

al

)
∨
(
sup
j≥k

bj

))
.

Now we use Proposition 5.15(a) for

inf
i,k∈I

((
sup
l≥i

al

)
∨
(
sup
j≥k

bj

))
= inf

i∈I

(
sup
l≥i

al

)
∨ inf

k∈I

(
sup
j≥k

bj

)
=
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)
.

Both nets (ai)i∈I and (bi)i∈I are supposed to be convergent. So we have
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)
=
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)
≤ lim

i∈I
(ai ∨ bi).

Summarizing, the above yields

lim
i∈I

(ai ∨ bi) ≤
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)
≤ lim

i∈I
(ai ∨ bi)
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as claimed in Part (a). Similarly, one verifies Part (b): The inequality

lim
i∈I

(ai ∧ bi) ≤
(

lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)
=
(

lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)

is obvious. Next we use Part (a), Proposition 5.3 and the limit rules from
Lemma 5.17 for
(

lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)
+lim

i∈I
(ai ∨ bi) =

(
lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)
+
(

lim
i∈I

ai

)
∨
(

lim
i∈I

bi

)

= lim
i∈I

ai + lim
i∈I

bi = lim
i∈I

(ai + bi)

= lim
i∈I

(ai ∧ bi + ai ∨ bi)

≤ lim
i∈I

(ai ∧ bi) + lim
i∈I

(ai ∨ bi)

= lim
i∈I

(ai ∧ bi) + lim
i∈I

(ai ∨ bi).

Now the cancellation rule from Lemma 5.9(a) yields the remaining
part of (b). �

5.26 Series. A series
∑∞

i=1 ai with terms ai in a locally convex complete
lattice cone (P,V) is said to be convergent with limit s ∈ P if the se-
quence sn =

∑n
i=1 ai of its partial sums is order convergent to s. We write∑∞

i=1 ai = s in this case. Convergence of a series requires in particular that
the sequence of its partial sums is bounded below (see 5.18).

Proposition 5.27. Let (P,V) be a locally convex complete lattice cone and
let ai, bi ∈ P for i ∈ N. If the series

∑∞
i=1 ai is convergent and if ai ≤ bi

for all i ∈ N, then the series
∑∞

i=1 bi is also convergent.

Proof. Let ai, bi ∈ P such that ai ≤ bi for all i ∈ N. Let sn =
∑n

i=1 ai

and rn =
∑n

i=1 bi be the partial sums of the series
∑∞

i=1 ai and
∑∞

i=1 bi,
and let s =

∑∞
i=1 ai. Then sn ≤ rn for all n ∈ N, hence s ≤ lim

n→∞
rn. For

m ≥ n we have

rn + sm = rn + sn +
m∑

i=n+1

ai ≤ rn + sn +
m∑

i=n+1

bi = rm + sn.

For a fixed n ∈ N and m→∞ this leads to

rn + s = rn + lim
m→∞

sm = lim
m→∞

(rn + sm) ≤ lim
m→∞

(sn + rm) = lim
m→∞

rm + sn.

Now we let n→∞ and obtain

lim
n→∞

rn + s = lim
n→∞

(rn + s) ≤ lim
n→∞

(
lim

m→∞
rm + sn

)

= lim
m→∞

rm + lim
n→∞

sn = lim
m→∞

rm + s.
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The cancellation law from Proposition 5.10(a) now yields

lim
n→∞

rn ≤ lim
n→∞

rn + O(s).

But s ≤ lim
n→∞

rn , as we observed before, and therefore lim
n→∞

rn + O(s) =

lim
n→∞

rn by Proposition 5.19. This yields

lim
n→∞

rn ≤ lim
n→∞

rn,

hence convergence of the sequence (rn)n∈N, that is the partial sums of the
series

∑∞
i=1 bi. �

We shall say that a series
∑∞

i=1 Ai of non-empty subsets Ai of a lo-
cally convex complete lattice cone P is convergent if the series

∑∞
i=1 inf Ai

converges in P. In this case, all series
∑∞

i=1 ai , for any choice of elements
ai ∈ Ai, are convergent by Proposition 5.27, and we shall denote the set of
all limits of these series by

∑∞
i=1 Ai.

Proposition 5.28. Let (P,V) be a locally convex complete lattice cone and
let

∑∞
i=1 Ai be a convergent series of non-empty subsets of P. Then

(a)
∑∞

i=1 supAi = sup {
∑∞

i=1 Ai} .
(b)

∑∞
i=1 inf Ai ≤ inf {

∑∞
i=1 Ai} ≤

∑∞
i=1 inf Ai + O (inf {

∑∞
i=1 Ai}) .

Proof. Let
∑∞

i=1 Ai be a convergent series of non-empty subsets of P. We
shall consider Parts (a) and (b) simultaneously. Let Si = supAi and si =
inf Ai for all i ∈ N. By our assumption on the series

∑∞
i=1 Ai of sets, and

following Proposition 5.27, all the series
∑∞

i=1 si,
∑∞

i=1 Si and
∑∞

i=1 ai for
any choice of ai ∈ Ai are convergent in P. Moreover, for any choice of
elements ai ∈ Ai, for i ∈ N, as

∑n
i=1 si ≤

∑n
i=1 ai ≤

∑n
i=1 Si holds for all

n ∈ N, we have
∞∑

i=1

si ≤
∞∑

i=1

ai ≤
∞∑

i=1

Si,

and therefore

∞∑

i=1

si ≤ inf

{ ∞∑

i=1

Ai

}

≤ sup

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

Si.

Thus all left to show is that

∞∑

i=1

Si ≤ sup

{ ∞∑

i=1

Ai

}

and

inf

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

si + O

(

inf

{ ∞∑

i=1

Ai

})

.
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For this, let us fix n ∈ N and choose arbitrary elements ai, bi ∈ Ai. We set
ci = bi for i = 1, . . . , n and ci = ai, else. Then, obviously, for every m ≥ n
we have

n∑

i=1

bi +
m∑

i=1

ai =
m∑

i=1

ci +
n∑

i=1

ai.

We let m tend to infinity and obtain

n∑

i=1

bi +
∞∑

i=1

ai =
∞∑

i=1

ci +
n∑

i=1

ai.

As ci ∈ Ai for all i ∈ N, this yields

inf

{ ∞∑

i=1

Ai

}

+
n∑

i=1

ai ≤
n∑

i=1

bi +
∞∑

i=1

ai ≤ sup

{ ∞∑

i=1

Ai

}

+
n∑

i=1

ai.

As sup {
∑n

i=1 Ai}=
∑n

i=1 Si and inf {
∑n

i=1 Ai}=
∑n

i=1 si by Lemma 5.6(a),
variation of the elements b1, . . . , bn yields

inf

{ ∞∑

i=1

Ai

}

+
n∑

i=1

ai ≤
n∑

i=1

si +
∞∑

i=1

ai

and
n∑

i=1

Si +
∞∑

i=1

ai ≤ sup

{ ∞∑

i=1

Ai

}

+
n∑

i=1

ai.

Now we let n tend to infinity and infer that

inf

{ ∞∑

i=1

Ai

}

+
∞∑

i=1

ai ≤
∞∑

i=1

si +
∞∑

i=1

ai

and
∞∑

i=1

Si +
∞∑

i=1

ai ≤ sup

{ ∞∑

i=1

Ai

}

+
∞∑

i=1

ai.

Finally, we take the infimum over all choices for the elements ai ∈ Ai in this
last pair of inequalities and obtain

inf

{ ∞∑

i=1

Ai

}

+ inf

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

si + inf

{ ∞∑

i=1

Ai

}

and
∞∑

i=1

Si + inf

{ ∞∑

i=1

Ai

}

≤ sup

{ ∞∑

i=1

Ai

}

+ inf

{ ∞∑

i=1

Ai

}

.
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Now the cancellation rule in Proposition 5.10(a) yields

inf

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

si + O

(

inf

{ ∞∑

i=1

Ai

})

and
∞∑

i=1

Si ≤ sup

{ ∞∑

i=1

Ai

}

+ O

(

inf

{ ∞∑

i=1

Ai

})

.

As inf {
∑∞

i=1 Ai} ≤ sup {
∑∞

i=1 Ai} , Proposition 5.14 yields

sup

{ ∞∑

i=1

Ai

}

+ O

(

inf

{ ∞∑

i=1

Ai

})

= sup

{ ∞∑

i=1

Ai

}

.

This demonstrates our claim. �

5.29 Order Continuous Linear Operators and Functionals. Let
(P,V) and (Q,W) be locally convex complete lattice cones. We shall say
that a continuous linear operator T : P → Q is order continuous if it is
continuous with respect to order convergence, that is if

T
(

lim
i∈I

ai

)
= lim

i∈I
T (ai)

holds for every order convergent net (ai)i∈I in P. The limits refer to order
convergence in P and Q, respectively. Sums and non-negative multiples of
order continuous linear operators are again order continuous. We are partic-
ularly interested in order continuous linear functionals in P∗, that is order
continuous linear operators from P into the locally convex complete lattice
cone R. They form a subcone of P∗. For every bounded below net (ai)i∈I
in P and every order continuous linear operator T : P → Q we have

T
(

lim
i∈I

ai

)
= T

(
lim
i∈I

inf
k≥i

ak

)
= lim

i∈I
T
(

inf
k≥i

ak

)
≤ lim

i∈I
inf
k≥i

T (ak) = lim
i∈I

T (ai)

and, likewise

T
(

lim
i∈I

ai

)
= T

(
lim
i∈I

sup
k≥i

ak

)
= lim

i∈I
T
(

sup
k≥i

ak

)
≥ lim

i∈I
sup
k≥i

T (ak) = lim
i∈I

T (ai),

that is
T
(

lim
i∈I

ai

)
≤ lim

i∈I
T (ai) ≤ lim

i∈I
T (ai) ≤ T

(
lim
i∈I

ai

)
.

5.30 Lattice Homomorphisms. Let both (P,V) and (Q,W) be locally
convex ∨- (or ∧-)semilattice cones. A continuous linear operator T : P → Q
is called a ∨- (or ∧-)semilattice homomorphism if it is compatible with the
lattice operations in P and Q, that is if

T (a ∨ b) = T (a) ∨ T (b)
(
or T (a ∧ b) = T (a) ∧ T (b)

)
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holds for all a, b ∈ P. If both (P,V) and (Q,W) are locally convex lattice
cones and T : P → Q is both a ∨- and a ∧-semilattice homomorphism,
then T is called a lattice homomorphism. Non-negative multiples of lattice
homomorphism are again lattice homomorphisms, but sums are generally
not.

Linear operators that are both order continuous and lattice homomor-
phisms are of particular interest. Suppose that both (P,V) and (Q,W)
are locally convex complete lattice cones. A continuous linear operator
T : P → Q is an order continuous lattice homomorphism if and only if

T (supA) = sup T (A) and T (inf B) = inf T (B)

holds for all non-empty subsets A and bounded below subsets B of P, that
is if and only if T preserves that lattice operations of P and Q. Indeed,
supA or inf B is the limit with respect to order convergence of the net of
suprema or infima of finite subsets of A or B, respectively. Since an order
continuous lattice homomorphism T : P → Q preserves finite suprema and
infima as well as order convergence, we conclude that T preserves infinite
suprema and infima as well. Conversely, if T preserves the suprema and
infima of subsets of P, then we have

T
(

lim
i∈I

ai

)
= lim

i∈I
T (ai) and T

(
lim
i∈I

ai

)
= lim

i∈I
T (ai)

for every bounded below net (ai)i∈I in P. Thus T maps order conver-
gent nets in P into order convergent nets in Q and is therefore an order
continuous lattice homomorphism.

Examples 5.31. (a) Theorem II.6.7 in [100] states that for every neighbor-
hood v ∈ V in an M-type locally convex ∨- (or ∧-)semilattice cone (P,V)
all the extreme points of its polar v◦ ⊂ P∗ are ∨- (or ∧-)semilattice homo-
morphisms from P into R.

(b) Let (P,V) be a locally convex cone with dual P∗ and let (Q,V) be
the cone of all non-empty convex subsets of P which are closed with respect
to the lower topology

(
see Example 4.37(d)

)
. In 5.7(d) we showed that (Q,V)

is a locally convex
∨

-semilattice cone ordered by the set inclusion. There is
a natural embedding μ �→ μ̃ : P∗ → Q∗, where

μ̃(A) = sup{μ(a) | a ∈ A}
for μ ∈ P∗ and A ∈ Q. Indeed, if μ ∈ v◦ for some v ∈ V, then A ≤ B ⊕ v
for A,B ∈ Q means that for every a ∈ A and ε ≥ 0 there is b ∈ B such
that a ≤ γb + (1 + ε)v

(
see 4.37(e)

)
with some 1 ≤ γ ≤ 1 + ε. This yields

μ(a) ≤ γμ(b) + (1 + ε) ≤ γμ̃(b) + (1 + ε)

for all ε > 0, hence μ(a) ≤ μ̃(B) + 1. We infer μ̂(A) ≤ μ̃(B) + 1, and
conclude that μ̃ ∈ v◦ ⊂ Q∗. Moreover, μ̃ is a ∨-semilattice homomorphism
even with respect to arbitrary suprema in Q : Let A be a subset of Q and
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let c be an element of conv
(⋃

A∈AA
)
, the convex hull of the union of all

elements of A. Then c =
∑n

i=1 αiai for some ai ∈ Ai ∈ A and αi ≥ 0 such
that

∑n
i=1 αi = 1. Thus

μ(c) =
n∑

i=1

αiμ(ai) ≤
n∑

i=1

αiμ̃(Ai) ≤ sup
A∈A

μ̃(A).

Since the functional μ : P → R is also continuous with respect to the lower
relative topology on P, we conclude that

μ̃(supA) = sup

{

μ(a)
∣
∣
∣ a ∈ conv

( ⋃

A∈A
A
)(l)

}

= sup

{

μ(a)
∣
∣
∣ a ∈ conv

( ⋃

A∈A
A
)
}

≤ sup
A∈A

μ̃(A).

The converse inequality is obvious.
(c) Similarly one argues for the locally convex cone (Q,V) of all bounded

below convex subsets of P which are closed with respect to the upper topol-
ogy

(
see Examples 4.37(e) and 5.7(e)

)
. In this case (Q,V) is a locally convex∧

-semilattice cone, ordered by the inverse set inclusion. There is a natural
embedding μ �→ μ̃ : P∗ → Q∗, where

μ̃(A) = inf{μ(a) | a ∈ A}

for μ ∈ P∗ and A ∈ Q. As similar argument as in (b) shows that

μ̃(inf A) = inf
A∈A

μ̃(A)

holds for every bounded below family of sets A ⊂ Q.
(d) Let (P,V) be a locally convex ∨- (or ∧-)semilattice cone, X a set,

and consider the locally convex cone
(
FV̂b

(X,P), V̂
)

of P-valued functions
on X, endowed with the neighborhood system V̂ consisting of

(
V ∪ {∞}

)

-valued functions.
(
Example 1.4(e)

)
. This was seen to be again a locally

convex ∨- (or ∧-)semilattice cone, provided that for every x ∈ X and
v ∈ V there is v̂ ∈ V̂ such that v̂(x) ≤ v

(
see 5.7(c)

)
. For μ ∈ v◦ ⊂ P∗,

a neighborhood v̂ ∈ V̂ and x ∈ X such that v̂(x) ≤ v, the mapping
μx : FV̂b

(X,P) → R such that μx(f) = μ
(
f(x)

)
for all f ∈ FV̂b

(X,P) is
a continuous linear functional on FV̂b

(X,P)
(
see 2.1(f)

)
, more precisely: an

element of v̂◦. Moreover, if μ is a ∨- (or ∧-)semilattice homomorphism for
P, then μx is a semilattice homomorphism of the same type for FV̂b

(X,P).

5.32 Functionals Supporting the Separation Property. Corollary 4.34
(see also the Separation Theorem 3.2 in [175]) guarantees that in a locally con-
vex cone the neighborhoods with respect to the weak preorder are completely
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determined by their polars, that is a � b + v holds for a, b ∈ P and v ∈ V
if and only if μ(a) ≤ μ(b)+1 for all μ ∈ v◦. In this vein, for a locally convex
cone (P,V) we shall say that a subset Υ of P∗ supports the separation
property for P if for a, b ∈ P and v ∈ V such that a �� b + v there is
α ≥ 0 and μ ∈ Υ ∩ (αv◦) such that μ(a) > μ(b) + α. This property implies
in particular that the functionals in Υ determine the weak preorder of P,
that is a � b holds for a, b ∈ P if and only if μ(a) ≤ μ(b) for all μ ∈ Υ. In-
deed, the latter implies that a � b+v for all v ∈ V, which by Lemma 3.2(a)
yields a � b.

Examples 5.33. (a) In Examples 1(a) and (b), that is for P = R or P = R+
the dual cone contains all positive reals, and the set Υ = {1} supports the
separation property.

(b) If V consists of the multiples of a single neighborhood v, then we
may choose

Υ = {μ ∈ P∗ | ψv(μ) = 0 or ψv(μ) = 1},
where ψv(μ) = inf{α ≥ 0 | μ ∈ αv◦}. (In case that v ∈ P, we have
ψv(μ) = μ(v).) Indeed, if a �≤ b + (ρv) for a, b ∈ P and ρv ∈ P, then
by Corollary 4.34 there is μ ∈ (ρv)◦ = (1/ρ)v◦ such that μ(a) > μ(b) + 1.
This implies ψv(μ) ≤ 1/ρ. If ψv(μ) = 0, then μ ∈ Υ ∩ (ρv)◦ as required.
Otherwise, we set α = 1/ψv(μ) > 0 and ν = αμ ∈ Υ and observe that both
ν ∈ α(ρv)◦ and ν(a) > ν(b) + α, again satisfying the requirement.

If in addition all elements of P are bounded, that is for example, if P is
normed vector space, then according to Corollary 4.35 we may further reduce
the size of Υ and choose

Υ = Ex(v◦),

that is the set of all extreme points of the w(P∗,P)-compact convex set v◦.(
Obviously, ψv(μ) = 1 holds for every μ ∈ Ex(v◦).

)

(c) More generally, a locally convex cone (P,V) is said to be tightly
covered by its bounded elements

(
see II.2.13 in [100]

)
if for all a, b ∈ P and

v ∈ V such that a �� b + v there is some bounded element a′ ∈ P such that
a′ � a and a′ �� b + v. In this case, if V0 is a subcollection of V such that
every v ∈ V is a multiple of some v0 ∈ V0, then according to Corollary II.4.7
in [100] the set

Υ =
⋃

v0∈V0

Ex(v◦0)

supports the separation property for P.
(d) Let (P,V) be a locally convex cone with dual P∗ and let (Q,V) be

the cone of all non-empty convex subsets of P which are closed with respect
to the lower topology

(
see Example 4.37(d)

)
. For every μ ∈ P∗ the formula

μ̃(A) = sup{μ(a) | a ∈ A} for A ∈ Q
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defines an element μ̃ ∈ Q∗, more precisely, μ̃ ∈ v◦ whenever μ ∈ v◦ (see
Example 5.31(b) before). Now Theorem 4.33 guarantees that the set

Υ = {μ̃ | μ ∈ P∗} ⊂ Q∗

supports the separation property for Q. Indeed, if A � B⊕ v for A,B ∈ Q
and v ∈ V, then there is a ∈ A such that a �∈ v

(
B
) (

see 4.37(d)
)
. Following

Theorem 4.33(a) then there is μ ∈ v◦, hence μ̃ ∈ v◦ such that

μ(a) > sup{μ(b) | b ∈ B}+ 1 = μ̃(B) + 1.

Thus μ̃(A) = sup{μ(a) | a ∈ A} > μ̃(B) + 1.
(e) Similarly, if (Q,V) is the locally convex cone of all bounded below

convex subsets of P which are closed with respect to the upper topology(
see Example 4.37(e)

)
, then for every μ ∈ P∗ the formula

μ̃(A) = inf{μ(a) | a ∈ A} for A ∈ Q

defines an element μ̃ ∈ Q∗, more precisely, μ̃ ∈ v◦ whenever μ ∈ v◦(
see 5.31(c)

)
. Then

Υ = {μ̃ | μ ∈ P∗} ⊂ Q∗

supports the separation property for Q. Indeed, if A � B⊕ v for A,B ∈ Q
and v ∈ V, then there is b ∈ B such that b �∈

(
A
)
v
(
see 4.37(e)

)
. Following

Theorem 4.33(b) then there is μ ∈ v◦, hence μ̃ ∈ v◦ such that μ(b) <
inf{μ(b) | b ∈ B}−1 = μ̃(A)−1. Thus μ̃(B) = inf{μ(b) | b ∈ B} < μ̃(A)−1,
that is μ̃(A) > μ̃(B) + 1.

(f) Let (P,V) be a locally convex cone, X a set, and consider the lo-
cally convex cone

(
FV̂b

(X,P), V̂
)

of P-valued functions on X, where the
neighborhood system V̂ is generated by a family of

(
V ∪ {∞}

)
-valued func-

tions on X as elaborated in Example 1.4(e). For every μ ∈ v◦ ⊂ P∗ for
v ∈ V, and x ∈ X such that v̂(x) ≤ v for v̂ ∈ V̂, the formula

μx(f) = μ
(
f(x)

)
for f ∈ FV̂b

(X,P)

defines a continuous linear functional on FV̂b
(X,P)

(
see 2.1(f)

)
, more pre-

cisely: We have μx ∈ v̂◦. Let us denote by X0 the subset of all x ∈ X such
that v̂(x) �= ∞ for at least one v̂ ∈ V̂. If Υ ⊂ P∗ supports the separation
property for P, then

Υ̂ = {μx | μ ∈ Υ, x ∈ X0} ⊂ FV̂b
(X,P)∗

supports the separation property for FV̂b
(X,P). Indeed, if f � g + v̂ for

f, g ∈ FV̂b
(X,P) and v̂ ∈ V̂, then there is x ∈ X such that f(x) �≤ g(x) +

v̂(x). This implies v̂(x) �= ∞, hence v = v̂(x) ∈ V. Following our assump-
tion there is α ≥ 0 and μ ∈ Υ ∩ (αv◦) such that μ

(
f(x)

)
> μ

(
g(x)

)
+ α.
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We therefore have μx ∈ Υ̂ ∩ (αv̂◦) and μx(f) > μx(g) + α, as required. In
case that P = R or P = R+ we may choose Υ = {1}

(
see 5.33(a)

)
. Then Υ̂

consists of all point evaluations at the points x ∈ X such that v̂(x) < +∞
for at least one of the R+-valued neighborhood functions v̂ ∈ V̂.

The presence of suitable subsets of P∗ supporting the separation prop-
erty permits a strengthening of certain statements for the general case. The
following Propositions 5.34 and 5.35 will improve on Proposition 5.15(b) and
Propositions 5.25(b) and 5.28(b) under these circumstances. Recall that a
subset A of an ordered cone P is said to be directed upward (or downward)
if for a, b ∈ A there is c ∈ A such that both a ≤ c and b ≤ c (or c ≤ a
and c ≤ b.)

Proposition 5.34. Let (P,V) be a locally convex complete lattice cone, and
suppose that the order continuous lattice homomorphisms support the sepa-
ration property for P. Then

(a) sup(A ∧B) = supA ∧ supB for non-empty subsets A,B of P.

(b) lim
i∈I

(ai ∧ bi) =
(

lim
i∈I

ai

)
∧
(

lim
i∈I

bi

)

for convergent nets (ai)i∈I and (bi)i∈I in P.

Proof. Let Υ be the subset of all order continuous lattice homomorphisms in
P∗ and suppose that Υ supports the separation property for P. For Part (a),
let A,B be non-empty subsets of P. In Proposition 5.15(b) we already
demonstrated sup(A ∧ B) ≤ supA ∧ supB. For the converse inequality, it
suffices to verify that

μ(sup A ∧ supB) ≤ μ
(
sup(A ∧B)

)

holds for all μ ∈ Υ (see 5.32). For this, let μ ∈ Υ. Then

μ(supA ∧ supB) = μ(sup A) ∧ μ(sup B) = sup
(
μ(A)

)
∧ sup

(
μ(B)

)
,

since μ is an order continuous lattice homomorphism. We may assume that
μ(sup A) ≤ μ(sup B). Then for every a ∈ A and ε > 0 there is b ∈ B such
that μ(a) ≤ μ(b) + ε. Thus also μ(a) ≤ μ(a ∧ b) + ε. This shows

sup
(
μ(A)

)
∧ sup

(
μ(B)

)
= sup

(
μ(A)

)
≤ μ

(
sup(A ∧B)

)
+ ε

and verifies our claim.
For Part (b), let (ai)i∈I and (bi)i∈I be convergent nets in P. In the light

of 5.25(b) and our assumption on Υ it suffices to verify that

μ

((
lim
i∈I

ai

)
∧
(

lim
i∈I

bi

))
≤ μ

(
lim
i∈I

(ai ∧ bi)
)

,
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that is (
lim
i∈I

μ(ai)
)
∧
(

lim
i∈I

μ(bi)
)
≤ lim

i∈I

(
μ(ai) ∧ μ(bi)

)

holds for all μ ∈ Υ. For this, given a functional μ ∈ Υ, we may assume that
limi∈I μ(ai) ≤ limi∈I μ(bi). Then for every ε > 0 there is i0 ∈ I such that
μ(ai) ≤ μ(bi)+ ε for all i ≥ i0. This implies μ(ai) ≤ μ(ai)∧μ(bi)+ ε. Thus
limi∈I μ(ai) ≤ limi∈I

(
μ(ai) ∧ μ(bi)

)
+ ε. This yields our claim. �

Proposition 5.35. Let (P,V) be a locally convex complete lattice cone. If
the order continuous lattice homomorphisms (or the order continuous linear
functionals) support the separation property for P, then

∞∑

i=1

inf Ai = inf

{ ∞∑

i=1

Ai

}

for every convergent series
∑∞

i=1 Ai of non-empty (or non-empty directed
downward) subsets of P.

Proof. Let Υ be the subset of all order continuous lattice homomorphisms
(or order continuous linear functionals) in P∗ and suppose that Υ supports
the separation property for P. In the second case we assume in addition that
the sets Ai ⊂ P are directed downward. Thus, in each of the cases for Υ we
have

μ
(
inf Ai

)
= inf {μ(Ai)}

for all i ∈ N and μ ∈ Υ. The order continuity of the functionals μ then
yields

μ

( ∞∑

i=1

inf Ai

)

=
∞∑

i=1

μ
(
inf Ai

)
=

∞∑

i=1

inf
{
μ(Ai)

}
.

Likewise, since the sets
∑∞

i=1 Ai are seen to be directed downward in the
second case for Υ, we have

μ

(

inf

{ ∞∑

i=1

Ai

})

= inf

{

μ

( ∞∑

i=1

ai

)∣∣
∣
∣
∣

ai ∈ Ai

}

= inf

{ ∞∑

i=1

μ(ai)

∣
∣
∣
∣
∣

ai ∈ Ai

}

.

Given μ ∈ Υ we choose ai ∈ Ai such that μ(ai) ≤ inf {μ(Ai)}+ 2−i. Then

inf

{ ∞∑

i=1

μ(ai)

∣
∣
∣
∣
∣

ai ∈ Ai

}

≤
∞∑

i=1

μ(ai) ≤
∞∑

i=1

inf {μ(Ai)}+ 1,
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hence

μ

(

inf

{ ∞∑

i=1

Ai

})

≤ μ

( ∞∑

i=1

inf Ai

)

+ 1.

Because Υ supports the separation property for P, this shows

inf

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

inf Ai + v

for all v ∈ V, hence

inf

{ ∞∑

i=1

Ai

}

≤
∞∑

i=1

inf Ai ,

since P carries its weak preorder. The reverse inequality was established in
Proposition 5.28(b). �

We shall say that a subcone N of P is a locally convex lattice subcone
of (P,V) if a ∨ b ∈ N and a ∧ b ∈ N whenever a, b ∈ N . Likewise, N
is a locally convex complete lattice subcone of (P,V) if supA ∈ N and
inf B ∈ N whenever A,B ⊂ N , A is not empty and B is bounded below.
The suprema and infima are taken in P.

A family A of subsets of P will be called sup-bounded below if the set
{sup A | A ∈ A} is bounded below in P. This implies in particular that
∅ �∈ A and that inf{sup A | A ∈ A} exists in P.

Proposition 5.36. Let (P,V) be a locally convex complete lattice cone, and
suppose that the order continuous lattice homomorphisms support the separa-
tion property for P. Let N be a subcone of P. The smallest locally convex
complete lattice subcone of P that contains N consists of all elements a ∈ P
which can be expressed in the following way:

a = inf{sup A | A ∈ A},

where A is a sup-bounded below family of subsets of N .

Proof. Let (P,V) be a locally convex complete lattice cone. Corresponding
to a sup-bounded below family A of non-empty subsets of P let us define
the element aA ∈ P by

aA = inf{sup A | A ∈ A}.
For families A and B of this type and α ≥ 0 we denote αA = {αA | A ∈ A}
and A + B = {A + B | A ∈ A, B ∈ B}. It is evident from Lemmas 5.5
and 5.6 that these are again sup-bounded below families of subsets of P. We
also use 5.5 and 5.6 for the following observations:

(i) αaA = α inf{supA | A ∈ A} = inf{supαA | A ∈ A} = aαA.
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(ii) aA + aB = inf
{

supA | A ∈ A
}

+ inf
{

supB | B ∈ B
}

= inf
{

supA + supB | A ∈ A, B ∈ B
}

= inf
{

sup(A + B) | A ∈ A, B ∈ B
}

= inf
{

supC | C ∈ (A + B)
}

= a(A+B).

Let {Ai}i∈I be a collection of sup-bounded families Ai of subsets of P.
In a first instance, suppose that this collection is not empty, and let A =
{∪i∈IAi | (Ai)i∈I ∈

∏
i∈I Ai}, that is the elements A of A are all unions of

the type A = ∪i∈IAi, where Ai ∈ Ai. (The Axiom of Choice is required for
this construction.) This family A is also sup-bounded below. Indeed, given
v ∈ V and a fixed k ∈ I there is λ ≥ 0 such that 0 ≤ supAk + λv for all
Ak ∈ Ak. Thus for every A ∈ A we have Ak ⊂ A for some Ak ∈ Ak, hence
0 ≤ sup Ak + λv ≤ supA + λv. We claim that

(iii) sup
i∈I

aAi
= sup

i∈I
inf{sup Ai | Ai ∈ Ai} = inf{supA | A ∈ A} = aA.

Indeed, for every fixed i ∈ I and every A ∈ A there is some Ai ∈ Ai such
that Ai ⊂ A. This shows inf{sup Ai | Ai ∈ Ai} ≤ supA for all A ∈ A,
hence inf{supAi | Ai ∈ Ai} ≤ inf{supA | A ∈ A} holds for all i ∈ I. This
yields

sup
i∈I

inf{sup Ai | Ai ∈ Ai} ≤ inf{supA | A ∈ A}.

For the converse inequality we will have to use the fact that the lattice opera-
tions are formed in a locally convex complete lattice cone for which the order
continuous lattice homomorphisms support the separation property, that is
it suffices to verify that

μ
(
inf{sup A | A ∈ A}

)
≤ μ

(
sup
i∈I

inf{supAi | Ai ∈ Ai}
)

holds for every order continuous lattice homomorphism μ ∈ P∗. For this
assume to the contrary that there is

ρ < μ
(
inf{sup A | A ∈ A}

)
= inf{supμ(A) | A ∈ A},

and that

μ
(
sup
i∈I

inf{sup Ai | Ai ∈ Ai}
)

= sup
i∈I

inf{supμ(Ai) | Ai ∈ Ai} < ρ

holds for some order continuous lattice homomorphism μ ∈ P∗. This means
inf{supμ(Ai) | Ai ∈ Ai} < ρ for all i ∈ I, hence sup μ(Ai) < ρ for some
Ai ∈ Ai. We use these sets Ai for A = ∪i∈IAi ∈ A. We have supμ(A) =
sup{μ(Ai) | i ∈ I} ≤ ρ, contradicting the assumption that ρ < supμ(A)
holds for all A ∈ A. This yields our claim.

In a second instance, suppose that the set {aAi
}i∈I is bounded below in P.

Then the family A = ∪i∈IAi is also sup-bounded below. Indeed, given v ∈ V
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there is λ ≥ 0 such that 0 ≤ aAi
+ λv for all i ∈ I. Thus for every A ∈ A

we have A ∈ Ai for some i ∈ I and therefore 0 ≤ aAi
+ λv ≤ supA + λv.

Now we infer that

(iv) inf
i∈I

aAi
= inf

i∈I

{
inf{supAi | Ai ∈ Ai}

}

= inf
{

supA | A ∈ ∪i∈IAi

}

= aA

Now let N be a subcone of P and denote by N̂ the subset of P consist-
ing of all elements aA, where A is an sup-bounded below family of subsets
of N . The preceding arguments (i) to (iv) yield that N̂ is a locally convex
lattice subcone of P. Since aA = a for every a ∈ N with A =

{
{a}

}
, we

have N ⊂ N̂ . On the other hand, every locally convex lattice subcone of P
that contains N , necessarily contains also all elements aA ∈ P of this type.
Thus N̂ is indeed the smallest locally convex complete lattice subcone of P
that contains N . �

For the following recall the notations from Example 1.4(e). We observed
before that

(
FV̂b

(X, R), V̂
)

is a locally convex complete lattice cone for any
choice of the set X and the neighborhood system V̂, provided that for every
x ∈ X there is v̂ ∈ V̂ such that v̂(x) < +∞

(
see 5.7(c)

)
. The point evalua-

tions at the points x ∈ X are order continuous lattice homomorphisms and
according to Example 5.33(f) support the separation property for FV̂b

(X, R).
Thus for every locally convex complete lattice subcone of

(
FV̂b

(X, R), V̂
)

the
order continuous lattice homomorphisms support the separation property. For
an inverse implication recall the definition of an embedding in 2.2:

Proposition 5.37. Let (P,V) be a locally convex complete lattice cone. If
the set Υ of all order continuous lattice homomorphisms in P∗ supports
the separation property, then (P,V) can be embedded into the locally convex
complete lattice of

(
FV̂b

(Υ, R), V̂
)
, endowed with a suitable system V̂ of R+

-valued neighborhood functions. This embedding is one-to-one and preserves
the lattice operations.

Proof. Let Υ be the set of order continuous lattice homomorphisms in P∗.
Recall that αμ ∈ Υ whenever μ ∈ Υ and α ≥ 0. With every element a ∈ P
we associate the function ϕa : Υ → R such that

ϕa(μ) = μ(a) for all μ ∈ Υ.

The mapping Φ : P → F(Υ, R) such that Φ(a) = ϕa for all a ∈ P is
obviously linear, monotone, and since P carries the weak preorder which is
supposed to be antisymmetric, Φ is also one-to one. Since the elements of
Υ are all order continuous lattice homomorphisms in P∗, for every subset
A of P and μ ∈ Υ we have
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μ(sup A) = sup{μ(a) | a ∈ A} = sup{ϕa(μ) | a ∈ A} =
(
supϕa

)
(μ).

Thus Φ(sup A) = sup Φ(A). Likewise, we have Φ(inf B) = inf Φ(B) for
every bounded below subset B of P. Recall that the lattice operations are
carried out pointwise in F(Υ, R.) Corresponding to the neighborhoods v ∈ V
we consider the R-valued functions ψv on Υ such that

ψv(μ) = inf{α > 0 | μ ∈ αv◦}

for all μ ∈ P∗. As usual, we set inf ∅ = +∞, but observe that for every
μ ∈ Υ there is v ∈ V such that ψv(μ) < +∞. Note that ψv = ϕv in
case that v ∈ P. We also note that the family of all functions ψv for
v ∈ V is not necessarily closed for the pointwise addition of its functions.
For this reason we refer to the last remark in Example 1.4(e) relating to the
construction of a locally convex cone of cone-valued functions. For F(Υ, R)
we use the abstract neighborhood system V̂ = {v̂ | v ∈ V} with the addition
⊕ and multiplication by scalars carried over by the corresponding operations
in V, that is û ⊕ v̂ = û + v and αv̂ = α̂v for u, v ∈ V and α > 0.
The neighborhood system V̂ corresponds to the family {ψv | v ∈ V} of
R+-valued neighborhood functions which define the neighborhoods v̂ ∈ V̂
for F(Υ, R) by

f ≤ g + v̂ if f(μ) ≤ g(μ) + ψv(μ) for all μ ∈ Υ

(
see 1.4(e)

)
for functions f, g ∈ F(Υ, R). As required, we have ψ(αv) = αψv

and ψ(u+v) ≥ ψu + ψv for all u, v ∈ V and α > 0. The first of these claims
is obvious. For the second one, let μ ∈ Υ and let σ < ψu(μ) and ρ < ψv(μ).
Since both μ �∈ σu◦ and μ �∈ ρv◦, there are a, b, c, d ∈ P such that a ≤ b+u
and μ(a) > μ(b) + σ as well as c ≤ d + v and μ(c) > μ(d) + σ. Then from
(a+c) ≤ (b+d)+(u+w) and μ(a+c) > μ(b+d)+(σ+ρ) we conclude that
μ �∈ (σ + ρ)(u + v)◦. This shows ψ(u+v)(μ) ≥ (σ + ρ), yielding our claim.
Thus

(
FV̂b

(Υ, R), V̂
)

is a locally convex lattice cone in the sense of 1.4(e).
Moreover, since ψv(μ) < +∞ holds for all μ ∈ P∗ with some v̂ ∈ V̂, we
established in Example 5.7 that

(
FV̂b

(P∗, R), V̂
)

is indeed a locally convex
complete lattice cone. We claim that Φ(P) is contained in

(
FV̂b

(Υ, R), V̂
)

and that
a ≤ b + v if and only if Φ(a) ≤ Φ(b) + v̂

holds for a, b ∈ P and v ∈ V. Indeed, suppose that a ≤ b + v. Then for
every μ ∈ Υ and α > 0 such that μ ∈ αv◦ we have μ(a) ≤ μ(b) + α,
that is ϕa(μ) ≤ ϕb(μ) + ψv(μ), hence Φ(a) ≤ Φ(b) + ψv. Conversely, if
a �≤ b + v, then following our assumption that Υ supports the separation
property, there is μ ∈ v◦ ∩ Υ such that μ(a) > μ(b) + 1. The former implies
ψv(μ) ≤ 1, hence ϕa(μ) > ϕb(μ) + ψv(μ) and therefore Φ(a) � Φ(b) + ψv.
We infer in particular that the functions Φ(a) ∈ F(Υ, R) are bounded below
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relative to the neighborhoods in V̂. Indeed, given a ∈ P and v ∈ V there
is λ ≥ 0 such that 0 ≤ a+λv, hence 0 ≤ Φ(a)+λv̂. Therefore the element
Φ(a) is contained in FV̂b

(Υ, R) as claimed.
Finally we establish that the linear operator Φ : P → FV̂b

(Υ, R) is an
embedding in the sense of 2.2 of the locally convex complete lattice cone
(P,V) into

(
FV̂b

(Υ, R), V̂
)
. Indeed, we set Φ(v) = v̂ for v ∈ V towards the

extension
Φ : (P ∪ V) :→

(
FV̂b

(Υ, R) ∪ V̂
)
.

Then Φ(V) = V̂, and by the above a ≤ b+v holds for a, b ∈ P and v ∈ V if
and only if Φ(a) ≤ Φ(b)+Φ(v), as required in 2.2. Moreover, since the (weak
pre-)order of the locally convex complete lattice cone P is antisymmetric,
its symmetric topology is Hausdorff by Proposition 4.8. Lemma 2.3 therefore
yields that the operator Φ : P → FV̂b

(Υ, R) is one-to-one, as claimed. �
We shall demonstrate in 5.57 below that every locally convex cone (P,V)

can be canonically embedded into a locally convex complete lattice cone for
which the set of order continuous lattice homomorphisms in P∗ supports the
separation property.

5.38 Almost Order Convergent Nets. The concept of order convergence
can in some cases be meaningfully extended to nets that are not necessarily
bounded below. We shall say that a net (ai)i∈I in a locally convex complete
lattice cone (P,V) is almost order convergent towards a ∈ P if for every
k ∈ I the net (ai ∨ ak)i∈I is order convergent and if

lim
k∈I

(
lim
i∈I

(ai ∨ ak)
)

= a.

The net (ai ∨ ak)i∈I is of course bounded below for any choice of k ∈ I.
Indeed, given v ∈ V there is λ ≥ 0 such that 0 ≤ ak + λv ≤ (ai ∨ ak) + λv
for all i ∈ I.

Lemma 5.39. Let (P,V) be a locally convex complete lattice cone. A
bounded below net (ai)i∈I in P is order convergent if and only if it is almost
order convergent with the same limit.

Proof. Let (ai)i∈I be a bounded below net in P. If (ai)i∈I is order conver-
gent and limi∈I ai = a, then

lim
i∈I

(ai ∨ ak) =
(
lim
i∈I

ai

)
∨ ak = a ∨ ak

for all k ∈ I by Proposition 5.25(a). Therefore

lim
k∈I

(
lim
i∈I

(ai ∨ ak)
)

= lim
k∈I

(a ∨ ak) = a ∨
(
lim
k∈I

ak

)
= a

again by 5.25(a), and we infer that (ai)i∈I is almost order convergent towards
a. On the other hand, for every b ∈ P we have
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lim
i∈I

(ai ∨ b) = sup
i∈I

(
inf
j≥i

(aj ∨ b)
)

= sup
i∈I

((
inf
j≥i

aj

)
∨ b)

)

=
(

sup
i∈I

(
inf
j≥i

aj

))
∨ b =

(
lim
i∈I

ai

)
∨ b

by Proposition 5.15 and Lemma 5.5. Similarly one realizes that

lim
i∈I

(ai ∨ ak) = inf
i∈I

(
sup
j≥i

(aj ∨ b)
)

= inf
i∈I

((
sup
j≥i

aj

)
∨ b)

)

=
(

inf
i∈I

(
sup
j≥i

aj

))
∨ b =

(
lim
i∈I

ai

)
∨ b

If the net (ai)i∈I is almost order convergent towards a ∈ P, this yields

lim
i∈I

(ai ∨ ak) =
(

lim
i∈I

ai

)
∨ ak =

(
lim
i∈I

ai

)
∨ ak

for all k ∈ I. Thus, again using the above

a = lim
k∈I

(
lim
i∈I

(ai ∨ ak)
)

= lim
k∈I

((
lim
i∈I

ai

)
∨ ak

)

=
(

lim
i∈I

ai

)
∨
(

lim
k∈I

ak

)
=
(

lim
i∈I

ai

)
,

as well as

a = lim
k∈I

(
lim
i∈I

(ai ∨ ak)
)

= lim
k∈I

((
lim
i∈I

ai

)
∨ ak

)

=
(

lim
i∈I

ai

)
∨
(

lim
k∈I

ak

)
=
(

lim
i∈I

ai

)
.

This yields limi∈I ai = a. �

Examples 5.40. Let P be the cone of all bounded below R-valued func-
tions on [0,+∞), endowed with the pointwise operations and order, and
the positive constant functions v > 0 as its neighborhood system V

(
see

Example 1.4(e)
)
. (P,V) is a locally convex complete lattice cone, and order

convergence in P implies pointwise convergence on [0,+∞) for the func-
tions involved. Pointwise convergence, on the other hand does not require
that a net in P is bounded below and therefore does not always imply order
convergence. Let us illustrate this in a simple example: For n ∈ N let fn ∈ P
such that fn(x) = −n for 0 < x ≤ 1/n, and fn(x) = 0 else. The sequence
(fn)n∈N converges pointwise to 0 ∈ P, but it is not bounded below in P
and therefore not order convergent. However, for every m ∈ N the sequence
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(fn ∨ fm)n∈N is bounded below and converges pointwise, hence in order to-
wards 0 ∈ P. We infer that (fn)n∈N is almost order convergent towards
0 ∈ P. In fact, it can be easily verified that pointwise convergence coincides
with almost order convergence in this example (see Proposition 5.51 below).

We proceed probing different patterns of convergence in a locally convex
complete lattice cone (P,V). For a net (ai)i∈I in P, convergence with
respect to the symmetric relative topology of P towards a ∈ P means that
for every v ∈ V and ε > 0 there is i0 ∈ I such that ai ∈ vs

ε(a) for all
i ≥ i0. (ai)i∈I is a Cauchy net if for every v ∈ V and ε > 0 there is i0 ∈ I
such that ai ∈ vε(ak) for all i, k ≥ i0. Obviously, convergence implies that
(ai)i∈I is a Cauchy net. The converse, that is topological completeness holds
also true:

Proposition 5.41. Every locally convex complete lattice cone is complete
with respect to the symmetric relative topology.

Proof. Suppose that (ai)i∈I is a Cauchy net in P. We shall first demonstrate
that (ai)i∈I is order convergent. Let v ∈ V and 0 < ε ≤ 1. There is i0 ∈ I
such that ai ∈ vε(ak) for all i, k ≥ i0. Choose λ ≥ 0 such that 0 ≤ ai0 +λv.
Following Lemma 4.1(b) and (c) this implies

ai ≤ (1 + ε)ai0 + ε(1 + λ)v and ai0 ≤ (1 + ε)ai + ε(2 + λ)v

for all i ≥ i0. This shows in particular that (ai)i∈I is bounded below and
also that

ai ≤ (1 + ε)2ak + 3ε(2 + λ)v

for all i, k ≥ i0. This shows

lim
i∈I

ai ≤ (1 + ε)2 lim
k∈I

ak + 3ε(2 + λ)v.

As this holds for all v ∈ V and 0 < ε ≤ 1, and as P carries the weak
preorder which is supposed to be antisymmetric, we infer that limi∈I ai =
limk∈I ak, hence order convergence towards an element a ∈ P. Moreover,
the above shows that

ai ≤ (1 + ε2)a + 3ε(2 + λ)v and a ≤ (1 + ε2)ai + 3ε(2 + λ)v

holds for all i ≥ i0. Thus the net (ai)i∈I converges to a in the symmetric
relative topology as well. �

In fact, we just verified that every Cauchy net, hence every convergent net
in the symmetric relative topology of (P,V) is indeed order convergent with
the same limit. We shall formulate this as a separate proposition:

Proposition 5.42. Let (P,V) be a locally convex complete lattice cone.
Convergence of a net (ai)i∈I in P towards a ∈ P in the symmetric relative
topology implies order convergence towards a.
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While convergence in the symmetric relative topology implies order con-
vergence, the converse is not necessarily true, as a simple example can show:
In the locally convex complete lattice cone R order convergence means con-
vergence in the usual (one-point compactification) topology of R which for
the element +∞ does not coincide with the symmetric relative topology of
R. The sequence (n)n∈N, for example, is order convergent towards +∞ ∈ R,
but does not converge in the symmetric relative topology, as +∞ is an iso-
lated point in this topology.

5.43 Order Topology. While order convergence in a locally convex com-
plete lattice cone (P,V) does not necessarily correspond to a topology on
P in the sense that order and topological convergence for nets coincide (see
1.1.9 in [132]), there is a finest topology O(P) on P with the following
properties:

(OT1) Every very element of P admits a basis of both convex and order
convex neighborhoods. The neighborhoods in the basis for 0 ∈ P are
also balanced.

(OT2) The mappings (a, b) �→ a+ b, (a, b) �→ a∨ b and (a, b) �→ a∧ b from
P2 into P are continuous.

(OT3) The mapping (α, a) �→ αa : [0,+∞) × P → P is continuous at all
points (α, a) ∈ [0,+∞) × P such that either α > 0 or a ∈ P is
bounded.

(OT4) All almost order convergent nets in P are topologically convergent
with the same limit.

Indeed, let T be the family of all topologies on P with these properties.
These topologies need not be Hausdorff. Therefore T is not empty as it
contains the discrete topology. Let O(P) be the supremum of this family in
the lattice of topologies on P. A neighborhood basis in O(P) for a point
a ∈ P is generated by the intersections of finitely many neighborhoods for
a taken from topologies in T. This shows that O(P) again satisfies (OT1)
to (OT4), hence is the finest topology with these properties. We shall call
O(P) the (strong) order topology on P. Note that O(P) is not necessarily
a locally convex cone topology. For P = R, for example, the order topology
is the usual topology of R where +∞ is not an isolated point.

In Proposition 4.2 we verified that the symmetric relative topology of P
satisfies (OT1), (OT2) and (OT3), however it does not meet (OT4) in general.

Proposition 5.44. Let (P,V) be a locally convex complete lattice cone. The
order topology O(P) on P is coarser than the symmetric relative topology.

Proof. We observed in Proposition 5.42 that convergence for a net in the
symmetric relative topology implies order convergence, hence convergence
in O(P). Since the closure in any topology of a given subset A of P can
be described as the set of all limit points of convergent nets in this subset,
Proposition 5.42 implies that the closure of A with respect to the symmetric
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relative topology is contained in the closure of A with respect to O(P). We
infer that O(P) is generally coarser than the symmetric relative topology. �

Lemma 5.45. Let (P,V) be a locally convex complete lattice cone and let
P0 be the subcone of all invertible elements of P. The mapping (α, a) �→
αa : R× P0 → P0 is continuous with respect to the order topology O(P).

Proof. We shall make this argument in several short steps: First suppose
that ai → 0 for ai ∈ P0 in any topology satisfying (OT1) to (OT4). Given
a neighborhood U in the basis for 0 there is i0 such that ai ∈ U for all
i ≥ i0. This implies −ai ∈ U as well since U is supposed to be balanced by
(OT1). Thus (−ai) → 0. Next suppose that ai → a for ai, a ∈ P0. Then(
ai + (−a)

)
→ 0 by (OT2), hence

(
(−ai) + a

)
→ 0 by the preceding step,

and (−ai) → (−a) by (OT2). In a third step, suppose that αi → α ∈ R for
0 ≤ αi ∈ R and ai → a for ai, a ∈ P0. Then αiai → αa by (OT3) since
every invertible element is bounded. Now in the fourth and final step of our
argument, let αi → α in R and ai → a for ai, a ∈ P0. Let βi = αi ∨ 0
and γi = −(αi ∧ 0). Then βi, γi ≥ 0 and αi = βi − γi. We have βiai → βa
and γi(−ai) → γ(−a), where β = α ∨ 0 and γ = −(α ∧ 0), by the second
and third steps of our argument. Thus

αiai = βiai + γi(−ai) → βa + γ(−a) = αa,

again by (OT2), as claimed. �

Proposition 5.46. Let (P,V) and (Q,W) be a locally convex complete lat-
tice cones. An order continuous lattice homomorphism T : P → Q is also
continuous with respect to the respective order topologies O(P) and O(Q).

Proof. Let T : P → Q be an order continuous lattice homomorphism, con-
sider the order topology O(Q) on Q and let τ be the initial topology
induced on P by T, that is τ is the coarsest topology on P for which the
mapping T : P → Q is continuous. The sets in τ then are just the inverse
images under T of the sets in O(Q). It is straightforward to verify that τ
satisfies the requirements (OT1) to (OT4): For a ∈ P the element T (a) ∈ Q
admits a basis of neighborhoods in O(Q) satisfying (OT1). Their inverse
images under T have the same properties and form a neighborhood basis for
a in τ. Next suppose that ai → a and bi → b in τ. Then T (ai) → T (a)
and T (bi) → T (b) in O(Q). Thus T (ai) + T (bi) → T (a) + T (b) = T (a + b)
since O(Q) satisfies (OT2). Because every neighborhood of a + b in τ is
the inverse image under T of a neighborhood of T (a + b), this shows that
(ai +bi) → (a+b) in τ. Similarly one verifies the continuity of the mappings
(a, b) �→ a∨ b, (a, b) �→ a∧ b and (α, a) �→ αa with respect to τ. For (OT4)
let (ai)i∈I be an almost order convergent net in P with limit a ∈ P. Then

T (a) = T

(
lim
k∈I

(
lim
i∈I

(ai ∨ ak)
))

= lim
k∈I

(
lim
i∈I

(
T (ai) ∨ T (ak)

))
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since T is an order continuous lattice homomorphism. The net
(
T (ai)

)
i∈I is

therefore almost order convergent with limit T (a) in Q. As O(Q) satisfies
(OT4), this implies T (ai) → T (a) in O(Q), and therefore ai → a in τ,
since the neighborhoods of a in τ are inverse images under T of neighbor-
hoods of T (a) in O(Q). Summarizing, we have verified that the topology τ
on P satisfies conditions (OT1) to (OT4) and is therefore coarser then the
order topology O(P). Hence the operator T : P → Q is also continuous if
we endow P with O(P). �

Proposition 5.47. Let (P,V) be a locally convex complete lattice cone and
let N be a subcone of P. Then the closure N of N with respect to O(P) is
again a subcone of P. If N is a lattice subcone of P, then N is a complete
lattice subcone of P.

Proof. The first part of the claim follows directly from (OT2) and (OT3).
For the second part suppose that N is a lattice subcone of P and let
a, b ∈ N . There are nets (ai)i∈I and (bj)j∈J in N converging in the order
topology towards a and b, respectively. Then the net (ai ∨ bj)(i,j)∈I×J in
N converges to a ∨ b by (OT3). Thus a ∨ b ∈ N . Similarly one shows
that a ∧ b ∈ N , hence N is also a lattice subcone of P. Now let A be a
non-empty subset of N . For every finite subset i = {a1, . . . , an} of A set
ai = a1 ∨ . . . ∨ an ∈ N . Then supA = limi∈I ai, where I is the collection
of all finite subsets of A , ordered by set inclusion. This shows supA ∈ N
by (OT4). Similarly one shows that inf B ∈ N whenever B is a bounded
below subset of N . Thus N is indeed a complete lattice subcone of P. �

Proposition 5.48. Let (P,V) be a locally convex complete lattice cone and
let N be a complete lattice subcone of P. The restriction of O(P) to N is
coarser than the order topology O(N ) of N .

Proof. This follows from the easily verifiable fact that the restriction of
O(P) to the complete lattice subcone N satisfies the requirements (OT1)
to (OT4). �

5.49 Weak Order Convergence. Weak order convergence for a net
(ai)i∈I in a locally convex complete lattice cone (P,V) means that

(
μ(ai)

)
i∈I

converges towards μ(a) in R (with respect to order convergence) for every
order continuous lattice homomorphism μ ∈ P∗. This notion of convergence
results from the weak order topology o(P,P∗) on P which is generated by
the (both convex and order convex) neighborhoods

Vo
Υ (a) =

{

b ∈ P
∣
∣
∣
∣
∣
|μi(b)− μi(a)|≤ 1 , if μi(a) < +∞

μi(b)≥ 1 , if μi(a) = +∞

}

,

for an element a ∈ P, corresponding to a finite set Υ = {μ1, . . . , μn} of order
continuous lattice homomorphisms in P∗. Like the order topology O(P),
this is in general not a locally convex cone topology.
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Proposition 5.50. Let (P,V) be a locally convex complete lattice cone. The
weak order topology o(P,P∗) on P is coarser than the order topology O(P)
and also coarser than the weak topology σ(P,P∗).

Proof. Requirements (OT1) to (OT4) from 5.40 are readily checked for the
weak order topology: (OT1) and the first part of (OT2) are self evident.
The second part of (OT2) follows from the easily verified fact that μ(a′ ∨
b′) ≤ μ(a ∨ b) + 1 holds whenever μ(a′) ≤ μ(a) + 1 and μ(b′) ≤ μ(b) + 1
for elements a, a′, b, b′ ∈ P and an order continuous lattice homomorphism
μ ∈ P∗. Similarly one argues for the third part of (OT2). For (OT4) let
(ai)i∈I be an almost order convergent net in P with limit a ∈ P. Then

μ(a) = μ

(
lim
k∈I

(
lim
i∈I

(ai ∨ ak)
))

= lim
k∈I

(
lim
i∈I

(
μ(ai) ∨ μ(ak)

))

for every order continuous lattice homomorphism μ ∈ P∗. The limit on the
right-hand side is taken with respect to the usual (that is the order) topology
of R. The net (ai)i∈I is therefore also convergent with respect to the weak
order topology. We infer that o(P,P∗) is generally coarser than the order
topology O(P). The second statement of Proposition 5.50 follows immedi-
ately from a comparison of the respective neighborhoods in 4.6 and in 5.49:
For a ∈ P and a finite set Υ = {μ1, . . . , μn} of order continuous lattice
homomorphisms in P∗ we have Vs

Υ (a) ⊂ Vo
Υ (a). Thus σ(P,P∗) is indeed

finer than o(P,P∗). �

Proposition 5.51. Let (P,V) be a locally convex complete lattice cone, and
suppose that the order continuous lattice homomorphisms support the separa-
tion property for P. Then the order and the weak order topologies coincide
on P and are Hausdorff. A net in P is convergent in the (weak) order
topology if and only if it is almost order convergent.

Proof. Let (P,V) be a locally convex complete lattice cone such that the
order continuous lattice homomorphisms support the separation property for
P. Let us fist argue that the weak order topology is Hausdorff. Indeed, for
distinct elements a, b ∈ P we have either a � b or b � a, since the order of
P is supposed to be antisymmetric. Thus a � b + v or b � a + v for some
v ∈ V by Lemma 3.2. Then there exists an order continuous linear functional
μ ∈ v◦ such that μ(a) > μ(b) + 1 or μ(b) > μ(a) + 1, respectively. For
suitable ε, δ > 0 then the neighborhoods Vo

{εμ}(a) and Vo
{δμ}(b) are seen to

be disjoint. Next we shall verify the last statement of our claim: Let (ai)i∈I
be a net in P. If (ai)i∈I is almost order convergent, then it is convergent
with the same limit in O(P) by (OT4), hence weakly order convergent since
the weak order topology is coarser than O(P). For the converse suppose that
(ai)i∈I is weakly order convergent toward a ∈ P. Then for every b ∈ P and
every order continuous lattice homomorphism μ ∈ P∗ we have
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μ
(

lim
i∈I

(ai ∨ b)
)

= lim
i∈I

(
μ(ai) ∨ μ(b)

)

=
(

lim
i∈I

μ(ai)
)
∨ μ(b)

= μ(a) ∨ μ(b)
= μ(a ∨ b).

This shows limi∈I(ai ∨ b) = (a ∨ b) since the weak order topology was seen
to be Hausdorff. Similarly one verifies that limi∈I(ai ∨ b) = (a ∨ b), hence

lim
i∈I

(ai ∨ b) = (a ∨ b).

For b = ak in particular, this renders limi∈I(ai ∨ ak) = (a ∨ ak) for every
k ∈ I. Repeating this argument with b = a and ak in place of ai then
yields

lim
k∈I

(a ∨ ak) = (a ∨ a) = a.

We thus verified that the net (ai)i∈I is almost order convergent towards a ∈
P. This completes our argument for convergent nets and also implies the first
part of our claim. Indeed, since the closed sets in any given topology can be
described in terms of limits of convergence nets alone, having the same notion
of convergence for nets means that the topologies involved coincide. �

Proposition 5.52. Let (P,V) be a locally convex complete lattice cone such
that the order continuous lattice homomorphisms support the separation prop-
erty for P, and let N be a complete lattice subcone of P. Then N is closed
in O(P). The order topology O(N ) of N coincides with the restriction of
O(P) to N .

Proof. Let (P,V) be a locally convex complete lattice cone and let N
be a complete lattice subcone of P. Because the restriction to N of an
order continuous lattice homomorphism on P is an order continuous lat-
tice homomorphism on N , under the assumptions of the Proposition these
functionals support the separation property for both P and N . The con-
clusions of Proposition 5.51 therefore apply to both of these cones. Let
(ai)i∈I be a net in N . We observe the following: If (ai)i∈I is almost order
convergent as a net in N with limit a ∈ N , then it is also almost order
convergent as a net in P with the same limit. Conversely, if (ai)i∈I is almost
order convergent in as a net in P with limit a ∈ P, then a ∈ N , and (ai)i∈I
is also almost order convergent as a net in N with the same limit. This is an
immediate consequence of the fact that the subcone N contains the infima
and suprema of its sets as elements, hence the limits of its order convergent
nets. Now both of our claims follow, since the convergent nets in the order
topologies of P and of N coincide with the almost order convergent nets in
P and N , respectively. �
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In Proposition 5.37 we established that every locally convex lattice cone
can be represented as a as a cone of R-valued functions on some set X. The
preceding considerations now allow us to identify the weak and strong order
topologies as the topology of pointwise convergence in this representation.

Proposition 5.53. Let (P, V̂) be a complete lattice subcone of
(
FV̂b

(X, R), V̂
)

for some set X and a neighborhood system V̂ consisting of R-valued func-
tions such that v̂(x) < +∞ for every x ∈ X with some v̂ ∈ V̂. Then the
order topology, the weak order topology and the topology of pointwise conver-
gence on X (with respect to the usual topology of R ) all coincide on P and
are Hausdorff.

Proof. Under the assumptions of the Proposition, the order continuous lat-
tice homomorphisms support the separation property for

(
FV̂b

(X, R), V̂
)

(
see 5.33(f)

)
, hence also for the complete lattice subcone (P, V̂). The co-

incidence of the order and the weak order topology was established in Propo-
sition 5.51. Since for every x ∈ X the point evaluation f �→ f(x) is an
order continuous lattice homomorphism on P

(
see 5.31(d)

)
, week order con-

vergence for a net in P implies pointwise convergence on X. A pointwise
convergent net, on the other hand is seen to be almost order convergent and
therefore convergent in the order topology. The three notions of convergence,
hence the respective topologies therefore coincide. �

5.54 Extension of Linear Operators. A short inspection of the Hahn-
Banach type extension results for linear functionals in [172] (see also Section 2)
shows that they are still valid if the range R for the functionals is replaced
by some locally convex cone (Q,W), provided that

(i) (Q,W) is full and a complete lattice cone,
(ii) all elements of Q, with the exception of the element +∞ = supQ, are

invertible,
(iii) the neighborhood system W consists of all (strictly) positive multiples

of a single neighborhood w ∈ W.

Requirement (ii) means of course that Q is a Dedekind complete Riesz space
with an adjoint maximal element +∞. Results about the extension of mono-
tone linear operators between vector spaces and Dedekind complete Riesz
spaces are due to Kantorovič

(
[96] and [98]

)
and can for example be found

in Section 1.5 of [132]. Without furnishing the details of this, we reformulate
Corollary 4.1 in [172] (see also Corollary 2.7 before).

Theorem 5.55. Let (N ,V) be a subcone of the locally convex cone (P,V).
Suppose that (Q,W) is a full locally convex complete lattice cone, that all
elements of Q other than +∞ are invertible, and that W = {αw | α > 0}
for some w ∈ W. Then every continuous linear operator T : N → Q can
be extended to a continuous linear operator T : P → Q.
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Unfortunately, a similar result is not generally available if the locally con-
vex complete lattice cone (Q,W) does not meet the stringent additional
requirements of Theorem 5.55. However, we have the following:

Theorem 5.56. Let N be a subcone of the locally convex cone (P,V) and
let (Q,W) be a locally convex complete lattice cone. Every continuous linear
operator T : N → Q can be uniquely extended to N , the closure of N in
P with respect to the symmetric relative topology.

Proof. Let T : N → Q be a continuous linear operator and let a ∈ N . There
is a net (ai)i∈I in N converging to a in the symmetric relative topology.
Given w ∈ W and ε > 0 there is v ∈ V such that T (b) ≤ T (c) + w
whenever b ≤ c + v for b, c ∈ N . Because (ai)i∈I is a Cauchy net in
N , there is i0 ∈ I such that ai ∈ vε(ak) for all i, k ≥ i0. This implies
T (ai) ∈ wε

(
T (ak)

)
for all i, k ≥ i0, hence

(
T (ai)

)
i∈I is a Cauchy net in Q

as well. Proposition 5.41 shows that this net converges in Q. Moreover, if
(bj)j∈J is a second net in N converging toward the same element a, given
w ∈ W and ε > 0 we choose v ∈ V as above and find i0 ∈ I and j0 ∈ J
such that both ai ∈ vε(bj) and bj ∈ vε(ai), hence T (ai) ∈ wε

(
T (bj)

)
and

T (bj) ∈ vε

(
T (ai)

)
, for all i ≥ i0 and j ≥ j0. This shows that both nets(

T (ai)
)
i∈I and

(
T (bj)

)
j∈J have the same limit in Q which we denote T (a).

It is now straightforward to verify that this procedure results in a bounded
linear extension T : N → Q of the operator T. Uniqueness of this extension
is obvious. �

5.57 The Standard Lattice Completion of a Locally Convex Cone.
We proceed to establish that every locally convex cone (P,V) can be canon-
ically embedded into a locally convex complete lattice cone. For this, we
use a representation for (P,V) as a cone of R-valued functions on its dual
cone P∗, in analogy to the construction that we employed in the proof of
Proposition 5.37: With the element a ∈ P we associate the R-valued func-
tion ϕa on P∗ such that

ϕa(μ) = μ(a) for all μ ∈ P∗.

The mapping Φ : P → F(P∗, R) such that Φ(a) = ϕa for all a ∈ P is linear
and monotone. Corresponding to the neighborhoods v ∈ V we consider the
R-valued functions Φ(v) = ψv on P∗ such that

ψv(μ) = inf{α > 0 | μ ∈ αv◦}

for all μ ∈ P∗ and denote V̂ = {v̂ | v ∈ V}. The neighborhoods v̂ ∈ V̂ are
defined for F(P∗, R) by

f ≤ g + v̂ if f(μ) ≤ g(μ) + ψv(μ) for all μ ∈ P∗
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(
see 1.4(e)

)
for functions f, g ∈ F(P∗, R) and v̂ ∈ V̂. We have ψ(αv) = αψv

and ψ(u+v) ≥ ψu + ψv for all u, v ∈ V and α > 0 (see the proof of 5.37 for
details). Thus

(
FV̂b

(P∗, R), V̂
)

is a locally convex cone in the sense of 1.4(e),
and a complete lattice since ψv(μ) < +∞ holds for all μ ∈ P∗ with some
v̂ ∈ V̂. We claim that Φ(P) ⊂ FV̂b

(P∗, R) and that

a � b + v if and only if ϕa ≤ ϕb + ψv.

holds for a, b ∈ P and v ∈ V. Indeed, suppose that a � b + v. Then for
every μ ∈ P∗ and α > 0 such that μ ∈ αv◦ we have μ(a) ≤ μ(b) + α, that
is ϕa(μ) ≤ ϕb(μ) + ψv(μ), hence ϕa ≤ ϕb + ψv. Conversely, if a �� b + v,
then following Corollary 4.34 there is μ ∈ v◦ ⊂ P∗ such that μ(a) > μ(b)+1.
The former implies ψv(μ) ≤ 1, hence ϕa(μ) > ϕb(μ) + ψv(μ) and therefore
ϕa � ϕb + ψv. We infer in particular that the functions Φ(a) = ϕa are
contained in FV̂b

(P∗, R) for all a ∈ P. Indeed, given a ∈ P and v ∈ V
there is λ ≥ 0 such that 0 � a + λv, hence 0 ≤ Φ(a) + λv̂. Therefore the
element Φ(a) is contained in FV̂b

(P∗, R) as claimed. Finally we establish
that the linear operator Φ : P → FV̂b

(P∗, R) is an embedding in the sense
of 2.2 of the locally convex cone (P,V) into

(
FV̂b

(P∗, R), V̂
)
, provided that

we consider (P,V) in its weak preorder. Indeed, we set Φ(v) = v̂ for v ∈ V
towards the extension

Φ : (P ∪ V) :→
(
FV̂b

(Υ, R) ∪ V̂
)
.

Then Φ(V) = V̂, and by the above a � b + v holds for a, b ∈ P and v ∈ V
if and only if Φ(a) ≤ Φ(b) + Φ(v), as required in 2.2.

Finally, we denote by P̂ the smallest locally convex complete lattice sub-
cone of FV̂b

(P∗, R) that contains the embedding Φ(P) of P. proposition 5.36
specifies that P̂ consists of all functions in FV̂b

(P∗, R) that can be expressed
in the following way:

ϕA = inf
{

sup Φ(A) | A ∈ A
}
.

where A is family of subsets of P such that Φ(A) = {Φ(A) | A ∈ A} is sup-
bounded below in FV̂b

(P∗, R) (see 5.36). We call (P̂, V̂) the standard lattice
completion of the locally convex cone (P,V). According to Proposition 5.52,
the subcone P̂ of FV̂b

(P∗, R) is closed in the order topology O
(
FV̂b

(P∗, R)
)
,

and O(P̂) coincides with the restriction of O
(
FV̂b

(P∗, R)
)

to P̂. According
to Proposition 5.53 the order topology, the weak order topology and the
topology of pointwise convergence on X all coincide on P̂ and are Hausdorff.
Moreover, the restriction of this topology to the subcone Φ(P) of P̂ is
generally coarser than the image of the weak topology σ(P,P∗)

(
see 4.6

)

on Φ(P). Indeed, while the domain of the functions ϕ ∈ P̂ is the dual cone
P∗ of P, pointwise convergence for a net (ϕai

)i∈I of R-valued functions in
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Φ(P) is treated differently from weak convergence for the corresponding net
(ai)i∈I in P if the function value +∞ ∈ R is involved. The order topology
of R , which is used for pointwise convergence of the functions is coarser than
the given (locally convex cone) topology of R at this point (see 4.6 and 5.40).
However, if all elements of P are bounded, that is for example in the case of
a vector space, then continuous linear functionals take only finite values on
P, hence the elements of Φ(P) take only finite values as functions on P∗.
In this case the order topology, the weak order topology, the weak topology
and the topology of pointwise convergence all coincide on Φ(P).

The embedding of a locally convex cone (P,V) into some locally convex
complete lattice cone is of course not unique. However, the standard lattice
completion (P̂, V̂) of (P,V) is distinguished by the fact that every contin-
uous linear operator from P into some locally convex complete lattice cone
(Q,W) can be extended to an order continuous lattice homomorphism from
(P̂, V̂) into (Q,W). More precisely:

Proposition 5.58. Let (P,V) be a locally convex cone, and let Φ be the
canonical embedding of P into its standard lattice completion P̂. Let (Q,W)
be a locally convex complete lattice cone such that the order continuous lattice
homomorphisms support the separation property for Q. For every continuous
linear operator T : P → Q there exists an order continuous lattice homo-
morphism T̂ : P̂ → Q such that T = T̂ ◦ Φ. Moreover, if v ∈ V and
w ∈ W are such that a ≤ b + v implies T (a) ≤ T (b)+w for a, b ∈ P, then
ϕ ≤ ψ + Φ(v) implies T̂ (ϕ) ≤ T̂ (ψ) + w for ϕ,ψ ∈ P̂.

Proof. Let (P,V), (Q,W) and T : P → Q be as stated. The adjoint op-
erator T ∗ : Q∗ → P∗ is defined as follows

(
see II.2.15 in [100]

)
: For any

ν ∈ Q∗ define the linear functional T ∗(ν) on P by T ∗(ν)
(
a
)

= ν
(
T (a)

)
for

all a ∈ P. More precisely: If ν ∈ w◦ for some w ∈ W and if v ∈ V is such
that T (a) ≤ T (b) + w whenever a ≤ b + v for a, b ∈ P, then T ∗(ν) ∈ v◦.
Indeed, a ≤ b + v for a, b ∈ P implies that

T ∗
(
ν
)
(a) = ν

(
T (a)

)
≤ ν

(
T (b)

)
+ 1 = T ∗

(
ν
)
(b) + 1.

Now let A be a family of subsets of P such that Φ(A) = {Φ(A) | A ∈ A} is
sup-bounded below in FV̂b

(P∗, R). We claim that the family T (A) = {T (A) |
A ∈ A} is sup-bounded below in Q : Indeed, given w ∈ W there is v ∈ V
such that T ∗(w◦) ⊂ v◦. There is λ ≥ 0 such that 0 ≤ sup Φ(A) + λv for
all A ∈ A. This means μ

(
sup Φ(A)

)
≥ −λ for all μ ∈ v◦. For an order

continuous lattice homomorphism ν ∈ w◦ set μ = T ∗(ν) ∈ v◦. Then for
A ∈ A we have

ν
(
sup T (A)

)
= sup ν

(
(T (A)

)
= supμ(A) = μ

(
sup Φ(A)

)
≥ −λ.

This shows 0 ≤ sup T (A) + λv, since the order continuous lattice homomor-
phisms are supposed to support the separation property for Q. Our claim has
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therefore been verified. Now consider the elements of ϕA ∈ P̂ and ϕ̃A ∈ Q
defined as

ϕA = inf
{

sup Φ(A) | A ∈ A
}

and ϕ̃A = inf
{

supT (A) | A ∈ A
}
,

where Φ denotes the canonical embedding of P into P̂. For every μ ∈ P∗,
that is the domain of the functions in P̂, and for every order continuous
lattice homomorphism ν ∈ Q∗ we calculate

ϕA(μ) = inf
{

sup Φ(A) | A ∈ A
}
(μ) = inf

{
supμ(A) | A ∈ A

}

and

ν(ϕ̃A) = sup
{

inf ν
(
T (A)

)
| A ∈ A

}
= sup

{
inf T ∗(ν)

(
A
)
| A ∈ A

}

= ϕA

(
(T ∗(ν)

)
.

Thus, if w ∈ W, if v ∈ V is such that T (a) ≤ T (b)+w whenever a ≤ b+ v
for a, b ∈ P, and if ϕA ≤ ϕB + Φ(v) for such families A and B of subsets
of P, then

ν(ϕ̃A) = ϕA

(
(T ∗(ν)

)
≤ ϕB

(
(T ∗(ν)

)
+ ψv

(
T ∗(ν)

)
≤ ν(ϕ̃B) + 1

holds for all order continuous lattice homomorphisms ν ∈ w◦, since T ∗(ν) ∈
v◦ implies that ψv

(
T ∗(ν)

)
≤ 1. This shows

ϕ̃A ≤ ϕ̃B + w,

since these functionals are supposed to support the separation property for
Q. In particular, we infer that ϕ̃A = ϕ̃B whenever ϕA = ϕB. This fol-
lows from the fact that both cones P̂ and Q carry their respective weak
preorders, which are supposed to be antisymmetric. We are now prepared
to define the operator T̂ : P̂ → Q. For a family A of subsets of P such
that Φ(A) = {Φ(A) | A ∈ A} is sup-bounded below in FV̂b

(P∗, R) and the
corresponding element ϕA ∈ P̂ we set

T̂
(
ϕA

)
= ϕ̃A

and observe the following:
(i) The operator T̂ is linear. Indeed, we note that Φ(αA) = αΦ(A) and

T (αA) = αT (A) as well as Φ(A+B) = Φ(A)+Φ(B) and T (A+B) = T (A)+
T (B) holds for any such families A and B of subsets of P and α ≥ 0.
Then the arguments in Parts (i) and (ii) of the proof for Proposition 5.36
yield that

ϕA + ϕB = ϕ(A+B) and ϕ̃A + ϕ̃B = ϕ̃(A+B).
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Thus

T̂
(
ϕA + ϕB

)
= T̂

(
ϕ(A+B)

)
= ϕ̃(A+B) = ϕ̃A + ϕ̃B = T̂

(
ϕA

)
+ T̂

(
ϕB

)
.

Likewise, αϕA = ϕαA and αϕ̃A = ϕ̃αA yields T̂
(
αϕA

)
= αT̂

(
ϕA

)
for

all α ≥ 0.
(ii) We observed before that, given w ∈ W and v ∈ V such that a ≤ b+v

for a, b ∈ P implies T (a) ≤ T (b)+w, then ϕA ≤ ϕB+Φ(v) for ϕA, ϕB ∈ P̂
implies

T̂ (ϕA) = ϕ̃A ≤ ϕ̃B + w = T̂ (ϕB) + w.

This entails continuity for the operator T̂ .
(iii) Let a ∈ P and set A =

{
{a}

}
. Then ϕA = Φ(a) ∈ P̂ and ϕ̃A =

T (a). Thus (
T̂ ◦ Φ

)
(a) = T̂ (ϕA) = ϕ̃A = T (a).

This shows T = T̂ ◦ Φ.
(iv) Let {Ai}i∈I be a collection of such families Ai of subsets of P. In a

first instance, suppose that this collection is not empty, and let A = {∪i∈IAi |
(Ai)i∈I ∈

∏
i∈I Ai}, that is the elements A of A are all unions of the type

A = ∪i∈IAi, where Ai ∈ Ai. Then Φ(A) = {∪i∈IΦ(Ai) | (Ai)i∈I ∈
∏

i∈I Ai}
and T (A) = {∪i∈IT (Ai) | (Ai)i∈I ∈

∏
i∈I Ai}. Therefore Part (iii) in the

proof for Proposition 5.36 yields

sup
i∈I

ϕAi
= ϕA and sup

i∈I
ϕ̃Ai

= ϕ̃A.

This shows
T̂
(
sup
i∈I

ϕAi

)
= sup

i∈I
T̂
(
ϕAi

)
.

In a second instance, suppose that the set {aAi
}i∈I is bounded below in

P, and let A = ∪i∈IAi. Then Φ(A) = {∪i∈IΦ(Ai) | i ∈ I} and T (A) =
{∪i∈IT (Ai) | i ∈ I}. Part (iv) in the proof for Proposition 5.36 yields

inf
i∈I

ϕAi
= ϕA and inf

i∈I
ϕ̃Ai

= ϕ̃A.

Thus
T̂
(
inf
i∈I

ϕAi

)
= inf

i∈I
T̂
(
ϕAi

)

holds as well. The operator T̂ : P̂ → Q is therefore an order continuous
lattice homomorphism. �

For Q = R in particular, Proposition 5.38 states that for v ∈ V and
every linear functional μ ∈ v◦ on P there is an order continuous lattice
homomorphism μ̂ ∈

(
Φ(v)

)◦ on P̂ such that μ = μ̂ ◦ Φ. We proceed to
demonstrate that the standard lattice completion (P̂, V̂) of a locally convex
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cone (P,V) is indeed the only (up to embedding) locally convex complete
lattice cone which contains an embedding of P and satisfies this property.

Proposition 5.59. Let (P,V) be a locally convex cone, let (P̃, Ṽ) be a lo-
cally convex complete lattice cone such that the order continuous lattice ho-
momorphisms support the separation property for P̃. Suppose that there is
an embedding Ψ : P → P̃ with respect to the weak preorder of P and that
for every v ∈ V and every linear functional μ ∈ v◦ on P there is an order
continuous lattice homomorphism μ̃ ∈

(
Ψ(v)

)◦ on P̃ such that μ = μ̃ ◦ Ψ.

Then there exists an embedding Ψ̂ : P̂ → P̃, where (P̂, V̂) denotes the
standard lattice completion of (P,V). This embedding preserves the lattice
operations for P̂ and P̃.

Proof. We shall use the notations from the proof of the preceding proposition,
in particular we denote by Φ : P → P̂ the canonical embedding of (P,V)
into its standard lattice completion (P̂, V̂). Now suppose that the linear
operator Ψ : P → P̃ is also an embedding in the sense of 2.2, that is there
is an extension

Ψ : (P ∪ V) → (P̃ ∪ Ṽ)

with the required properties. According to Proposition 5.58 there exists an
order continuous lattice homomorphism Ψ̂ : P̂ → P̃ such that Ψ = Ψ̂ ◦ Φ
and

ϕA ≤ ϕB + Φ(v) implies that Ψ̂(ϕA) ≤ Ψ̂(ϕB) + Ψ(v)

for ϕA, ϕB ∈ P̂ and v ∈ V. As before we abbreviate v̂ = Φ(v) ∈ V̂ for
v ∈ V and use this notation for the extension

Ψ̂ : (P̂ ∪ V̂)→ (P̃ ∪ Ṽ)

setting Ψ̂(v̂) = Ψ(v) for all v ∈ V. Clearly Ψ̂(V̂) = Ψ(V) = Ṽ, and rewriting
the above yields that

ϕA ≤ ϕB + v̂ implies that Ψ̂(ϕA) ≤ Ψ̂(ϕB) + Ψ̂(v̂)

for ϕA, ϕB ∈ P̂ and v̂ ∈ V̂. All left to verify for Ψ̂ : P̂ → P̃ to be an
embedding is the reverse implication in the above. For this, suppose that
Ψ̂(ϕA) ≤ Ψ̂(ϕB) + Ψ̂(v̂) and let μ ∈ v◦. Following our assumption there
is an order continuous lattice homomorphism μ̃ ∈

(
Ψ(v)

)◦ on P̃ such that
μ = μ̃ ◦Ψ. Then

μ̃
(
Ψ̂(ϕA)

)
≤ μ̃

(
Ψ̂(ϕB)

)
+ 1.

On the other hand, we have
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ϕA(μ) = inf
{

supμ(A) | A ∈ A
}

= inf
{

sup μ̃
(
Ψ(A)

)
| A ∈ A

}

= μ̃
(
inf

{
sup Ψ(A) | A ∈ A

})

and

inf
{

sup Ψ(A) | A ∈ A
}

= inf
{

sup Ψ̂
(
Φ(A)

)
| A ∈ A

}

= Ψ̂
(
inf

{
sup Φ(A) | A ∈ A

})

= Ψ̂(ϕA)

since Ψ = Ψ̂ ◦ Φ by 5.58 and since Ψ̂ : P̂ → P̃ is an order continuous
lattice homomorphism. Combining the above yields ϕA(μ) = μ̃

(
Ψ̂(ϕA)

)
and,

likewise ϕB(μ) = μ̃
(
Ψ̂(ϕB)

)
. Therefore

ϕA(μ) ≤ ϕB(μ) + 1

holds for all μ ∈ v◦. Form this we infer that ϕA(μ) ≤ ϕB(μ) + ψv(μ) holds
for all μ ∈ P∗, and conclude that ϕA ≤ ϕB + v̂, as claimed. �

Remarks 5.60. (a) We shall make extensive use of the standard lattice com-
pletion (P̂, V̂) of a locally convex cone (P,V) in the integration theory for
cone-valued functions in Chapters II and III. However, many of the results
will refer only to the order closure of the embedding of P into P̂. It is
therefore useful to observe that the elements of this order closure can be in-
terpreted as elements of some second dual of P. Indeed, let ϕ ∈ P̂ be an
element of this closure. Since convergence in the order topology of P̂ coin-
cides with pointwise convergence on P∗, there is a net (ai)i∈I in P such
that the functions ϕai

∈ P̂ from above converge pointwise to ϕ. Thus for
μ, ν ∈ P∗ we have

ϕ(μ + ν) = lim
i∈I

ϕai
(μ + ν) = lim

i∈I
ϕai

(μ) + lim
i∈I

ϕai
(ν) = ϕ(μ) + ϕ(ν)

by (OT2). Since ϕ(αμ) = αϕ(μ) holds for all ϕ ∈ P̂ and μ ∈ P∗ and
α ≥ 0, the function ϕ is an R-valued linear functional on P∗, that is an
element of P∗∗, the dual cone of P∗ under its finest locally convex topology
which renders all linear functionals on P∗ continuous

(
see 7.3(i) below

)
.

Moreover, as an element of P̂, the functional ϕ is bounded below on all
polars of neighborhoods in V.

(b) If (P,V) is a locally convex vector space over K = R or K = C in its
symmetric (modular) topology

(
see Example 1.4(d)

)
, that is a locally convex

topological vector space, then the dual cone P∗ of P consist of the real
parts μ of all continuous K-linear functionals μK in the vector space dual
P∗

K
of P

(
see 2.1(d)

)
. Similarly, in 2.1(d) we established a correspondence

between real-valued linear (with respect to multiplication by non-negative
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scalars) functionals ϕ on P∗ and K-valued K-linear functionals ϕK on
P∗

K
. This correspondence is given by

ϕ(μ) = �e
(
ϕK(μK)

)

for all μ ∈ P∗, and

ϕK(μK) = ϕ(μ) or ϕK(μK) =
(
ϕ(μ)− i ϕ(iμ)

)

for all μB ∈ P∗K in the real or complex case, respectively. If the real-linear
functional ϕ on P∗ is contained in P̂, that is for example if ϕ is contained
in the order closure of the embedding of P

(
see Part (a) before

)
into P̂, then

ϕ is bounded below on the polars v◦ ⊂ P∗ of all neighborhoods v ∈ V.
Therefore the corresponding K-linear functional ϕK in the second vector
space dual P∗∗

K
of P is also bounded on all polars of neighborhoods in V.

In the case of a normed space (P, ‖ ‖), for example, the latter implies that
ϕK is an element of the (strong) second vector space dual of P.

(c) For a concrete example to (b) let P = K endowed with the Euclidean
topology, that is the neighborhood system V = {εB | ε > 0}, where B is
the unit ball in K. The vector space dual PK of K then is of course K

itself, which corresponds to the dual cone P∗ of K as a locally convex cone
as elaborated in 2.1(d), that is every z ∈ K defines a real-linear functional
in P∗ via

a �→ �e(za) : K → R.

On the other hand, every real-valued linear functional ϕ on P∗ = K corre-
sponds to an element z ∈ K, that is the second vector space dual of K, by

z = ϕ(1) or z = ϕ(1)− iϕ(i)

in the real or complex case, respectively.
(d) If under the assumptions of (b), (Q,W) is a second locally convex

vector space over K, then we shall say that a linear operator T : Q → P̂ is
K-linear if

(i) T
(
f
)
(μ + ν) = T

(
f
)
(μ) + T

(
f
)
(ν) and

(ii) T
(
αf
)
(μ) = T

(
f
)
(αμ)

holds for all f ∈ Q, μ, ν ∈ P∗ and α ∈ K. In this case T corresponds to a
K-linear operator T̃ : Q → P∗∗

K
.

5.61 Simplified Standard Lattice Completion. It is often preferable
to realize a lattice completion of a locally convex cone (P,V) as a cone
of R-valued functions on a suitable subset of P∗ rather than on the whole
of P∗. For this we use a subset Υ of P∗ which supports the separation
property for P in the sense of 5.32. (Following Corollary 4.34 this holds true
for Υ = P∗). Let us denote by P̂Υ and V̂Υ the restrictions to Υ of the
functions in P̂ and of the associated neighborhood functions in V̂. Then
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(P̂Υ , V̂Υ ) is again a full locally convex complete lattice cone. Consider the
restriction map Ψ̂ : P̂ → P̂Υ and its composition Ψ = Ψ̂ ◦ Φ with the
canonical embedding Φ of P into P̂. We claim that Ψ : P → P̂Υ is an
embedding of P into P̂Υ if we consider P in its weak preorder. Indeed, if
a � b+ψv for a, b ∈ P and v ∈ V, then Ψ̂(ϕa) ≤ Ψ̂(ϕb)+ψv holds as well in
P̂Υ , that is Ψ(a) ≤ Ψ(b) + Ψ(v). (We use the earlier notations.) Conversely,
if a �� b + v, then by our assumption there is α ≥ 0 and μ ∈ Υ ∩ αv◦ such
that μ(a) > μ(b)+α. Then ψv(μ) ≤ α, hence ϕa(μ) > ϕb(μ)+ψv(μ). This
shows Ψ̂(ϕa) �≤ Ψ̂(ϕb)+ψv, that is Ψ(a) �≤ Ψ(b)+Ψ(v). Thus Φ : P → P̂Υ

is an embedding in the sense of 2.2 as claimed. Since the lattice operations are
performed pointwise, we have Ψ̂(supA) = sup

(
Ψ̂(A)

)
for every non-empty

subset A of P̂ and Ψ̂(inf A) = inf
(
Ψ̂(A)

)
for every non-empty bounded

below subset A of P̂. The operator

Ψ̂ : P̂ → P̂Υ

is therefore a surjective order continuous lattice homomorphism, but not
necessarily an embedding. Because the operator Ψ̂ is also continuous with
respect to the order topologies on P̂ and P̂Υ (Proposition 5.46), the image
under Ψ̂ of the order closure of Φ(P) in P̂ is contained in the order clo-
sure of Ψ(P) in P̂Υ . According to the preceding Proposition 5.59, Ψ̂ is an
embedding and indeed an isomorphism if and only if for every v ∈ V and
every linear functional μ ∈ v◦ on P there is an order continuous lattice
homomorphism μ̃ ∈

(
Ψ(v)

)◦ on P̂Υ such that μ = μ̃ ◦ Ψ. This condi-
tion is satisfied if for every μ ∈ P∗ there is ν ∈ Υ and α ≥ 0 such that
μ = αν. In this case the conclusion of Proposition 5.58 applies to P̂Υ as it
does to P̂.

We shall at times us such a simplified standard lattice completion (P̂Υ , V̂Υ )
and the order continuous lattice homomorphism Ψ : P̂ → P̂Υ in order to
represent and visualize results that were obtained in the standard lattice
completion (P̂, V̂) of a locally convex cone (P,V).

Examples 5.62. In the preceding Examples 5.33 we investigated a range of
locally convex cones (P,V) and identified subsets Υ of the dual cone which
support the separation property. All of these choices are suitable for the
construction of a simplified standard lattice completion (P̂Υ , V̂Υ ). Let us
elaborate on the most important of these situations.

(a) For P = R with the usual order and neighborhood system V = {ε ∈
R | ε > 0} the dual cone is P∗ = {α ∈ R | α ≥ 0}. Therefore the standard
lattice completion R̂ of R is the cone of all linear R-valued functions on
P∗. This can be visualized more easily if we choose the subset Υ = {1} of
P∗ for the above simplified construction, since P̂Υ then coincides with R.
Following the remark in 5.61, we realize that the standard lattice completion
of R is isomorphic to R.
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(b) If (P, ‖ ‖) is a normed vector space
(
see 5.33(b)

)
, then we may choose

the dual unit sphere for Υ ⊂ P∗. According to our preceding remark, the
lattice completion (P̂Υ , V̂Υ ) then is isomorphic to the standard lattice com-
pletion (P̂, V̂). Alternatively, we may choose Υ = Ex(B), that is the set of
all extreme points of the dual unit ball B in P∗. However, the conclusion
of Proposition 5.58 does not generally apply to P̂Υ for the latter choice
of Υ. In both cases the lattice completion P̂Υ of P consists of a cone of
R-valued bounded below functions on Υ, endowed with the topology of uni-
form convergence.

(c) For a special case of 5.33(f) consider the locally convex cone(
FbY (X, R),VY

)
of R-valued functions on a set X endowed with the topology

of uniform convergence on the sets in a family Y of subsets of X
(
see 1.4(e)

)
.

Then

Υ =

{

εx

∣
∣
∣ x ∈

⋃

Y ∈Y
Y

}

⊂ FbY (X, R)∗,

where εx denotes the point evaluation at x ∈ X, supports the separation
property for FbY (X,P)

(
see 5.33(f)

)
. The corresponding lattice completion

̂FbY (X, R)Υ of FbY (X, R) then consists of R-valued bounded below functions
on Υ, endowed with the topology of uniform convergence.

(d) For a special case of (c) let X be a compact set and let P = C(X)
be the space of all continuous real-valued functions on X, endowed with the
pointwise operations and order. The neighborhood system V consisting of
all positive constants generates the topology of uniform convergence. The set
Υ of all point evaluations εx for x ∈ X supports the separation property,
and the lattice completion (P̂, V̂) of (P,V) can be realized as a cone of R -
valued functions on X.

(e) In Section 7 below we shall provide another example, that is cones
H(N ,M) of linear operators from a cone N into a second cone M, endowed
with suitable locally convex cone topologies, where the canonical choice for Υ
for a lattice completion Ĥ(N ,M) is a proper subset rather than the whole
dual cone of H(N ,M).

(f) Let P = K, endowed with the Euclidean topology, that is the neigh-
borhood system V = {εB | ε > 0}, where B is the unit ball in K (see the
preceding Remark 5.60(c)). The vector space dual PK of K then is K itself
which corresponds to the dual cone P∗ of K as a locally convex cone as
elaborated in 2.1(d) and in 5.60(c).

For the construction of a simplified standard lattice completion K̂Υ of K

we choose Υ = Γ, the unit circle in K. It is straightforward to verify that
K̂Υ consists of all bounded below R-valued functions on Γ, endowed with
the (strictly) positive constants as neighborhoods. A function ϕ ∈ K̂Υ can
be canonically extended to a real-linear functional on all of P∗ = K if and
only if it takes only finite values in R and if
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n∑

i=1

αiϕ(γi) = 0

holds whenever
∑n

i=1 αiγi = 0 for αi ∈ R and γi ∈ Γ. In the real case, that
is for K = R, the latter requires just that

ϕ(−1) = −ϕ(1).

If the above condition holds, then the corresponding K-linear functional ϕK

in the second vector space dual of K, that is K itself, is represented by the
number

ϕK = ϕ(1) ∈ R or ϕK = ϕ(1)− iϕ(i) ∈ C

in the real or in the complex case, respectively.

6. Quasi-Full Locally Convex Cones

In Section 1, a locally convex cone (P,V) was defined to be a subcone of a
full locally convex cone, inheriting both the order and the algebraic structure
from the latter. Using only the convex quasiuniform structure of P (see I.3), a
procedure described in Chapter I.5 of [100] allows to recover such a full locally
convex cone containing P. However this construction is rather unwieldy and
far from unique. In situations like in our upcoming measure and integration
theory we shall require more immediate access to a canonically constructed
full locally convex cone, containing the given cone of interest. This will be
possible for a restricted class of locally convex cones which we shall define
and describe in the following.

6.1 Quasi-Full Locally Convex Cones. In a locally convex cone (P,V)
the scalar multiples and sums for neighborhoods in V are not necessarily
reflected in the corresponding operations for their upper, lower or symmetric
neighborhoods as subsets of P. In general we only have

α v(a) =
(
αv
)
(αa) and u(a) + v(b) ⊂

(
u + v

)
(a + b)

for u, v ∈ V, a, b ∈ P and α > 0, as well as similar relations for the lower
and symmetric neighborhoods. Stronger links for the addition are however
desirable in some cases. In this vein, we shall say that a locally convex cone
(P,V) is quasi-full if for a, b ∈ P and u, v ∈ V
(QF1) a ≤ b + v for a, b ∈ P and v ∈ V if and only if a ≤ b + s for some

s ∈ P such that s ≤ v, and
(QF2) a ≤ u + v for a ∈ P and u, v ∈ V if and only if a ≤ s + t for some

s, t ∈ P such that s ≤ u and t ≤ v.
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These conditions can be reformulated as

v(a) = v(0) + a and
(
u + v

)
(0) = ↓(u(0) + v(0)

)
,

where ↓A = {b ∈ P | b ≤ a for some a ∈ A } denotes the decreasing hull of
a subset A of P. Indeed, the first statement is clearly equivalent to (QF1),
whereas ↓

(
u(0)+v(0)

)
⊂
(
u+v

)
(0) always holds as the latter set is decreas-

ing. The reverse inclusion is equivalent to (QF2).
Obviously, every full cone, that is every locally convex cone that contains

its neighborhoods as elements, is quasi-full. Most importantly, every ordered
locally convex topological vector space (P,V), where V denotes a basis of
balanced convex neighborhoods of the origin, is seen to be a quasi-full locally
convex cone in this sense. Recall from Example 1.4(c) that the cone topologies
on P are defined for elements a, b ∈ P and V ∈ V by

a ≤ b + V if a− b ≤ s for some s ∈ V.

(QF1) is evident, since s ∈ V implies s ≤ V. For (QF2), let a ≤ (U + V )
for a ∈ P and U, V ∈ V. Then a ≤ s + t for some s ∈ U and t ∈ V,
since the addition in V is the usual addition for subsets of P. As s ≤ U
and t ≤ V, this yields (QF2). Recall that equality is a possible choice for the
order on P.

In fact, quasi-full locally convex cones are close to locally convex topo-
logical vector spaces in the sense that the neighborhoods of every element
a ∈ P are already determined by the neighborhoods of the element 0 ∈ P.
The sum of two neighborhoods in V coincides with the usual sum of the
corresponding subsets of P, that is u(a) + v(b) =

(
u + v

)
(a + b) and

(a)u + (b)v = (a + b)
(
u + v

)
for u, v ∈ V and a, b ∈ P.

Another advantage of quasi-full locally convex cones is that for com-
plete lattice structures in the sense of Section 5.4, Condition

(∨
2
)
transfers

from zero-neighborhoods to general ones and from individual neighborhoods
to their sums, thus needs to be checked only for a subsystem of zero-
neighborhoods that span the entire neighborhood system. Indeed, suppose
that (P,V) is a quasi-full locally convex cone that contains suprema of non-
empty sets, and that Condition

(∨
2
)
holds with b = 0 and the neighbor-

hoods u and v in V, that is for a non-empty subset A ⊂ P, a ≤ v for
all a ∈ A implies supA ≤ v, and a ≤ u for all a ∈ A implies supA ≤ u.
Now if there is b ∈ P such that a ≤ b + (u + v) for all a ∈ A, then
a ≤ b + sa + ta for some sa ≤ u and ta ≤ v. Then s = supa∈A sa ≤ u
and t = supa∈A ta ≤ v by our assumption on u and v. This shows that
a ≤ b+(s+t) for all a ∈ A, hence sup A ≤ b+(s+t) ≤ b+(u+v), as claimed.
If (P,V) contains both suprema of non-empty and infima of bounded be-
low subsets and satisfies

(∧
1
)
, then Condition

(∨
2
)
for some neighborhood

v ∈ V implies
(∧

2
)
for the same v. Indeed, suppose that there is b ∈ P

such that b ≤ a + v holds for all elements a of some bounded below subset
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A ⊂ P. Then b ≤ a + ta for some ta ≤ v, hence b ≤ a + t for all a ∈ A,
where t = supa∈A ta ≤ v. This yields b ≤ inf(A + t) = inf A + t ≤ inf A + v
by

(∧
1
)
, hence our claim.

6.2 The Standard Full Extension of a Quasi-Full Cone. We shall
construct a canonical embedding of a quasi-full locally convex cone (P,V)
into a full locally convex cone in the following manner. Let

PV =
{
a⊕ v | a ∈ P, v ∈ V ∪ {0}

}
.

We use the obvious algebraic operations on PV , that is

(a⊕ v) + (b⊕ u) = (a + b)⊕ (v + u) and α(a⊕ v) = (αa⊕ αv)

for a, b ∈ P, u, v ∈ V ∪ {0} and α ≥ 0. The order on PV is defined as

a⊕ v ≤ b⊕ u

if c ≤ a + v implies that c ≤ b + u for all c ∈ P. This order relation is
reflexive, and transitive, as for a, b, c ∈ P and u, v, w ∈ V ∪ {0} such that
a ⊕ v ≤ b ⊕ u and b ⊕ u ≤ c ⊕ w, for every d ∈ P such that d ≤ a + v,
we have d ≤ b + u, hence d ≤ c + w. Thus a ⊕ v ≤ c ⊕ w. Similarly,
one verifies compatibility with the algebraic operations: Compatibility with
the multiplication by positive scalars is obvious; for compatibility with the
addition, let (a ⊕ v), (b ⊕ u), (c ⊕ w) ∈ PV such that a ⊕ v ≤ b ⊕ u. If
d ≤ (a + c) + (v + w), then d ≤ (a + c) + s for some s ≤ v + w by
(QF1), and s ≤ s′ + s′′ for some s′ ≤ v and s′′ ≤ w by (QF2.) Hence
d ≤ (a+s′)+(c+s′′). Because a+s′ ≤ a+v implies that a+s′ ≤ b+u, we
infer that d ≤ (b+c)+(u+w). This shows (a+c)⊕(v+w) ≤ (b+c)⊕(u+w).
The embedding

a �→ a⊕ 0 : P → PV
therefore preserves the algebraic operations and the order of P, since a ≤ b
holds for elements a, b ∈ P if and only a⊕0 ≤ b⊕0 holds in PV . Moreover,
for a neighborhood v ∈ V and a, b ∈ P we have a ≤ b+ v in P if and only
if a⊕ 0 ≤ (b⊕ 0) + (0⊕ v) = b⊕ v holds in PV . We may therefore identify
the neighborhoods v ∈ V with the elements 0⊕ v in PV . In this way V is
embedded into PV as well, and (PV ,V) becomes a full locally convex cone,
containing (P,V) as a subcone. If a certain neighborhood v ∈ V is already
contained in the given cone P, then the above definition of the order in PV
yields that both v ⊕ 0 ≤ 0 ⊕ v and 0 ⊕ v ≤ v ⊕ 0. The elements v ⊕ 0
and 0⊕ v are therefore equivalent with respect to the canonical equivalence
relation defined by the order on PV . Thus for a full cone P, this extension
PV yields only elements that in terms of the order relation are equivalent to
existing ones in P. We shall call (PV ,V) the standard full extension of the
locally convex cone (P,V).
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Theorem 6.3. Let (P,V) be a quasi-full locally convex cone, and let (Q,W)
be a locally convex complete lattice cone. Every continuous linear operator
T : P → Q can be extended to a continuous linear operator T : PV → Q.

Proof. Let (P,V) be quasi-full, (Q,W) a complete lattice cone, and let
T : P → Q be a continuous linear operator. Recall from Section 3 that a
continuous linear operator between locally convex cones is monotone with re-
spect to the respective weak preorders. Because Q carries its weak preorder,
this implies monotonicity with respect to the given orders of P and Q as
well. For an element a⊕ v ∈ PV we define

T (a⊕ v) = sup
{
T (b) | b ∈ P, b ≤ a + v

}
∈ Q.

Let us first check linearity: Clearly T (αa⊕αv) = αT (a⊕ v) for α ≥ 0. For
additivity, let (a⊕ v), (b⊕ u) ∈ PV . Using Lemma 5.5(a), we infer

T (a⊕ v) + T (b⊕ u) = sup
{
T (c) | c ∈ P, c ≤ a + v

}

+ sup
{
T (d) | d ∈ P, d ≤ b + u

}

= sup
{
T (c + d) | c, d ∈ P, c ≤ a + v, d ≤ b + u

}

≤ sup
{
T (e) | e ∈ P, e ≤ (a + b) + (v + u)

}

= T
(
(a⊕ v) + (b⊕ u)

)
.

If on the other hand c ≤ (a + b) + (v + u) for c ∈ P, then c ≤ c′ + c′′ for
some c′, c′′ ∈ P such that c′ ≤ a + v and c′′ ≤ b + v. by (QF1) and (QF2).
Thus

T (c) ≤ T (c′) + T (c′′) ≤ T (a⊕ v) + T (b⊕ u).

Taking the supremum over all such elements c ≤ (a + b) + (v + u) on the
left-hand side yields

T
(
(a⊕ v) + (b⊕ u)

)
≤ T (a⊕ v) + T (b⊕ u).

Next we observe that the operator T is monotone. Indeed, let a⊕ v ≤ b⊕ u
for (a⊕ v), (b⊕u) ∈ PV , and let c ∈ P such that c ≤ a+ v. Then c ≤ b+u
by our definition of the order in PV . This shows T (c) ≤ T (b ⊕ u). Taking
the supremum over all such elements c ≤ a + v on the left-hand side yields
T (a ⊕ v) ≤ T (b ⊕ u). Finally, for every w ∈ W there is v ∈ V such that
a ≤ b + v implies that T (a) ≤ T (b) + w for all a, b ∈ P. Thus

T (0⊕ v) = sup
{
T (s) | s ∈ P, s ≤ v

}
≤ w.

As (PV ,V) is a full locally convex cone, this demonstrates the continuity
of the monotone linear operator T : PV → Q. All left to verify is that T
is indeed an extension of T if we consider P as a subcone of PV via its
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canonical embedding a �→ (a⊕0). But this is obvious, as for a ∈ P we have

T (a⊕ 0) = sup
{
T (b) | b ∈ P, b ≤ a

}
= T (a).

�

Remarks 6.4. Let (P,V) be a (not necessarily quasi-full) locally convex cone
satisfying the following condition:

(QF*) For every a ∈ P and v ∈ V there is s ∈ P such that s ≤ v and
λ ≥ 0 such that 0 ≤ a + λs.

In this case we may remodel P into a quasi-full locally convex cone if we de-
fine an alternative neighborhood system V consisting of all families (rv)v∈V ,
where rv is a non-negative real and rv > 0 for at least one v ∈ V and
rv = 0 else. Endowed with componentwise defined algebraic operations and
order V0 = V∪0 is an ordered cone. Let P̃ = P⊕V0 be the direct sum of P
and V0. We define the order on P̃ in the following way: We set a⊕r ≤ b⊕s
for elements a, b ∈ P and r, s ∈ V0 if r ≤ s and if there are elements
c1, . . . , cn ∈ P such that a ≤ b + (c1 + . . . + cn) and ci ≤ (svi

− rvi
)vi

for distinct elements v1, . . . , vn ∈ V. In this way, (P̃,V) becomes a full
locally convex cone. Condition (QF*) in particular guarantees that its ele-
ments are bounded below. The neighborhoods u ∈ V may be identified with
the elements r(u) ∈ V such that r(u)u = 1 and r(u)v = 0 else. As a
subcone of (P̃,V), the locally convex cone (P,V) is seen to be quasi-full.
(Conditions (QF1) and (QF2) from 6.1 are implied by our definition of the
neighborhoods in V.) Because a ≤ b⊕ r(v) implies a ≤ b + v for a, b ∈ P
and v ∈ V , the (upper, lower, symmetric) topologies induced on P by V are
generally finer than the given ones. The dual cone P∗V of P under this new
locally convex topology is therefore larger than the given dual cone P∗. The
polar r∗ of a neighborhood r ∈ V consists of all monotone R-valued linear
functionals μ on P satisfying μ(c) ≤ 1 for all c ∈ P such that c ≤ r.

7. Cones of Linear Operators

Endowed with the canonical (pointwise) algebraic operations, the linear op-
erators between two cones N and M form again a cone L(N ,M). We
may introduce neighborhoods for L(N ,M) in the following way (for a sim-
ilar construction in the case of vector spaces see III.3 in [185]): Let W be a
neighborhood system and let ≤ be an order for M such that (M,W) is
a locally convex cone. Let Z be a family of subsets of N , directed upward
by set inclusion. For every Z ∈ Z and w ∈ W we define a neighborhood
V(Z,w), setting S ≤ T + V(Z,w) for linear operators S, T ∈ L(N ,M) if

S(a) ≤ T (a) + w for all a ∈ Z.
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The collection V(Z,W) =
{
V(Z,w) | Z ∈ Z, w ∈ W

}
of these neighborhoods

defines a convex quasiuniform structure on a subcone H(N ,M) of L(N ,M)
in the sense of I.5.3 in [100] provided that its elements are bounded below,
that is if for each T ∈ H(N ,M) and Z ∈ Z and w ∈ W there is λ ≥ 0
such that

0 ≤ T (a) + λw for all a ∈ Z.

It is elaborated in I.5.3 [100] how such a convex quasiuniform structure
can be used to construct an abstract neighborhood system V for the
cone H(N ,M), turning

(
H(N ,M),V

)
into a locally convex cone in such a

way that the neighborhoods in V(Z,W) form a basis for the neighborhood
system V. In fact, all that needs to be done is to define suitable sums
of the elements of V(Z,W) and thus create a cone that can be adjoined to
H(N ,M). The induced order for H(N ,M) is given by S ≤ T for operators
S, T ∈ H(N ,M) if

S(a) ≤ T (a) + w for all a ∈
⋃

Z∈Z

Z and w ∈ W.

Alternatively, if Condition (QF*) from 6.4 holds for the neighborhoods in VZ

(with the order from above), then we may use the procedure from 6.4 in order
to turn H(N ,M) into a quasi-full locally convex cone

(
H(N ,M), Ṽ

)
. As

elaborated in 6.4, the topologies induced by Ṽ are generally finer than those
resulting from V.

Remark 7.1. The standard lattice completion Ĥ(N ,M) of H(N ,M) (see
5.57) leads to a rather unwieldy setting in this case. It consists of R-valued
functions defined on the dual cone H(N ,M)∗ which is difficult to approach
and depends on the particular topology of H(N ,M), that is the choice for
the family Z of subsets of N . It is therefore preferable to employ a simplified
lattice completion Ĥ(N ,M)Υ in the sense of 5.61 for which we shall use the
subset Υ =

(⋃
Z∈Z Z

)
×M ∗ of H(N ,M)∗, consisting of all continuous linear

functionals whose elements (a, μ) act as linear functionals on H(N ,M) as
(
a, μ

)
(T ) = μ

(
T (a)

)
for all T ∈ H(N ,M).

By our definition of the neighborhoods in H(N ,M), this set Υ supports
the separation property. The locally convex cone H(N ,M) is therefore em-
bedded into Ĥ(N ,M)Υ , which in turn permits a more easily accessible re-
alization of the lattice completion of H(N ,M). In case that the subcone
spanned by the sets Z ∈ Z is all of N , we may interpret the elements of
the order closure of H(N ,M) in its lattice completion Ĥ(N ,M) as linear
operators from N into M∗∗, the second dual of M. Indeed, we observed
in 5.60(a) that every element ϕ ∈ Ĥ(N ,M) in the order closure of H(N ,M)
is a linear functional on H(N ,M)∗. Since Υ = N ×M∗ ⊂ H(N ,M)∗ as
elaborated above, the function ϕ : N ×M∗ → R is linear in both arguments
from N and from M∗. Thus the mapping
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a �→ ϕa : N →M∗∗,

where ϕa(μ) = ϕ(a, μ) for μ ∈ M∗ is indeed a linear operator from N
into M∗∗. Moreover, if both N and M are in fact vector spaces over K = R

or K = C and if all operators in H(N ,M) are K-linear, then a similar
argument shows the every function ϕ in the order closure of H(N ,M) in
Ĥ(N ,M) can be interpreted as a K-linear operator from N into M∗∗.

Examples 7.2. (a) If both (N ,U) and (M,W) are locally convex cones,
and if all the sets Z ∈ Z are bounded below in N , then every continuous
linear operator from N in to M is bounded below with respect to the
neighborhoods in V(Z,W). Thus, if H(N ,M) is a cone of continuous linear
operators from N into M, we may consider either of the following:

(i) If Z is the family of all bounded below subset of N , we obtain the
uniform operator topology for H(N ,M). We may alternatively choose
the families Z of all bounded or of all relatively bounded subsets of P
(see 4.24) in this case.

(ii) If Z is the family of all finite subsets of N , we obtain the strong
operator topology for H(N ,M).

We shall also consider topologies on H(N ,M) that arise if M is endowed
with an alternative weak topology σ(M,L) generated by a third cone L
and a bilinear form on M×L (see II.3 in [100]). In particular:

(iii) If Z is the family of all finite subsets of N , and if M is endowed
with the topology σ(M,M∗), we obtain the weak operator topology
for H(N ,M).

(iv) If Z is the family of all finite subsets of N , and if M = L∗ is the dual
cone of some locally convex cone (L,V), endowed with the topology
σ(L∗,L), we obtain the weak* operator topology for H(N ,L∗).

(b) If Z consists of the set Z = N , then V = 0 is the only resulting
neighborhood for L(N ,M), and boundedness from below requires that we
consider linear operators that take only positive values on N for the cone
H(N ,M). The resulting order for operators S, T ∈ H(N ,M) is S ≤ T if
S(a) ≤ T (a) for all a ∈ N . If on the other hand, Z consists of the set
Z = {0}, then V =∞ is the only resulting neighborhood and the indiscrete
topology arises for any subcone H(N ,M) of L(N ,M).

(c) If N = M, then H(M,M) = R+ = {a ∈ R | a ≥ 0} is an example
of a cone of linear operators on M, with the scalar multiplication as its
operation. If (M,W) is a locally convex cone and if Z is an upward directed
family of bounded below subsets of subsets of M, then the neighborhood
V(Z,w) in R+ corresponding to some Z ∈ Z and w ∈ W according to the
above is given by α ≤ β + V(Z,w) for α, β ∈ R+ if

αa ≤ βa + w for all a ∈ Z.



114 I Locally Convex Cones

If all elements of the set Z are bounded in M, then this condition can
be interpreted as follows: Let δ = inf{λ ≥ 0 | 0 ≤ a + λw for all a ∈ Z}
and γ = inf{λ ≥ 0 | a ≤ λw for all a ∈ Z}. A simple argument using the
cancellation rule I.4.2 in [100] then yields that the above is equivalent to

β ≤ α +
1
δ

and α ≤ β +
1
γ

.

(We set of course 1
0 = +∞ and 1

+∞ = 0 is these expressions.) Thus de-
pending on our choice for Z, one of the following can emerge as the upper
neighborhoods V(Z,w)(α) for an element α ∈ R+ : The intervals (for ε > 0)
(i) [α − ε, α + ε], yielding the Euclidean topology with equality as order;
(ii) [0, α + ε], yielding the upper Euclidean topology with the natural order;
(iii) [α− ε,+∞), yielding the lower Euclidean topology with reverse natural
order; (iv) [α − ε, α], yielding the equality as order; (v) [0, α], yielding the
natural order. Note that only in cases (ii) and (v) the resulting locally convex
cone (R+,V) is quasi-full.

If (N ,U) is indeed a locally convex topological vector space over K = R

or K = C, endowed with its (modular) symmetric topology, then we may
also consider H(N ,N ) = K. Most useful choices for Z will yield the Eu-
clidean neighborhoods Bε(α) = {β ∈ K | |β − α| ≤ ε} for elements α of
K and the equality as order. Alternatively, there may be a subcone C of
negative elements in K in this case, and the upper neighborhoods are the
sets Bε(α) + C.

(d) Every locally convex cone (P,V) can be represented as a locally
convex cone of linear operators. Indeed, algebraically, P coincides with the
cone H(R+,P) of all linear operators from R+ = {a ∈ R | a ≥ 0} into P
if we identify an element a ∈ P with the operator α �→ αa in H(R+,P).
The neighborhoods of P may be recovered for H(R+,P) if we use the above
procedure with Z containing only the singleton set {1} ⊂ R+. We obtain a
copy of the locally convex cone (P,V).

7.3 Cones of Linear Functionals. The Second Dual. Let (P,V) be a
locally convex cone. In the general settings of this section we choose (N ,U) =
(P,V) and M = R with its usual neighborhood system W = {ε ∈ R | ε> 0}(
see 1.4(a)

)
. For the subcone H(P, R) of L(P, R) we choose the dual P∗

of P. As in 7.2(a) let Z be a family of bounded below subsets of P. In
this way, (P∗,V) becomes a locally convex cone. Its own dual cone, that
is the second dual of P, then is well-defined and depends on the choice for
the topology of P∗, that is on the choice for the family Z of subsets of P.
Considering the particular choices for Z as elaborated in 7.2(a) we shall use
the following notations for the second dual of a locally convex cone (P,V) :

(i) P∗∗ denotes the cone of all R-valued linear functionals on P∗.
(ii) P∗∗sl , P∗∗sr and P∗∗sl denote the dual of (P∗,V) if Z consists of all

(bounded below, relatively bounded) or bounded subsets of P. These
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are referred to as the (lower strong, relative strong) or strong second
dual of P.

(iii) P∗∗w denotes the weak second dual of P, that is the dual of (P∗,V) if
Z consists of all finite subsets of P.

Since every element a ∈ P acts as an R-valued linear functional ϕa on
P∗, and since this linear functional is obviously contained in the polar of
the neighborhood V(Z,1), where Z = {a} ⊂ P, the given cone P can be
envisioned as a subcone of its second dual P∗∗w . Indeed, we have

P ⊂ P∗∗w ⊂ P∗∗s ⊂ P∗∗sr ⊂ P∗∗sl ⊂ P∗∗

in general. Now let us recall the construction of the standard lattice comple-
tion P̂ of P from Section 5.57. The elements of P̂ were realized as R-valued
functions on P∗, and in Remark 5.60(a) we observed that the elements of the
order closure of P in P̂ are linear on P∗. This order closure can therefore
also be considered as a subcone of P∗∗.

Furthermore, we observe that for every choice of the family Z of bounded
below subsets of P the linear functionals in the thus generated second dual
P∗∗Z of P, if considered as R-valued functions on P∗, are bounded below
on the polars of all neighborhoods in V. Indeed, every functional ϕ in the
second dual P∗∗Z of P is contained in the polar of some neighborhood V(Z,ε)
for Z ∈ Z and ε > 0. Given v ∈ V there is λ ≥ 0 such that 0 ≤ z + λv
for all z ∈ Z. Then for every μ ∈ v◦ we have 0 ≤ μ(z) + λ for all z ∈ Z,
hence 0 ≤ μ + (λ/ε)V(Z,ε) by the definition of the neighborhood V(Z,ε).
Since ϕ ∈ V ◦

(Z,ε), this yields ϕ(μ) ≥ −(λ/ε) for all μ ∈ v◦. Consequently,
for every such choice of the family Z, the resulting second dual P∗∗Z of P
may be considered as a subcone of the locally convex complete lattice cone
FV̂b

(P∗, R) from 5.57. Recall that the standard lattice completion P̂ of P
had been introduced as the smallest locally convex complete lattice subcone
of FV̂b

(P∗, R) that contains P (see 5.57). We have P ⊂ P∗∗Z ⊂ FV̂b
(P∗, R)

for any such choice of the family Z by the above.
Therefore both the order closure of P in P̂ and the second dual P∗∗Z are

contained in the intersection of P∗∗ and FV̂b
(P∗, R), but it is in general not

possible to identify one of these as a subcone of the other.
We can, however, add the following often helpful observation: Let Z be

a bounded below subset of P, and suppose that the element ϕ ∈ P̂ is in
the closure with respect to the order topology of (the embedding of) Z in
P̂. This means that there is a net (ai)i∈I in Z converging pointwise as
functions on P∗ towards ϕ, that is

ϕ(μ) = lim
i∈I

μ(ai)

for all μ ∈ P∗. (Convergence is meant in the usual (order) topology of
R.) Then the function ϕ is linear on P∗ and μ ≤ ν + V(Z,1) for elements
μ, ν ∈ P∗ implies that μ(ai) ≤ ν(ai) + 1 holds for all i ∈ I, and therefore
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ϕ(μ) ≤ ϕ(ν)+1 as well. This shows that ϕ ∈ V ◦
(Z,1). Hence the element ϕ ∈

P̂ is contained in the dual cone P∗∗Z of (P∗,V) whenever the neighborhood
generating family Z contains the bounded below set Z.

For a locally convex vector space (P,V) over K = R or K = C the differ-
ent notions in (ii) for the strong second dual coincide, and according to 2.1(d)
every real-valued (real) linear functional ϕ ∈ P∗∗ corresponds canonically to
a K-valued K-linear functional ϕK on P∗

K
, that is an element of P∗∗

K
, the

(algebraic) second vector space dual of P.
These final observations will prove particularly useful in the subsequent

chapters when we shall investigate integrals of cone-valued functions.

8. Notes and Remarks

The theory of locally convex cones originated in a joint work [100] by the
author and K. Keimel in 1992. We were then looking for a suitable setting
for the formulation of Korovkin-type approximation theory which deals with
certain restricted classes of continuous linear operators on locally convex vec-
tor spaces. These may be positive operators on ordered spaces, contractions
on normed spaces, multiplicative operators on Banach algebras, etc. Approx-
imation processes are modeled by sequences or nets of operators in such a
class. The given restrictions then guarantee convergence towards the identity
operator on a large subset of their domain if this property can be checked
for a relatively small test set. The use of locally convex cones instead of lo-
cally convex vector spaces turns out to be very advantageous in this context,
since it allows to formulate all those different restriction properties for the
operators in terms of the order structure alone, thus yielding a unifying ap-
proach. Subsequently the theory of locally convex cones has been expanded,
mostly by the author of this book. Readers interested in further aspects of
the subject should in particular familiarize themselves with the Hahn-Banach
type extension and separation results that were laid out in [172] and form the
foundations for the duality theory of locally convex cones. Ordered cones were
earlier studied by various authors, in particular Fuchssteiner and Lusky [63]
whose book contains a Hahn-Banach type sandwich theorem for

(
R∪{−∞}

)
-

valued linear functionals on an ordered cone, a non-topological predecessor to
the results from [172]. An in-depth investigation for the relationship between
order and topology can be found in the seminal work [135] by Nachbin. The
compendia of continuous lattices [68] and [69] by Gierz, Hofmann, Keimel,
Lawson, Mislove and Scott contain a detailed analysis of various ways to
introduce topologies on lattices.

The weak (global) preorder � as defined in Section 3 has an earlier ana-
logue in the (global) preorder � which was defined in Section I.3 of [100] for
elements a, b ∈ P as follows:
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a � b if a ≤ b + v

for all v ∈ V. Clearly a ≤ b implies a � b which in turn implies that a � b.
In some sense the preorder � can be considered as a topological closure of
the given order ≤ whereas the weak preorder � signifies a closure with
respect to both topology and the linear structure. Like for the weak preorder
there is also a local version �v of the preorder

(
see I.3 in [100]

)
referring

to a particular neighborhood v ∈ V rather than the whole neighborhood
system. Relationships between the different orders of a locally convex cone
are investigated in detail in [175]. Since it provides the separation properties
from Section 4, the weak preorder turns out to be the most suitable one for
our purposes.

An excellent historical account of the extensive literature on ordered topo-
logical vector spaces can be found in the classical book by Day [39]. The
notions of order convergence and of order topology for complete locally con-
vex lattice cones from Section 5 are also used in ordered vector spaces, but
introduced in a slightly different way which does not require a given topolog-
ical or lattice structure

(
see Chapter V.6 in [185]

)
. However, on topological

vector lattices this notion coincides with ours form Section 5. Topological vec-
tor lattices had first been introduced as Banach lattices, and comprehensive
treatments can for example be found in the books by Schäfer [184] and [185]
and by Meyer-Nieberg [132]. In locally convex vector spaces there are compat-
ibility requirements between the algebraic and the lattice operations as well
as the topology. These are reflected in the corresponding requirements of Sec-
tion 5 for locally convex cones. The strong conditions for locally convex lattice
cones mirror those for M-topologies in topological vector lattices. Since under
circumstances the latter permit representations as function spaces

(
see [94]

)
,

the result of Proposition 5.37 is not unexpected. Proposition 5.37 gives also
the reason for using R-valued functions in the standard lattice completion of
a locally convex cone. General lattices carrying different orders leading to no-
tions of order convergence and of approximation of elements are thoroughly
investigated in [68] and [69].




