Chapter 6

Operations on Sheaves Via the Structure
Data

Let I be a small category, S a scheme, and P := P(I,Sch/S). To study
sheaves on objects of P, it is convenient to utilize the structure data of them,
and then utilize the usual sheaf theory on schemes.

(6.1) Let X, € P. Let © be any of PA,AB,PM,Mod, and M,N €
O(X.). An element (p;) in []Homo(x,)(M;,N;) is given by some ¢ €
Homo(x,)(M,N) (by the canonical faithful functor O(X,) — []V(X3)),
if and only if

pjoap(M) = ay(N) o (Xy)5(0:) (6.2)

holds (or equivalently, B4(N) o p; = (Xg)sp; © By(M) holds) for any (¢ :
i — j) € Mor(I).
We say that a family of morphisms (¢;)ier between structure data

QOi:Mi‘)-A/i

is a morphism of structure data if ¢; is a morphism in Q(X;) for each i, and
(6.2) is satisfied for any ¢. Thus the categories of structure data of sheaves,
presheaves, modules, and premodules on X,, denoted by Do (X, ) are defined,
and the equivalence Dato : O(X,) = Do (X,) are given. This is the precise
meaning of Lemma 4.8.

(6.3) Let Xy € P and M, N € Mod(X,). As in Example 5.6, 5, we have
an isomorphism

m; 1 M; ®ox, N, = (M ®ox, N);.
This is trivial for presheaves, and utilize the fact the sheafification is compat-

ible with (?); for sheaves. At the section level, for M, N € PM(X,), i € I,
and U € Zar(X;),

m? : T(U, M; ®%X'i N;) — T(U, (M ®%X. M)
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324 6 Operations on Sheaves Via the Structure Data
is nothing but the identification
F(U7Ml) ®F(U,(’)xi) F(Ua/\/l) = F((Za U)7M) ®F((i,U),OX.) F((Za U)7N)
=T((@U), M5, N).

For M, N € Mod(X,) and i € I, m; is given as the composite

M; @0y, Ni = algM; % aNi) S a((gM); @5, (¢N)s) =
a(gM @6, aN); 2, (a(gM ®%X, aN))i = Moy, N)i,

see (2.52). Utilizing this identification, the structure map ag of M ® N can
be completely described via those of M and A. Namely,

Lemma 6.4. Let X, € P(I,Sch/S), and M,N € Q(X,), where O is PM
or Mod. For ¢ € I(i, ), ag(M @ N) agrees with the composite map

. .
XYMEN ) s X5 (M@NG) 2 XM X NG 22220, 20800, MONG L (MEN);,
where ® should be replaced by QP when © = PM.

Proof (sketch). Tt is not so difficult to show that it suffices to show that
Be(M @ N) agrees with the composite

(MAN) My @ NG 222 (X)) M; @ (Xg)uN; T
(Xp)s(M; ®N;) 5 (Xp) (M RN, (6.5)

First we prove this for the case that O = PM. For an open subset U of
X, this composite map evaluated at U is

L((i,U), M @ N)) = T((i,U), M) @r(i.0).0x,) D((5,U), N) =225
L((, X5 (0)), M) @r(,0.0x,) T(U, X5 (0)), N) =
F((],X¢ (U)), M) O, x; 1 ()),0x,) L((, X5 (U)), N)
(X U)MoN),

where p(m ® n) = m ® n. This composite map is nothing but the restriction
map of M ® N. So by definition, it agrees with

Bs : U, (M ®N)Z) — I'(U, (X¢)*(M ®N)j).

Next we consider the case © = Mod. First note that the diagram
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(a(gM &P gN)): 0 (X)u(a(gM & G\));

Teo Teo
a(@M &P gN); L a(Xy) (M@ gN); L (Xg)wa(gM &P gN);

is commutative by Lemma 4.17. By the presheaf version of the lemma, which
has been proved in the last paragraph, the diagram

a(gM &P gN); = a((gM); @ (gN):)
lﬁ@ﬁ
s a((Xg)«(gM); &P (Xg)«(gN);)

lm

a(X)e (@M @ gN)j =——— a(Xy).((aM); &7 (aN);)
is commutative. By the commutativity of the diagram (4.16), the diagram

c®c

a((gM); @7 (gN):) a(gM; @ gN;)

o

888 a(q(Xy)M; @ q(Xy)Nj)

lc@c

a((X)+ (aM); @ (X5 (aN);) === al(X4).aM; @7 (X4).aN;)

is commutative. Combining the commutativity of these three diagrams (and
some other easy commutativity), it is not so difficult to show that the map

B: (MON)i = (a(gM&PgN))i = (Xy): (a(@gM@PgN)); = (Xg)«(MON);

agrees with the composite

(MEN); = (algM”gN))i = a(gM P gN )i = af(gM); & (aN):)
B a(gM; @F aN;) P2 ag(Xg)M; @ <X¢>*N->&
a((Xg)egM;®P (Xp)wgNj) = a(Xy). (qM 2P gN;) (Xas)*a(qM &P qNj)
B (X)eal(gM); @ (gN);) 5 (Xg)eal((gM &P gN);) L
(X)s(a(gM @ aN)); = (Xg)u(M @ N);.

This composite map agrees with the composite map (6.5). This proves the
lemma. O
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(6.6) Let X, E P, and J a subcategory of I. The left adjoint functor
L(J? = Q(X., J) of (? )J is given by the structure data as follows explicitly.
For M € Q?(X.|J) and ¢ € I, we have

Lemma 6.7. There is an isomorphism

Mgt (LT (M))Y = 1im(X4)5(M;),

where the colimit is taken over the subcategory (IZ.(JOPHIOP))OP of I/i whose
objects are (¢ : j — i) € I/i with j € ob(J) and morphisms are morphisms
@ of I/i such that ¢ € Mor(J). The translation map of the direct system is
given as follows. For morphisms ¢ : j — i and v : j' — 7, the translation
map X5, M — XIM; is the composite

* d * vk o *

Proof. We prove the lemma for the case that O = PM, Mod. The case that
O = PA, AB is similar and easier.

Consider the case © = PM first. For any object (¢, h) : (¢,U) — (4,V) of

I (Ziaz,()x"J )Mzar(x'), consider the obvious map

F((iv U)7 OX.) ®F((j,V),OX.‘J) F((j7 V)7 M) = F(U7 OXi) ®I‘(V,Oxj) F(V’ MJ)
— lim  T(U,0x,) ®rw,ox,) LV, M;)
X N (V)oU
=I'(U, X;M]) — li_I>Ill—‘(U7 X;/Mj/),

=)

where the last lim is taken over (¢’ : j' — i) € ( )°P. This map

induces a unique map

DU, (LyM);) =T((,U), LyM) =
m I'((i, U), Ox,) ®r(;,v),0x,,,) L((4,V),M) = ImI'(U, X5 M;).

It is easy to see that this defines ;.

We define the inverse of A;; explicitly. Let (¢ : j — z) € (I(JOl> IOP)) P,
Let U € Zar(X;) and V € Zar(X;) such that U C X L(V). We have an
obvious map

LU, Ox,) @rv,ox,) TV, M) =T((i,U), Ox,) @r(,v),0x,,,) (G V), M)
- h_H)lF((% U)v OX-) ®F((j,V),OX,“,) F((]a V)7 M)
= P((% U)7 LJM) = F(U7 (LJM)Z)7

which induces

F(U7 X:;M) = ILQF(U’ OXz) ®F(V,(9xj) F(Va MJ) - F(Ua (LJM)l)
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This gives a morphism XM — (L;M);. It is easy to see that this defines
lim XM — (L;M);, which is the inverse of A;;. This completes the proof
for the case that © = PM.

Now consider the case © = Mod. Define )\‘l}/fg’d to be the composite

PM

-1 AEN
(LYIM); = (7)iaLFMgM “— a(?);,L5MgM =5 alim X (gM);
= lim aXj(gM); 5 lim aX3gM; = lim X M.

As the morphisms appearing in the composition are all isomorphisms, )\g/ffd
is an isomorphism. a

In particular, we have an isomorphism

Nt (LT (M)Y = @ (Xp)5(M). (6.8)

bel(jyi)

(6.9) As announced in (2.61), we show that the monoidal adjoint pair
()34, (?)}oq) in Lemma 2.55 is not Lipman.
We define a finite category K by ob(K) = {s,t}, and K(s,t) = {u,v},

u
-~

K(s,s) = {ids}, and K(¢,t) = {id;}. Pictorially, K looks like ¢ ~ v s. Let k
be a field, and define X, € P(K,Sch) by X; = X; = Speck, and X,, = X, =
id. Then I'(Xy, (LsOx,):) is two-dimensional by (6.8). So L;Ox, and Ox,
are not isomorphic by the dimension reason. Similarly, L;(Ox, ®oy, Ox,)
cannot be isomorphic to L;Ox, ®oy, LsOx,.

Similarly, ((7)3M, (7)§M) in Lemma 2.55 is not Lipman.

(6.10) Let ¢ : i — ¢’ be a morphism. The structure map

ay : (Xp)5((LT (M))F) = (LT (M)
is induced by

(X))o (Xg)o (M;)) = (Xyg)o (M;).
More precisely, for 9 : i — ', the diagram

* AJi PRE * ~ 1 * VK
Xw((liJM)i) 5 Xw h_I>nX¢Mj = h_r>an¢1X¢Mj
aw h

Agit

(LyM)y lim X7, M

is commutative, where ¢ : ¢ — j runs through (Iif)c’p7 and ¢’ : i — j’ runs
through (Il.’:)op7 where f : J°P — I°P is the inclusion. The map h is induced
by d: X; X} — (XeXy)* = X, This is checked at the section level directly
when © = PM.
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We consider the case that © = Mod. Then the composite

A i . *
X5 (7)iLy =25 X3 lim X5(7); 2 lim X X5(?); @X¢,(?)j,

agrees with the composite

PI\4

X5(MiLly = aXyq(?)ialq s, aX¢qa( )iLyq =2 aXyqalim X5(?);q
= c . E u”?
— aXyqlimaXg(?);q — aXjqlimaXiq(?); — limaXjqaXgq(?); —
. d .. X
lima X7 X5q(?); — limaX(,q(?); — limaXgq(?); = lm X7 (7))

Using Lemma 2.60, it is straightforward to show that this map agrees with

Xw( )Ly —aXd,q( )aLJq—>aX¢( )lqaLJq*ﬁa( )orqaL yq =
aq(?paljqg = (.)/aLJq—>a( )ir LJq—>ath¢,( )j g =
lim a X5 (7); q—>hmaX¢, (7); =Hm X5 (),

This composite map agrees with
>‘J,7L’ . *
X¢( ) LJ —> (.)i/LJ e llmX¢/(?)j/

by (4.20) and the definition of A ;s for sheaves (see the proof of Lemma 6.7).
This is what we wanted to prove.
The case that © = PA, AB is proved similarly.

(6.11) In the remainder of this chapter, we do not give detailed proofs,
since the strategy is similar to the above (just check the commutativity at
the section level for presheaves, and sheafify it).

(6.12) The counit map e : L;(?); — Id is given as a morphism of structure
data as follows.
agrees with
A i . * c . * «
(7)iL (7)== lim X5(2);(2) = lim X5(?7);<(2)s,
where « is induced by ay : X7(?); — (7).
(6.13) The unit map u : Id — (?) ;L is also described, as follows.

uj: (7); — (1)) gLy
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agrees with
-1

-1 AT
(?); 1= X, (7); = lm X5 (M) —=5(2); Ly = (2);(?)s L,

where the colimit is taken over (¢ : k — j) € (I](JOPCIOP))OP.

(6.14) Let X, € P, and J a subcategory of I. The right adjoint functor RQJ?
of (?) is given as follows explicitly. For M € ©(X,|) and i € I, we have

o (R?(M))? o liLn(Xqﬁ)S(Mj)y

i(‘]ﬂ[), see (2.6) for the notation. The descrip-

tions of a, u, and ¢ for the right induction are left to the reader.

where the limit is taken over I

Lemma 6.15. Let Xo € P, and J a full subcategory of I. Then we have the
following.

1 The counit of adjunction € : (?)QJ? o R? — Id is an isomorphism. In
particular, R? 18 full and faithful.

2 The unit of adjunction u:Id — (‘7)(; o LQJ7 is an isomorphism. In partic-
ular, L? 18 full and faithful.

Proof. 1 For i € J, the restriction
ei (77 ()T RIM =1im(X,)7 (M) — (Xia,)eMi = M; = (7iM

is nothing but the canonical map from the projective limit, where the limit
is taken over (¢ : i — j) € IZ»(JHI). As J is a full subcategory, we have IZ(JHI)
equals i/J, and hence id; is its initial object. So the limit is equal to M;, and
€; is the identity map. Since g; is an isomorphism for each i € J, we have
that € is an isomorphism.

The proof of 2 is similar, and we omit it. a

Let C be a small category. A connected component of C is a full subcategory
of C whose object set is one of the equivalence classes of ob(C) with respect
to the transitive symmetric closure of the relation ~ given by

c~c = Clc,d)#0.

Definition 6.16. We say that a subcategory J of I is admissible if

1 For i € I, the category (I}JOPCIOP))OP is pseudofiltered.
2 For j € J, we have id; is the initial object of one of the connected

JOP CI°P)

components of I](» (i.e., id; is the terminal object of one of the

connected components of (I](JOPCIOP))OP).
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Note that for j € I, the subcategory j = ({4}, {id;}) of I is admissible.

In Lemma 6.7, the colimit in the right hand side is pseudo-filtered and
hence it preserves exactness, if 1 is satisfied. In particular, if 1 is satisfied,
then Q(X.,J) : Zar(X,|;) — Zar(X,) is an admissible functor. As in the
proof of Lemma 6.15, (?); is a direct summand of (?); o L for j € J so that
L is faithful, if 2 is satisfied. We have the following.

Lemma 6.17. Let X, € P(I,Sch/S), and K C J C I be admissible sub-
categories of I. Then Li‘}{ s faithful and exact. The morphism of sites
Q(Xe|s, K) is admissible. If, moreover, Xy is flat for any ¢ € I(k,j) with
jed and k € K, then LiK is faithful and exact for QO = Mod.

Proof. Assume that M € Q(X,|x), M # 0, and LjxgM = 0. There exists
some k € K such that M) # 0. Since L;xM = 0, we have that 0 =
(ML gLyjxgM = ()L kM. This contradicts the fact that My, is a direct
summand of (L, K/\/l)k Hence L g is faithful.

We prove that LJK is exact. It suffices to show that for any j € J, (?); L x
is exact. As J is admissible, (?); is a direct summand of (?);L; ;. Hence
it suffices to show that (?);Lr x = (?);Lr LKk is exact. By Lemma 6.7,
(7);Lrx = lim(Xg)o(?)k, where the colimit is taken over (¢: k — j) €

( IKopczop)op_ By assumption, (Xy)§ is exact for any ¢ in the colimit. As

(I jKOPCI ")op is pseudo-filtered by assumption, (?);Lr k is exact, as desired.
O

(6.18) As in Example 5.6, 2, we have an isomorphism
Cigo t (Nio (fo)e = (fi) o (V)i (6.19)

The translation a4 is described as follows.

Lemma 6.20. Let fo: Xo — Yo be a morphism in P(I,Sch/S). For ¢ €
I(i, j),
g (fo)s 1 Y5 (0)i(fo)x — (7);(fo)x

agrees with

Y3 (0i(fa)e Y5 ()« ()i (F1) X 5 (7):
Bl ()2, 220,000, (621)
where 6 is Lipman’s theta [26, (3.7.2)].

One of the definitions of € is the composite

02 Y (f)e Y (i) (X))o X5 S Vi (Vo) () X5 2250 () X 5
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Proof. Note that the diagram

Di(fode 2 (Vo) e (2);(fu)e S (Vo) f)(D);
Le s le (6.22)
(fi)+(?); ~ (fi) (X ) (1)

is commutative. Indeed, when we apply the functor I'(U, 7) for an open subset
U of Y;, then we get an obvious commutative diagram

D((i, f;7 1 (U)), 7) 5 T(G, £ ), D) S TG, L)), 2)
lid lia
(i, /7 1(U)), ?) D((7, X1 (7 HU))), ).

Now the assertion of the lemma follows from the commutativity of the dia-
gram

Vi) & e S (D (1))
Lia () e (b) e

Y7 (2i(fo) Y;(Y¢)Z(;’)j(f-)* S YY) ()4 (D),
le C le

Y (fi)e(2): ’ V() (X0)e (D) () Lia
Lo (51) 1o

(f1)= X502 ()= X5 (X0)u(2);
|id (f) le ‘

(i) X5 (D <% (D

Indeed, the commutativity of (a) and (e) is the definition of . The com-
mutativity of (b) follows from the naturality of €. The commutativity of (c)
follows from the commutativity of (6.22). The commutativity of (d) is the
naturality of . The commutativity of (f) follows from the definition of 8 and
the fact that the composite

(Xg)s = (Xo)xX5(Xp)x = (Xo)u

is the identity. a

Proposition 6.23. Let fo : Xo — Yo be a morphism in P, J a subcategory
of I, and i € I. Then the composite map

via ¢q,te

(L (fol )22 (i (fo)u Ly 20 (1) ()i L

agrees with the composite map
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via Cj,f.

— I T Y (f)+(7);

20 g (). X3(7); — () i X3, 22 0. 2

via A‘]vi

(M)iLg(folg)e———Hm Y (?);(fol.1)-

Proof. Note that @ in the first composite map is the composite

0 =007, 1) Ly(fol))e 22 L (fol ))e(2) gL SL g (2) 5 (fo)e Ly (fo)u Ly

The description of u and € are already given, and the proof is reduced to the
iterative use of (6.10), (6.12), (6.13), and Lemma 6.20. The detailed argument
is left to a patient reader. The reason why the second map involves 6 is
Lemma 6.20. g

Similarly, we have the following.

Proposition 6.24. Let fo : Xo — Yo be a morphism in P, J a subcategory
of I, and v € I. Then the composite map

via 0(fe,t) via df, s
_ —_—

(fi)* (?)iLs

agrees with the composite map

(7)i(fe)" Ly ()iLs(fels)"

via AJJ;

(fi) " ()iLy——=(f)" lim Y7(?); = lim(f;)" Y (?);
d e s vegoy Vi 0(felrd) Lo L Via A .
S Lim X5(f)" (7); =5 lim X5 (2); (Fol 1) ——(iLs (ful1)"-
The proof is left to the reader. The proof of Proposition 6.23 and
Proposition 6.24 are formal, and the propositions are valid for © =
PM, Mod, PA, and AB.

Let fo : Xe — Y, be a morphism in P, and J C I a subcategory. The
inverse image (fo)% is compatible with the restriction (7).

Lemma 6.25. The natural map

0o = 00(fe,J) : (f)l)o 0 (1) g — (7)yo(fe)o

is an isomorphism for © = PA, AB, PM, Mod. In particular, f;1 : Zar(Y,) —
Zar(X,) is an admissible continuous functor.

Proof. We consider the case where © = PM.
Let M € PM(Y,), and (j,U) € Zar(X,|;). We have

P((jv U)7 (f'|J)*MJ) = hi,nr((zjv U)7 OX.) ®F((j/7V),Oy.) F((j/7 V)7M)7

where the colimit is taken over (5/, V) € (I((;C}Jl‘)’)il)‘)p. On the other hand, we

have

P((Jv U)7 (?)Jfo*M) = @P((Jv U)7 OX.) ®F((i,V),Oy.) F((Z7 V)7 M)7
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-1
where the colimit is taken over (i, V) € (I (J; .'U))Op. There is an obvious map

from the first to the second. This obvious map is 6, see (2.57).
To verify that this is an isomorphism, it suffices to show that the category

(I((Jf'Ul‘)’)il)Op is final in the category (I(’;.:Ul))‘)p. In fact, any (¢, h) : (j,U) —

(3, f;H(V)) with (i, V) € Zar(Y,) factors through
(idj, h) = (3,U) = (3, f7 'Y (V).

Hence, 6o is an isomorphism for O = PM. The construction for the case
where 0 = PA is similar.

As (?) is compatible with the sheafification by Lemma 2.31, we have that
# is an isomorphism for © = Mod, AB by Lemma 2.59. O

Corollary 6.26. The conjugate
o =Eo(fo, J) 1 (fo)7 Ry — Ry(fels)?
of 0o (fe,J) is an isomorphism for O = PA, AB, PM, Mod.
Proof. Obvious by Lemma 6.25. O

(6.27) By Corollary 6.26, we may define the composite
o = po(fo,J) s faRy = feRy(fol2)+(fol1)*

L R ()R (fols) S Ra(fal))"

Observe that the diagram

(Difs Ry — > fr(2)iRy — > [} lim (Y )« (?7); ——lim f7(Y5)«(?);
| o
(2)i Ry foly —2 Tim(X )« (2); fo | s lim(X o) £7(7);

is commutative.

Lemma 6.28. Let the notation be as above, and M, N € Q(Y,). Then the
diagram

(fel NSM s ON;) L (el )S(MRN)) . (fo )M N)) s
1A L(MsA
(fol NEMy ® (fol NN 225 ((f0)5M) s ® (f)5N) s 2 ((fa)M ® (f.m?m |
6.29

s commutative.

Proof. This is an immediate consequence of Lemma 1.44. a
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Corollary 6.30. The adjoint pair ((?)igeq (M) over the category
P(I,Sch/S) is Lipman.

Proof. Let fo : Xo — Y, be a morphism of P(I,Sch/S). It is easy to see that
the diagram

(7)iO, — Oy,

o S~

(M)i(fe)+Ox, —— (f1)+(1)iOx, — (fi):Ox,

is commutative. So utilizing Lemma 1.25, it is easy to see that

(7)if3Oy, . [5(?)i0y, — Oy,

j(?)ic /

(7)iO0x, —— Ox

is also commutative. Since C: fOy, — Ox, is an isomorphism by
Corollary 2.65, (7);C is an isomorphism for any ¢ € I. Hence C: ffOy, —
Ox, is also an isomorphism.

Let us consider M, N € Q(Y,). To verify that A is an isomorphism, it
suffices to show that

()i (feMON))i = (FIM® [N )

is an isomorphism for any ¢ € ob(I). Now consider the diagram (6.29)
for J=1i. Horizontal maps in the diagram are isomorphisms by (6.3) and
Lemma 6.25. The left A is an isomorphism, since f; is a morphism of single
schemes. By Lemma 6.28, (?);A is also an isomorphism. O

(6.31) The description of the translation map «, for fJ is as follows. For
¢ € 1(i, ),
g Xg(Nife — (N)ife

is the composite

X5 fe X ) L Y (000 (2, (), £

(6.32) Let Xo € P,and M, N € O(X,). Although there is a canonical map
Hi : Hom@(x.)(M,N)l — HOm(Q(Xl)(M“M)

arising from the closed structure for ¢ € I, this may not be an isomorphism.
However, we have the following.
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Lemma 6.33. Leti e I. If M is equivariant, then the canonical map
Hi : HOmQ(X.) (M, N)Z — HOm(Q(Xl) (M“ M)

is an isomorphism of presheaves. In particular, it is an isomorphism in

V(X))

Proof. Tt suffices to prove that

H; : Homo (zar(x,)/(1,0)) (M 6,0y, N ,0y) — Homowry (Milu, Nilv)

is an isomorphism for any Zariski open set U in X;.
To give an element of ¢ € Homo (zar(x.)/(5,0)) (M| 5,01, N,0y) is the same
as to give a family (¢g)gi—; With

pe € Hom@(del(U))(Mj|X(;1(U)7/\/}‘X<;1(U))
such that for any ¢: ¢ — j and 9: j — j/,
i 0 (@ (M) 1) = @6 Dot 0 (X 1)) (6:3)

As ay(M) is an isomorphism for any ¢ : i — j, we have that such a (¢4) is
uniquely determined by ¢iq, by the formula

Po = (@M1 0y © (X))o (0ia.) 0 (oML (6.35)

Conversely, fix ¢iq,, and define ¢, by (6.35). Consider the diagram

* d=* * Yk Qe * Ay
X¢¢Mz‘ — X¢X¢Mz‘ — XwMj — M

tpidil (a) l%"idi (b) ls% (c) jtpww

* d! * Vo Qg * Qo
X5 N~ X XN, T XN, T

The diagram (a) is commutative by the naturality of d=!. The diagram (b)
and (a)+(b)+(c) are commutative, by the definition of ¢, and ¢ye (6.35),
respectively. Since d~! and ay(M) are isomorphisms, the diagram (c) is
commutative, and hence (6.34) holds. Hence H; is bijective, as desired. O

Lemma 6.36. Let J be a subcategory of I. If M is equivariant, then the
canonical map

Hy: HO_m@(X.)(MaN)J - HO_mWX.IJ)(MJvNJ)

is an isomorphism of presheaves. In particular, it is an isomorphism in

O(Xels)-
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Proof. Tt suffices to show that
(Hy)i + (Homex,) (M, N)s)i — Homex ) (M., Ny

is an isomorphism for each i € J. By Lemma 1.39, the composite map
Hy); H;
% Hom@(X )(MJ,NJ)i—> Homg x,) (M, Ni)

agrees with H;. As M is also equivariant, we have that the two H; are
isomorphisms by Lemma 6.33, and hence (H;); is an isomorphism for any
1€ J. O

(6.37) By the lemma, the sheaf Home,(y, (M, N) is given by the collection
(Homi? (M17M))161

provided M is equivariant. The structure map is the canonical composite map

o 1 (Xo)b Homo ) (M, i) 5> Home ) (Xe)oMi, (X4)5N7)

Hom@(xj)(a(;l,o%)

Homg(y,y(M;, Nj).
Similarly, the following is also easy to prove.

Lemma 6.38. Leti € I be an initial object of I. Then the following hold:
1 If M e Q(X,) is equivariant, then

( ) HOIII(Q(X )(M /\/) — Hom@ (M“./\/‘)

is an isomorphism.
2 (7); : EM(X,) — Mod(X;) is an equivalence, whose quasi-inverse is L;.

The fact that L;(M) is equivariant for M € Mod(X;) is checked directly
from the definition.
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