
Chapter 6

Operations on Sheaves Via the Structure
Data

Let I be a small category, S a scheme, and P := P(I, Sch/S). To study
sheaves on objects of P , it is convenient to utilize the structure data of them,
and then utilize the usual sheaf theory on schemes.

(6.1) Let X• ∈ P . Let ♥ be any of PA,AB,PM,Mod, and M,N ∈
♥(X•). An element (ϕi) in

∏
Hom♥(Xi)(Mi,Ni) is given by some ϕ ∈

Hom♥(X•)(M,N ) (by the canonical faithful functor ♥(X•) →
∏
♥(Xi)),

if and only if

ϕj ◦ αφ(M) = αφ(N ) ◦ (Xφ)∗♥(ϕi) (6.2)

holds (or equivalently, βφ(N ) ◦ ϕi = (Xφ)∗ϕj ◦ βφ(M) holds) for any (φ :
i→ j) ∈Mor(I).

We say that a family of morphisms (ϕi)i∈I between structure data

ϕi :Mi → Ni

is a morphism of structure data if ϕi is a morphism in ♥(Xi) for each i, and
(6.2) is satisfied for any φ. Thus the categories of structure data of sheaves,
presheaves, modules, and premodules on X•, denoted by D♥(X•) are defined,
and the equivalence Dat♥ : ♥(X•) ∼= D♥(X•) are given. This is the precise
meaning of Lemma 4.8.

(6.3) Let X• ∈ P and M,N ∈ Mod(X•). As in Example 5.6, 5, we have
an isomorphism

mi :Mi ⊗OXi Ni ∼= (M⊗OX• N )i.

This is trivial for presheaves, and utilize the fact the sheafification is compat-
ible with (?)i for sheaves. At the section level, for M,N ∈ PM(X•), i ∈ I,
and U ∈ Zar(Xi),

mp
i : Γ(U,Mi ⊗pOXi Ni)→ Γ(U, (M⊗pOX•

N )i)
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is nothing but the identification

Γ(U,Mi)⊗Γ(U,OXi) Γ(U,Ni) = Γ((i, U),M)⊗Γ((i,U),OX•) Γ((i, U),N )

= Γ((i, U),M⊗pOX•
N ).

ForM,N ∈Mod(X•) and i ∈ I, mi is given as the composite

Mi ⊗OXi Ni = a(qMi ⊗pOXi qNi)
c−→ a((qM)i ⊗pOXi (qN )i)

mpi−−→

a(qM⊗pOX•
qN )i

θ−→ (a(qM⊗pOX•
qN ))i = (M⊗OX• N )i,

see (2.52). Utilizing this identification, the structure map αφ ofM⊗N can
be completely described via those ofM and N . Namely,

Lemma 6.4. Let X• ∈ P(I, Sch/S), and M,N ∈ ♥(X•), where ♥ is PM
or Mod. For φ ∈ I(i, j), αφ(M⊗N ) agrees with the composite map

X∗φ(M⊗N )i
m−1
i−−−→X∗φ(Mi⊗Ni) Δ−→X∗φMi⊗X∗φNi

αφ⊗αφ−−−−→Mj⊗Nj
mj−−→(M⊗N )j ,

where ⊗ should be replaced by ⊗p when ♥ = PM.

Proof (sketch). It is not so difficult to show that it suffices to show that
βφ(M⊗N ) agrees with the composite

(M⊗N )i
m−1
i−−−→Mi ⊗Ni

β⊗β−−−→ (Xφ)∗Mj ⊗ (Xφ)∗Nj m−→

(Xφ)∗(Mj ⊗Nj)
mj−−→ (Xφ)∗(M⊗N )j . (6.5)

First we prove this for the case that ♥ = PM. For an open subset U of
Xi, this composite map evaluated at U is

Γ((i, U), (M⊗N )) = Γ((i, U),M)⊗Γ((i,U),OX• ) Γ((i, U),N ) res⊗ res−−−−−→

Γ((j,X−1
φ (U)),M)⊗Γ((i,U),OX• ) Γ((j,X−1

φ (U)),N )
p−→

Γ((j,X−1
φ (U)),M)⊗Γ((j,X−1

φ (U)),OX• ) Γ((j,X−1
φ (U)),N )

= Γ((j,X−1
φ (U)),M⊗N ),

where p(m⊗ n) = m⊗ n. This composite map is nothing but the restriction
map ofM⊗N . So by definition, it agrees with

βφ : Γ(U, (M⊗N )i)→ Γ(U, (Xφ)∗(M⊗N )j).

Next we consider the case ♥ = Mod. First note that the diagram
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(a(qM⊗p qN ))i −−−−−−−−−−
β
−−−−−−−−−−→ (Xφ)∗(a(qM⊗p qN ))j

↑ θ ↑ θ
a(qM⊗p qN )i

β−→ a(Xφ)∗(qM⊗p qN )j
θ−→ (Xφ)∗a(qM⊗p qN )j

is commutative by Lemma 4.17. By the presheaf version of the lemma, which
has been proved in the last paragraph, the diagram

a(qM⊗p qN )i

β

��

a((qM)i ⊗p (qN )i)
mi��

β⊗β
��

a((Xφ)∗(qM)j ⊗p (Xφ)∗(qN )j)

m

��
a(Xφ)∗(qM⊗p qN )j a(Xφ)∗((qM)j ⊗p (qN )j)

mj��

is commutative. By the commutativity of the diagram (4.16), the diagram

a((qM)i ⊗p (qN )i)

β⊗β

��

c⊗c �� a(qMi ⊗p qNi)

β⊗β
��

a(q(Xφ)∗Mj ⊗p q(Xφ)∗Nj)

c⊗c
��

a((Xφ)∗(qM)j ⊗p (Xφ)∗(qN )j)
c⊗c �� a((Xφ)∗qMj ⊗p (Xφ)∗qNj)

is commutative. Combining the commutativity of these three diagrams (and
some other easy commutativity), it is not so difficult to show that the map

β : (M⊗N )i = (a(qM⊗pqN ))i → (Xφ)∗(a(qM⊗pqN ))j = (Xφ)∗(M⊗N )j

agrees with the composite

(M⊗N )i = (a(qM⊗p qN ))i
θ−1

−−→ a(qM⊗p qN )i
m−1
i−−−→ a((qM)i⊗p (qN )i)

c⊗c−−→ a(qMi ⊗p qNi)
β⊗β−−−→ a(q(Xφ)∗Mj ⊗p q(Xφ)∗Nj) c⊗c−−→

a((Xφ)∗qMj⊗p(Xφ)∗qNj) m−→ a(Xφ)∗(qMj⊗pqNj) θ−→ (Xφ)∗a(qMj⊗pqNj)
c⊗c−−→ (Xφ)∗a((qM)j ⊗p (qN )j)

mj−−→ (Xφ)∗a((qM⊗p qN )j)
θ−→

(Xφ)∗(a(qM⊗p qN ))j = (Xφ)∗(M⊗N )j .

This composite map agrees with the composite map (6.5). This proves the
lemma. ��
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(6.6) Let X• ∈ P , and J a subcategory of I. The left adjoint functor
L♥J = Q(X•, J)♥# of (?)♥J is given by the structure data as follows explicitly.
ForM ∈ ♥(X•|J) and i ∈ I, we have

Lemma 6.7. There is an isomorphism

λJ,i : (L♥J (M))♥i ∼= lim−→(Xφ)∗♥(Mj),

where the colimit is taken over the subcategory (I(Jop→Iop)
i )op of I/i whose

objects are (φ : j → i) ∈ I/i with j ∈ ob(J) and morphisms are morphisms
ϕ of I/i such that ϕ ∈ Mor(J). The translation map of the direct system is
given as follows. For morphisms φ : j → i and ψ : j′ → j, the translation
map X∗φψMj′ → X∗φMj is the composite

X∗φψMj′
d−→ X∗φX

∗
ψMj′

αψ−−→ X∗φMj .

Proof. We prove the lemma for the case that ♥ = PM,Mod. The case that
♥ = PA,AB is similar and easier.

Consider the case ♥ = PM first. For any object (φ, h) : (i, U)→ (j, V ) of
I
Zar(X•|J )↪→Zar(X•)
(i,U) , consider the obvious map

Γ((i, U),OX•)⊗Γ((j,V ),OX•|J ) Γ((j, V ),M) = Γ(U,OXi)⊗Γ(V,OXj ) Γ(V,Mj)

→ lim−→
X−1
φ (V ′)⊃U

Γ(U,OXi)⊗Γ(V ′,OXj ) Γ(V ′,Mj)

= Γ(U,X∗φMj)→ lim−→Γ(U,X∗φ′Mj′),

where the last lim−→ is taken over (φ′ : j′ → i) ∈ (I(Jop→Iop)
i )op. This map

induces a unique map

Γ(U, (LJM)i) = Γ((i, U), LJM) =
lim−→Γ((i, U),OX•)⊗Γ((j,V ),OX•|J ) Γ((j, V ),M)→ lim−→Γ(U,X∗φ′Mj′).

It is easy to see that this defines λJ,i.
We define the inverse of λJ,i explicitly. Let (φ : j → i) ∈ (I(Jop→Iop)

i )op.
Let U ∈ Zar(Xi) and V ∈ Zar(Xj) such that U ⊂ X−1

φ (V ). We have an
obvious map

Γ(U,OXi)⊗Γ(V,OXj ) Γ(V,Mj) = Γ((i, U),OX•)⊗Γ((j,V ),OX•|J ) Γ((j, V ),M)

→ lim−→Γ((i, U),OX•)⊗Γ((j,V ),OX•|J ) Γ((j, V ),M)

= Γ((i, U), LJM) = Γ(U, (LJM)i),

which induces

Γ(U,X∗φM) = lim−→Γ(U,OXi)⊗Γ(V,OXj ) Γ(V,Mj)→ Γ(U, (LJM)i).
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This gives a morphism X∗φM → (LJM)i. It is easy to see that this defines
lim−→X∗φM→ (LJM)i, which is the inverse of λJ,i. This completes the proof
for the case that ♥ = PM.

Now consider the case ♥ = Mod. Define λMod
J,i to be the composite

(LMod
J M)i = (?)iaLPM

J qM θ−1

−−→ a(?)iLPM
J qM

λPM
J,i−−−→ a lim−→X∗φ(qM)j

∼= lim−→ aX∗φ(qM)j
c−→ lim−→aX∗φqMj = lim−→X∗φMj .

As the morphisms appearing in the composition are all isomorphisms, λMod
J,i

is an isomorphism. ��
In particular, we have an isomorphism

λj,i : (L♥j (M))♥i ∼=
⊕

φ∈I(j,i)
(Xφ)∗♥(M). (6.8)

(6.9) As announced in (2.61), we show that the monoidal adjoint pair
((?)Mod

# , (?)#Mod) in Lemma 2.55 is not Lipman.
We define a finite category K by ob(K) = {s, t}, and K(s, t) = {u, v},

K(s, s) = {ids}, and K(t, t) = {idt}. Pictorially, K looks like t s
u��
v�� . Let k

be a field, and define X• ∈ P(K, Sch) by Xs = Xt = Spec k, and Xu = Xv =
id. Then Γ(Xt, (LsOXs)t) is two-dimensional by (6.8). So LsOXs and OX•
are not isomorphic by the dimension reason. Similarly, Ls(OXs ⊗OXs OXs)
cannot be isomorphic to LsOXs ⊗OX• LsOXs .

Similarly, ((?)PM
# , (?)#PM) in Lemma 2.55 is not Lipman.

(6.10) Let ψ : i→ i′ be a morphism. The structure map

αψ : (Xψ)∗♥((L♥J (M))♥i )→ (L♥J (M))♥i′

is induced by
(Xψ)∗♥((Xφ)∗♥(Mj)) ∼= (Xψφ)∗♥(Mj).

More precisely, for ψ : i→ i′, the diagram

X∗ψ((LJM)i)
λJ,i−−→ X∗ψ lim−→X∗φMj

∼= lim−→X∗ψX
∗
φMj

↓ αψ ↓ h

(LJM)i′ −−−−−−−−
λJ,i′
−−−−−−−−→ lim−→X∗φ′Mj′

is commutative, where φ : i → j runs through (Ifi )op, and φ′ : i′ → j′ runs
through (Ifi′ )

op, where f : Jop → Iop is the inclusion. The map h is induced
by d : X∗ψX

∗
φ → (XφXψ)∗ = X∗ψφ. This is checked at the section level directly

when ♥ = PM.
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We consider the case that ♥ = Mod. Then the composite

X∗ψ(?)iLJ
λJ,i−−→ X∗ψ lim−→X∗φ(?)j ∼= lim−→X∗ψX

∗
φ(?)j

h−→ lim−→X∗φ′(?)j′

agrees with the composite

X∗ψ(?)iLJ = aX∗ψq(?)iaLJq
θ−1

−−→ aX∗ψqa(?)iLJq
λPM
J,i−−−→ aX∗ψqa lim−→X∗φ(?)jq

∼=−→ aX∗ψq lim−→ aX∗φ(?)jq
c−→ aX∗ψq lim−→ aX∗φq(?)j

∼=−→ lim−→ aX∗ψqaX
∗
φq(?)j

u−1

−−→

lim−→ aX∗ψX
∗
φq(?)j

d−→ lim−→ aX∗ψφq(?)j → lim−→ aX∗φ′q(?)j′ = lim−→X∗φ′(?)j′ .

Using Lemma 2.60, it is straightforward to show that this map agrees with

X∗ψ(?)iLJ = aX∗ψq(?)iaLJq
c−→ aX∗ψ(?)iqaLJq

αψ−−→ a(?)i′qaLJq
c−→

aq(?)i′aLJq
ε−→ (?)i′aLJq

θ−1

−−→ a(?)i′LJq
λJ,i′−−−→ a lim−→X∗φ′(?)j′q

∼=−→
lim−→ aX∗φ′(?)j′q

c−→ lim−→ aX∗φ′q(?)j′ = lim−→X∗φ′(?)j′ .

This composite map agrees with

X∗ψ(?)iLJ
αψ−−→ (?)i′LJ

λJ,i′−−−→ lim−→X∗φ′(?)j′

by (4.20) and the definition of λJ,i′ for sheaves (see the proof of Lemma 6.7).
This is what we wanted to prove.

The case that ♥ = PA,AB is proved similarly.

(6.11) In the remainder of this chapter, we do not give detailed proofs,
since the strategy is similar to the above (just check the commutativity at
the section level for presheaves, and sheafify it).

(6.12) The counit map ε : LJ(?)J → Id is given as a morphism of structure
data as follows.

εi : (?)iLJ(?)J → (?)i

agrees with

(?)iLJ(?)J
λJ,i−−→ lim−→X∗φ(?)j(?)J

c−→ lim−→X∗φ(?)j
α−→(?)i,

where α is induced by αφ : X∗φ(?)j → (?)i.

(6.13) The unit map u : Id→ (?)JLJ is also described, as follows.

uj : (?)j → (?)j(?)JLJ
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agrees with

(?)j
f−1

−−→ X∗idj (?)j → lim−→X∗φ(?)k
λ−1
J,j−−→(?)jLJ ∼= (?)j(?)JLJ ,

where the colimit is taken over (φ : k → j) ∈ (I(Jop⊂Iop)
j )op.

(6.14) Let X• ∈ P , and J a subcategory of I. The right adjoint functor R♥J
of (?)♥J is given as follows explicitly. ForM∈ ♥(X•|J) and i ∈ I, we have

ρJ,i : (R♥J (M))♥i ∼= lim←−(Xφ)♥∗ (Mj),

where the limit is taken over I(J→I)
i , see (2.6) for the notation. The descrip-

tions of α, u, and ε for the right induction are left to the reader.

Lemma 6.15. Let X• ∈ P, and J a full subcategory of I. Then we have the
following.

1 The counit of adjunction ε : (?)♥J ◦ R
♥
J → Id is an isomorphism. In

particular, R♥J is full and faithful.
2 The unit of adjunction u : Id→ (?)♥J ◦ L

♥
J is an isomorphism. In partic-

ular, L♥J is full and faithful.

Proof. 1 For i ∈ J , the restriction

εi : (?)♥i (?)♥J R
♥
JM = lim←−(Xφ)♥∗ (Mj)→ (Xidi)∗Mi =Mi = (?)iM

is nothing but the canonical map from the projective limit, where the limit
is taken over (φ : i→ j) ∈ I(J→I)

i . As J is a full subcategory, we have I(J→I)
i

equals i/J , and hence idi is its initial object. So the limit is equal toMi, and
εi is the identity map. Since εi is an isomorphism for each i ∈ J , we have
that ε is an isomorphism.

The proof of 2 is similar, and we omit it. ��

Let C be a small category. A connected component of C is a full subcategory
of C whose object set is one of the equivalence classes of ob(C) with respect
to the transitive symmetric closure of the relation ∼ given by

c ∼ c′ ⇐⇒ C(c, c′) �= ∅.

Definition 6.16. We say that a subcategory J of I is admissible if

1 For i ∈ I, the category (I(Jop⊂Iop)
i )op is pseudofiltered.

2 For j ∈ J , we have idj is the initial object of one of the connected
components of I(Jop⊂Iop)

j (i.e., idj is the terminal object of one of the

connected components of (I(Jop⊂Iop)
j )op).
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Note that for j ∈ I, the subcategory j = ({j}, {idj}) of I is admissible.
In Lemma 6.7, the colimit in the right hand side is pseudo-filtered and

hence it preserves exactness, if 1 is satisfied. In particular, if 1 is satisfied,
then Q(X•, J) : Zar(X•|J) → Zar(X•) is an admissible functor. As in the
proof of Lemma 6.15, (?)j is a direct summand of (?)j ◦LJ for j ∈ J so that
LJ is faithful, if 2 is satisfied. We have the following.

Lemma 6.17. Let X• ∈ P(I, Sch/S), and K ⊂ J ⊂ I be admissible sub-
categories of I. Then LPA

J,K is faithful and exact. The morphism of sites
Q(X•|J ,K) is admissible. If, moreover, Xφ is flat for any φ ∈ I(k, j) with
j ∈ J and k ∈ K, then L♥J,K is faithful and exact for ♥ = Mod.

Proof. Assume that M ∈ ♥(X•|K), M �= 0, and LJ,KM = 0. There exists
some k ∈ K such that Mk �= 0. Since LJ,KM = 0, we have that 0 ∼=
(?)kLI,JLJ,KM∼= (?)kLI,KM. This contradicts the fact thatMk is a direct
summand of (LI,KM)k. Hence LJ,K is faithful.

We prove that L♥J,K is exact. It suffices to show that for any j ∈ J , (?)jLJ,K
is exact. As J is admissible, (?)j is a direct summand of (?)jLI,J . Hence
it suffices to show that (?)jLI,K ∼= (?)jLI,JLJ,K is exact. By Lemma 6.7,
(?)jLI,K ∼= lim−→(Xφ)∗♥(?)k, where the colimit is taken over (φ : k → j) ∈
(IK

op⊂Iop
j )op. By assumption, (Xφ)∗♥ is exact for any φ in the colimit. As

(IK
op⊂Iop

j )op is pseudo-filtered by assumption, (?)jLI,K is exact, as desired.
��

(6.18) As in Example 5.6, 2, we have an isomorphism

ci,f• : (?)i ◦ (f•)∗ ∼= (fi)∗ ◦ (?)i. (6.19)

The translation αφ is described as follows.

Lemma 6.20. Let f• : X• → Y• be a morphism in P(I, Sch/S). For φ ∈
I(i, j),

αφ(f•)∗ : Y ∗φ (?)i(f•)∗ → (?)j(f•)∗

agrees with

Y ∗φ (?)i(f•)∗
ci,f•−−−→Y ∗φ (fi)∗(?)i

via θ−−−→(fj)∗X∗φ(?)i
(fj)∗αφ−−−−−→(fj)∗(?)j

c−1
j,f•−−−→(?)j(f•)∗, (6.21)

where θ is Lipman’s theta [26, (3.7.2)].

One of the definitions of θ is the composite

θ : Y ∗φ (fi)∗
via u−−−→Y ∗φ (fi)∗(Xφ)∗X∗φ

c−→ Y ∗φ (Yφ)∗(fj)∗X∗φ
via ε−−−→(fj)∗X∗φ.
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Proof. Note that the diagram

(?)i(f•)∗
β−→ (Yφ)∗(?)j(f•)∗

c−→ (Yφ)∗(fj)∗(?)j
↓ c ↓ c

(fi)∗(?)i −−−−−−−−
(fi)∗β
−−−−−−−−→ (fi)∗(Xφ)∗(?)j

(6.22)

is commutative. Indeed, when we apply the functor Γ(U, ?) for an open subset
U of Yi, then we get an obvious commutative diagram

Γ((i, f−1
i (U)), ?) res−−→ Γ((j, f−1

j (Y −1
φ (U))), ?) id−→ Γ((j, f−1

j (Y −1
φ (U))), ?)

↓ id ↓ id

Γ((i, f−1
i (U)), ?) −−−−−−−−−−−−

res
−−−−−−−−−−−−→ Γ((j,X−1

φ (f−1
i (U))), ?).

Now the assertion of the lemma follows from the commutativity of the dia-
gram

Y ∗φ (?)i(f•)∗
α−→ (?)j(f•)∗

c−→ (fj)∗(?)j
id−→ (fj)∗(?)j

↓ id (a) ↑ ε (b) ↑ ε
Y ∗φ (?)i(f•)∗

β−→ Y ∗φ (Yφ)∗(?)j(f•)∗
c−→ Y ∗φ (Yφ)∗(fj)∗(?)j

↓ c (c) ↓ c
Y ∗φ (fi)∗(?)i −−−−−−−−−

β
−−−−−−−−−→ Y ∗φ (fi)∗(Xφ)∗(?)j (f) ↓ id

↓ θ (d) ↓ θ
(fj)∗X∗φ(?)i −−−−−−−−−

β
−−−−−−−−−→ (fj)∗X∗φ(Xφ)∗(?)j

↓ id (e) ↓ ε
(fj)∗X∗φ(?)i −−−−−−−−−

α
−−−−−−−−−→ (fj)∗(?)j

id←− (fj)∗(?)j .

Indeed, the commutativity of (a) and (e) is the definition of α. The com-
mutativity of (b) follows from the naturality of ε. The commutativity of (c)
follows from the commutativity of (6.22). The commutativity of (d) is the
naturality of θ. The commutativity of (f) follows from the definition of θ and
the fact that the composite

(Xφ)∗
u−→ (Xφ)∗X∗φ(Xφ)∗

ε−→ (Xφ)∗

is the identity. ��

Proposition 6.23. Let f• : X• → Y• be a morphism in P, J a subcategory
of I, and i ∈ I. Then the composite map

(?)iLJ(f•|J )∗
via θ−−−→(?)i(f•)∗LJ

via ci,f•−−−−−→(fi)∗(?)iLJ

agrees with the composite map
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(?)iLJ(f•|J )∗
via λJ,i−−−−−→ lim−→Y ∗φ (?)j(f•|J)∗

via cj,f•|J−−−−−−−→ lim−→Y ∗φ (fj)∗(?)j

via θ−−−→ lim−→(fi)∗X∗φ(?)j → (fi)∗ lim−→X∗φ(?)j
via λ−1

J,i−−−−−→(fi)∗(?)iLJ .

Proof. Note that θ in the first composite map is the composite

θ = θ(J, f•) : LJ(f•|J)∗
via u−−−→LJ(f•|J)∗(?)JLJ

c−→LJ(?)J (f•)∗LJ
ε−→(f•)∗LJ .

The description of u and ε are already given, and the proof is reduced to the
iterative use of (6.10), (6.12), (6.13), and Lemma 6.20. The detailed argument
is left to a patient reader. The reason why the second map involves θ is
Lemma 6.20. ��

Similarly, we have the following.

Proposition 6.24. Let f• : X• → Y• be a morphism in P, J a subcategory
of I, and i ∈ I. Then the composite map

(fi)∗(?)iLJ
via θ(f•,i)−−−−−−→(?)i(f•)∗LJ

via df•,J−−−−−−→(?)iLJ(f•|J )∗

agrees with the composite map

(fi)∗(?)iLJ
via λJ,i−−−−−→(fi)∗ lim−→Y ∗φ (?)j ∼= lim−→(fi)∗Y ∗φ (?)j

d−→ lim−→X∗φ(fj)
∗(?)j

via θ(f•|J ,j)−−−−−−−−→ lim−→X∗φ(?)j(f•|J)∗
via λ−1

J,i−−−−−→(?)iLJ(f•|J)∗.

The proof is left to the reader. The proof of Proposition 6.23 and
Proposition 6.24 are formal, and the propositions are valid for ♥ =
PM,Mod,PA, and AB.

Let f• : X• → Y• be a morphism in P , and J ⊂ I a subcategory. The
inverse image (f•)∗♥ is compatible with the restriction (?)J .

Lemma 6.25. The natural map

θ♥ = θ♥(f•, J) : ((f•)|J)∗♥ ◦ (?)J → (?)J ◦ (f•)∗♥

is an isomorphism for ♥ = PA,AB,PM,Mod. In particular, f−1
• : Zar(Y•)→

Zar(X•) is an admissible continuous functor.

Proof. We consider the case where ♥ = PM.
Let M ∈ PM(Y•), and (j, U) ∈ Zar(X•|J ). We have

Γ((j, U), (f•|J)∗MJ) = lim−→Γ((j, U),OX•)⊗Γ((j′,V ),OY•) Γ((j′, V ),M),

where the colimit is taken over (j′, V ) ∈ (I(f•|J )−1

(j,U) )op. On the other hand, we
have

Γ((j, U), (?)Jf∗•M) = lim−→Γ((j, U),OX•)⊗Γ((i,V ),OY•) Γ((i, V ),M),
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where the colimit is taken over (i, V ) ∈ (If
−1
•

(j,U))
op. There is an obvious map

from the first to the second. This obvious map is θ, see (2.57).
To verify that this is an isomorphism, it suffices to show that the category

(I(f•|J )−1

(j,U) )op is final in the category (If
−1
•

(j,U))
op. In fact, any (φ, h) : (j, U) →

(i, f−1
i (V )) with (i, V ) ∈ Zar(Y•) factors through

(idj , h) : (j, U)→ (j, f−1
j Y −1

φ (V )).

Hence, θ♥ is an isomorphism for ♥ = PM. The construction for the case
where ♥ = PA is similar.

As (?)J is compatible with the sheafification by Lemma 2.31, we have that
θ is an isomorphism for ♥ = Mod,AB by Lemma 2.59. ��

Corollary 6.26. The conjugate

ξ♥ = ξ♥(f•, J) : (f•)♥∗ RJ → RJ(f•|J)♥∗

of θ♥(f•, J) is an isomorphism for ♥ = PA,AB,PM,Mod.

Proof. Obvious by Lemma 6.25. ��

(6.27) By Corollary 6.26, we may define the composite

μ♥ = μ♥(f•, J) : f∗•RJ
u−→ f∗•RJ(f•|J )∗(f•|J )∗

ξ−1

−−→ f∗• (f•)∗RJ (f•|J)∗ ε−→ RJ(f•|J)∗.

Observe that the diagram

(?)if∗
•RJ

θ−1
��

μ

��

f∗
i (?)iRJ

ρ �� f∗
i lim←−(Yφ)∗(?)j �� lim←− f

∗
i (Yφ)∗(?)j

θ

���������������

(?)iRJf•|∗J
ρ �� lim←−(Xφ)∗(?)jf•|∗J θ−1

�� lim←−(Xφ)∗f∗
j (?)j

is commutative.

Lemma 6.28. Let the notation be as above, and M,N ∈ ♥(Y•). Then the
diagram

(f•|J)∗♥(MJ ⊗NJ )
m−→ (f•|J )∗♥((M⊗N )J )

θ−→ ((f•)∗♥(M⊗N ))J

↓ Δ ↓ (?)JΔ

(f•|J)∗♥MJ ⊗ (f•|J)∗♥NJ
θ⊗θ−−→ ((f•)∗♥M)J ⊗ ((f•)∗♥N )J

m−→ ((f•)∗♥M⊗ (f•)∗♥N )J

(6.29)
is commutative.

Proof. This is an immediate consequence of Lemma 1.44. ��
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Corollary 6.30. The adjoint pair ((?)∗Mod, (?)
Mod∗ ) over the category

P(I, Sch/S) is Lipman.

Proof. Let f• : X• → Y• be a morphism of P(I, Sch/S). It is easy to see that
the diagram

(?)iOY•
= ��

(?)iη

��

OYi
η

��������������

(?)i(f•)∗OX•
c �� (fi)∗(?)iOX•

= �� (fi)∗OXi

is commutative. So utilizing Lemma 1.25, it is easy to see that

(?)if∗•OY•
θ−1

��

(?)iC

��

f∗i (?)iOY•
= �� f∗i OYi

C������������

(?)iOX•
= �� OXi

is also commutative. Since C : f∗i OYi → OXi is an isomorphism by
Corollary 2.65, (?)iC is an isomorphism for any i ∈ I. Hence C : f∗•OY• →
OX• is also an isomorphism.

Let us consider M,N ∈ ♥(Y•). To verify that Δ is an isomorphism, it
suffices to show that

(?)iΔ : (f∗• (M⊗N ))i → (f∗•M⊗ f∗•N )i

is an isomorphism for any i ∈ ob(I). Now consider the diagram (6.29)
for J = i. Horizontal maps in the diagram are isomorphisms by (6.3) and
Lemma 6.25. The left Δ is an isomorphism, since fi is a morphism of single
schemes. By Lemma 6.28, (?)iΔ is also an isomorphism. ��

(6.31) The description of the translation map αφ for f∗• is as follows. For
φ ∈ I(i, j),

αφ : X∗φ(?)if
∗
• → (?)jf∗•

is the composite

X∗φ(?)if
∗
•
X∗
φθ

−1

−−−−→X∗φf∗i (?)i
d−→ f∗j Y

∗
φ (?)i

f∗
j αφ−−−→f∗j (?)j

θ−→(?)jf∗• .

(6.32) Let X• ∈ P , andM,N ∈ ♥(X•). Although there is a canonical map

Hi : Hom♥(X•)(M,N )i → Hom♥(Xi)(Mi,Ni)

arising from the closed structure for i ∈ I, this may not be an isomorphism.
However, we have the following.
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Lemma 6.33. Let i ∈ I. If M is equivariant, then the canonical map

Hi : Hom♥(X•)(M,N )i → Hom♥(Xi)(Mi,Ni)

is an isomorphism of presheaves. In particular, it is an isomorphism in
♥(Xi).

Proof. It suffices to prove that

Hi : Hom♥(Zar(X•)/(i,U))(M|(i,U),N|(i,U))→ Hom♥(U)(Mi|U ,Ni|U )

is an isomorphism for any Zariski open set U in Xi.
To give an element of ϕ ∈ Hom♥(Zar(X•)/(i,U))(M|(i,U),N|(i,U)) is the same

as to give a family (ϕφ)φ:i→j with

ϕφ ∈ Hom♥(X−1
φ (U))(Mj |X−1

φ (U),Nj |X−1
φ (U))

such that for any φ : i→ j and ψ : j → j′,

ϕψφ ◦ (αψ(M))|X−1
ψφ (U) = (αψ(N ))|X−1

ψφ (U) ◦ ((Xψ)|X−1
ψφ (U))

∗
♥(ϕφ). (6.34)

As αφ(M) is an isomorphism for any φ : i→ j, we have that such a (ϕφ) is
uniquely determined by ϕidi by the formula

ϕφ = (αφ(N ))|X−1
φ (U) ◦ ((Xφ)|X−1

φ (U))
∗
♥(ϕidi) ◦ (αφ(M))|−1

X−1
φ (U)

. (6.35)

Conversely, fix ϕidi , and define ϕφ by (6.35). Consider the diagram

X∗ψφMi
d−1

��

ϕidi

��
(a)

X∗ψX
∗
φMi

αφ ��

ϕidi

��
(b)

X∗ψMj
αψ ��

ϕφ

��
(c)

Mj′

ϕψϕ

��
X∗ψϕNi

d−1
�� X∗ψX

∗
φNi

αφ �� X∗ψNj
αψ �� Nj′ .

The diagram (a) is commutative by the naturality of d−1. The diagram (b)
and (a)+(b)+(c) are commutative, by the definition of ϕφ and ϕψφ (6.35),
respectively. Since d−1 and αφ(M) are isomorphisms, the diagram (c) is
commutative, and hence (6.34) holds. Hence Hi is bijective, as desired. ��

Lemma 6.36. Let J be a subcategory of I. If M is equivariant, then the
canonical map

HJ : Hom♥(X•)(M,N )J → Hom♥(X•|J)(MJ ,NJ)

is an isomorphism of presheaves. In particular, it is an isomorphism in
♥(X•|J).
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Proof. It suffices to show that

(HJ )i : (Hom♥(X•)(M,N )J )i → Hom♥(XJ )(MJ ,NJ)i

is an isomorphism for each i ∈ J . By Lemma 1.39, the composite map

Hom♥(X•)(M,N )i ∼= (Hom♥(X•)(M,N )J )i
(HJ )i−−−→Hom♥(XJ )(MJ ,NJ)i

Hi−→Hom♥(Xi)(Mi,Ni)

agrees with Hi. As MJ is also equivariant, we have that the two Hi are
isomorphisms by Lemma 6.33, and hence (HJ )i is an isomorphism for any
i ∈ J . ��

(6.37) By the lemma, the sheaf Hom♥(X•)(M,N ) is given by the collection

(Hom♥(Xi)(Mi,Ni))i∈I

providedM is equivariant. The structure map is the canonical composite map

αφ : (Xφ)∗♥ Hom♥(Xi)(Mi,Ni) P−→Hom♥(Xj)((Xφ)∗♥Mi, (Xφ)∗♥Ni)
Hom♥(Xj)

(α−1
φ ,αφ)

−−−−−−−−−−−−→Hom♥(Xj)(Mj ,Nj).

Similarly, the following is also easy to prove.

Lemma 6.38. Let i ∈ I be an initial object of I. Then the following hold:

1 If M∈ ♥(X•) is equivariant, then

(?)i : Hom♥(X•)(M,N )→ Hom♥(Xi)(Mi,Ni)

is an isomorphism.
2 (?)i : EM(X•)→ Mod(Xi) is an equivalence, whose quasi-inverse is Li.

The fact that Li(M) is equivariant for M ∈ Mod(Xi) is checked directly
from the definition.
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