Skip to main content

Application of Malliavin Calculus to Stochastic Partial Differential Equations

  • Chapter
A Minicourse on Stochastic Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1962))

The aim of these notes is to provide an introduction to the Malliavin calculus and its application to the regularity of the solutions of a class of stochastic partial differential equations. The Malliavin calculus is a differential calculus on a Gaussian space which has been developed from the probabilistic proof by Malliavin of H¨ormander's hypoellipticity theorem (see [8]). In the next section we present an introduction to the Malliavin calculus, and we derive the main properties of the derivative and divergence operators. Section 3 is devoted to establish the main criteria for the existence and regularity of density for a random variable in a Gaussian space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bally, A. Millet, and M. Sanz-Solé (1995). Approximation and support theorem in Hšlder norm for parabolic stochastic partial differential equations, Ann.Probab. 23, 178–222

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Bouleau and F. Hirsch (1991). Dirichlet Forms and Analysis on Wiener Space, Walter de Gruyter & Co., Berlin

    MATH  Google Scholar 

  3. V. Bally and E. Pardoux (1998). Malliavin calculus for white noise driven Parabolic SPDEs, Pot. Anal. 9, 27–64

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Cairoli and J. B. Walsh (1975). Stochastic integrals in the plane, Acta Mathematica 134, 111–183

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Da Prato and J. Zabczyk (1992). Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. R. Dalang (1999). Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s, Electron. J. Probab. 4, 29 pp

    MathSciNet  Google Scholar 

  7. K. Itô (1951). Multiple Wiener integral, J. Math. Soc. Japan 3, 157–169

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Malliavin (1978). Stochastic calculus of variation and hypoelliptic operators,In: Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), pp. 195–263, Wiley,New York-Chichester-Brisbane

    Google Scholar 

  9. D. Màrquez-Carreras, M. Mellouk and M. Sarrà (2001). On stochastic partial differential equations with spatially correlated noise: smoothness of the law.Stochastic Process. Appl. 93, 269–284

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Millet and M. Sanz-Solé (1999). A stochastic wave equation in two space dimension: Smoothness of the law. Ann. Probab. 27, 803–844

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Mueller (1991). On the support of solutions to the heat equation with noise.Stochastics Stochastics Rep. 37, 225–245

    MATH  MathSciNet  Google Scholar 

  12. D. Nualart (2006). The Malliavin Calculus and Related Topics. Second edition,Springer-Verlag, New York

    MATH  Google Scholar 

  13. D. Nualart and Ll. Quer-Sardanyons (2007). Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Analysis 27, 281–299

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Nualart and M. Zakai (1988). Generalized multiple stochastic integrals and the representation of Wiener functionals. Stochastics 23, 311–330

    MATH  MathSciNet  Google Scholar 

  15. E. Pardoux and T. Zhang (1993). Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal. 112, 447–458

    Article  MATH  MathSciNet  Google Scholar 

  16. Ll. Quer-Sardanyons and M. Sanz-Solé (2004). Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal.206, 1–32

    Article  MATH  MathSciNet  Google Scholar 

  17. Ll. Quer-Sardanyons and M. Sanz-Solé (2004). A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli 10, 165–186

    Article  MATH  MathSciNet  Google Scholar 

  18. D. W. Stroock (1978). Homogeneous chaos revisited. In: Seminaire de Proba-bilités XXI, Lecture Notes in Mathematics 1247, 1–8

    Article  MathSciNet  Google Scholar 

  19. J. B. Walsh (1986). An Introduction to Stochastic Partial Differential Equations. In: Ecole d'Ete de Probabilites de Saint Flour XIV, Lecture Notes in Mathematics 1180, 265–438

    Google Scholar 

  20. S. Watanabe (1984). Lectures on Stochastic Differential Equations and Malli-avin Calculus. Tata Institute of Fundamental Research, Springer-Verlag

    Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to David Nualart .

Editor information

Davar Khoshnevisan Firas Rassoul-Agha

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nualart, D. (2009). Application of Malliavin Calculus to Stochastic Partial Differential Equations. In: Khoshnevisan, D., Rassoul-Agha, F. (eds) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol 1962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85994-9_3

Download citation

Publish with us

Policies and ethics