
Chapter 6

Miscellanea

In this Chapter we present assorted examples involving the group ring construction.

6.1 Power-closed Groups

Modular dimension subgroup play a fundamental role in understanding the
power structure of p-groups (see e.g., [Sco91], [Wil03]).

Let G be a p-group. Then G is said to be k-power closed, k ≥ 1, if every
product xpk

1 . . . xpk

n xi ∈ G, n ≥ 1, can be written as yp for some y ∈ G.

Theorem 6.1 (Wilson [Wil03]). If G is a p-group of nilpotency class less
than pk, then G is k-power closed.

This result is proved by carrying out an extensive study of the modular
dimension subgroups Dn, Fp

(G). Note that, for every x ∈ G and k ≥ 1,
xpk ∈ Dpk, Fp

(G); therefore, Theorem 6.1 follows from the following:

Theorem 6.2 (Wilson [Wil03]). Let G be a finite p-group such that γpk(G) ⊆
Dpk+1, Fp

(G) for some k. Then Dpk+�−1, Fp
(G) ⊆ {xp� |x ∈ G} for positive

integers �.

An immediate consequence of Theorem 6.2 is the following:

Corollary 6.3 (Wilson [Wil03]). Let G be a finite p-group of nilpotency
class c. Let k be the minimal integer such that c < pk+1. Then Dpk+�, Fp

(G) ⊆
{xp� |x ∈ G} for positive integers l.

6.2 Braid Groups

The lower central series of pure braid groups (see §1.2, p. 15) plays an im-
portant role in the theory of braid invariants. A singular pure braid is a

R. Mikhailov, I.B.S. Passi, Lower Central and Dimension Series of Groups, 291
Lecture Notes in Mathematics 1952,
c© Springer-Verlag Berlin Heidelberg 2009



292 6 Miscellanea

pure braid with a finite number of transversal intersections. Any invariant
of braids which takes values in some ring R can be viewed as a collection
of maps Pn → R, n ≥ 2. Let v : Pn → R be an invariant of pure braids.
Then we can extend v to be defined on singular braids, by the following rule
(so-called Vassiliev skein relation):

v( ) = v( )− v( ),

where the above diagrams represent braids which differ by one intersection
inside a ball and completely identical outside the ball. Clearly, this rule makes
it possible to extend the invariant v to be defined on singular pure braids. An
invariant v of pure braids is said to be an invariant of type k if its extension
vanishes on all singular braids with more than k double points. We say that
two braids B1 and B2 are k-equivalent if v(B1) = v(B2) for any invariant v of
type less than k.

One can formally view a singular pure braid with n strands as an element
of the integral group ring Z[Pn] by setting

= − ∈ Z[Pn]. (6.1)

Then the extension of the invariant v defines a Z-linear map

v̄ : Z[Pn]→ R.

Clearly, any singular braid with exactly one double point defines an element
of the augmentation ideal ∆(Pn) of Z[Pn], since it is a “difference” of two
pure braids. It is easy to see that any singular braid with exactly two double
points can be drawn as a composition of two singular braids with exactly one
double point each. In general, any singular braid with k double points can
be written as a composition of k singular braids with one double point each.
With composition of braids corresponding to the multiplication in the group
ring Z[Pn], any singular braid with n strands and more than k double points
represents an element from the kth power of the augmentation ideal of Z[Pn].
On the other hand, any pure braid can be deformed to the trivial one by the
sequence of crossed moves:

→ , →

This implies that the augmentation ideal of Z[Pn] is the Z-linear closure of
elements of the form (6.1), i.e., of singular braids with n strands. Similarly,
we conclude that the kth power of the augmentation ideal of Z[Pn] is the
Z-linear closure of singular braids with n strands and not less than k double
points.

Let p1 and p2 be pure braids with n strands. For k ≥ 1, the above argument
shows that there is an invariant v of type k which differs on p1 and p2 if and
only if p1−p2 determines a nontrivial element in the quotient Z[Pn]/∆k(Pn);
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this is equivalent to saying that 1 − p1p
−1
2 /∈ ∆k(Pn), i.e., p1p

−1
2 /∈ Dk(Pn),

the kth dimension subgroup of Pn. It is easy to see, in view of (Chapter 1,
1.6), that the lower central series and the dimension series are identical for
the pure braid groups. Hence, we have the following

Proposition 6.4 Two pure braids p1, p2 with n strands are k-equivalent if
and only if p1p

−1
2 ∈ γk(Pn).

A similar equivalence occurs in the case of classical knots. Every knot is
the closure of some braid. However, different braids can determine isotopical
knots. In analogy with singular braids, one can define the singular knots and
type k invariants as knot isotopy invariants which vanish for singular knots
with more than k double points. As for braids, we say that two knots K1 and
K2 are k-equivalent if v(K1) = v(K2) for any invariant v of type less than k.

Theorem 6.5 (Stanford [Sta98]). Let K1 and K2 be knots. Then K1 and K2
are k-equivalent if and only if there exists a braid b ∈ Bn and a pure braid
p ∈ Pn for some n, such that K1 is the closure of b, but K2 is the closure
of bp.

Remark. It may be noted that the residual nilpotence of the pure braid
groups implies that non-equal (non-isotopical) braids always differ by some
invariant of finite type. However, the same result for knots does not follow
immediately and the conjecture about completeness of invariants of finite
type for knots is still open.

6.3 3-dimensional Surgery

The applications of the dimension subgroup theory to the 3-dimensional
surgery was discovered by G. Massuyeau [Mas07]. Here we recall the con-
struction from [Mas07].

Let S be a surface. The mapping class group M(S) of S is the group of
all isotopy classes of orientation-preserving homeomorphisms of S to itself.
There is a natural action of M(S) on the first homology group of S, hence
there is a natural homomorphism

Ψ :M(S)→ Aut(H1(S)).

The kernel of Ψ is called Torelli group of S and denoted by I(S). The home-
omorphisms of S to itself acting trivially on homology are called Torelli au-
tomorphisms.

Let M be a compact oriented 3-dimensional manifold and H ⊂M a han-
dlebody. Consider a Torelli automorphism h : ∂(M)→ ∂(M). Then one can
construct a new 3-dimensional manifold Mh in the following way:
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Mh = (M \ int(H)) ∪h H.

The transformation
M � Mh

is called a Torelli surgery. One can naturally generalize this definition for the
case

M � MI

where I is a set of pairwise disjoint handlebodies in M with selected Torelli
automorphisms.

Following M. Goussarov and K. Habiro, given k ≥ 1, call two compact
oriented 3-manifolds M and N, Yk-equivalent if there exists a Torelli auto-
morphism h, which belongs to the k-th term of lower central series of the
Torelli group ∂(H), such that

M � Mh = N.

Let A be an abelian group and f a topological invariant of compact oriented
3-manifolds with values in A. We call f an invariant of degree at most d if, for
any manifold M and every set Γ of pairwise disjoint handlebodies Hi, i ∈ Γ
with selected Torelli automorphisms hi : ∂(Hi)→ ∂(Hi), i ∈ Γ, the following
identity holds: ∑

Γ ′⊂Γ

(−1)|Γ
′ | · f(MΓ ′) = 0 ∈ A.

Two Yk+1-equivalent manifolds are not distinguished by invariants of degree
at most k [Mas07]. The converse statement is proved for integral homology
3-spheres by M. Goussarov and K. Habiro [Hab00], [Gou99]; however, in
general, the converse statement is not true [Mas07]. The special interest of
the equivalence of the above equivalence relations is in the case of homology
cylinders. Given an oriented surface Σ, the homology cylinder over Σ is a
cobordism M between Σ and −Σ, which can be obtained from Σ× [1,−1] by
a Torelli surgery. Homology cylinders form a natural monoid Cyl(Σ), where
the product is the composition of cobordisms. It is shown in [Hab00] and
[Gou99] that the quotient of the monoid Cyl(Σ) by the Yk+1-equivalence
relation is a group.

In [Hab00] and [Gou99] the following filtration of the monoid Cyl(Σ) is
introduced:

Cyl(Σ) = Cyl1(Σ) ⊇ Cyl2(Σ) ⊇ Cyl3(Σ) ⊇ . . . ,

where

Cylk(Σ) = {M ∈ Cyl(Σ) | M is Yk − equivalent to Σ× [1,−1]}.

For 1 ≤ k ≤ l, the quotients Cylk(Σ)/Yl are finitely generated subgroups of
Cyl(Σ)/Yl and for 1 ≤ k1 + k2 ≤ l, one has
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[Cylk1
(Σ)/Yl,Cylk2

(Σ)/Yl] ⊆ Cylk1+k2
(Σ)/Yl

(see [Hab00], [Gou99]). The following result provides a connection between
the above equivalence relations and the dimension subgroup theory.

Theorem 6.6 (Massuyeau [Mas07]). Let 1 ≤ d ≤ k. The following state-
ments are equivalent:

(1) The homology cylinders over a surface Σ are Yd+1-equivalent if and
only if the Z-valued invariants of degree ≤ d do not separate them.

(2) Dd+1(Cyl(Σ)/Yk+1) = Cyld+1(Σ)/Yk+1.

Note that the problem of description of dimension subgroups Dd+1(Cyl(Σ)/
Yk+1) seems to be highly non-trivial. It is shown in [Mas03] that the group
Cyl(Σ)/Y2 contains elements of order 2.

6.4 Vanishing Sums of Roots of Unity

We mention next an interesting application, due to T. Y. Lam and K. H.
Leung [Lam00], to a problem in number theory.

Given a natural number m, the problem asks for the computation of the set
W (m) of all the possible integers n for which there exist mth roots of unity
α1, . . . , αn in the field C of complex numbers such that α1 + · · ·+ αn = 0.

Let G = 〈z〉 be a cyclic group of order m. Let m = pa1
1 . . . par

r be the
prime factorization of m with p1 < . . . < pr and ζ = ζm a primitive mth root
of unity. Let N[G] be the subgroup of Z[G] consisting of elements α ∈ Z[G]
with coefficients in N, the set of non-negative integers. Consider the ring
homomorphisms

ϕ : Z[G]→ Z[ζ], ε : Z[G]→ Z (6.2)

defined by z �→ ζ and z �→ 1 respectively.

Since, for every prime p and a primitive pth root ζ of unity,

1 + ζ + · · ·+ ζp−1 = 0,

it is easy to see that
Np1 + · · ·+ Npr ⊆W (m). (6.3)

That equality holds in (6.3) follows from the following

Theorem 6.7 (Lam - Leung [Lam00]). For every α ∈ N[G] ∩ ker ϕ, ε(α) ∈∑r
i=1 Npi.

Call a nonzero element x ∈ N[G] ∩ ker ϕ to be minimal if it cannot be
decomposed as a sum of two nonzero elements in N[G]∩ker ϕ. For any group
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H, let
σ(H) :=

∑
h∈H

h ∈ N[H].

Let Pi be the unique subgroup of G of order pi. The elements g.σ(Pi) with
g ∈ G and i − 1, . . . , r, are clearly all minimal elements in N[G] ∩ ker(ϕ);
call these elements symmetric minimal elements. The crux of the argument
in the proof of Theorem 6.7 is the following

Theorem 6.8 (Lam - Leung [Lam00]). For any minimal x ∈ N[G] ∩ ker(ϕ),
either

(A) x is symmetric, or

(B) r ≥ 3 and ε(x) ≥ ε0(x) ≥ p1(p2 − 1) + p3 − p2 > p3, where ε0(x) denotes the
cardinality of the support of x.

To deduce Theorem 6.7 from Theorem 6.8, note that it clearly suffices to
consider minimal elements in N[G]∩ker(ϕ). By Theorem 6.8, such an element
is either symmetric or r ≥ 3 and ε(x) ≥ p1(p2 − 1) + p3 − p2. Thus either
ε(x) = pi for some i, or

ε(x) > p1(p2 − 1) > (p1 − 1)(p2 − 1),

and consequently ε(x) ∈ Np1 + Np2. �

We thus have

Theorem 6.9 (Lam - Leung [Lam00]). For any natural number m,

W (m) = Np1 + · · ·+ Npr,

where p1, . . . , pr are all the distinct prime divisors of m.

The above result in turn has an application to representation theory of
finite groups.

Theorem 6.10 (Lam - Leung [Lam00]). Let χ be the character of a represen-
tation of a finite group G over a field F of characteristic 0. Let g ∈ G be an
element of order m = pa1

1 . . . par
r (where p1 < p2 < . . . pr) such that χ(g) ∈ Z,

and let t := χ(1) + |χ(g)|. If χ(g) ≤ 0, then t ∈
∑

Npi. If χ(g) > 0 and t is
odd, then t ≥ �, where � (= p1 or p2) is the smallest odd prime dividing m.

6.5 Fundamental Groups of Projective Curves

Let k be an algebraically closed field of characteristic p > 0. For a projective
curve D over k, let πA(D) denote the set of isomorphism classes of finite
groups occurring as Galois groups of un-ramified Galois covers of D. A group
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G occurs as a quotient of the fundamental group π1(D) if and only if it lies
in πA(D). For an integer g ≥ 0, let πA(g) denote the set of finite groups G
for which there exists a curve D of genus g such that G lies in πA(D). Let
d(G) denote the minimal number of generators of the group G, and let t(G)
denote the number of generators of the augmentation ideal gk, of the group
algebra k[G], as a k[G] module.

Theorem 6.11 (Stevenson [Ste98]). Let g ≥ 2 be a positive integer and let
G be a finite group with normal Sylow p-subgroup P , such that d(G/P ) ≤ g.
Then G lies in πA(g) if and only if t(G) ≤ g.


