
Chapter 1

Linear differential systems
with parameter excitation

This chapter intends to introduce to the general setting of linear stochastic
systems

Żt = A(t)Zt,

where (A(t))t≥0 is a matrix valued stochastic process and Żt ≡ d
dtZt denotes

the derivative with respect to the “time” variable t. Such differential systems
are called parametrically excited (perturbed) or real noise linear systems; in
the engineering literature the terminology rheo linear system is also used. The
system matrix is assumed to be a continuous mapping defined on the state
space of a Markov process which serves as stochastic input for the system.
Hence, the above matrix process is of the form

A(t) = A(Xt),

where (Xt)t≥0 is the input process. Note for preciseness that some authors
further differentiate the nature of the noise by distinguishing “real noise” on
the one hand which is defined on the two-sided time set R and Markovian
noise on the other hand which is a Markov process with time set R+; see
Arnold and Kliemann [Ar-Kl 83, p.4]. In this book both terms will be used
interchangeably in the latter sense. Linear real noise systems with state-
dependent coefficient matrix A(Xt) and Markovian input noise Xt as above
have for example been investigated by Frisch [Fs 66]. In this reference it is
argued heuristically how a Fokker-Planck equation might be obtained for
(Xt, Zt)t, if Xt is stationary. Real noise systems with Markovian input noise
are also subject to the considerations of Kats and Krasovskii [Ka-Kv 60];
however, these authors consider the case that (Xt)t≥0 is a Markov chain
with finite state space. Now the setting of our work also assumes that the
input process has finitely many “states of preference”, but is a continuous
process defined by a stochastic differential equation with respect to Brownian
motion. These preferential (“metastable”) states correspond to certain time
scales which will be made precise in the next chapter.
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10 1 Linear differential systems with parameter excitation

Since the real noise process (Xt)t≥0 will be defined by some SDE, the
coupled system (X, Z) is also given by the resulting SDE. Note that this
differential equation is degenerate by definition in the sense that no noise
term, i.e. no summand of the type g(Xt, Zt) dBt containing the differential of
a Brownian motion (or some more general stochastic process) B, is visible in
the Z-direction, but solely in the X-variable; see e.g. Bunke [Bu 72, Ch.6] for
standard results on such equations. A different type of randomly perturbed
linear SDE is the so called white noise case; see e.g. Khasminskii [Kh 67],
[Kh 80] and [Kh 60]. Here, there is no real noise input but stochastic integra-
tion with respect to Brownian motion in the SDE for Z itself. The latter type
of systems is not subject to our investigations, but also will be commented
on in this chapter.

From an applications’ point of view real noise stochastic systems are often
considered as more realistic for describing “real”-world problems. The rea-
son is that most processes to be modeled are concerned with variables of a
specified magnitude or even restricted to a bounded interval such as con-
centrations (e.g. in chemistry), population fluctuations (in life sciences) or
strictly positive parameters in technical systems; see e.g. Kliemann [Kl 80,
App.IV: p.3] and [Kl 83b], Arnold et al. [Ar-Hh-Lf 78], Ahmadi and Morshedi
[Ah-Mr 78] and Griesbaum [Gb 99] for further examples and discussions. In
contrast using white noise instead is mostly considered as too drastic an
idealization; see Kliemann [Kl 80, App.IV: p.3] and Wihstutz [Wh 75, p.3].

1.1 The model

The system which lies at the heart of these investigations is the real-noise
driven system

dZε
t = A (Xε

t ) Zε
t dt

dXε
t = b (Xε

t ) dt +
√

ε σ (Xε
t ) dWt

(1)

where A ∈ C(Rd, Kn×n) is a continuous matrix function (K = R or C);
d, n ∈ N denote the dimensions of the state spaces of Xε and Zε, respectively;
ε ≥ 0 parametrizes the intensity of (Wt)t≥0 which denotes a Brownian motion
in Rd, defined on a complete probability space (Ω,F , P), and Xε is a diffusion,
defined by the above SDE with coefficient functions b ∈ C∞(Rd, Rd) and
σ ∈ C∞(Rd, Rd×d).

A detailed study of the SDE for Xε will follow in the next chapter specify-
ing the assumptions; see (2.1) and the corresponding set of assumptions 2.1.1.
For the moment, just assume that there exists a unique non-exploding
solution1 Xε,x, where the superscript x ∈ Rd denotes its initial value.

1 For standard terminology concerning SDEs, such as solution, uniqueness and non-
explosiveness, we refer to Hackenbroch and Thalmaier [Hb-Th 94, Ch.6], Khasminskii
[Kh 80, Ch.I-III] and Freidlin and Wentzell [Fr-We 98, Ch.1] among many others.
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Since the stochastic process Xε,x is non-explosive and has (P-almost
surely) continuous paths, the SDE (1) defines a continuous stochastic process
(Xε, Zε) in Rd × Kn; more precisely, the differential equation for Zε,

dZε
t = A

(
Xε,x

t (ω)
)

Zε
t dt , Zε

0 = z ∈ Kn , (1.1)

is a random differential equation (RDE) which ω-wise, i.e. for any realization
Xε,x

t (ω), is solved as an ODE; hence, the continuity of t 
→ A(Xε,x
t (ω))

guarantees existence and uniqueness of the solution path Zε
t (ω, x, z) in Kn

(see e.g. Coppel [Cp 65, p.42]) which together with Xε,x forms the solution
(Xε, Zε) of (1) in Rd ×Kn, starting in (x, z). Collecting these solution paths
(possibly defined as 0 on an exceptional subset of Ω of zero P-measure) yields
a well-defined mapping

Zε : R+ × Ω × Rd × Kn −→ Kn ,

(t, ω, x, z) 
→ Zε(t, ω, x, z) := Zε(t, ω, x) z

:= Zε
t (ω, x) z := Zε

t (ω, x, z)

and these notations will be used equivalently. Being linear in the z-variable
the mappings Zε(t, ω, x) form a matrix process which (as the corresponding
fundamental matrix) solves the random matrix differential equation

dZε
t = A

(
Xε,x

t (ω)
)

Zε
t dt , Zε

0 = idKn .

Furthermore, as the fundamental solution of a linear equation, Zε(t, ω, x)
takes its values in the set of invertible matrices, its inverse being governed
by the matrix differential equation

d(Z−1)t = − (Z−1)t A(Xε,x
t ) dt .

In particular, the Wronski-determinant det(Zε
t (ω, x)) does not vanish and

differentiating pathwise with respect to t yields the random differential
equation

d det(Zε
t (ω, x)) = trace

(
A
(
Xε,x

t (ω)
))

det(Zε
t (ω, x)) dt, det(Zε

0(ω, x)) = 1,

and therefore one obtains the Jacobi equation (Liouville equation)

det(Zε
t (ω, x)) = det(Zε

0(ω, x)) exp
(∫ t

0

trace
(
A
(
Xε,x

u (ω)
)
du

))
(1.2)

= exp
(∫ t

0

trace
(
A
(
Xε,x

u (ω)
)
du

))
;

see e.g. Coppel [Cp 65, p.44] for the pathwise calculations. Note that for ε = 0
all objects remain well-defined as the solutions of the resulting ODE.
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Under appropriate conditions it can be proved that Xε and hence also Zε

depend continuously on the parameter ε > 0; see Blagovescenskii and Freidlin
[Bla-Fr 61]. However, this will not be used in the sequel.

In this work we are interested in Lyapunov exponents, i.e. exponential
growth rates

1
t

log |Zε
t (ω, x, z) | ,

which are realized for large times t = T (ε) ; such growth rates will then
be called local Lyapunov exponents. In the following section spherical coor-
dinates will be introduced in order to get an integral decomposition for the
growth rate mentioned previously. This representation which is also an ingre-
dient of the Furstenberg-Khasminskii formula (see p.27) provides quantitative
information concerning |Zε| and will play a fundamental role in subsection
4.4.2.

1.2 Spherical coordinates for linear systems

In the following the system Zε will be decomposed by means of spherical
coordinates; for this section we take K = R, i.e. Zε

t (ω, x, z) is an element
of Rn where n ∈ N. In the literature on stochastic systems the use of such
coordinates (also called the projection method) is accredited to Khasminskii
[Kh 67] and Infante [In 68]; see e.g. Kliemann [Kl 79, p.465] and [Kl 80, p.144]
and Crauel [Cra 84, p.13]. It is, however, interesting to note that this use of
spherical coordinates is by no means restricted to the stochastic case. In fact,
this method had been a well established tool in investigating deterministic
linear differential systems before; see e.g. Levi-Civita [LC 11] and Wintner
[Wi 50] and [Wi 57].

Since the matrix Zε(ω, x) is invertible, the process Zε
t (ω, x, z) is non-

zero for z �= 0 and can hence be characterized by its radial and spherical
components via

�ε
t (ω, x, z) := |Zε

t (ω, x, z) | ∈ (0,∞)

and
ψε

t (ω, x, z) :=
Zε

t (ω, x, z)
�ε

t (ω, x, z)
∈ Sn−1 ,

respectively, if z �= 0 ; here, Sn−1 := {y ∈ Rn : |y| = 1} denotes the unit
sphere in Rn.

For the system Zε as given by (1), the defining pathwise differential
equation (1.1) is equivalent to the system of the two RDEs

d�ε
t = Q(Xε

t , ψε
t ) �ε

t dt , (1.3)
dψε

t = h(Xε
t , ψε

t ) dt , (1.4)



1.2 Spherical coordinates for linear systems 13

where
Q(x, ψ) := Q

(
A(x), ψ

)
:=

〈
A(x)ψ , ψ

〉
and

h(x, ψ) := h
(
A(x), ψ

)
:= A(x)ψ −

〈
A(x)ψ , ψ

〉
ψ ;

here, 〈 . , . 〉 denotes the standard scalar product of Rn . This follows in a
straightforward manner by calculating the pathwise derivative d

dt for fixed
(ω, x, z) where z �= 0, since

d

dt
�ε

t ≡ d

dt
〈Zε

t , Zε
t 〉1/2

=
1
2

1
�ε

t

d

dt
〈Zε

t , Zε
t 〉

=
1
2

1
�ε

t

2
〈

d

dt
Zε

t , Zε
t

〉
=

1
�ε

t

〈
A(Xε

t )Zε
t , Zε

t

〉
≡

〈
A(Xε

t )ψε
t , ψ

ε
t

〉
�ε

t

and hence

d

dt
ψε

t ≡ d

dt

Zε
t

�ε
t

=
�ε

t
d
dt Zε

t − Zε
t

d
dt �ε

t

(�ε
t )2

=
�ε

t A(Xε
t )Zε

t − Zε
t

〈
A(Xε

t )ψε
t , ψ

ε
t

〉
�ε

t

(�ε
t )2

≡ A(Xε
t )ψε

t −
〈
A(Xε

t )ψε
t , ψ

ε
t

〉
ψε

t

due to (1.1); conversely, these differential equations for (�ε, ψε) imply that

d

dt
Zε

t ≡ d

dt
(�ε

t ψε
t )

= ψε
t

d

dt
�ε

t + �ε
t

d

dt
ψε

t

= ψε
t

〈
A(Xε

t )ψε
t , ψ

ε
t

〉
�ε

t + �ε
t A(Xε

t )ψε
t − �ε

t

〈
A(Xε

t )ψε
t , ψ

ε
t

〉
ψε

t

≡ A(Xε
t )Zε

t .

Note that
h(A, ψ) ≡ Aψ − 〈Aψ, ψ〉ψ

vanishes at an element ψ ∈ Sn−1, if and only if ψ is an eigenvector of the
matrix A. The above vector field h(A, . ) is considered as the projection of
the linear vector field ψ 
→ Aψ onto Sn−1 for a fixed A ∈ Rn×n .

Due to the multiplicative structure of the RDE for �ε, it can be integrated
pathwise by separation of variables, thus giving

|Zε
t (ω, x, z) | ≡ �ε

t (ω, x, z) = | z | exp
(∫ t

0

Q
(
Xε,x

u (ω), ψε
u(ω, x, z)

)
du

)
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and therefore

1
t

log |Zε
t (ω, x, z)| =

log |z|
t

+
1
t

∫ t

0

Q
(
Xε,x

u (ω), ψε
u(ω, x, z)

)
du. (1.5)

Now since h(x,−ψ) = −h(x, ψ) for all x and ψ, the SDE for ψε
t is symmetric

with respect to the origin; more precisely, h(x, . ) can be viewed as a vector
field on the projective space P n−1, i.e. on Sn−1 where opposite points are
identified; therefore, ψε is also considered as a Pn−1-valued process. The
SDE for �ε and formula (1.5) remain unaffected, since Q(x,−ψ) = Q(x, ψ)
for all x and ψ. Furthermore, the projective process ψε is decoupled from
the radial process �ε ; therefore, (Xε, ψε) is a Markov process in Rd × Sn−1

or Rd × Pn−1, respectively, whose generating partial differential operator is
given by

Lε := Gε + h
∂

∂ψ
,

where

Gε :=
d∑

i=1

bi
∂

∂xi
+

ε

2

d∑
i,j=1

aij
∂2

∂xi ∂xj

is the generator of Xε to be discussed later; see section 2.2 .

Remark 1.2.1 (n = 2). Consider the two-dimensional case, i.e. Kn = R2.
Here, we can canonically identify ψ ∈ S2 with its angle α ∈ [0, 2π) via(

cosα

sin α

)
= ψ ,

for which we will use the abbreviation

ψ
.= α

in the following. In particular, the spherical process ψε
t on S1 defines the

angle process αε
t ∈ [0, 2π) by(

cosαε
t

sin αε
t

)
:= ψε

t .

The previous SDE (1.4), dψε
t = h(Xε

t , ψε
t ) dt , implies the following equation

for αε
t :

dαε
t = h̄(Xε

t , αε
t ) dt , (1.6)

for the drift h̄ being defined by

h̄(x, α) := h̄
(
A(x), α

)
,
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where

h̄
(
A, α

)
:= − a12 sin2 α + a21 cos2 α +

(
a22 − a11

)
sin α cosα

for matrices

A =
(

a11 a12

a21 a22

)
∈ R2×2 ;

also see Arnold and Kliemann [Ar-Kl 83, p.59]. More precisely, let α
.=(

cos α
sin α

)
=: ψ(α) and define

ψ′(α) :=
d

dα
ψ(α) =

(
− sin α

cosα

)
;

then one directly calculates that

h̄(A, α) =
〈

Aψ(α) , ψ′(α)
〉

for any A ∈ R2×2; furthermore, (ψ(α), ψ′(α)) is an orthonormal basis of R2

for any α and one obtains altogether for the pathwise derivatives that

d

dt
ψε

t ≡ d

dt
ψ(αε

t )

= ψ′(αε
t )

d

dt
αε

t

= ψ′(αε
t ) h̄(A(Xε

t ), αε
t )

=
〈
A(Xε

t )ψ(αε
t ) , ψ′(αε

t )
〉

ψ′(αε
t )

= A(Xε
t )ψ(αε

t ) −
〈
A(Xε

t )ψ(αε
t ) , ψ(αε

t )
〉

ψ(αε
t )

≡ h(A(Xε
t ), ψε

t )

which proves that the RDEs for ψε and αε are equivalent, since this calcula-
tion can be read in both directions.

Note that it follows from the above definition of h̄ that h̄(A + c I2 , . ) =
h̄(A, . ), for all A ∈ R2×2 and c ∈ R, where I2 denotes the two-dimensional
unit matrix; an example for such a system is given by Ahmadi and Morshedi
[Ah-Mr 78, Sec.IV]; also see Kliemann and Rümelin [Kl-Rm 81, p.17].

Also note that if A ∈ R2×2 is symmetric, then h̄ reads

h̄(A, α) ≡ − a12 sin2 α + a21 cos2 α + (a22 − a11) sin α cosα

= a12 cos 2α +
1
2

(a22 − a11) sin 2α .

In any case the RDE (1.3) for �ε now reads

d�ε
t = Q̄(Xε

t , αε
t ) �ε

t dt ,
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for Q̄ being defined by

Q̄(x, α) := Q̄(A(x), α) ,

where

Q̄(A, α) := a11 cos2 α + a22 sin2 α + (a12 + a21) sin α cosα (1.7)

is just designed such that

Q(A, ψ) ≡ 〈Aψ, ψ〉

≡
〈(

a11 a12

a21 a22

)(
cosα

sin α

)
,

(
cosα

sin α

)〉
= a11 cos2 α + a22 sin2 α + (a12 + a21) sinα cosα

≡ Q̄(A, α) ,

if α
.= ψ. Formula (1.5) hence becomes

1
t

log |Zε
t (ω, x, z)| =

log |z|
t

+
1
t

∫ t

0

Q̄
(
Xε,x

u (ω), αε
u(ω, x, z)

)
du. (1.8)

Furthermore, the drift function h̄(x, . ) is π-periodic which corresponds to
the fact that h(x,−ψ) = −h(x, ψ) for ψ ∈ S1 ; αε is the solution of the above
real noise SDE modulo π. Thus (Xε

t , αε
t ) is a Markov process in R2 × [0, π)

with generator

L̄ε := Gε + h̄
∂

∂α
.

Another way of describing the motion of the angle is by means of

ξε
t := tanαε

t

whenever αε
t /∈ {(2k + 1)π/2 : k ∈ Z}; defining

F (A, ξ) := a21 − a12 ξ2 + [ a22 − a11 ] ξ

for A ∈ R2×2 and ξ ∈ R, the dynamics of ξε is described by the differential
equation

dξε
t = F (A(Xε

t ), ξε
t )

≡
{

a21(Xε
t ) − a12(Xε

t ) (ξε
t )2 +

[
a22(Xε

t ) − a11(Xε
t )

]
ξε
t

}
dt , (1.9)
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since

d

dt
ξε
t =

1
cos2 αε

t

h̄(Xε
t , αε

t )

≡ 1
cos2 αε

t

{
− a12(Xε

t ) sin2 αε
t + a21(Xε

t ) cos2 αε
t

+
[
a22(Xε

t ) − a11(Xε
t )

]
sin αε

t cosαε
t

}
= a21(Xε

t ) − a12(Xε
t ) (ξε

t )2 +
[
a22(Xε

t ) − a11(Xε
t )

]
ξε
t .

��
Remark 1.2.2. The above pathwise considerations can be rewritten for any
linear differential equation with time dependent system matrix,

Żt = A(t)Zt (t ≥ 0)

in Rn, as

�̇t = Q(t, ψt) �t ,

ψ̇t = h(t, ψt) ,

where �t := |Zt | ∈ (0,∞) and ψt := Zt

�t
∈ Sn−1 whenever Z0 �= 0. Here,

the notation is adapted as

Q(t, ψ) := Q
(
A(t), ψ

)
≡

〈
A(t)ψ , ψ

〉
and

h(t, ψ) := h
(
A(t), ψ

)
:= A(t)ψ −

〈
A(t)ψ , ψ

〉
ψ .

In particular,

1
t

log |Zt | =
log |Z0 |

t
+

1
t

∫ t

0

Q(u, ψu) du . (1.10)

For the two-dimensional case n = 2,

A(t) :=
(

a11(t) a12(t)
a21(t) a22(t)

)
,

and the then well defined angle process αt
.= ψt, i.e.(

cosαt

sinαt

)
:= ψt ,

it follows that
α̇t = h̄(t, αt) ,
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where

h̄(t, α) := h̄(A(t), α)
≡ − a12(t) sin2 α + a21(t) cos2 α + (a22(t) − a11(t)) sinα cosα

≡
〈
A(t)ψ(α) , ψ′(α)

〉
.

The formula (1.10) becomes

1
t

log |Zt | =
log |Z0 |

t
+

1
t

∫ t

0

Q̄(u, αu) du , (1.11)

where Q̄(t, α) := Q̄(A(t), α). Furthermore,

ξt := tanαt

is driven by the differential equation

ξ̇t = F (A(t), ξt)
≡ a21(t) − a12(t) ξ2

t + [ a22(t) − a11(t) ]ξt .

��
The following definition is taken from Arnold and Kliemann [Ar-Kl 83,

p.13] and from Kliemann [Kl 79, p.464].

Definition 1.2.3 (Switching surfaces of a drift function). Let F :
Rd × R → R be a continuous function. The points (x, y) ∈ Rd × R with
F (x, y) = 0 define connected surfaces in Rd×R. These are called the switching
surfaces (of F ). If d = 1, these sets will also be called the switching curves
(of F ).

This terminology will now be used for investigating the behavior of ξε and
αε, respectively. Here, we follow Arnold and Kliemann [Ar-Kl 83, p.59f.]; also
see Kliemann [Kl 80, p.148f.] and [Kl 79, p.465f.].

Definition-Remark 1.2.4 (Switching surfaces corresponding to
(1.1)). Consider the RDE (1.1) which is the pathwise differential system
defined by the SDE (1) and suppose that Kn = R2, i.e. the system matrix is
given by a mapping A ∈ C(Rd, R2×2). By (1.9) A( . ) induces the drift vector
field for ξε ≡ tan αε,

F (x, ξ) := F (A(x), ξ) ≡ a21(x) − a12(x) ξ2 + [ a22(x) − a11(x) ] ξ ,

where x ∈ Rd and ξ ∈ R. According to the previous definition 1.2.3 we look
for the zeros,

F (x, ξ) = F (A(x), ξ) = 0 ;
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from the solution formula for quadratic equations it follows that one gets

no switching curve, if a12 �= 0 and (a22 − a11)2 < −4a12a21 ;

one switching curve

ξ1(A(x)) =
a22 − a11

2a12
, if a12 �= 0 and (a22 − a11)2 = −4a12a21 ,

and

ξ1(A(x)) = ∞ , if a12 = 0 and a11 = a22 and a21 �= 0 ,

respectively;

two switching curves

ξ1,2(A(x)) =
(a22 − a11) ±

√
(a22 − a11)2 + 4a12a21

2a12
,

if a12 �= 0 and (a22 − a11)2 > −4a12a21 ,

and

ξ1(A(x)) = ∞ , ξ2(A(x)) =
a21

a11 − a22
, if a12 = 0 and a11 �= a22 ,

respectively;

infinitely many switching curves

ξ ∈ R ∪ {∞} , if a12 = 0 and a11 = a22 and a21 = 0 .

The above switching curves for F , i.e. for the motion of ξε ≡ tan αε,
directly translate into switching curves of the drift

h̄(A(x), α) ≡ − a12(x) sin2 α + a21(x) cos2 α + (a22(x)−a11(x)) sin α cosα

of the angle motion; since h̄(A(x), . ) is π-periodic, we can restrict our inves-
tigations on an interval of that length, e.g. (−π

2 , π
2 ] ; then we get the following

switching curves of h̄:

Ai(x) := Ai(A(x)) := arctan ξi(A(x)) ,

if there are i ∈ {1, 2} many zeros ξi(A(x)) of F (A(x), ξ).
In the last case of infinitely many switching curves any α is a zero of

h̄(A(x), . ).
It follows from the above that a12(x) = 0 implies that π

2 is a switching
curve; furthermore, if a21(x) = 0, then 0 is a switching curve.
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In case that there are exactly two switching curves A1,2(A(x)), the previ-
ous notation is redefined such that A1(A(x)) is attracting and A2(A(x)) is
repelling, in the sense that

α 
→ h̄(A(x), α)

changes its sign from + to − at A1(A(x)) and changes from − to + at
A2(A(x)). ��
Remark 1.2.5. The above considerations have been accomplished in the
real noise situation of the differential equation (1). Actually, this tech-
nique of projecting the linear system onto the sphere using spherical and
angular coordinates can also be transferred to the white noise case; the
Itô-formula then provides the SDEs for the radial, spherical and angular
component, respectively. We do not give details here, since this goes beyond
the framework of this book, but refer to the literature instead: See Khasmin-
skii [Kh 67] and [Kh 80, Sec.VI.7-VI.9], Nishioka [Nk 76], Böhme [Bm 80],
Auslender and Milshtein [Al-Mi 82], Arnold et al. [Ar-Oe-Pd 86], Arnold
and Kliemann [Ar-Kl 87a], Pinsky and Wihstutz [Pi-Wh 88], Pardoux and
Wihstutz [Pd-Wh 88] and [Pd-Wh 92] and Imkeller and Lederer [Im-Ld 99]
and [Im-Ld 01].

1.3 The Multiplicative Ergodic Theorem:
Lyapunov exponents

In this section the “classical” Lyapunov exponents are to be discussed as the
result of Oseledets’ [Os 68] Multiplicative Ergodic Theorem. Since this result
and its arguments are not to be used in the sequel, we refer to Arnold [Ar 98]
for details.

Here, the solution of the RDE (1.1) is modeled as random dynamical
system (RDS) over the canonical metric dynamical system. More precisely, let

Ω := C(R+, Rd)

denote the path space of Xε ,

dXε
t = b (Xε

t ) dt +
√

ε σ (Xε
t ) dWt (t ≥ 0) ,

where ε > 0. Ω is fixed as canonical probability space in this section. If
endowed with the topology of uniform convergence on compacts, Ω is a Polish
space which can then be equipped with its Borel-σ-algebra; the latter is the
trace σ-algebra of B(Rd)R+ in Ω, i.e.

F := B(Ω) = Ω ∩ B(Rd)R+ ;
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see Arnold [Ar 98, p.544f.] and Hackenbroch and Thalmaier [Hb-Th 94, 1.24].
For all t ∈ R+ , there is the canonical shift transformation on Ω defined by

θ(t) : Ω → Ω ,

ω 
→ θ(t)ω := ω(t + • ) ≡
(
s 
→ ω(t + s)

)
.

Here, the mapping (t, ω) 
→ θ(t)ω is continuous, hence measurable with
respect to the underlying Borel-σ-algebras.

Let (P ε
t )t denote the Markov transition probabilities of the Markov process

Xε. Furthermore, suppose that there exists a unique stationary probability
distribution for Xε, i.e. a unique probability measure2 ρε on Rd which is
invariant with respect to the Markov transition probabilities (P ε

t )t in the
sense that

ρε( . ) =
∫

Rd

P ε
t (x, . ) ρε(dx) (t ≥ 0) ;

conditions assuring existence and uniqueness of such a measure ρε will be
given in section 2.2 where the SDE of Xε is investigated in detail; see p.62f.
Then there is a unique probability Pρε on

(
(Rd)R+ ,B(Rd)R+

)
such that the

coordinate process is a (time-homogeneous) Markov process with transition
semigroup (P ε

t )t and initial distribution ρε ; see e.g. Arnold [Ar 98, p.548]
and Hackenbroch and Thalmaier [Hb-Th 94, 2.5]. Since the outer measure
of Ω is full, P∗

ρε(Ω) = 1, due to the continuity of the paths of Xε, Pρε also
induces a probability distribution on F ; see e.g. Hackenbroch and Thalmaier
[Hb-Th 94, p.43f.]. It will be denoted by the same symbol Pρε . Let Xε,ρε

denote the process with distribution Pρε on the path space Ω, i.e. the system
Xε with initial distribution ρε.

Note that the above stationarity of the measure ρε (stationarity of the
canonical Markov process), i.e. the (P ε

t )t-invariance of ρε, is equivalent to
Pρε being (θ(t))t-invariant in the sense that

Pρε ◦ θ(t)−1 = Pρε for all t ∈ R+ ;

this fact is also expressed by stating that all shifts θ(t) preserve the measure
Pρε ; see Arnold [Ar 98, p.545,549].

Altogether, the above system (Ω,F , Pρε , (θ(t)t∈R+) satisfies

1) (ω, t) 
→ θ(t)ω is F ⊗ B(R+)/F -measurable,

2) θ(0) =idΩ and θ(s + t) = θ(s) ◦ θ(t) for all s, t ∈ R+ ,

3) Pρε ◦ θ(t)−1 = Pρε for all t ∈ R+ ,

which are the characterizing properties for calling
(
Ω,F , Pρε , (θ(t)t∈R+

)
a

metric (measure preserving) dynamical system; see Arnold [Ar 98, p.536f.].

2 This measure ρε is not to be confused with the radial component process �ε
t of the

previous section.
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Furthermore, this metric dynamical system is ergodic meaning that

Pρε(A) ∈ {0, 1}

on all sets A ∈ F which are (θ(t))t∈R+ -invariant, i.e.

θ(t)−1 A = A for all t ∈ R+ .

This is due to the fact that the measures which are ergodic in this sense are
the extreme points of the convex set of (θ(t))t-invariant measures; however,
due to the postulated uniqueness of ρε, there is only one such measure which
is Pρε ; see Arnold [Ar 98, p.539].

Let Xε,ρε

denote the stationary Markov process which realizes Pρε as
defined above. This process is now specified as stochastic input for the
differential system (1); more precisely, consider the RDE

dZε
t = A

(
Xε,ρε

t (ω)
)

Zε
t dt , Zε

0 = z ∈ Kn

and let

Φε : R+ × Ω × Kn −→ Kn ,

(t, ω, z) 
−→ Φε(t, ω, z) ≡ Φε(t, ω)z

= z +
∫ t

0

A
(
Xε,ρε

u (ω)
)

Φε(u, ω, z) du

denote its unique (up to indistinguishability) solution. Then the following
holds true:

1) Φε is B(R+) ⊗F ⊗ B(Kn)/B(Kn)-measurable,

2) Φε is a cocycle over (θ(t))t∈R+ in the sense that for all ω ∈ Ω and s, t ∈ R+:

Φε(0, ω) = idKn and Φε(t + s, ω) = Φε(t, θ(s)ω) ◦ Φε(s, ω) ,

3) Φε( . , ω, . ) is continuous for any ω ∈ Ω,

4) Φε(t, ω) ≡ Φε(t, ω, . ) is linear for any t ∈ R+ and ω ∈ Ω ;

see Arnold [Ar 98, 2.2.12]. These properties are summarized by calling Φε

a linear random dynamical system (RDS) on Kn over the metric dynamical
system

(
Ω,F , Pρε , (θ(t)t∈R+

)
with time R+ ; see Arnold [Ar 98, p.5f.]. In par-

ticular, since Φε is defined by the characterizing RDE (1), it will be called
the RDS generated by (1).

Being the solution of a linear differential equation the linear operator
Φε(t, ω) is even invertible, i.e. Φε(t, ω) ∈ GL(n, K) for all t ∈ R+ and ω ∈ Ω.

The pathwise Jacobi (Liouville) equation (1.2) now reads

det(Φε(t, ω)) = exp
(∫ t

0

trace
(
A
(
Xε,ρε

u (ω)
)
du

))
. (1.12)
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The adjoint matrix of Φε(t, ω) will be denoted by Φε(t, ω)∗ in the sequel.
Then the Multiplicative Ergodic Theorem states the following in the above
setting:

Theorem 1.3.1 (Multiplicative Ergodic Theorem). Suppose that Xε

has a unique stationary distribution ρε and let Φε be the linear, invertible RDS
generated by (1), where ε > 0. Assume that β+ ∈ L1(Pρε) and β− ∈ L1(Pρε)
which are defined by

β±(ω) := sup
0≤t≤1

log+
∥∥Φε(t, ω)±1

∥∥ ,

where log+ a := max(0, log a) and ‖ . ‖ denotes the operator norm. Then
there exists a (θ(t))t∈R+ -invariant set Ω̃ε ∈ F of full measure, Pρε(Ω̃ε) = 1,
such that the following holds:

lim
t→∞

(
Φε(t, ω)∗ Φε(t, ω)

)1/2t =: Ψε(ω)

exists for any ω ∈ Ω̃ε and is non-negative definite, its eigenvalues being given
by n values

eΛε
1 ≥ eΛε

2 ≥ · · · ≥ eΛε
n > 0 ,

where Λε
1 ≥ Λε

2 ≥ · · · ≥ Λε
n > −∞ do not depend on ω ∈ Ω̃ε ; writing the

distinct numbers in this list of eigenvalues of Ψε(ω) as

eλε
1 > eλε

2 > · · · > eλε
pε > 0

and defining dε
i as the counting multiplicity of λε

i in the list {Λε
1, . . . ,Λ

ε
n}, it

follows that

dε
i = dim Uε

i (ω) for all ω ∈ Ω̃ε and i ∈ {1, . . . , pε} ,

where Uε
i (ω) denotes the eigenspace of Ψε(ω) corresponding to eλε

i . Further
define

V ε
i (ω) :=

{
Uε

p (ω) ⊕ · · · ⊕ Uε
i (ω) , i ∈ {1, . . . , pε}

{0} , i = pε + 1

for any ω ∈ Ω̃ε, entailing the flag

{0} ≡ V ε
p+1(ω) ⊂ V ε

p (ω) ⊂ · · · ⊂ V ε
1 (ω) = Kn .

Then the Lyapunov exponent

λε(ω, z) := lim
t→∞

1
t

log |Φε(t, ω)z |
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exists for all ω ∈ Ω̃ε and z ∈ Kn \ {0} and it holds that

z ∈ V ε
i (ω) \ V ε

i+1(ω) ⇐⇒ λε(ω, z) = λε
i .

The latter fact is equivalent to the following characterization,

V ε
i (ω) =

{
z ∈ Kn : λε(ω, z) ≤ λε

i

}
.

For all ω ∈ Ω̃ε and t ∈ R+ it holds that

λε(θ(t)ω, Φε(t, ω)z) = λε(ω, z) (z ∈ Kn \ {0})

and hence

Φε(t, ω)V ε
i (ω) = V ε

i (θ(t)ω) (i ∈ {1, . . . , pε}) .

The Multiplicative Ergodic Theorem has initially been proved by Oseledets
[Os 68]. The one-sided version considered above is taken from Arnold [Ar 98,
3.4.1]. The fact that the proof there is presented for the case K = R is no
restriction: According to Arnold [Ar 98, 3.4.10.(ii)], all arguments hold true
for the complex case, K = C, as can be also read off from Ruelle’s [Ru 82]
generalization to real or complex Hilbert spaces.

The numbers Λε
1, Λ

ε
2, . . . ,Λ

ε
n are the possible exponential growth rates of

Φε due to the above theorem and are called the Lyapunov exponents of Φε

(under ρε).
Furthermore the proof of the Multiplicative Ergodic Theorem (via the

Furstenberg-Kesten Theorem) and the above version (1.12) of the pathwise
Jacobi (Liouville) equation yield together with the ergodic theorem that

n∑
i=1

Λε
i ≡

pε∑
i=1

dε
i λε

i

= lim
t→∞

1
t

log | det Φε(t, . ) | Pρε-a.s.

= lim
t→∞

1
t

(∫ t

0

trace
(
A
(
Xε,ρε

u ( . )
)
du

))
≡

∫
Rd

trace
(
A(x)

)
ρε(dx) Pρε-a.s. , (1.13)

provided that ‖A‖ ∈ L1(ρε). This formula is called the trace formula for the
sum of the Lyapunov exponents; see Arnold [Ar 98, 3.4.15, 3.3.11 & 3.3.4]
and Oseledets [Os 68, p.203].

Further note that the previous condition

‖A‖ ∈ L1(ρε) (1.14)
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is sufficient for the integrability assumption β± ∈ L1(Pρε) of the Multiplica-
tive Ergodic Theorem, since by the defining RDEs for Φε and (Φε)−1,

∥∥Φε(t, ω)±1
∥∥ ≤ 1 +

∫ t

0

∥∥∥A
(
Xε,ρε

u (ω)
) ∥∥∥ ∥∥Φε(u, ω)±1

∥∥ du

and hence by the general version of the Gronwall lemma (see e.g. Arnold
[Ar 98, p.557]),

∥∥Φε(t, ω)±1
∥∥ ≤ exp

(∫ t

0

∥∥∥A
(
Xε,ρε

u (ω)
) ∥∥∥ du

)
which implies that∫

Ω

∣∣ β±(ω)
∣∣ Pρε(dω) ≡

∫
Ω

sup
0≤t≤1

log+
∥∥Φε(t, ω)±1

∥∥ Pρε(dω)

≤
∫

Ω

sup
0≤t≤1

log+ exp
(∫ t

0

∥∥∥A(
Xε,ρε

u (ω)
)∥∥∥ du

)
Pρε(dω)

=
∫

Ω

∫ 1

0

∥∥∥A
(
Xε,ρε

u (ω)
) ∥∥∥ du Pρε(dω)

=
∫ 1

0

∫
Ω

∥∥∥A
(
Xε,ρε

u (ω)
) ∥∥∥ Pρε(dω) du

=
∫ 1

0

∫
Rd

‖A(x) ‖
(

Pρε ◦
(
Xε,ρε

u

)−1
)

(dx) du

=
∫

Rd

‖A(x) ‖ ρε(dx)

< ∞ ;

also see Arnold [Ar 98, 3.4.15 & 4.2.10].
At the end of this section we would like to comment on further

research concerning Lyapunov exponents, notably the so-called Furstenberg-
Khasminskii formula and the associated law of large numbers which are due
to Arnold et al. [Ar-Kl-Oe 86, Th.4.1]. This remark is in particular intended
to underline the basic difference between their setting and the framework of
our work: While Arnold et al. [Ar-Kl-Oe 86] make sure that the generator
L̄ε ≡ Gε + h̄ ∂

∂α of (Xε, αε) is hypoelliptic (where the notation is as in the
previous section), it will be proposed here that the operator Lε+ ∂

∂t is hypoel-
liptic: By assuming that h̄ is “strongly hypoelliptic” on the sets of interest
as will be made precise in definition 4.4.4, it will be made sure that (Xε, αε)
can “essentially” be replaced by a process called (X̂ε, α̂ε) such that its cor-
responding operator L̂ε + ∂

∂t is hypoelliptic according to 3.1.3 (c); see the
proofs of theorems 4.4.6 and 4.4.7. However, note that the hypoellipticity of
Lε + ∂

∂t is stronger than hypoellipticity of Lε; see Arnold et al. [Ar-Kl-Oe 86,
p.104]. The reason is basically that the hypoellipticity of Lε is related to the
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existence of a C∞ density of the invariant measure (limiting distribution),
while the hypoellipticity of Lε + ∂

∂t , meaning “ellipticity” in the sense of Ichi-
hara and Kunita [Ic-Ku 74], assured that already the finite time transition
probabilities have C∞ densities; also see Arnold [Ar 84, p.794].

Remark 1.3.2. Again assume that (1.14) is satisfied and suppose that K =
R, A is analytic and that σ( . ) = idRd for simplicity in addition to the
previous assumptions. Using the spherical and angular coordinates as defined
in the previous section for Φε, one gets the processes

ψε(t, ω, ψ) ≡ Φε(t, ω, z)
|Φε(t, ω, z) | starting in ψε(0, ω, ψ) = ψ :=

z

| z |

and in dimension n = 2,

αε(t, ω, α) .= ψε(t, ω, ψ) starting in α
.= ψ ,

respectively. These systems can be regarded as random dynamical systems
over (θ(t))t∈R+ in their own right; see Arnold [Ar 98, 6.2.1].

Now suppose that the operator Lε is hypoelliptic, i.e. that for any distribu-
tion v ≡ v(x) on Rd, it follows that v is a C∞ function in every open subset
of Rd, where Lεv is a C∞ function. Hörmander [Hö 67, p.149ff.] has shown
that this is equivalent to proposing that

dim LA
{(

b(x)
h(x, ψ)

)
,
√

ε

(
e1

0

)
, . . . ,

√
ε

(
ed

0

)}
(x, ψ) = d + n − 1

for all (x, ψ) ∈ Rd × Pn−1, where LA{V} denotes the Lie-algebra generated
by the set {V} of vector fields, ei denotes the i-th canonical basis vector
(column vector) of Rd and where the simplifying assumption that σ = idRd

such that

Lε =
d∑

i=1

bi(x)
∂

∂xi
+ h(x, ψ)

∂

∂ψ
+

ε

2
∆

has also been used; further see Arnold [Ar 84, p.794]. Due to Arnold et al.
[Ar-Kl-Oe 86, Prp.2.2 & Rem.2.2], this is equivalent to demanding that

dim LA
{

h(x, . ) : x ∈ Rd
}

(ψ) = n − 1 for all ψ ∈ Pn−1 . (1.15)

If n = 2, this hypoellipticity condition (1.15) is equivalent to assuming that
for any ψ ∈ P 1, there is x ∈ Rd such that h(x, ψ) does not vanish; see Arnold
et al. [Ar-Kl-Oe 86, Prp.2.1] and Pardoux and Wihstutz [Pd-Wh 88, p.444]
and [Pd-Wh 92, p.291].

As Arnold et al. [Ar-Kl-Oe 86, Cor.3.1] further show under the above
hypoellipticity assumption (1.15), the Markov process (Xε, ψε) has a unique
stationary (invariant with respect to Markov transition probabilities) prob-
ability distribution µε on Rd × Pn−1 whose Rd-marginal is ρε; µε has
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support Rd ×C, where C is an “invariant control set” of a certain associated
control problem; we do not go further into details but refer to Arnold et al.
[Ar-Kl-Oe 86, p.88-95] instead. The stationary measure µε has a density mε

which satisfies the forward equation (Fokker-Planck equation) (Lε)∗ mε = 0,
where (Lε)∗ denotes the formal adjoint operator of Lε. Using the formula
(1.5) and the ergodic theorem one gets the following Furstenberg-Khasminskii
formula

λε :=
∫

Rd×P n−1
Q(x, ψ) µε(dx, dψ)

for the Lyapunov exponent (exponential growth rate) of the unique stationary
process (Xε, ψε). Furthermore, λε coincides with the top Lyapunov exponent
from the Multiplicative Ergodic Theorem,

λε = λε
1 ≡ Λε

1 ,

and the following law of large numbers holds true: For all z ∈ Rn \ {0},

λε(ω, z) ≡ lim
t→∞

1
t

log |Φε(t, ω)z | = λε for Pρε-almost all ω . (1.16)

For the proofs of these results see Arnold et al. [Ar-Kl-Oe 86, Th.4.1].
For n = 2, the above assertions can also be stated in terms of the angle

process αε(t, ω, α): The hypoellipticity condition (1.15) is met if and only if
for any α ∈ [0, π) at least one vector h̄(x, α) does not vanish. In this case the
above reasoning implies that (Xε, αε) has a unique stationary measure µ̄ε

with a C∞ density m̄ε satisfying the Fokker-Planck-equation (L̄ε)∗ m̄ε = 0 ,
as well as the periodicity constraint

m̄ε(x, 0) = m̄ε(x, π) for all x ∈ Rd .

Unfortunately no explicit formula for m̄ε is known to us. Its Rd-marginal is
ρε and the Furstenberg-Khasminskii formula for the almost surely observed
top Lyapunov exponent now reads

λε = lim
t→∞

1
t

∫ t

0

Q̄(Xε
u, αε

u)du =
∫

Rd×[0,π)

Q̄(x, α) m̄ε(x, α) dxdα , (1.17)

where Q̄ had been defined in the previous section. ��
Remark 1.3.3. Our goal in this paper is to obtain local Lyapunov charac-
teristic numbers, i.e. growth numbers for Zε

t for certain time scales t ≤ T (ε).
For this aim neither the MET nor the Furstenberg-Khasminskii formula are
applicable, since these theorems cover the case that the time t tends to ∞ for
fixed ε and hence the respective invariant measures ρε and µε arise which pre-
cisely describe this asymptotic behavior. However, our rationale here is not
to observe the asymptotic behavior as t → ∞, but “before”, i.e. on shorter
time scales T (ε). Therefore we need to use an argument which reproduces the
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“limit-matrices” A(Ki) on the time scales on which the “metastable” state
Ki is observed; see definition 2.5.4 for the precise explanation of a metastable
state corresponding to a time scale.

For that purpose we next recall, what happens in the deterministic case
(ε = 0)

dzt

dt
= A(t) zt ,

if A(t) has a limit matrix A, i.e. A(t) t→∞−−−→ A. The easiest way would be
to obtain a closed form for the dynamical system zt and to manipulate this
explicit expression; e.g. zt = eAtz0 for the constant case A(t) ≡ A. However,
this does not work, since even in the general deterministic case, if A( . ) is non-
constant, the formula for the propagator, involving the time-order-operator,
seems too bulky for further manipulations. Hence we investigate the dynamics
of the absolute value �t ≡ |zt| and relate it to the Jordan decomposition of
the limit matrix.

1.4 The deterministic case: Lyapunov exponents
for asymptotically constant linear systems

This section is dedicated to discussing the deterministic case ε = 0 in
equation (1),

dZ0
t = A

(
X0

t

)
Z0

t dt

dX0
t = b

(
X0

t

)
dt .

In the situations we are interested in, the drift vector field b confines the
deterministic system X0,x to converge to a certain attracting point Ki,

X0,x
t

t→∞−−−−→ Ki ,

where i ∈ {1, . . . , l} denotes an index determined by the initial value x;
see assumption 2.1.1(K). Since A( . ) is assumed to be continuous in (1), it
follows that

A(t) := A(X0,x
t ) t→∞−−−−→ A(Ki) ;

in other words, the (deterministic) coefficient matrix A(t) is asymptotically
constant.

In the sequel, we will consider general asymptotically constant, linear,
deterministic differential systems żt = A(t) zt which we write as

dzt = A(t) zt dt (1.18)
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again, where t 
→ A(t) is a continuous function taking its values in Kn×n,
the n× n matrices with real or complex entries and zt ∈ Kn. Assuming that
the system (1.18) is asymptotically constant as defined above, i.e. that there
is a fixed matrix A such that

A(t) t→∞−−−−→ A

(where Kn×n is equipped with the operator norm ‖ . ‖), one can rewrite (1.18)
as

dzt = [A + G(t) ] zt dt , (1.19)

where of course
G(t) := A(t) − A t→∞−−−−→ 0 .

In this deterministic case (1.19), the statements to be discussed in the
sequel are due to Hartman and Wintner [Ha-Wi 55] and Perron [Pe 29]; the
reference underlying the exposition here is Coppel [Cp 65, Ch.IV].

As one expects from the well-known case of linear deterministic systems
with constant coefficients,

żt = A zt ,

the Lyapunov exponents will turn out to be the real parts of the eigenvalues
of A and the proof uses the Jordan decomposition of A. However, a closed
form of eAt only exists in the case of constant coefficients, G(t) ≡ 0. The
theory of asymptotic integration by Hartman and Wintner then treats the
general situation.

This will then motivate our general rationale in the stochastic case for
the system (1): The “local” Lyapunov exponents (if existing as stochastic
limits) should be obtained as the real parts of the eigenvalues of a certain
“sublimit” matrix Aµ(x,ζ), where the deviation G( . ) from Aµ(x,ζ) gets small
in a stochastic sense; see proposition 4.1.1.

The deterministic considerations here shall be started by recalling some
facts concerning the simplest possible case of a linear system with constant
coefficients, żt = A zt .

Remark 1.4.1 (Decomposition of the state space). For the matrix
A ∈ Rn×n (or Cn×n) and a given λ ∈ R, the state space Kn (Rn or Cn), on
which the linear transformation A acts, can be uniquely decomposed into a
direct sum

Kn = E
<λ

⊕ E
λ
⊕ E

>λ

such that the three subspaces E
<λ

, E
λ

and E
>λ

are invariant under A and the
eigenvalues (i.e. the complex roots of the respective characteristic polynomial)
of A restricted to these spaces have real parts less than, equal to or greater
than λ, respectively. Namely, let D

<λ
, D

λ
and D

>λ
denote open domains in

C including precisely the respective eigenvalues; if the respective domain is
nonempty, then we assume that its boundary is rectifiable; the subspaces
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E
<λ

, E
λ

and E
>λ

are then given as the images of the corresponding Riesz
projections P

<λ
, P

λ
and P

>λ
defined by

Pν :=
1

2πi

∫
∂Dν

(χ In − A )−1
dχ , ν ∈

{
<λ ; λ ; >λ

}
,

where In denotes the n×n unit matrix; Pν is defined to be the zero projection,
if Dν is empty.

In particular, for the linear ordinary differential equation with constant
coefficients żt = A zt, or

dzt = A zt dt ,

one recovers the (Oseledets-)splitting

Kn = E1 ⊕ · · · ⊕ Ep

and the Lyapunov spectrum

λ1 > λ2 > · · · > λp

consisting of the distinct real parts of eigenvalues of A, where Ei is the sum
of the generalized eigenspaces to eigenvalues with real part equal to λi and
is dynamically characterized as

lim
t→±∞

1
t

log | zt | = λi ⇐⇒ z0 ∈ Ei \ {0} .

In this terminology, the above spaces E
<λ

, E
λ

and E
>λ

are given as the direct
sums of the corresponding spaces E1, . . . , Ep.

The solution flow can also be described in the Riesz calculus as

etA =
1

2πi

∫
∂D

(χ In − A )−1 etχ dχ ,

where the interior of the domain D now contains all eigenvalues of A and
∂D is supposed to be rectifiable.

For the above statements see e.g. Coppel [Cp 65, Sec. II.1 & III.2], Riesz
and Szökefalvi-Nagy [Ri-Na 55, Ch.XI], Kato [Kt 80, §I.5] and Arnold [Ar 98,
3.2.3]. ��

Now we discuss the result by Hartman and Wintner [Ha-Wi 55] and Perron
[Pe 29]. As the above cited Oseledets-splitting and the corresponding Lya-
punov spectrum for the constant coefficient differential equation dzt

dt = A zt

is derived from the Jordan canonical form of the matrix A, it does not come
as a surprise that the same strategy is used for the perturbed equation (1.19).
The following lemma will turn out to be crucial in this argumentation.

In the sequel let t0 be an arbitrary initial time of the system and let ‖ . ‖
denote the operator-norm. Furthermore, d/dt and the dot “ · ” will be used
interchangeably for the derivative with respect to the “time” variable t.
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Lemma 1.4.2 (Riccati-type differential inequality). Let v ∈
C1([t0,∞), R) satisfy the differential inequality

v̇(t) ≥ β
(
v(t)

)
− γ(t) (t > t0) ,

where γ ∈ C0([t0,∞), R+) fulfills∫ t+1

t

γ(u) du
t→∞−−−−→ 0

and β is a real-valued function; let v∗ ∈ R be a subsequential limit point of v
and assume that β is continuous at v∗. Then

β(v∗) ≤ 0 .

In particular, if v satisfies the Riccati-type differential inequality

v̇(t) ≥ b v(t)
(
1 − v(t)

)
− γ(t) (t > t0) ,

where b > 0 is constant and γ is as above, then either

lim sup
t→∞

v(t) ≤ 0 or lim inf
t→∞

v(t) ≥ 1 .

Proof. 1) In order to obtain a contradiction we assume that β(v∗) > 0.
As v∗ is a continuity point of β, this implies that one can choose constants
η1, η2 > 0 such that

β(v) ≥ η1 > 0 for all v ∈ Bη2(v
∗) ,

where the latter set Bη2(v∗) denotes the closed ball with center v∗ and
radius η2.

Due to the convergence assumption on
∫ t+1

t
γ(u)du , one can fix a positive

constant η3 < min(η1, η2) and a time t1 ≥ t0 such that∫ t+1

t

γ(u) du ≤ η3 (t ≥ t1) ;

in particular, this implies that∫ t+T

t

γ(u) du ≤ (T + 1) η3 (t ≥ t1, T > 0) .

Let [τ, τ + T ] denote some time interval such that τ ≥ t1 , T > 0 and

v(t) ∈ Bη2(v
∗) for all t ∈ [τ, τ + T ] .
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Applying the proposed differential inequality v̇(t) ≥ β(v(t)) − γ(t) over this
time interval [τ, τ + T ] and using the previous estimate of

∫ τ+•
τ

γ(u) du now
yields that

v(τ + s) − v(τ) =
∫ τ+s

τ

v̇(u) du ≥
∫ τ+s

τ

β
(
v(u)

)
− γ(u) du

≥ η1 s − (s + 1) η3 (1.20)
> η3 s − (s + 1) η3

= − η3

for all s ∈ [0, T ].
Next we use this inequality (1.20) to prove that t1 can be enlarged such

that also
|v(t) − v∗| < η2 for all t ≥ t1 ;

for this purpose let [ τ̃ , τ̃ + T̃ ] denote some interval such that τ̃ ≥ t1, T̃ > 0
and

|v(t) − v∗| < η2 − η3 (τ̃ ≤ t ≤ τ̃ + T̃ ) ;

as v∗ is a subsequential limit of t 
→ v(t), such time intervals exist for any
previous choice of t1 ; due to the above reasoning (1.20) and since v(τ̃ ) ∈
[v∗ − (η2 − η3), v∗ + (η2 − η3)],

v ( τ̃ + s )
(1.20)
> v(τ̃ ) − η3 ≥ v∗ − η2 (0 ≤ s ≤ T̃ )

so that t 
→ v(t) cannot exit the interval [v∗ − η2, v
∗ + η2] via the lower

boundary; on the other hand, the same reasoning, since also v(τ̃ + T̃ ) ∈
[v∗ − (η2 − η3), v∗ + (η2 − η3)], yields that

v (τ̃ )
(1.20)
< v

(
τ̃ + T̃

)
+ η3 ≤ v∗ + η2

so that t 
→ v(t) cannot enter the interval [v∗ − η2, v
∗ + η2] via the upper

boundary; this proves altogether that t1 can be chosen large enough such
that

|v(t) − v∗| < η2 for all t ≥ t1 ,

as had been claimed above.
In particular, (1.20) can be applied for any τ ≥ t1 and s := T > 0, hence

implying that

v(τ + T ) ≥ [v(τ) − η3] + (η1 − η3) T
T→∞−−−−→ ∞

in contradiction to the previously proven boundedness |v(t) − v∗| < η2 for
large t.
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2) Now we consider the Riccati-part of the statement, i.e. the case that

β(v) := b v (1 − v) .

Since b > 0, β is a downward sloped quadratic function which is strictly
positive on (0, 1), strictly negative on R \ [0, 1] and vanishes at 0 and 1.

Now let v∗ be some subsequential limit point of v. Then the first part of the
lemma, shown above, yields that β(v∗) ≤ 0 which — according to the special
choice of β — is only possible for v∗ /∈ (0, 1). But this is just a reformulation
of the above claim. ��

Theorem 1.4.3 (Hartman-Wintner-Perron). Let K denote the real or
complex number field, K = R or C, and consider the linear ODE

dzt = [A + G(t) ] zt dt (1.19)

in Kn, where A ∈ Kn×n is constant and the continuous map G : [t0,∞) →
Kn×n satisfies ∫ t+1

t

‖G(u) ‖ du
t→∞−−−−→ 0 . (1.21)

Then either zt = 0 for all large t or the Lyapunov exponent of zt exists and
is equal to the real part of one of the eigenvalues Λj of A, i.e.3:

λ(zt) := lim
t→∞

1
t

log | zt | ∈ {−∞ , Re(Λ1) , . . . , Re(Λn) } .

Proof. We first choose an enumeration of the eigenvalues such that

Re(Λ1) ≥ Re(Λ2) ≥ · · · ≥ Re(Λn) .

After a constant, invertible coordinate transformation we can assume that
A is given in (complex) Jordan canonical form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1 0 0
a Λ2 0
0 a Λ3

Λ4

. . .
Λn−1 0

a Λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3 Here we adopt to the common convention that the Lyapunov exponent of the trivial
solution zt = 0 is defined as λ(0) := −∞. Furthermore, Re( . ) denotes the real part
operation as usual.
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where in this example Λ1 = Λ2 = Λ3 and Λn−1 = Λn, so that the boxes
depict lower Jordan blocks of the following qualitative shape:

Ja :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ 0
a Λ 0

a Λ 0
.. . . . . . . .

a Λ 0
a Λ 0

a Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

here, a > 0 is some positive parameter and all matrix entries not mentioned
are zero. Note that we have taken the “ordinary” lower Jordan blocks J1 and
carried out another transformation

z̃t := Czt ,

where
C := diag(1, a, . . . , an−1) ;

then

d

dt
z̃t = C

d

dt
zt = CAzt + CG(t)zt ≡ CAC−1z̃t + CG(t)C−1 z̃t ;

hence, we can redefine A as CAC−1 and G(t) as CG(t)C−1; after this trans-
formation the Jordan-blocks of A are of the form Ja

j and G(t) still enjoys
the prescribed assumption. The possible limits of 1

t log |zt| are invariant under
such invertible transformation of variables (or more generally under so-called
Lyapunov-transformations). More precisely, the norm |C . | on Kn is equiva-
lent to the “old” norm | . | as Kn is finite dimensional; since t → ∞, factors
from converting these norms into each other, end up as vanishing summands;
therefore, we can redefine zt as z̃t for the following considerations without
loss of generality.

Hence, the underlying ODE (1.19), d
dt zt = [A + G(t) ] zt , is of the form

d

dt
z1 =

[
Λ1 z1 + (Gz)1

]
d

dt
zi =

[
ai−1 zi−1 + Λi zi + (Gz)i

]
(i = 2, . . . , n) ,

where the superscript i indicates the i-th coordinate and

ai := Ai+1,i ∈ {0, a} (i = 1, . . . , n − 1)

denotes the n− 1 entries of A below the diagonal. Putting a0 := 0 as well as
z0 := 0 for definiteness and defining
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�i
t :=

∣∣ zi
t

∣∣ ,

this implies that

d

dt

(
�i
)2

=
d

dt

(
z̄izi

)
=

(
d

dt
zi

)
zi + z̄i

(
d

dt
zi

)
= 2 Re

{
z̄i

(
d

dt
zi

)}
= 2 Re

{
z̄i

[
ai−1z

i−1 + Λiz
i + (Gz)i

] }
= 2ai−1 Re(z̄i zi−1) + 2 Re(Λi) (�i)2 + 2 Re(z̄i (Gz)i) (1.22)

for all i = 1, . . . , n , where “ ¯” denotes complex conjugation; hence, we can
estimate∣∣∣∣ d

dt

(
�i
)2 − 2 Re(Λi)

(
�i
)2
∣∣∣∣ =

∣∣2ai−1 Re(z̄izi−1) + 2 Re(z̄i(Gz)i)
∣∣

≤ 2ai−1 �i �i−1 + 2�i |(Gz)i| .

(1.23)

Now define
λ1 > λ2 > · · · > λp

as the distinct numbers in the list

Re(Λ1) ≥ Re(Λ2) ≥ · · · ≥ Re(Λn) .

Note in particular that by definition, for all k = 1, . . . , p

i := min{ i : Re(Λi) = λk} implies that ai−1 = 0 . (1.24)

We now define auxiliary processes describing the norms of the projection of zt

onto the subspaces belonging to the different real parts of eigenvalues; more
precisely:

Lk
t :=

∑
{i : Re(Λi)=λk}

(�i
t)

2 , k = 1, . . . , p

Mk
t :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 , k = 1∑
{i : Re(Λi)>λk}

(�i
t)

2 , k = 2, . . . , p

n∑
i=1

(�i
t)

2 ≡ | zt |2 , k = p + 1

Nk
t :=

⎧⎪⎨⎪⎩
∑

{i : Re(Λi)≤λk}
(�i

t)
2 , k = 1, . . . , p

0 , k = p + 1 .
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Then
| zt |2 = Mk

t + Nk
t = L1

t + · · · + Lp
t . (1.25)

Now it follows that∣∣∣∣ dLk

dt
− 2λk Lk

∣∣∣∣
=

∣∣∣∣∣∣
∑

{i : Re(Λi)=λk}

[
d(�i)2

dt
− 2λk (�i)2

] ∣∣∣∣∣∣
≤ 2

∑
{i : Re(Λi)=λk}

ai−1 �i �i−1 + 2
∑

{i : Re(Λi)=λk}
�i |(Gz)i|

≤ 2

⎛⎝ ∑
{i : Re(Λi)=λk}

(�i)2

⎞⎠1/2 ⎛⎝ ∑
{i : Re(Λi)=λk}

a2
i−1 (�i−1)2

⎞⎠1/2

+ 2

⎛⎝ ∑
{i : Re(Λi)=λk}

(�i)2

⎞⎠1/2 (
n∑

i=1

|(Gz)i|2
)1/2

= 2 (Lk)1/2

⎛⎝ ∑
{i : Re(Λi)=λk , i−1≥ i }

a2
i−1 (�i−1)2

⎞⎠1/2

+ 2 (Lk)1/2 |(Gz)|

≤ 2 a (Lk)1/2

⎛⎝ ∑
{i : Re(Λi)=λk }

(�i)2

⎞⎠1/2

+ 2 (Lk)1/2 ‖G‖ |z|

= 2 a Lk + 2 ‖G‖ (Lk)1/2
(
Mk + Nk

)1/2

= Lk

(
2 a + 2 ‖G‖

√
Mk + Nk

Lk

)
(1.26)

for all k = 1, . . . , p , where we used in consecutive order the definition of Lk
t ,

the calculation (1.23), the Cauchy-Schwarz inequality, (1.24), the fact that
ai ∈ {0, a} and (1.25).

Similarly, it follows from the definition of Mk
t , (1.22), the estimate that

Re(a b) ≥ −|a| |b| for complex numbers a and b, (1.24) and (1.25) that

dMk

dt
=

∑
{i : Re(Λi)>λk}

d

dt
(�i)2

=
∑

{i:Re(Λi)>λk}

[
2ai−1 Re(z̄i zi−1) + 2 Re(Λi) (�i)2 + 2 Re

(
z̄i (Gz)i

) ]
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≥ − 2
∑

{i : Re(Λi)>λk}
ai−1 �i �i−1 + 2λk−1

∑
{i : Re(Λi)>λk}

(�i)2

− 2
∑

{i : Re(Λi)>λk}
�i | (Gz)i |

≥ − 2 a Mk + 2 λk−1 Mk − 2 ‖G‖ (Mk)1/2 |z|
= 2 (λk−1 − a)Mk − 2 ‖G‖

√
Mk

√
Mk + Nk (1.27)

for all k = 2, . . . , p + 1.
In the same manner it follows from the definition of Nk

t , (1.22), the esti-
mate that Re(a b) ≤ +|a| |b| for complex numbers a and b, (1.24) and (1.25)
that

dNk

dt
=

∑
{i : Re(Λi)≤λk}

d

dt
(�i)2

=
∑

{i:Re(Λi)≤λk}

[
2ai−1 Re(z̄i zi−1) + 2 Re(Λi) (�i)2 + 2 Re(z̄i (Gz)i)

]
≤ 2

∑
{i : Re(Λi)≤λk}

ai−1 �i �i−1 + 2λk

∑
{i : Re(Λi)≤λk}

(�i)2

+ 2
∑

{i : Re(Λi)≤λk}
�i | (Gz)i |

≤ 2 a Nk + 2 λk Nk + 2 ‖G‖ (Nk)1/2 |z|
= 2 (λk + a)Nk + 2 ‖G‖

√
Nk

√
Mk + Nk . (1.28)

for all k = 1, . . . , p.
From (1.27) and (1.28) one gets for |z|2 ≡ Mp+1 ≡ N1 that

2
(
λp − a − ‖G(t)‖

)
|zt|2 ≤ d

dt
|zt|2 ≤ 2

(
λ1 + a + ‖G(t)‖

)
|zt|2 ,

so that integration over t ≥ t0 yields that

exp
{

(λp − a)(t − t0) −
∫ t

t0

‖G(s)‖ ds

}
|zt0 | ≤ |zt|

≤ exp
{

(λ1 + a)(t − t0) +
∫ t

t0

‖G(s)‖ ds

}
|zt0 | .

This proves again (besides the invertibility of the fundamental matrix solu-
tion) that if zt1 = 0 for some time t1, then also zt = 0 for all times t ≥ t1.
Furthermore, due to the standing assumption (1.21) it follows that

1
t

∫ t

t0

‖G(s)‖ ds
t→∞−−−−→ 0
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and hence the previous string of inequalities implies the statement about the
Lyapunov exponent for a non-vanishing solution in case p = 1:

1
t

log | zt | t→∞−−−−→ λ1

since a can be chosen arbitrarily small.
Thus it is left to show the claim concerning the Lyapunov exponents in

case p ≥ 2; again a > 0 serves as the small parameter and since p ≥ 2, we
can choose it such that

2 a < min
k=1,...,p−1

λk − λk+1 . (1.29)

One needs to find for each non-vanishing solution zt an index J ∈
{1, . . . , p} such that

lim
t→∞

1
t

log | zt| = λJ . (1.30)

Having excluded the case that z vanishes after some time, we can consider
the auxiliary processes

vk
t :=

Mk
t

| zt|2
≡ Mk

t

Mk
t + Nk

t

∈ [0, 1]

for k = 1, . . . , p + 1; in particular v1 ≡ 0 and vp+1 ≡ 1. These processes
satisfy

v̇k =
Nk Ṁk − Mk Ṅk

(Mk + Nk)2
,

where · denotes the derivative with respect to time, d
dt , as usual; furthermore,

vk ( 1 − vk ) =
Mk Nk

(Mk + Nk)2
;

since for the positive quantities Mk, Nk also the trivial manipulation

(Nk
√

Mk + Mk
√

Nk)2 ≤ 2(Nk)2Mk + 2(Mk)2Nk

≤ 3(Nk)2Mk + 3(Mk)2Nk + (Mk)3 + (Nk)3

= (Mk + Nk)3

holds true, we get together with (1.27) and (1.28) that

v̇k =
Nk Ṁk − Mk Ṅk

(Mk + Nk)2
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≥ 1
(Mk + Nk)2

{
Nk

[
2(λk−1 − a)Mk − 2 ‖G‖

√
Mk

√
Mk + Nk

]
− Mk

[
2 (λk + a )Nk + 2 ‖G‖

√
Nk

√
Mk + Nk

]}
=

1
(Mk + Nk)2

{
2 Mk Nk (λk−1 − λk − 2a)

− 2 ‖G‖
√

Mk + Nk
(
Nk

√
Mk + Mk

√
Nk

)}
≥ 1

(Mk + Nk)2
{

2 Mk Nk (λk−1 − λk − 2a) − 2 ‖G‖ (Mk + Nk)2
}

= 2 (λk−1 − λk − 2a) vk ( 1 − vk ) − 2 ‖G‖ .

Hence, lemma 1.4.2 applies to the Riccati-type differential inequality

v̇ ≥ b v
(
1 − v

)
− γ ,

with v := vk, b := 2 (λk−1 − λk − 2a) > 0 due to (1.29) and γ := 2 ‖G‖ due
to (1.21). Therefore, as v ≡ vk takes its values in [0, 1],

lim
t→∞

vk
t ∈ {0, 1} (k = 1, . . . , p + 1) .

Since v1 ≡ 0 and vp+1 ≡ 1, the following quantity is thus well-defined:

J := max
{

k = 1, . . . , p : lim
t→∞

vk
t = 0

}
.

This implies, as Mk+1 = L1 + · · · + Lk, that for k = 1, . . . , p

Lk
t

|zt|2
=

Mk+1
t − Mk

t

|zt|2
= vk+1

t − vk
t

t→∞−−−−→
{

0 , k �= J ;
1 , k = J .

(1.31)

In particular one also gets

Lk
t

LJ
t

=
Lk

t

| zt|2
| zt|2

LJ
t

t→∞−−−−→ 0 (k �= J ). (1.32)

The importance about (1.31) is that it reduces the study of |zt| to
√

LJ
t for

large t, namely

log
√

LJ
t − log |zt| =

1
2

log
LJ

t

|zt|2
t→∞−−−−→ 0

and hence the claim (1.30) concerning the Lyapunov exponent λ(zt) reduces
to proving that

lim
t→∞

1
t

log LJ
t = 2 λJ .
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Considering (1.26) for k = J after dividing by LJ
t (�= 0) now yields:

lim sup
t→∞

∣∣∣∣1t log LJ
t − 2λJ

∣∣∣∣ = lim sup
t→∞

1
t

∣∣∣∣ ∫ t

t0

(
d

du
log LJ

u − 2 λJ

)
du

∣∣∣∣
≤ lim sup

t→∞

1
t

∫ t

t0

∣∣∣∣ d

du
log LJ

u − 2λJ

∣∣∣∣ du

(1.26)

≤ 2a + 2 lim sup
t→∞

1
t

∫ t

t0

‖G(u)‖

√
MJ

u + NJ
u

LJ
u

du

(1.31)

≤ 2 a + 4 lim sup
t→∞

1
t

∫ t

t0

‖G(u) ‖ du

(1.21)
= 2 a .

Since a can be chosen arbitrarily small, this shows that the Lyapunov
exponent λ(zt) exists and is equal to λJ . ��

Remark 1.4.4 (Asymptotic growth of the projections). Due to the
structure of the differential equation in Jordan canonical form in the proof
of theorem 1.4.3, it follows in particular from remark 1.4.1 that for any k =
1, . . . , p

Lk
t =

∣∣∣Pλk
zt

∣∣∣2 .

Thus (1.32) implies that by choosing λ := λJ ≡ λ(zt), the Lyapunov
exponent of one particular solution zt, one gets that∣∣∣P≶λ

zt

∣∣∣
|P

λ
zt |

t→∞−−−−→ 0 .

��
Remark 1.4.5. The proof of the above theorem 1.4.3 shows that the linearity
of the perturbation G(t)z is not crucial. The argument also goes through
unchanged for the nonlinearly perturbed equation

dzt = [A zt + g(t, zt) ] dt ,

where the continuous map g : [t0,∞) × Rn → Rn satisfies

| g(t, z) | ≤ γ(t) |z|

together with ∫ t+1

t

γ(u) du
t→∞−−−−→ 0 .

��
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Remark 1.4.6 (Kn = R2). As in theorem 1.4.3 again consider the linear
ODE

dzt = [A + G(t) ] zt dt (1.19)

under the same assumptions as imposed there; let Kn = R2 for simplicity.
The exponential growth rate limt→∞

1
t log | zt | has been calculated as Re(Λ1)

or Re(Λ2) in the non-trivial cases zt �≡ 0. Despite these numerically exact
results, the formulas (1.10) or (1.11),

1
t

log | zt | =
log | z0 |

t
+

1
t

∫ t

0

Q̄(u, αu) du ,

which evaluate the growth rate of zt by a functional of its angle αt, have
not been used in the course of the proof. It is the purpose of this remark to
bridge this gap in the illustrative two-dimensional situation.

If p = 1, i.e. if Re(Λ1) = Re(Λ2), we get in the notion of the previous proof
(see p.35) that the norms of the relevant projections are L1

t = M2
t = N1

t =
|zt|2 and M1

t = N2
t = 0; the proof then estimates |zt|2 and does not contain

a conclusion concerning the angle.
If p = 2, i.e. if Re(Λ1) > Re(Λ2), the situation changes. Both eigenvalues

are real,
λ1 := Λ1 > Λ2 =: λ2 ,

each of which has an eigenvector. After the transformation mentioned at the
beginning of the previous proof,

A =
(

λ1 0
0 λ2

)
and the canonical unit vector ei is the eigenvector corresponding to λi , i =
1, 2. Then it follows from the notion of p.35 that

Lk
t = (�k

t )2 , k ∈ {1, 2} ,

Mk
t =

⎧⎪⎨⎪⎩
0 , k = 1
(�1

t )
2 , k = 2∑2

i=1 (�i
t)2 ≡ | zt |2 , k = 3 ,

Nk
t =

⎧⎪⎨⎪⎩
∑2

i=1 (�i
t)

2 ≡ | zt |2 , k = 1
(�2

t )
2 , k = 2

0 , k = 3 ,

where as before �i
t ≡ | zi

t |. The auxiliary processes v1, v2 and v3 as defined
on p.38 read in this case as v1

t = M1
t

| zt|2 ≡ 0 , v3
t = M3

t

| zt|2 ≡ 1 and

vt := v2
t :=

M2
t

| zt|2
≡ (�1

t )
2

(�1
t )2 + (�2

t )2
= (cos αt)2 ,
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�

e1

�
e2

Fig. 1.1 Geometrical interpretation of the quantity vt := (cos αt)2

where αt denotes the angle of zt as measured canonically with respect to
the e1-coordinate axis. As figure 1.1 illustrates, vt = cos2 αt quantifies the
distance between zt

|zt| and e2 and hence induces a metric on the projective
space S1. Another popular choice to obtain a metric on S1 is to work with
| sinαt| which measures the distance between the projective lines zt

|zt| and e1;
the latter metric is commonly used in the proof of the Multiplicative Ergodic
Theorem; see Arnold [Ar 98, Prop. 3.2.8 & Lem. 3.4.6].

The system vt then satisfies the ODE

v̇t =
(�2

t )
2
[

d
dt(�

1
t )

2
]
− (�1

t )
2
[

d
dt (�

2
t )

2
]

|zt|4

from which the following Riccati-type differential inequality follows (see
p.38f.),

v̇t ≥ 2 (λ1 − λ2) vt ( 1 − vt ) − 2 ‖G(t) ‖ .

Lemma 1.4.2 applies with b := 2 (λ1−λ2) > 0 and γ := 2 ‖G‖ due to (1.21).
Therefore,

lim
t→∞

vt ∈ {0, 1}

and the following quantity is thus well-defined,

J :=

{
1 , if limt→∞ vt = 1 ,

2 , if limt→∞ vt = 0 .
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It displays the direction eJ to which the projective line ψt := zt

|zt|
.= αt

converges; see figure 1.1; due to continuity the angle also converges, α∞ :=
limt→∞ αt ∈ {0, π

2 , π, 3π
2 }. Therefore, it follows altogether that

Q̄
(
A + G(t), αt

)
≡ Q

(
A + G(t), ψt

) t→∞−−−−→ Q
(
A, eJ

)
≡ Q̄(A, α∞)

and hence the formulas (1.10) and (1.11) imply that

1
t

log |zt| =
log |z0|

t
+

1
t

∫ t

0

Q̄
(
A + G(u), αu

)
du

t→∞−−−→ Q̄(A, α∞) ∈ {λ1, λ2},

where in the last step the definition of Q̄ (see (1.7)) as well as the diagonal
form of A have been used.

Thus the gap between theorem 1.4.3 and the formulas (1.10) and (1.11) is
closed. ��

The following theorem shows that every real part of an eigenvalue can
indeed be seen as a Lyapunov exponent. Since it will not be used in the
sequel, the arguments will not be provided here. Instead, see Coppel [Cp 65,
p.100–102] for the proof which consists of using remark 1.4.1, defining an
appropriate integral transformation and applying the fixed point theorem by
Schauder and Tychonoff then.

Theorem 1.4.7. Suppose that the assumptions of the Hartman-Wintner-
Perron theorem 1.4.3 hold, i.e. that we consider

dzt = [A + G(t) ] zt dt , (1.19)

where A is a constant matrix and G is a continuous matrix function again
satisfying ∫ t+1

t

‖G(u) ‖ du
t→∞−−−−→ 0 . (1.21)

Then for any real part λ of an eigenvalue Λi of A,

λ ∈ {Re(Λ1) , . . . , Re(Λn) } ,

there exists an η ≡ η(A) > 0 and a time T ≡ T (A,G) > t0 such that for all
t1 ≥ T and for all χ

<λ
∈ E

<λ
and χ

λ
∈ E

λ
satisfying

|χ
<λ

| < η |χ
λ
| ,

the equation (1.19) has a unique solution (zt)t≥t1
such that

P
<λ

zt1 = χ
<λ

, P
λ

zt1 = χ
λ

and
λ(zt) ≡ lim

t→∞

1
t

log | zt | = λ .
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Remark 1.4.8. As has been already mentioned, the results of this section
are due to Hartman and Wintner [Ha-Wi 55]. There are many more papers
on asymptotically constant linear ODEs of which we only mention Levinson
[Lv 48] and Harris and Lutz [Harr-Lutz 77]; also see Eastham [Ea 89] and
the references therein for an overview.

There also exists a version of the Hartman-Wintner theorem for functional
differential equations which is due to Pituk [Pu 99].

A vast amount of the literature is furthermore dedicated to the non-linear
case, that is to considering ODEs

ẋt = f(x, t) ,

which are asymptotically autonomous; this means that the time-dependent
vector field f( . , t) approaches an autonomous (time-independent) vector field
f( . ) as t → ∞ in a certain sense; see e.g. Markus [Mar 56] and Strauss and
Yorke [Stra-Yor 67].

1.5 Sample systems

In this section several examples are presented which shall illustrate where
linear, real noise driven stochastic systems (1) appear; these sample systems
can be regarded as toy models for the different situations described by the
definitions and assumptions in chapter 4.

Example 1.5.1 (Linearized SDEs with constant noise coefficient σ).
Let Xε be the diffusion given by the SDE

dXε
t = b (Xε

t ) dt +
√

ε σ dWt ,

where b ∈ C∞(Rd, Rd), ε ≥ 0, and the Brownian motion W are as before and
where σ ∈ GL(d, R) is now supposed to be a constant (invertible) matrix.
Defining the matrix-valued mapping A : Rd → Rd×d as the Jacobian of b,

A(x) := Db(x) :=
(

∂ bi(x)
∂xj

)
i,j=1,...,d

,

yields the linearized (variational) equation

dZε
t = A (Xε

t ) Zε
t dt

dXε
t = b (Xε

t ) dt +
√

ε σ dWt

(1.33)

in the sense that the coefficient functions of the SDE for Xε are linearized,
i.e. differentiated with respect to the space variable x ; as the noise coefficient√

ε σ does not depend on x by assumption, its derivative vanishes and thus
there is no noise component of Zε meaning that the resulting stochastic
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system is indeed real noise driven; also see Arnold [Ar 88, p.194f.]. By taking
derivatives it follows, in particular, that the dimensions of the state spaces
of Zε and Xε are equal, n = d.

For further assertions (and the corresponding assumptions), concerning
how Zε can then be considered as the linearization of Xε itself, we would
like to refer to Blagovescenskii and Freidlin [Bla-Fr 61], Khasminskii [Kh 80,
Sec.V.6], Bismut [Bis 81] and Arnold [Ar 98, Sec.2.3] among others.

By considering the linearized equation as above, it follows in other words
that any system Xε to be investigated later (satisfying the general assump-
tions 2.1.1, more precisely) for which σ is constant serves as an example of (1)
by taking the Jacobian A := Db. Since in most cases σ ≡ idRd for simplicity
anyway, the sample models as will be discussed in section 2.6 already provide
a whole class of sample systems for (1). To be specific two cases of linearized
SDEs will be discussed in the following two examples.

Example 1.5.2 (Multi-dimensional Ornstein-Uhlenbeck process).
Consider the SDE

dXε
t = AXε

t dt +
√

ε σ dWt ,

where A and σ are constant elements of Rd×d, the latter being invertible
in addition. This SDE is understood as random perturbation of the linear,
deterministic dynamical system Ẋ0

t = AX0
t . The linearization (1.33) of this

SDE is

dZε
t = AZε

t dt , Zε
0 = z ∈ Rd ;

it does not depend on Xε and is therefore independent of ε, Zε
t (ω, x, z) =

Zε
t (z) = X0,z

t ; also see Arnold [Ar 88, p.194]. In this case the Lyapunov
exponents of the system (1.33) from the Multiplicative Ergodic Theorem 1.3.1
coincide with the Lyapunov exponents from 1.4.1 and are given by the real
part of the eigenvalues of A. Since the stochasticity is not present after the
linearization, it also amounts to call the real parts of the eigenvalues of A
the local Lyapunov exponents of the system Xε.

This system Xε will be further discussed in 2.6.1 under the assumption
that A be normal and with the specification σ = idRd ; these two conditions
then allow to calculate a certain “cost” function (quasipotential). All in all
this system Xε together with its linearization serves as a bridge between the
stochastic case (i.e. the Multiplicative Ergodic Theorem 1.3.1) and the famil-
iar deterministic fact 1.4.1, since the resulting Lyapunov exponents coincide
and since it additionally incorporates a simple example for the Freidlin-
Wentzell theory (with only one metastable state) which will come into play
later; see 2.6.1. ��
Example 1.5.3 (Linearized gradient SDE with constant σ. Potential
U1). Now consider the linearized SDE (1.33) in case that the drift is derived
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as the gradient of a function which is then called the potential (function) of
the drift. More precisely, consider

dXε
t = −∇U (Xε

t ) dt +
√

ε σ dWt ,

where the drift b := −∇U is given by U ∈ C∞(Rd, R), as for example in
figure 1, and where again σ ∈ GL(d, R). An important special case is given
by σ = idRd for which this SDE will be considered later as equation (2.2). By
differentiation it follows that the linear component of the variational system
(1.33) is given by

dZε
t = −H

U

(
Xε

t

)
Zε

t dt ,

where the coefficient matrix A(x) := −H
U
(x) is defined via the Hesse matrix

H
U
(x) :=

(
∂2 U

∂xi ∂xj
(x)

)
i,j=1,...,d

,

the symmetric matrix of second derivatives of U at x. Again note that n = d
due to the linearization.

For n = d = 2 the formulas as obtained in remark 1.2.1 read as follows:
The drift h̄ of the nonlinear real noise SDE (1.6), dαε

t = h̄(Xε
t , αε

t ) dt , for
the angle αε of Zε is

h̄(x, α) ≡ h̄
(
−H

U
(x), α

)
=

∂2U

∂x1 ∂x2
( sin2 α − cos2 α ) +

(
∂2U

∂x2
1

− ∂2U

∂x2
2

)
sin α cosα

= − ∂2U

∂x1 ∂x2
cos 2α +

1
2

(
∂2U

∂x2
1

− ∂2U

∂x2
2

)
sin 2α

for the drift of the angle process. According to (1.7) the depiction (1.8) of
the growth rate,

1
t

log |Zε
t (ω, x, z) | =

log | z |
t

+
1
t

∫ t

0

Q̄
(
Xε,x

u (ω), αε
u(ω, x, z)

)
du ,

is determined by the kernel function

Q̄(x, α) ≡ Q̄
(
−H

U
(x), α

)
= − ∂2U

∂x2
1

cos2 α − ∂2U

∂x2
2

sin2 α − 2
∂2U

∂x1 ∂x2
sinα cosα .

The symmetry of the Hesse matrix implies that there are either two or
infinitely many switching curves of the angle drift h̄; see 1.2.4. Note that the
latter assertion is also a consequence of the spectral decomposition theorem
for symmetric matrices.
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In order to examine a specific numerical example consider the potential
function

U1(x) :=
3
2

x4
1 − 2

3
x3

1 − 3 x2
1 + c x1 x2 +

3
2

x4
2 , (1.34)

where c ∈ R is a constant. This function U1 is plotted in figure 2.1 for c = 1.
Here, the coefficient matrix of the linearized system is given by

A1(x) := −HU1(x) =
(
− 18x2

1 + 4 x1 + 6 − c
− c − 18 x2

2

)
;

furthermore, one gets

h̄(x, α) = c ( sin2 α − cos2 α ) + ( 18x2
1 − 18 x2

2 − 4 x1 − 6 ) sinα cosα

= − c cos 2α + ( 9x2
1 − 9 x2

2 − 2 x1 − 3 ) sin 2α .

In particular,
{

k π
2 : k ∈ Z

}
are zeros of h̄(x, . ) for any x, if c = 0. If c �= 0,

one can find for any α an x ∈ R2 such that h̄(x, α) �= 0 ; in particular, h̄ is
hypoelliptic in the sense of (1.15) then; also see definition 4.4.4. However, h̄ is
not “strongly hypoelliptic” in the sense of definition 4.4.4 as will be discussed
in remark 4.4.11. The integral kernel for the exponential growth rate in (1.8)
is calculated as

Q̄(x, α) = (− 18x2
1 + 4 x1 + 6 ) cos2 α − 18 x2

2 sin2 α − 2 c sin α cosα .

��
Example 1.5.4 (Diagonal matrix plus small skew-symmetric per-
turbation). Consider the coefficient matrix

A : R → R2×2 , A(x) :=

(
λ1 0
0 λ2

)
+ x

(
0 1
−1 0

)
=

(
λ1 x

−x λ2

)

for the system (1), where
λ1 > λ2 .

In particular, the dimensions are n = 2 and d = 1 in (1), the latter fact
meaning that Xε enters as one-dimensional diffusion

dXε
t = −U ′ (Xε

t ) dt +
√

ε dWt ,

where we used the fact that in dimension d = 1 any drift can be written as
the gradient b = −U ′ of a potential function by direct integration U(x) :=
−

∫ x

0
b(y)dy and where for simplicity σ := idR ≡ 1. For the system Zε as

defined by (1) with the above coefficient matrix function A it follows from
remark 1.2.1 that its angle αε

t follows the RDE (1.6), dαε
t = h̄(Xε

t , αε
t ) dt,

with velocity
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h̄(x, α) ≡ h̄
(
A(x), α

)
= − x sin2 α − x cos2 α +

(
λ2 − λ1

)
sin α cosα

= − x +
λ2 − λ1

2
sin 2α ;

hence, the switching curve can be written in the simple form

x =
λ2 − λ1

2
sin 2α ;

this switching curve together with the tendencies of the drift h̄ is sketched in
figure 1.2.
The formula for the exponential growth rate (1.8) is determined by the
integrand function (1.7) which reads

Q̄(x, α) ≡ Q̄(A(x), α)
= λ1 cos2 α + λ2 sin2 α + (x − x) sin α cosα

= λ1 + (λ2 − λ1) sin2 α

here. For these facts also see Arnold [Ar 79, p.136f.].

x

α

�

�

�

�
�

�

�

�

3π/2

π

π/2

π/4

−π/4

−π/2

−π

−3π/2

1
2 (λ2 − λ1)

1
2 (λ1 − λ2)

Fig. 1.2 The switching curve and tendencies of h̄(x, α) = − x + 1
2 (λ2 − λ1) sin 2α
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The above matrix function

A(x) ≡
(

λ1 0
0 λ2

)
+ x

(
0 1
−1 0

)
=

(
λ1 x

−x λ2

)

has been investigated by Arnold [Ar 79] for Ornstein-Uhlenbeck noise as an
example of an unstable (if λ1 > 0) system being stabilized by random param-
eter noise; also see Arnold and Kliemann [Ar-Kl 83, p.67f.]. However, here we
are not interested in stabilization (as t → ∞), but in the behavior on time
scales; more precisely, the parameter noise Xε will be assumed as small on
the time scales under consideration which embodies that 0 is a metastable
point of Xε; in other words, 0 will be supposed to be a local minimum of
U entailing that the skew-symmetric “perturbation”

( 0 1
−1 0

)
of

(
λ1 0
0 λ2

)
is

small on the time scales on which Xε sojourns near 0. This terminology of
metastability will be made precise in the subsequent chapter. The matrix
function A of this example provides a toy model for the following investi-
gations; more precisely, our findings of subsection 4.4.2 will turn out to be
applicable to this model; see example 4.4.14.

Furthermore, note that “superposing” the matrices
(
λ1 0
0 λ2

)
and

( 0 1
−1 0

)
is also a popular sample model for investigating the parameter dependence
of Lyapunov exponents in the case of white noise; see Pardoux and Wihstutz
[Pd-Wh 88, p.455f.] and [Pd-Wh 92, p.293]. ��

After having discussed our main examples in 1.5.3 and 1.5.4 we would like
to close this section by giving references for further sample systems without
going into details any further.

Example 1.5.5 (nonlinear, stochastic systems driven by real noise).
Here, one considers nonlinear systems

d

dt
yt = F (Xt, yt) ,

where the motion of the vector yt ∈ Rn describes the evolution of the system
under consideration and the other influences are modeled as perturbing real
noise process X ≡ Xε, its state space being Rd for example; F is a drift
function on the joint state space which is assumed to be differentiable. If O
is an equilibrium of F (x, . ), i.e. if F (x,O) = 0 for all x, then linearization at
O leads to the real noise system

d

dt
Zt = A(Xt)Zt ,

where A(x) := Dy F (x, y)|y=O , where Dy denotes the differentiation opera-
tor with respect to the y-variable; see e.g. Arnold and Kliemann [Ar-Kl 83,
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p.68]; such a system with dichotomous (“telegraphic”) noise, i.e. Xt being a
Markov process with two states, has been considered by Arnold and Kloeden
[Ar-Kd 89, p.1242f.]; the latter authors also point towards a real-world sys-
tem in electrohydrodynamics: See Behn et al. [Bh-Lg-Jh 98] and Müller and
Behn [M-Bh 87] for details.

Another physical example for such a linearized system with telegraphic
noise is the LRC circuit described by Kats and Martynyuk [Ka-My 02, p.44
& p.20f.]; note that their linearized system only takes its values in the diagonal
matrices. Such a situation will constitute the subject of our investigations in
section 4.3.

For applications e.g. to economics, we refer to Ruelle [Ru 88] and Wein-
traub [Wt 70] among others. ��

Example 1.5.6 (Harmonic oscillator with real-noise input). Consider
the random differential equation

z̈ +
(
2 β + a2 X2

t

)
ż +

(
�2 + a1 X1

t

)
z = 0 ,

where �, β ∈ R and a1, a2 ≥ 0 are constants and X1
t , X2

t are the components
of a stochastic process X ≡ Xε ∈ R2. Defining(

Z1

Z2

)
:=

(
z

ż

)
,

this equation can be rewritten as usual as

d

dt

(
Z1

Z2

)
=

[(
0 1

−�2 −2 β

)
+ a1 X1

t

(
0 0
−1 0

)
+ a2 X2

t

(
0 0
0 −1

)] (
Z1

Z2

)
.

In this example a1X
1 is considered as random restoring force, whereas a2X

2

is thought of as random perturbation of the damping constant β. In case
that X is a fixed stochastic process, the related control theoretic analysis is
undertaken for different specifications of the parameters by Benderskii and
Pastur [Be-Pt 75], Kliemann and Rümelin [Kl-Rm 81, p.18-24], Arnold and
Kliemann [Ar-Kl 83, p.12 & p.63ff.], Kliemann [Kl 88, p.91ff.], Kliemann
[Kl 80, p.120,158], Kliemann [Kl 79, p.468], Wihstutz [Wh 75], Arnold and
Wihstutz [Ar-Wh 78] and Rümelin [Rm 78] and [Rm 79]; also see Pinsky
and Wihstutz [Pi-Wh 91], Arnold et al. [Ar-Pp-Wh 86], Pinsky [Pi 86],
Arnold [Ar 98, p.160] and Hernández-Lerma [HL 79, p.39f.]. Applications to
engineering systems are given by Griesbaum [Gb 99, p.22]; for the related
modeling of the ship roll motion in particular of the capsizing of vessels see
Colonius and Kliemann [Cu-Kl 00, p.497] and [Cu-Kl 97, p.137f.].

Benderskii [Be 69] considers the following oscillator with telegraphic noise,

z̈ + pż + (q − γ rt) z = 0 ,
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where p, q, γ > 0 are constants and (rt)t is a random process assuming the
values ±1. The times at which (rt)t changes its sign form a Poisson process
with a certain intensity.

The case that X is a fixed telegraphic noise process (i.e. a station-
ary, ergodic two-state Markov process) is treated by Arnold and Kloeden
[Ar-Kd 89, p.1269f.]; more precisely, the latter authors investigate asymp-
totic formulas for a1 → 0 and a1 → ∞ for the case that β = a2 = 0; this case
has also been considered by Leizarowitz [Lz 89] who assumes the real noise
to be a finite-state Markov process.

For white noise perturbations of the harmonic oscillator see Pardoux and
Wihstutz [Pd-Wh 88, p.450] and Pinsky and Wihstutz [Pi-Wh 88] among
others. ��

Triangular matrices have been of interest, too: For explicit calculations
on upper triangular matrices see Arnold [Ar 98, 3.3.13 & 3.4.16] and the
references therein. Lower triangular matrices are e.g. considered by Kliemann
[Kl 80, p.157] and Kliemann and Rümelin [Kl-Rm 81, p.15].

Brockett and Willems [Bro-Wil 72, p.253] propose a model for a closed
loop dynamics with feedback interaction which leads to a linear real noise
differential system.


