Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1962))

These notes give an overview of recent results concerning the non-linear stochastic wave equation in spatial dimensions d ≥ 1, in the case where the driving noise is Gaussian, spatially homogeneous and white in time. We mainly address issues of existence, uniqueness and Hölder—Sobolev regularity. We also present an extension of Walsh's theory of stochastic integration with respect to martingale measures that is useful for spatial dimensions d ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Dalang: Extending the martingale measure stochastic integral with applications to spatially homogeneous spde's. Electronic J. of Probability, Vol 4, 1999.

    Google Scholar 

  2. R. C. Dalang, N. E. Frangos: The stochastic wave equation in two spatial dimensions. Annals of Probab. 26, 1, 187–212, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. C. Dalang, O. Lévèque: Second-order linear hyperbolic SPDEs driven by isotropic Gaussian noise on a sphere. Annals of Probab. 32, 1068–1099, 2004.

    Article  MATH  Google Scholar 

  4. R. C. Dalang, C. Mueller: Some non-linear SPDE's that are second order in time. Electronic J. of Probability, Vol 8, 1, 1–21, 2003.

    MathSciNet  Google Scholar 

  5. R. C. Dalang, M. Sanz-Solé: H ölder-Sobolev regularity of the solution to the stochastic wave equation in dimension 3. Memoirs of the AMS (2009, to appear).

    Google Scholar 

  6. J. L. Davis: Wave Propagation in Solids and Fluids. Springer Verlag, 1988.

    Google Scholar 

  7. G. B. Folland: Introduction to Partial Differential Equations. Princeton Univ. Press, 1976.

    Google Scholar 

  8. O. Gonzalez, J. H. Maddocks: Extracting parameters for base-pair level models of DNA from molecular dynamics simulations. Theoretical Chemistry Accounts, 106, 76–82, 2001.

    Google Scholar 

  9. A. Hellemans: SOHO Probes Sun's Interior by Tuning In to Its Vibrations. Science May 31 1996: 1264–1265.

    Google Scholar 

  10. D. Khoshnevisan: A Primer on Stochastic Partial Differential Equations. In: this volume, 2007.

    Google Scholar 

  11. A. Karkzewska, J. Zabczyk: Stochastic PDE's with function-valued solutions. In: Infinite-dimensional stochastic analysis (Clément Ph., den Hollander F., van Neerven J.&de Pagter B., eds), pp. 197–216, Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences, 1999, Amsterdam.

    Google Scholar 

  12. M. Oberguggenberger & F. Russo: Nonlinear stochastic wave equations. In: Generalized functions—linear and nonlinear problems (Novi Sad, 1996). Integral Transform. Spec. Funct. 6, no. 1–4, 71–83, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Peszat The Cauchy problem for a non-linear stochastic wave equation in any dimension. Journal of Evolution Equations, Vol. 2, no. 3, 383–394, 2002.

    Article  MathSciNet  Google Scholar 

  14. M. Sanz-Solé, M. Sarrà: H ölder continuity for the stochastic heat equation with spatially correlated noise. In: Stochastic analysis, random fields and applications (R.C. Dalang, M. Dozzi & F. Russo, eds), pp. 259–268, Progress in Probability 52, Birkhäuser, Basel, 2002.

    Google Scholar 

  15. L. Schwartz: Théorie des distributions. Hermann, Paris, 1966.

    MATH  Google Scholar 

  16. N. Shimakura: Partial differential operators of elliptic type. Translations of Mathematical Monographs, 99. American Mathematical Society, 1992.

    Google Scholar 

  17. E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  18. F. Treves: Basic Linear Partial Differential Equations. Academic Press, 1975.

    Google Scholar 

  19. J. B. Walsh: An introduction to stochastic partial differential equations, École d'été de Probabilités de Saint Flour XIV, Lecture Notes in Mathematics, Vol. 1180, Springer Verlag, 1986.

    Google Scholar 

  20. J. Zabczyk: A mini course on stochastic partial differential equations. In: Stochastic climate models (P. Imkeller & J.-S. von Storch, eds), pp. 257–284, Progr. Probab., 49, Birkhäuser, 2001.

    Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to Robert C. Dalang .

Editor information

Davar Khoshnevisan Firas Rassoul-Agha

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalang, R.C. (2009). The Stochastic Wave Equation. In: Khoshnevisan, D., Rassoul-Agha, F. (eds) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol 1962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85994-9_2

Download citation

Publish with us

Policies and ethics