Skip to main content

Some Tools and Results for Parabolic Stochastic Partial Differential Equations

  • Chapter
A Minicourse on Stochastic Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1962))

These notes give an informal introduction to parabolic stochastic partial differential equations. We emphasize material coming from particle systems, including duality and the Dawson—Watanabe superprocess. We also deal with large deviations and comparison theorems. Applications include blow-up, hitting theorems, and compact support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maury D. Bramson (1978). Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math. 31, 531–581

    Article  MATH  MathSciNet  Google Scholar 

  2. Maury Bramson (1983). Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc. 44(285)

    Google Scholar 

  3. Albert-László Barabási and H. Eugene Stanley (1995). Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Pao-Liu Chow (2007). Stochastic partial differential equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman … Hall/CRC, Boca Raton, FL.

    Google Scholar 

  5. J. T. Cox and R. Durrett (1995). Hybrid zones and voter model interfaces. Bernoulli, 1(4), 343–370

    Article  MATH  MathSciNet  Google Scholar 

  6. D. A. Dawson (1993). Measure-valued Markov processes, In: Lecture Notes in Mathematics 1180, 1–260, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  7. M. Doi and S.F. Edwards (1988). The Theory of Polymer Dynamics, Oxford University Press, Oxford

    Google Scholar 

  8. Giuseppe Da Prato and Jerzy Zabczyk (1992). Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. R. Durrett (1988). Lecture Notes on Particle Systems and Percolation, Wadsworth and Brooks/Cole, Pacific Grove

    MATH  Google Scholar 

  10. S. Ethier and T. Kurtz (1986). Markov Processes: Characterization and Convergence, John Wiley … Sons Inc., New York

    MATH  Google Scholar 

  11. Alison M. Etheridge (2000). An Introduction to Superprocesses, Amer. Math. Soc., Providence

    Google Scholar 

  12. Marco Ferrante and Marta Sanz-Solé (2006). SPDEs with coloured noise: Analytic and stochastic approaches, ESAIM Probab. Stat. 10, 380–405 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. I. Freidlin and A. D. Wentzell (1998). Random Perturbations of Dynamical Systems, Springer-Verlag, New York, second edition. Translated from the 1979 Russian original by Joseph SzĂĽcs

    Google Scholar 

  14. A. M. Garsia, E. Rodemich, and H. Rumsey, Jr. (1970/1971). A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578

    Article  MathSciNet  Google Scholar 

  15. I. Iscoe (1988). On the supports of measure-valued critical branching Brownian motion, Probab. Th. Rel. Fields 16, 200–221

    MATH  MathSciNet  Google Scholar 

  16. N. Ikeda and S. Watanabe (1989). Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha, Amsterdam, Oxford, New York

    Google Scholar 

  17. N. V. Krylov and B. L. Rozovskii (1982). Stochastic partial differential equations and diffusion processes, Russian Math. Surveys 37(6), 81–105. Originally in Uspekhi Mat. Nauk, 37(6), 75–95

    Article  MATH  MathSciNet  Google Scholar 

  18. N. V. Krylov (1996). On Lp-theory of stochastic partial differential equations in the whole space, SIAM J. Math Anal. 27(2), 313–340

    Article  MATH  MathSciNet  Google Scholar 

  19. Nicolai V. Krylov (2006). On the foundation of the Lp-theory of stochastic partial differential equations, In: Stochastic Partial Differential Equations and Applications-VII, Lect. Notes Pure Appl. Math. 245, 179–191, Chapman … Hall/CRC, Boca Raton

    Google Scholar 

  20. Jean-Fran¸cois Le Gall (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics ETH Zürich, Birkhäuser-Verlag, Basel

    Google Scholar 

  21. Thomas M. Liggett (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer-Verlag, Berlin

    Google Scholar 

  22. Thomas M. Liggett (2005). Interacting Particle Systems, Springer-Verlag, Berlin. Reprint of the 1985 original

    Google Scholar 

  23. Jonathan C. Mattingly (2003). On recent progress for the stochastic Navier Stokes equations, In: Journées “Équations aux Dérivées Partielles”, pages Exp. No. XI, 52. Univ. Nantes, Nantes

    Google Scholar 

  24. C. Mueller and E. Perkins (1992). The compact support property for solutions to the heat equation with noise, Probab. Th. Rel. Fields 93, 325–358

    Article  MATH  MathSciNet  Google Scholar 

  25. Carl Mueller and Etienne Pardoux (1999). The critical exponent for a stochastic PDE to hit zero, In: Stochastic Analysis, Control, Optimization and Applications, 325–338, Birkhäuser Boston, Boston

    Google Scholar 

  26. C. Mueller and R. Sowers (1995). Random traveling waves for the KPP equation with noise, J. Funct. Anal. 128, 439–498

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Mueller and R. Tribe (1997). Finite width for a random stationary interface, Electronic J. Prob. 2, Paper no. 7, 1–27

    MathSciNet  Google Scholar 

  28. C. Mueller (1991). On the support of the heat equation with noise, Stochastics 37(4), 225–246

    MATH  MathSciNet  Google Scholar 

  29. L. Mytnik (1998). Weak uniqueness for the heat equation with noise, Ann. Probab, 26(3), 968–984

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Nualart and É. Pardoux (1992). White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields 93(1), 77–89

    Article  MATH  MathSciNet  Google Scholar 

  31. Étienne Pardoux (1972). Sur des équations aux dérivées partielles stochastiques monotones, C. R. Acad. Sci. Paris Sér. A-B 275, A101–A103

    MathSciNet  Google Scholar 

  32. Étienne Pardoux (1991). Filtrage non linéaire et équations aux dérivées par-tielles stochastiques associées, In: Lecture Notes in Math. 1464, 67–163, Springer, Berlin

    Google Scholar 

  33. Edwin Perkins (2002). Dawson—Watanabe superprocesses and measure-valued diffusions, In: Lecture Notes in Math. 1781, 125–324, Springer, Berlin

    Google Scholar 

  34. Claudia PrévÔt and Michael Röckner (2007). A concise course on stochastic partial differential equations, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin

    Google Scholar 

  35. Murray H. Protter and Hans F. Weinberger (1984). Maximum Principles in Differential Equations, Springer-Verlag, New York

    MATH  Google Scholar 

  36. Daniel Revuz and Marc Yor (1999). Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, third edition

    MATH  Google Scholar 

  37. T. Shiga (1994). Two contrasting properties of solutions for one-dimensional stochastic partial differential equations, Can. J. Math 46(2), 415–437

    MATH  MathSciNet  Google Scholar 

  38. J. B. Walsh (1986). An Introduction to Stochastic Partial Differential Equations, In: Lecture Notes in Mathematics 1180, 265–439, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  39. Lorenzo Zambotti (2003). Integration by parts on δ-Bessel bridges, δ ≥ 3 and related SPDEs, Ann. Probab. 31(1), 323–348

    Article  MATH  MathSciNet  Google Scholar 

  40. Lorenzo Zambotti (2005). Integration by parts on the law of the reflecting Brownian motion, J. Funct. Anal. 223(1), 147–178

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to Carl Mueller .

Editor information

Davar Khoshnevisan Firas Rassoul-Agha

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mueller, C. (2009). Some Tools and Results for Parabolic Stochastic Partial Differential Equations. In: Khoshnevisan, D., Rassoul-Agha, F. (eds) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol 1962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85994-9_4

Download citation

Publish with us

Policies and ethics