Chapter 13

Bökstedt–Neeman Resolutions and HyperExt Sheaves

(13.1) Let \mathcal{T} be a triangulated category with small direct products. Note that a direct product of distinguished triangles is again a distinguished triangle (Lemma 3.1).

Let

$$\cdots \to t_3 \xrightarrow{s_3} t_2 \xrightarrow{s_2} t_1 \tag{13.2}$$

be a sequence of morphisms in \mathcal{T} . We define $d: \prod_{i\geq 1} t_i \to \prod_{i\geq 1} t_i$ by $p_i \circ d = p_i - s_{i+1} \circ p_{i+1}$, where $p_i: \prod_i t_i \to t_i$ is the projection. Consider a distinguished triangle of the form

$$M \xrightarrow{m} \prod_{i>1} t_i \xrightarrow{d} \prod_{i>1} t_i \xrightarrow{q} \Sigma M,$$

where Σ denotes the suspension.

We call M, which is determined uniquely up to isomorphisms, the *homotopy limit* of (13.2) and denote it by holim t_i .

- (13.3) Dually, homotopy colimit is defined and denoted by hocolim, if \mathcal{T} has small coproducts.
- (13.4) Let \mathcal{A} be an abelian category which satisfies (AB3*). Let $(\mathbb{F}_{\lambda})_{\lambda \in \Lambda}$ be a small family of objects in $K(\mathcal{A})$. Then for any $\mathbb{G} \in K(\mathcal{A})$, we have that

$$\operatorname{Hom}_{K(\mathcal{A})}(\mathbb{G}, \prod_{\lambda} \mathbb{F}_{\lambda}) = H^{0}(\operatorname{Hom}_{\mathcal{A}}^{\bullet}(\mathbb{G}, \prod_{\lambda} \mathbb{F}_{\lambda})) \cong H^{0}(\prod_{\lambda} \operatorname{Hom}_{\mathcal{A}}^{\bullet}(\mathbb{G}, \mathbb{F}_{\lambda}))$$
$$\cong \prod_{\lambda} H^{0}(\operatorname{Hom}_{\mathcal{A}}^{\bullet}(\mathbb{G}, \mathbb{F}_{\lambda})) = \prod_{\lambda} \operatorname{Hom}_{K(\mathcal{A})}(\mathbb{G}, \mathbb{F}_{\lambda}).$$

That is, the direct product $\prod_{\lambda} \mathbb{F}_{\lambda}$ in C(A) is also a direct product in K(A).

(13.5) Let \mathcal{A} be a Grothendieck abelian category, and (t_{λ}) a small family of objects of $D(\mathcal{A})$. Let (\mathbb{F}_{λ}) be a family of K-injective objects of $K(\mathcal{A})$ such that \mathbb{F}_{λ} represents t_{λ} for each λ . Then $Q(\prod_{\lambda} \mathbb{F}_{\lambda})$ is a direct product of t_{λ} in

J. Lipman, M. Hashimoto, Foundations of Grothendieck Duality for Diagrams 373 of Schemes, Lecture Notes in Mathematics 1960,

[©] Springer-Verlag Berlin Heidelberg 2009

 $D(\mathcal{A})$ (note that the direct product $\prod_{\lambda} \mathbb{F}_{\lambda}$ exists, see [37, Corollary 7.10]). Hence $D(\mathcal{A})$ has small products.

Lemma 13.6. Let I be a small category, S be a scheme, and let $X_{\bullet} \in \mathcal{P}(I,\underline{\operatorname{Sch}}/S)$. Let \mathbb{F} be an object of $C(\operatorname{Mod}(X_{\bullet}))$. Assume that \mathbb{F} has locally quasi-coherent cohomology groups. Then the following hold.

- 1 Let \mathfrak{I} denote the full subcategory of $C(\operatorname{Mod}(X_{\bullet}))$ consisting of bounded below complexes of injective objects of $\operatorname{Mod}(X_{\bullet})$ with locally quasi-coherent cohomology groups. There is an \mathfrak{I} -special inverse system $(I_n)_{n\in\mathbb{N}}$ with the index set \mathbb{N} and an inverse system of chain maps $(f_n: \tau_{\geq -n}\mathbb{F} \to I_n)$ such that
 - **i** f_n is a quasi-isomorphism for any $n \in \mathbb{N}$.
 - ii $I_n^i = 0 \text{ for } i < -n.$
- **2** If (I_n) and (f_n) are as in **1**, then the following hold.
 - i For each $i \in \mathbb{Z}$, the canonical map $H^i(\varprojlim I_n) \to H^i(I_n)$ is an isomorphism for $n \ge \max(1, -i)$, where the projective limit is taken in the category $C(\operatorname{Mod}(X_{\bullet}))$, and $H^i(?)$ denotes the ith cohomology sheaf of a complex of sheaves.
 - ii $\lim f_n : \mathbb{F} \to \lim I_n$ is a quasi-isomorphism.
 - iii The projective limit $\varprojlim I_n$, viewed as an object of $K(\operatorname{Mod}(X))$, is the homotopy limit of (I_n) .
 - iv $\lim I_n$ is K-injective.

Proof. The assertion $\mathbf{1}$ is [39, (3.7)].

We prove **2**, **i**. Let $j \in \text{ob}(I)$ and U an affine open subset of X_j . Then for any $n \geq 1$, I_n^i and $H^i(I_n)$ are $\Gamma((j,U),?)$ -acyclic for each $i \in \mathbb{Z}$. As I_n is bounded below, each $Z^i(I_n)$ and $B^i(I_n)$ are also $\Gamma((j,U),?)$ -acyclic, and the sequence

$$0 \to \Gamma((j,U), Z^i(I_n)) \to \Gamma((j,U), I_n^i) \to \Gamma((j,U), B^{i+1}(I_n)) \to 0$$
 (13.7)

and

$$0 \to \Gamma((j,U), B^i(I_n)) \to \Gamma((j,U), Z^i(I_n)) \to \Gamma((j,U), H^i(I_n)) \to 0 \quad (13.8)$$

are exact for each i, as can be seen easily, where B^i and Z^i respectively denote the ith coboundary and the cocycle sheaves.

In particular, the inverse system $(\Gamma((j,U),B^i(I_n)))$ is a Mittag-Leffler inverse system of abelian groups by (13.7), since $(\Gamma((j,U),I_n^i))$ is. On the other hand, as we have $H^i(I_n) \cong H^i(\mathbb{F})$ for $n \geq \max(1,-i)$, the inverse system $(\Gamma((j,U),H^i(I_n)))$ stabilizes, and hence we have $(\Gamma((j,U),Z^i(I_n)))$ is also Mittag-Leffler.

Passing through the projective limit,

$$0 \to \Gamma((j,U), Z^{i}(\underline{\lim} I_{n})) \to \Gamma((j,U), \underline{\lim} I_{n}) \to \Gamma((j,U), \underline{\lim} B^{i+1}(I_{n})) \to 0$$

is exact. Hence, the canonical map $B^i(\lim I_n) \to \lim B^i(I_n)$ is an isomorphism, since (j, U) with U an affine open subset of X_j generates the topology of $\operatorname{Zar}(X_{\bullet})$.

Taking the projective limit of (13.8), we have

$$0 \to \Gamma((j,U), B^i(\underline{\lim} I_n)) \to \Gamma((j,U), Z^i(\underline{\lim} I_n)) \to \Gamma((j,U), \underline{\lim} H^i(I_n)) \to 0$$

is an exact sequence for any j and any affine open subset U of X_i . Hence, the canonical maps

$$\Gamma((j,U),H^i(I_n)) \cong \Gamma((j,U),\lim H^i(I_n)) \leftarrow \Gamma((j,U),H^i(\lim I_n))$$

are all isomorphisms for $n \geq \max(1, -i)$, and we have $H^i(I_n) \cong H^i(\lim I_n)$ for $n \geq \max(1, -i)$.

The assertion **ii** is now trivial.

The assertion iii is now a consequence of [7, Remark 2.3] (one can work at the presheaf level where we have the (AB4*) property). The assertion iv is now obvious.

Let I be a small category, S a scheme, and $X_{\bullet} \in \mathcal{P}(I, \underline{\operatorname{Sch}}/S)$.

Lemma 13.9. Assume that X_{\bullet} has flat arrows. Let J be a subcategory of I, and let $\mathbb{F} \in D_{\mathrm{EM}}(X_{\bullet})$ and $\mathbb{G} \in D(X_{\bullet})$. Assume one of the following.

$$\mathbf{a} \ \mathbb{G} \in D^+(X_{\bullet}).$$

 $\mathbf{b} \ \mathbb{F} \in D^+_{\mathrm{EM}}(X_{\bullet}).$ $\mathbf{c} \ \mathbb{G} \in D_{\mathrm{Lqc}}(X_{\bullet}).$

Then the canonical map

$$H_J:(?)_J R \operatorname{\underline{Hom}}^{\bullet}_{\operatorname{Mod}(X_{\bullet})}(\mathbb{F},\mathbb{G}) \to R \operatorname{\underline{Hom}}^{\bullet}_{\operatorname{Mod}(X_{\bullet}|_J)}(\mathbb{F}_J,\mathbb{G}_J)$$

is an isomorphism of functors to $D(PM(X_{\bullet}|_J))$ (here $\underline{Hom}_{Mod(X_{\bullet})}^{\bullet}(?,*)$ is viewed as a functor to $PM(X_{\bullet})$, and similarly for $\underline{Hom_{Mod(X_{\bullet}|J)}}(?,*)$. In particular, it is an isomorphism of functors to $D(X_{\bullet}|_{J})$.

Proof. By Lemma 1.39, we may assume that J = i for an object i of I.

So what we want to prove is for any complex in $Mod(X_{\bullet})$ with equivariant cohomology groups \mathbb{F} and any K-injective complex \mathbb{G} in $Mod(X_{\bullet})$,

$$H_i: \underline{\mathrm{Hom}}_{\mathrm{Mod}(X_{\bullet})}(\mathbb{F},\mathbb{G})_i \to \underline{\mathrm{Hom}}_{\mathrm{Mod}(X_i)}(\mathbb{F}_i,\mathbb{G}_i)$$

is a quasi-isomorphism of complexes in $PM(X_i)$ (in particular, it is a quasiisomorphism of complexes in $Mod(X_i)$, under the additional assumptions corresponding to **a**, **b**, or **c**. Indeed, if so, \mathbb{G}_i is K-injective by Lemma 8.4.

First consider the case that \mathbb{F} is a single equivariant object. Then the assertion is true by Lemma 6.36. By the way-out lemma [17, Proposition I.7.1], the case that \mathbb{F} is bounded holds. Under the assumption of \mathbf{a} , the case that \mathbb{F} is bounded above holds.

Now consider the general case for **a**. As the functors in question on \mathbb{F} changes coproducts to products, the map in question is a quasi-isomorphism if \mathbb{F} is a direct sum of complexes bounded above with equivariant cohomology groups. Indeed, a direct product of quasi-isomorphisms of complexes of $\mathrm{PM}(X_i)$ is again quasi-isomorphic. In particular, the lemma holds if \mathbb{F} is a homotopy colimit of objects of $D^-_{\mathrm{EM}}(X_{\bullet})$. As any object \mathbb{F} of $D_{\mathrm{EM}}(X_{\bullet})$ is the homotopy colimit of $(\tau_{\leq n}\mathbb{F})$, we are done.

The proof for the case **b** is similar. As \mathbb{F} has bounded below cohomology groups, $\tau_{\leq n}\mathbb{F}$ has bounded cohomology groups for each n.

We prove the case \mathbf{c} . By Lemma 13.6, we may assume that \mathbb{G} is a homotopy limit of K-injective complexes with locally quasi-coherent bounded below cohomology groups. As the functors on \mathbb{G} in consideration commute with homotopy limits, the problem is reduced to the case \mathbf{a} .

Lemma 13.10. Let I be a small category, S a scheme, and $X_{\bullet} \in \mathcal{P}(I,\underline{\operatorname{Sch}}/S)$. Assume that X_{\bullet} has flat arrows and is locally noetherian. Let $\mathbb{F} \in D^-_{\operatorname{Coh}}(X_{\bullet})$ and $\mathbb{G} \in D^+_{\operatorname{Lqc}}(X_{\bullet})$ (resp. $D^+_{\operatorname{Lch}}(X_{\bullet})$), where Lch denotes the plump subcategory of Mod consisting of locally coherent sheaves. Then $\underline{\operatorname{Ext}}^i_{\mathcal{O}_{X_{\bullet}}}(\mathbb{F},\mathbb{G})$ is locally quasi-coherent (resp. locally coherent) for $i \in \mathbb{Z}$. If, moreover, \mathbb{G} has quasi-coherent (resp. coherent) cohomology groups, then $\underline{\operatorname{Ext}}^i_{\mathcal{O}_{X_{\bullet}}}(\mathbb{F},\mathbb{G})$ is quasi-coherent (resp. coherent) for $i \in \mathbb{Z}$.

Proof. We prove the assertion for the local quasi-coherence and the local coherence. By Lemma 13.9, we may assume that X_{\bullet} is a single scheme. This case is [17, Proposition II.3.3].

We prove the assertion for the quasi-coherence (resp. coherence), assuming that \mathbb{G} has quasi-coherent (resp. coherent) cohomology groups. By [17, Proposition I.7.3], we may assume that \mathbb{F} is a single coherent sheaf, and \mathbb{G} is an injective resolution of a single quasi-coherent (resp. coherent) sheaf.

As X_{\bullet} has flat arrows and the restrictions are exact, it suffices to show that

$$\alpha_{\phi}: X_{\phi}^{*}(?)_{i} \operatorname{\underline{Hom}}_{\operatorname{Mod}(X_{\bullet})}^{\bullet}(\mathbb{F}, \mathbb{G}) \to (?)_{j} \operatorname{\underline{Hom}}_{\operatorname{Mod}(X_{\bullet})}^{\bullet}(\mathbb{F}, \mathbb{G})$$

is a quasi-isomorphism for any morphism $\phi: i \to j$ in I.

As X_{ϕ} is flat, $\alpha_{\phi}: X_{\phi}^* \mathbb{F}_i \to \mathbb{F}_j$ and $\alpha_{\phi}: X_{\phi}^* \mathbb{G}_i \to \mathbb{G}_j$ are quasi-isomorphisms. In particular, the latter is a K-injective resolution.

By the derived version of (6.37), it suffices to show that

$$P: X_{\phi}^*R \operatorname{\underline{Hom}}_{\mathcal{O}_{X_i}}^{\bullet}(\mathbb{F}_i, \mathbb{G}_i) \to R \operatorname{\underline{Hom}}_{\mathcal{O}_{X_i}}^{\bullet}(X_{\phi}^*\mathbb{F}_i, X_{\phi}^*\mathbb{G}_i)$$

is an isomorphism. This is [17, Proposition II.5.8].