Chapter 6

Operations on Sheaves Via the Structure Data

Let I be a small category, S a scheme, and $\mathcal{P}:=\mathcal{P}(I, \underline{\operatorname{Sch}} / S)$. To study sheaves on objects of \mathcal{P}, it is convenient to utilize the structure data of them, and then utilize the usual sheaf theory on schemes.
(6.1) Let $X_{\bullet} \in \mathcal{P}$. Let \odot be any of PA, $\mathrm{AB}, \mathrm{PM}, \operatorname{Mod}$, and $\mathcal{M}, \mathcal{N} \in$ $\bigcirc\left(X_{\bullet}\right)$. An element $\left(\varphi_{i}\right)$ in $\prod \operatorname{Hom}_{\varrho\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)$ is given by some $\varphi \in$ $\operatorname{Hom}_{\varrho\left(X_{\bullet}\right)}(\mathcal{M}, \mathcal{N})$ (by the canonical faithful functor $\left.\triangle\left(X_{\bullet}\right) \rightarrow \prod \Phi^{\circ}\left(X_{i}\right)\right)$, if and only if

$$
\begin{equation*}
\varphi_{j} \circ \alpha_{\phi}(\mathcal{M})=\alpha_{\phi}(\mathcal{N}) \circ\left(X_{\phi}\right)_{\varrho}^{*}\left(\varphi_{i}\right) \tag{6.2}
\end{equation*}
$$

holds (or equivalently, $\beta_{\phi}(\mathcal{N}) \circ \varphi_{i}=\left(X_{\phi}\right)_{*} \varphi_{j} \circ \beta_{\phi}(\mathcal{M})$ holds) for any (ϕ : $i \rightarrow j) \in \operatorname{Mor}(I)$.

We say that a family of morphisms $\left(\varphi_{i}\right)_{i \in I}$ between structure data

$$
\varphi_{i}: \mathcal{M}_{i} \rightarrow \mathcal{N}_{i}
$$

is a morphism of structure data if φ_{i} is a morphism in $\triangle\left(X_{i}\right)$ for each i, and (6.2) is satisfied for any ϕ. Thus the categories of structure data of sheaves, presheaves, modules, and premodules on X_{\bullet}, denoted by $\mathfrak{D}_{\rho}\left(X_{\bullet}\right)$ are defined, and the equivalence Datৎ: $\odot\left(X_{\bullet}\right) \cong \mathfrak{D}_{\varrho}\left(X_{\bullet}\right)$ are given. This is the precise meaning of Lemma 4.8.
(6.3) Let $X_{\bullet} \in \mathcal{P}$ and $\mathcal{M}, \mathcal{N} \in \operatorname{Mod}\left(X_{\bullet}\right)$. As in Example 5.6, 5, we have an isomorphism

$$
m_{i}: \mathcal{M}_{i} \otimes_{\mathcal{O}_{X_{i}}} \mathcal{N}_{i} \cong\left(\mathcal{M} \otimes_{\mathcal{O}_{X_{\bullet}}} \mathcal{N}\right)_{i}
$$

This is trivial for presheaves, and utilize the fact the sheafification is compatible with $(?)_{i}$ for sheaves. At the section level, for $\mathcal{M}, \mathcal{N} \in \operatorname{PM}\left(X_{\bullet}\right), i \in I$, and $U \in \operatorname{Zar}\left(X_{i}\right)$,

$$
m_{i}^{p}: \Gamma\left(U, \mathcal{M}_{i} \otimes_{\mathcal{O}_{X_{i}}}^{p} \mathcal{N}_{i}\right) \rightarrow \Gamma\left(U,\left(\mathcal{M} \otimes_{\mathcal{O}_{X_{\bullet}}}^{p} \mathcal{N}\right)_{i}\right)
$$

is nothing but the identification

$$
\begin{aligned}
& \Gamma\left(U, \mathcal{M}_{i}\right) \otimes_{\Gamma\left(U, \mathcal{O}_{X_{i}}\right)} \Gamma\left(U, \mathcal{N}_{i}\right)=\Gamma((i, U), \mathcal{M}) \otimes_{\Gamma\left((i, U), \mathcal{O}_{X_{\bullet}}\right)} \Gamma((i, U), \mathcal{N}) \\
&=\Gamma\left((i, U), \mathcal{M} \otimes_{\mathcal{O}_{X}}^{p} \mathcal{N}\right)
\end{aligned}
$$

For $\mathcal{M}, \mathcal{N} \in \operatorname{Mod}\left(X_{\bullet}\right)$ and $i \in I, m_{i}$ is given as the composite

$$
\begin{aligned}
\mathcal{M}_{i} \otimes_{\mathcal{O}_{X_{i}}} \mathcal{N}_{i}=a\left(q \mathcal{M}_{i} \otimes_{\mathcal{O}_{X_{i}}}^{p} q \mathcal{N}_{i}\right) \xrightarrow{c} a\left((q \mathcal{M})_{i} \otimes_{\mathcal{O}_{X_{i}}}^{p}(q \mathcal{N})_{i}\right) \xrightarrow{m_{i}^{p}} \\
a\left(q \mathcal{M} \otimes_{\mathcal{O}_{X .}}^{p} q \mathcal{N}\right)_{i} \xrightarrow{\theta}\left(a\left(q \mathcal{M} \otimes_{\mathcal{O}_{X}}^{p} q \mathcal{N}\right)\right)_{i}=\left(\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{N}\right)_{i},
\end{aligned}
$$

see (2.52). Utilizing this identification, the structure map α_{ϕ} of $\mathcal{M} \otimes \mathcal{N}$ can be completely described via those of \mathcal{M} and \mathcal{N}. Namely,

Lemma 6.4. Let $X_{\bullet} \in \mathcal{P}(I, \underline{\operatorname{Sch}} / S)$, and $\mathcal{M}, \mathcal{N} \in \bigcirc\left(X_{\bullet}\right)$, where \bigcirc is PM or Mod. For $\phi \in I(i, j), \alpha_{\phi}(\mathcal{M} \otimes \mathcal{N})$ agrees with the composite map
$X_{\phi}^{*}(\mathcal{M} \otimes \mathcal{N})_{i} \xrightarrow{m_{i}^{-1}} X_{\phi}^{*}\left(\mathcal{M}_{i} \otimes \mathcal{N}_{i}\right) \xrightarrow{\Delta} X_{\phi}^{*} \mathcal{M}_{i} \otimes X_{\phi}^{*} \mathcal{N}_{i} \xrightarrow{\alpha_{\phi} \otimes \alpha_{\phi}} \mathcal{M}_{j} \otimes \mathcal{N}_{j} \xrightarrow{m_{j}}(\mathcal{M} \otimes \mathcal{N})_{j}$, where \otimes should be replaced by \otimes^{p} when $\odot=\mathrm{PM}$.

Proof (sketch). It is not so difficult to show that it suffices to show that $\beta_{\phi}(\mathcal{M} \otimes \mathcal{N})$ agrees with the composite

$$
\begin{align*}
&(\mathcal{M} \otimes \mathcal{N})_{i} \xrightarrow{m_{i}^{-1}} \mathcal{M}_{i} \otimes \mathcal{N}_{i} \xrightarrow{\beta \otimes \beta}\left(X_{\phi}\right)_{*} \mathcal{M}_{j} \otimes\left(X_{\phi}\right)_{*} \mathcal{N}_{j} \xrightarrow{m} \\
&\left(X_{\phi}\right)_{*}\left(\mathcal{M}_{j} \otimes \mathcal{N}_{j}\right) \xrightarrow{m_{j}}\left(X_{\phi}\right)_{*}(\mathcal{M} \otimes \mathcal{N})_{j} . \tag{6.5}
\end{align*}
$$

First we prove this for the case that $\odot=\mathrm{PM}$. For an open subset U of X_{i}, this composite map evaluated at U is

$$
\begin{array}{r}
\Gamma((i, U),(\mathcal{M} \otimes \mathcal{N}))=\Gamma((i, U), \mathcal{M}) \otimes_{\Gamma\left((i, U), \mathcal{O}_{X_{\bullet}}\right)} \Gamma((i, U), \mathcal{N}) \xrightarrow{\text { res } \otimes \mathrm{res}} \\
\Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{M}\right) \otimes_{\Gamma\left((i, U), \mathcal{O}_{\bullet}\right)} \Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{N}\right) \xrightarrow{p} \\
\Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{M}\right) \otimes_{\Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{O}_{X_{\bullet}}\right)} \\
\Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{N}\right) \\
= \\
=\Gamma\left(\left(j, X_{\phi}^{-1}(U)\right), \mathcal{M} \otimes \mathcal{N}\right),
\end{array}
$$

where $p(m \otimes n)=m \otimes n$. This composite map is nothing but the restriction map of $\mathcal{M} \otimes \mathcal{N}$. So by definition, it agrees with

$$
\beta_{\phi}: \Gamma\left(U,(\mathcal{M} \otimes \mathcal{N})_{i}\right) \rightarrow \Gamma\left(U,\left(X_{\phi}\right)_{*}(\mathcal{M} \otimes \mathcal{N})_{j}\right)
$$

Next we consider the case $\odot=$ Mod. First note that the diagram

$$
\begin{gathered}
\left(a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)\right)_{i} \xrightarrow{\beta}\left(X_{\phi}\right)_{*}\left(a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)\right)_{j} \\
\uparrow \theta \\
a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)_{i} \xrightarrow{\beta} a\left(X_{\phi}\right)_{*}\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)_{j} \xrightarrow{\theta}\left(X_{\phi}\right)_{*} a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)_{j}
\end{gathered}
$$

is commutative by Lemma 4.17. By the presheaf version of the lemma, which has been proved in the last paragraph, the diagram

is commutative. By the commutativity of the diagram (4.16), the diagram

is commutative. Combining the commutativity of these three diagrams (and some other easy commutativity), it is not so difficult to show that the map
$\beta:(\mathcal{M} \otimes \mathcal{N})_{i}=\left(a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)\right)_{i} \rightarrow\left(X_{\phi}\right)_{*}\left(a\left(q \mathcal{M} \otimes \otimes^{p} q \mathcal{N}\right)\right)_{j}=\left(X_{\phi}\right)_{*}(\mathcal{M} \otimes \mathcal{N})_{j}$ agrees with the composite

$$
\begin{aligned}
(\mathcal{M} \otimes \mathcal{N})_{i}=\left(a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)\right)_{i} \xrightarrow{\theta^{-1}} a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)_{i} \xrightarrow{m_{i}^{-1}} a\left((q \mathcal{M})_{i} \otimes^{p}(q \mathcal{N})_{i}\right) \\
\xrightarrow{c \otimes c} a\left(q \mathcal{M}_{i} \otimes^{p} q \mathcal{N}_{i}\right) \xrightarrow{\beta \otimes \beta} a\left(q\left(X_{\phi}\right)_{*} \mathcal{M}_{j} \otimes^{p} q\left(X_{\phi}\right)_{*} \mathcal{N}_{j}\right) \xrightarrow{c \otimes c} \\
a\left(\left(X_{\phi}\right)_{*} q \mathcal{M} \mathcal{M}_{j} \otimes^{p}\left(X_{\phi}\right)_{*} q \mathcal{N}_{j}\right) \xrightarrow{m} a\left(X_{\phi}\right)_{*}\left(q \mathcal{M}_{j} \otimes^{p} q \mathcal{N}_{j}\right) \xrightarrow{\theta}\left(X_{\phi}\right)_{*} a\left(q \mathcal{M}_{j} \otimes^{p} q \mathcal{N}_{j}\right) \\
\xrightarrow{c \otimes c}\left(X_{\phi}\right)_{*} a\left((q \mathcal{M})_{j} \otimes^{p}(q \mathcal{N})_{j}\right) \xrightarrow{m_{j}}\left(X_{\phi}\right)_{*} a\left(\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)_{j}\right) \xrightarrow{\theta} \\
\left(X_{\phi}\right)_{*}\left(a\left(q \mathcal{M} \otimes^{p} q \mathcal{N}\right)\right)_{j}=\left(X_{\phi}\right)_{*}(\mathcal{M} \otimes \mathcal{N})_{j} .
\end{aligned}
$$

This composite map agrees with the composite map (6.5). This proves the lemma.
(6.6) Let $X_{\bullet} \in \mathcal{P}$, and J a subcategory of I. The left adjoint functor $L_{J}^{\ominus}=Q\left(X_{\bullet}, J\right)_{\#}^{\ominus}$ of $(?)_{J}^{\infty}$ is given by the structure data as follows explicitly. For $\mathcal{M} \in \triangle\left(\left.X_{\bullet}\right|_{J}\right)$ and $i \in I$, we have
Lemma 6.7. There is an isomorphism

$$
\lambda_{J, i}:\left(L_{J}^{\mathcal{O}}(\mathcal{M})\right)_{i}^{\mathcal{Q}} \cong \underset{\longrightarrow}{\lim }\left(X_{\phi}\right)_{\circlearrowleft}^{*}\left(\mathcal{M}_{j}\right),
$$

where the colimit is taken over the subcategory $\left(I_{i}^{\left(J^{\mathrm{op}} \rightarrow I^{\mathrm{op}}\right)}\right)^{\mathrm{op}}$ of I / i whose objects are $(\phi: j \rightarrow i) \in I / i$ with $j \in \mathrm{ob}(J)$ and morphisms are morphisms φ of I / i such that $\varphi \in \operatorname{Mor}(J)$. The translation map of the direct system is given as follows. For morphisms $\phi: j \rightarrow i$ and $\psi: j^{\prime} \rightarrow j$, the translation map $X_{\phi \psi}^{*} \mathcal{M}_{j^{\prime}} \rightarrow X_{\phi}^{*} \mathcal{M}_{j}$ is the composite

$$
X_{\phi \psi}^{*} \mathcal{M}_{j^{\prime}} \xrightarrow{d} X_{\phi}^{*} X_{\psi}^{*} \mathcal{M}_{j^{\prime}} \xrightarrow{\alpha_{\psi}} X_{\phi}^{*} \mathcal{M}_{j} .
$$

Proof. We prove the lemma for the case that $\odot=$ PM, Mod. The case that $\bigcirc=\mathrm{PA}, \mathrm{AB}$ is similar and easier.

Consider the case $\triangle=\mathrm{PM}$ first. For any object $(\phi, h):(i, U) \rightarrow(j, V)$ of $I_{(i, U)}^{\operatorname{Zar}\left(X_{\bullet} \mid J\right)} \hookrightarrow \operatorname{Zar}\left(X_{\bullet}\right)$, consider the obvious map

$$
\begin{array}{r}
\Gamma\left((i, U), \mathcal{O}_{X_{\bullet}}\right) \otimes_{\Gamma\left((j, V), \mathcal{O}_{X_{\bullet} \mid J}\right)} \Gamma((j, V), \mathcal{M})=\Gamma\left(U, \mathcal{O}_{X_{i}}\right) \otimes_{\Gamma\left(V, \mathcal{O}_{X_{j}}\right)} \Gamma\left(V, \mathcal{M}_{j}\right) \\
\rightarrow \underset{X_{\phi}^{-1}\left(V^{\prime}\right) \supset U}{\lim } \Gamma\left(U, \mathcal{O}_{X_{i}}\right) \otimes_{\Gamma\left(V^{\prime}, \mathcal{O}_{X_{j}}\right)} \Gamma\left(V^{\prime}, \mathcal{M}_{j}\right) \\
=\Gamma\left(U, X_{\phi}^{*} \mathcal{M}_{j}\right) \rightarrow \underline{\lim _{\longrightarrow}} \Gamma\left(U, X_{\phi^{\prime}}^{*} \mathcal{M}_{j^{\prime}}\right),
\end{array}
$$

where the last $\underset{\longrightarrow}{\lim }$ is taken over $\left(\phi^{\prime}: j^{\prime} \rightarrow i\right) \in\left(I_{i}^{\left(J^{\mathrm{op}} \rightarrow I^{\mathrm{op} \mathrm{p}}\right)}\right)^{\mathrm{op}}$. This map induces a unique map

$$
\begin{aligned}
& \Gamma\left(U,\left(L_{J} \mathcal{M}\right)_{i}\right)=\Gamma\left((i, U), L_{J} \mathcal{M}\right)= \\
& \quad \xrightarrow{\lim } \Gamma\left((i, U), \mathcal{O}_{X_{\bullet}}\right) \otimes_{\Gamma\left((j, V), \mathcal{O}_{X_{\bullet} \mid J}\right)} \Gamma((j, V), \mathcal{M}) \rightarrow \underset{\longrightarrow}{\lim } \Gamma\left(U, X_{\phi^{\prime}}^{*} \mathcal{M}_{j^{\prime}}\right) .
\end{aligned}
$$

It is easy to see that this defines $\lambda_{J, i}$.
We define the inverse of $\lambda_{J, i}$ explicitly. Let $(\phi: j \rightarrow i) \in\left(I_{i}^{\left(J^{\mathrm{op}} \rightarrow I^{\mathrm{op}}\right)}\right)^{\mathrm{op}}$. Let $U \in \operatorname{Zar}\left(X_{i}\right)$ and $V \in \operatorname{Zar}\left(X_{j}\right)$ such that $U \subset X_{\phi}^{-1}(V)$. We have an obvious map

$$
\begin{array}{r}
\Gamma\left(U, \mathcal{O}_{X_{i}}\right) \otimes_{\Gamma\left(V, \mathcal{O}_{X_{j}}\right)} \Gamma\left(V, \mathcal{M}_{j}\right)=\Gamma\left((i, U), \mathcal{O}_{X \bullet}\right) \otimes_{\Gamma\left((j, V), \mathcal{O}_{X_{\bullet} \mid J}\right)} \Gamma((j, V), \mathcal{M}) \\
\rightarrow \xrightarrow{\lim } \Gamma\left((i, U), \mathcal{O}_{X_{\bullet}}\right) \otimes_{\Gamma\left((j, V), \mathcal{O}_{\left.X_{\bullet}\right|_{J}}\right)} \Gamma((j, V), \mathcal{M}) \\
=\Gamma\left((i, U), L_{J} \mathcal{M}\right)=\Gamma\left(U,\left(L_{J} \mathcal{M}\right)_{i}\right)
\end{array}
$$

which induces

$$
\Gamma\left(U, X_{\phi}^{*} \mathcal{M}\right)=\underline{\lim } \Gamma\left(U, \mathcal{O}_{X_{i}}\right) \otimes_{\Gamma\left(V, \mathcal{O}_{X_{j}}\right)} \Gamma\left(V, \mathcal{M}_{j}\right) \rightarrow \Gamma\left(U,\left(L_{J} \mathcal{M}\right)_{i}\right)
$$

This gives a morphism $X_{\phi}^{*} \mathcal{M} \rightarrow\left(L_{J} \mathcal{M}\right)_{i}$. It is easy to see that this defines $\xrightarrow{\lim } X_{\phi}^{*} \mathcal{M} \rightarrow\left(L_{J} \mathcal{M}\right)_{i}$, which is the inverse of $\lambda_{J, i}$. This completes the proof $\overrightarrow{\text { for }}$ the case that $\odot=P M$.

Now consider the case $\odot=$ Mod. Define $\lambda_{J, i}^{M o d}$ to be the composite

$$
\begin{aligned}
&\left(L_{J}^{\mathrm{Mod}} \mathcal{M}\right)_{i}=(?)_{i} a L_{J}^{\mathrm{PM}} q \mathcal{M} \xrightarrow{\theta^{-1}} a(?)_{i} L_{J}^{\mathrm{PM}} q \mathcal{M} \xrightarrow{\lambda_{J, i}^{\mathrm{PM}}} a \underline{\longrightarrow} \lim _{\longrightarrow}^{*}(q \mathcal{M})_{j} \\
& \cong \underline{\lim }_{\longrightarrow} a X_{\phi}^{*}(q \mathcal{M})_{j} \xrightarrow{c} \xrightarrow[\longrightarrow]{\lim } a X_{\phi}^{*} q \mathcal{M}_{j}=\underline{\longrightarrow} X_{\phi}^{*} \mathcal{M}_{j} .
\end{aligned}
$$

As the morphisms appearing in the composition are all isomorphisms, $\lambda_{J, i}^{\mathrm{Mod}}$ is an isomorphism.

In particular, we have an isomorphism

$$
\begin{equation*}
\lambda_{j, i}:\left(L_{j}^{\bigcirc}(\mathcal{M})\right)_{i}^{\varrho} \cong \bigoplus_{\phi \in I(j, i)}\left(X_{\phi}\right)_{\circlearrowleft}^{*}(\mathcal{M}) \tag{6.8}
\end{equation*}
$$

(6.9) As announced in (2.61), we show that the monoidal adjoint pair $\left((?){ }_{\#}^{\text {Mod }},(?)_{\text {Mod }}^{\#}\right)$ in Lemma 2.55 is not Lipman.

We define a finite category \mathcal{K} by $\operatorname{ob}(\mathcal{K})=\{s, t\}$, and $\mathcal{K}(s, t)=\{u, v\}$, $\mathcal{K}(s, s)=\left\{\operatorname{id}_{s}\right\}$, and $\mathcal{K}(t, t)=\left\{\operatorname{id}_{t}\right\}$. Pictorially, \mathcal{K} looks like $t_{\longleftarrow}^{\leftarrow} \stackrel{u}{v^{u}}$. Let k be a field, and define $X_{\bullet} \in \mathcal{P}(\mathcal{K}, \underline{\operatorname{Sch}})$ by $X_{s}=X_{t}=\operatorname{Spec} k$, and $X_{u}=X_{v}=$ id. Then $\Gamma\left(X_{t},\left(L_{s} \mathcal{O}_{X_{s}}\right)_{t}\right)$ is two-dimensional by (6.8). So $L_{s} \mathcal{O}_{X_{s}}$ and \mathcal{O}_{X} are not isomorphic by the dimension reason. Similarly, $L_{s}\left(\mathcal{O}_{X_{s}} \otimes_{\mathcal{O}_{X_{s}}} \mathcal{O}_{X_{s}}\right)$ cannot be isomorphic to $L_{s} \mathcal{O}_{X_{s}} \otimes_{\mathcal{O}_{X}} L_{s} \mathcal{O}_{X_{s}}$.

Similarly, $\left((?)_{\#}^{\mathrm{PM}},(?)_{\mathrm{PM}}^{\#}\right)$ in Lemma 2.55 is not Lipman.
(6.10) Let $\psi: i \rightarrow i^{\prime}$ be a morphism. The structure map

$$
\alpha_{\psi}:\left(X_{\psi}\right)_{\circlearrowleft}^{*}\left(\left(L_{J}^{\ominus}(\mathcal{M})\right)_{i}^{\ominus}\right) \rightarrow\left(L_{J}^{\ominus}(\mathcal{M})\right)_{i^{\prime}}^{\ominus}
$$

is induced by

$$
\left(X_{\psi}\right)_{\bigcirc}^{*}\left(\left(X_{\phi}\right)_{\circlearrowleft}^{*}\left(\mathcal{M}_{j}\right)\right) \cong\left(X_{\psi \phi}\right)_{\circlearrowleft}^{*}\left(\mathcal{M}_{j}\right) .
$$

More precisely, for $\psi: i \rightarrow i^{\prime}$, the diagram

$$
\begin{aligned}
& X_{\psi}^{*}\left(\left(L_{J} \mathcal{M}\right)_{i}\right) \xrightarrow{\lambda_{J, i}} X_{\psi}^{*} \xrightarrow{\lim X_{\phi}^{*} \mathcal{M}_{j}} \cong \xrightarrow{\lim } X_{\psi}^{*} X_{\phi}^{*} \mathcal{M}_{j} \\
& \downarrow h
\end{aligned}
$$

is commutative, where $\phi: i \rightarrow j$ runs through $\left(I_{i}^{f}\right)^{\text {op }}$, and $\phi^{\prime}: i^{\prime} \rightarrow j^{\prime}$ runs through $\left(I_{i^{\prime}}^{f}\right)^{\mathrm{op}}$, where $f: J^{\mathrm{op}} \rightarrow I^{\mathrm{op}}$ is the inclusion. The map h is induced by $d: X_{\psi}^{*} X_{\phi}^{*} \rightarrow\left(X_{\phi} X_{\psi}\right)^{*}=X_{\psi \phi}^{*}$. This is checked at the section level directly when $\Omega=P M$.

We consider the case that $\odot=$ Mod. Then the composite

$$
X_{\psi}^{*}(?)_{i} L_{J} \xrightarrow{\lambda_{J, i}} X_{\psi}^{*} \xrightarrow{\lim } X_{\phi}^{*}(?)_{j} \cong \underline{\lim _{\longrightarrow}} X_{\psi}^{*} X_{\phi}^{*}(?)_{j} \xrightarrow{h} \underset{\longrightarrow}{\lim } X_{\phi^{\prime}}^{*}(?)_{j^{\prime}}
$$

agrees with the composite

$$
\begin{aligned}
& X_{\psi}^{*}(?)_{i} L_{J}=a X_{\psi}^{*} q(?)_{i} a L_{J} q \xrightarrow{\theta^{-1}} a X_{\psi}^{*} q a(?)_{i} L_{J} q \xrightarrow{\lambda_{J, i}^{\mathrm{PM}}} a X_{\psi}^{*} q a \underline{\lim }_{\longrightarrow} X_{\phi}^{*}(?)_{j} q \\
& \cong \xrightarrow{\cong} a X_{\psi}^{*} q \xrightarrow{\lim } a X_{\phi}^{*}(?)_{j} q \xrightarrow{c} a X_{\psi}^{*} q \xrightarrow{\lim } a X_{\phi}^{*} q(?)_{j} \xrightarrow{\cong} \lim _{\longrightarrow} a X_{\psi}^{*} q a X_{\phi}^{*} q(?)_{j} \xrightarrow{u^{-1}} \\
& \xrightarrow{\lim } a X_{\psi}^{*} X_{\phi}^{*} q(?)_{j} \xrightarrow{d} \underset{\longrightarrow}{\lim } a X_{\psi \phi}^{*} q(?)_{j} \rightarrow \underset{\longrightarrow}{\lim } a X_{\phi^{\prime}}^{*} q(?)_{j^{\prime}}=\underset{\lim ^{\prime}}{ } X^{*}(?)_{j^{\prime}} .
\end{aligned}
$$

Using Lemma 2.60, it is straightforward to show that this map agrees with

$$
\begin{aligned}
& X_{\psi}^{*}(?)_{i} L_{J}=a X_{\psi}^{*} q(?)_{i} a L_{J} q \xrightarrow{c} a X_{\psi}^{*}(?)_{i} q a L_{J} q \xrightarrow{\alpha_{\psi}} a(?)_{i^{\prime}} q a L_{J} q \xrightarrow{c} \\
& a q(?)_{i^{\prime}} a L_{J} q \xrightarrow{\varepsilon}(?)_{i^{\prime}} a L_{J} q \xrightarrow{\theta^{-1}} a(?)_{i^{\prime}} L_{J} q \xrightarrow{\lambda_{J, i^{\prime}}} a \xrightarrow{\lim } X_{\phi^{\prime}}^{*}(?)_{j^{\prime}} q \xrightarrow{\cong} \\
& \xrightarrow{\lim } a X_{\phi^{\prime}}^{*}(?)_{j^{\prime}} q \xrightarrow{c} \underset{\longrightarrow}{\lim } a X_{\phi^{\prime}}^{*} q(?)_{j^{\prime}}=\underset{\longrightarrow}{\lim } X_{\phi^{\prime}}^{*}(?)_{j^{\prime}} .
\end{aligned}
$$

This composite map agrees with

$$
X_{\psi}^{*}(?)_{i} L_{J} \xrightarrow{\alpha_{\psi}}(?)_{i^{\prime}} L_{J} \xrightarrow{\lambda_{J, i^{\prime}}} \xrightarrow{\lim } X_{\phi^{\prime}}^{*}(?)_{j^{\prime}}
$$

by (4.20) and the definition of $\lambda_{J, i^{\prime}}$ for sheaves (see the proof of Lemma 6.7). This is what we wanted to prove.

The case that $\Omega=\mathrm{PA}, \mathrm{AB}$ is proved similarly.
(6.11) In the remainder of this chapter, we do not give detailed proofs, since the strategy is similar to the above (just check the commutativity at the section level for presheaves, and sheafify it).
(6.12) The counit map $\varepsilon: L_{J}(?)_{J} \rightarrow \mathrm{Id}$ is given as a morphism of structure data as follows.

$$
\varepsilon_{i}:(?)_{i} L_{J}(?)_{J} \rightarrow(?)_{i}
$$

agrees with

$$
(?)_{i} L_{J}(?)_{J} \xrightarrow{\lambda_{J, i}} \xrightarrow{\lim } X_{\phi}^{*}(?)_{j}(?)_{J} \xrightarrow{c} \xrightarrow{\lim } X_{\phi}^{*}(?)_{j} \xrightarrow{\alpha}(?)_{i},
$$

where α is induced by $\alpha_{\phi}: X_{\phi}^{*}(?)_{j} \rightarrow(?)_{i}$.
(6.13) The unit map $u: \operatorname{Id} \rightarrow(?)_{J} L_{J}$ is also described, as follows.

$$
u_{j}:(?)_{j} \rightarrow(?)_{j}(?)_{J} L_{J}
$$

agrees with

$$
(?)_{j} \xrightarrow{\mathfrak{f}^{-1}} X_{\mathrm{id}_{j}}^{*}(?)_{j} \rightarrow \xrightarrow{\lim } X_{\phi}^{*}(?)_{k} \xrightarrow{\lambda_{J, j}^{-1}}(?)_{j} L_{J} \cong(?)_{j}(?)_{J} L_{J}
$$

where the colimit is taken over $(\phi: k \rightarrow j) \in\left(I_{j}^{\left(J^{\mathrm{op}} \subset I^{\mathrm{op}}\right)}\right)^{\mathrm{op}}$.
(6.14) Let $X_{\bullet} \in \mathcal{P}$, and J a subcategory of I. The right adjoint functor R_{J}^{\odot} of $(?)_{J}^{\mathcal{M}}$ is given as follows explicitly. For $\mathcal{M} \in \Upsilon\left(\left.X_{\bullet}\right|_{J}\right)$ and $i \in I$, we have

$$
\rho^{J, i}:\left(R_{J}^{\varrho}(\mathcal{M})\right)_{i}^{\varrho} \cong \lim _{\rightleftarrows}\left(X_{\phi}\right)_{*}^{\varrho}\left(\mathcal{M}_{j}\right)
$$

where the limit is taken over $I_{i}^{(J \rightarrow I)}$, see (2.6) for the notation. The descriptions of α, u, and ε for the right induction are left to the reader.

Lemma 6.15. Let $X_{\bullet} \in \mathcal{P}$, and J a full subcategory of I. Then we have the following.
1 The counit of adjunction $\varepsilon:(?)_{J}^{\varrho} \circ R_{J}^{\varrho} \rightarrow \mathrm{Id}$ is an isomorphism. In particular, R_{J}^{\bigcirc} is full and faithful.
2 The unit of adjunction $u: \operatorname{Id} \rightarrow(?)_{J}^{\ominus} \circ L_{J}^{\ominus}$ is an isomorphism. In particular, L_{J}^{\ominus} is full and faithful.

Proof. 1 For $i \in J$, the restriction

$$
\varepsilon_{i}:(?)_{i}^{\wp}(?)_{J}^{\varrho} R_{J}^{\varrho} \mathcal{M}=\lim _{\rightleftarrows}\left(X_{\phi}\right)_{*}^{\varrho}\left(\mathcal{M}_{j}\right) \rightarrow\left(X_{\mathrm{id}_{i}}\right)_{*} \mathcal{M}_{i}=\mathcal{M}_{i}=(?)_{i} \mathcal{M}
$$

is nothing but the canonical map from the projective limit, where the limit is taken over $(\phi: i \rightarrow j) \in I_{i}^{(J \rightarrow I)}$. As J is a full subcategory, we have $I_{i}^{(J \rightarrow I)}$ equals i / J, and hence id_{i} is its initial object. So the limit is equal to \mathcal{M}_{i}, and ε_{i} is the identity map. Since ε_{i} is an isomorphism for each $i \in J$, we have that ε is an isomorphism.

The proof of $\mathbf{2}$ is similar, and we omit it.
Let \mathcal{C} be a small category. A connected component of \mathcal{C} is a full subcategory of \mathcal{C} whose object set is one of the equivalence classes of $\mathrm{ob}(\mathcal{C})$ with respect to the transitive symmetric closure of the relation \sim given by

$$
c \sim c^{\prime} \Longleftrightarrow \mathcal{C}\left(c, c^{\prime}\right) \neq \emptyset
$$

Definition 6.16. We say that a subcategory J of I is admissible if
1 For $i \in I$, the category $\left(I_{i}^{\left(J^{\mathrm{op}} \subset I^{\mathrm{op})}\right)}\right)^{\mathrm{op}}$ is pseudofiltered.
2 For $j \in J$, we have id_{j} is the initial object of one of the connected components of $I_{j}^{\left(J^{\mathrm{op}} \subset I^{\mathrm{op}}\right)}$ (i.e., id_{j} is the terminal object of one of the connected components of $\left.\left(I_{j}^{\left(J^{\mathrm{op}} \subset I^{\mathrm{op}}\right)}\right)^{\mathrm{op}}\right)$.

Note that for $j \in I$, the subcategory $j=\left(\{j\},\left\{\operatorname{id}_{j}\right\}\right)$ of I is admissible.
In Lemma 6.7, the colimit in the right hand side is pseudo-filtered and hence it preserves exactness, if $\mathbf{1}$ is satisfied. In particular, if $\mathbf{1}$ is satisfied, then $Q\left(X_{\bullet}, J\right): \operatorname{Zar}\left(\left.X_{\bullet}\right|_{J}\right) \rightarrow \operatorname{Zar}\left(X_{\bullet}\right)$ is an admissible functor. As in the proof of Lemma 6.15, (?) $)_{j}$ is a direct summand of $(?)_{j} \circ L_{J}$ for $j \in J$ so that L_{J} is faithful, if $\mathbf{2}$ is satisfied. We have the following.
Lemma 6.17. Let $X_{\bullet} \in \mathcal{P}(I, \underline{\mathrm{Sch}} / S)$, and $K \subset J \subset I$ be admissible subcategories of I. Then $L_{J, K}^{\mathrm{PA}}$ is faithful and exact. The morphism of sites $Q\left(\left.X_{\bullet}\right|_{J}, K\right)$ is admissible. If, moreover, X_{ϕ} is flat for any $\phi \in I(k, j)$ with $j \in J$ and $k \in K$, then $L_{J, K}^{\ominus}$ is faithful and exact for $\odot=$ Mod.

Proof. Assume that $\mathcal{M} \in \mathcal{O}\left(\left.X_{\bullet}\right|_{K}\right), \mathcal{M} \neq 0$, and $L_{J, K} \mathcal{M}=0$. There exists some $k \in K$ such that $M_{k} \neq 0$. Since $L_{J, K} \mathcal{M}=0$, we have that $0 \cong$ $(?)_{k} L_{I, J} L_{J, K} \mathcal{M} \cong(?)_{k} L_{I, K} \mathcal{M}$. This contradicts the fact that \mathcal{M}_{k} is a direct summand of $\left(L_{I, K} \mathcal{M}\right)_{k}$. Hence $L_{J, K}$ is faithful.

We prove that $L_{J, K}^{\odot}$ is exact. It suffices to show that for any $j \in J,(?)_{j} L_{J, K}$ is exact. As J is admissible, $(?)_{j}$ is a direct summand of $(?)_{j} L_{I, J}$. Hence it suffices to show that $(?)_{j} L_{I, K} \cong(?)_{j} L_{I, J} L_{J, K}$ is exact. By Lemma 6.7, $(?)_{j} L_{I, K} \cong \underset{\longrightarrow}{\lim }\left(X_{\phi}\right)_{\bigcirc}^{*}(?)_{k}$, where the colimit is taken over $(\phi: k \rightarrow j) \in$ $\left(I_{j}^{K^{\mathrm{op}} \subset I^{\mathrm{op}}}\right)^{\mathrm{op}}$. By assumption, $\left(X_{\phi}\right)_{\circlearrowleft}^{*}$ is exact for any ϕ in the colimit. As $\left(I_{j}^{K^{\mathrm{op}} \subset I^{\mathrm{op}}}\right)^{\mathrm{op}}$ is pseudo-filtered by assumption, $(?)_{j} L_{I, K}$ is exact, as desired.
(6.18) As in Example 5.6, 2, we have an isomorphism

$$
\begin{equation*}
c_{i, f_{\bullet}}:(?)_{i} \circ\left(f_{\bullet}\right)_{*} \cong\left(f_{i}\right)_{*} \circ(?)_{i} . \tag{6.19}
\end{equation*}
$$

The translation α_{ϕ} is described as follows.
Lemma 6.20. Let $f_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ be a morphism in $\mathcal{P}(I, \underline{\operatorname{Sch} / S) . ~ F o r ~} \phi \in$ $I(i, j)$,

$$
\alpha_{\phi}\left(f_{\bullet}\right)_{*}: Y_{\phi}^{*}(?)_{i}\left(f_{\bullet}\right)_{*} \rightarrow(?)_{j}\left(f_{\bullet}\right)_{*}
$$

agrees with

$$
\begin{align*}
Y_{\phi}^{*}(?)_{i}\left(f_{\bullet}\right)_{*} \xrightarrow{c_{i, f}} Y_{\phi}^{*}\left(f_{i}\right)_{*}(?)_{i} \xrightarrow{\text { via } \theta} & \left(f_{j}\right)_{*} X_{\phi}^{*}(?)_{i} \\
& \xrightarrow{\left(f_{j}\right)_{*} \alpha_{\phi}}\left(f_{j}\right)_{*}(?)_{j} \xrightarrow{c_{j, f}^{-1}}(?)_{j}\left(f_{\bullet}\right)_{*}, \tag{6.21}
\end{align*}
$$

where θ is Lipman's theta [26, (3.7.2)].
One of the definitions of θ is the composite

$$
\theta: Y_{\phi}^{*}\left(f_{i}\right)_{*} \xrightarrow{\text { via } u} Y_{\phi}^{*}\left(f_{i}\right)_{*}\left(X_{\phi}\right)_{*} X_{\phi}^{*} \xrightarrow{c} Y_{\phi}^{*}\left(Y_{\phi}\right)_{*}\left(f_{j}\right)_{*} X_{\phi}^{*} \xrightarrow{\text { via } \varepsilon}\left(f_{j}\right)_{*} X_{\phi}^{*} .
$$

Proof. Note that the diagram

$$
\begin{gather*}
(?)_{i}\left(f_{\bullet}\right)_{*} \xrightarrow{\beta}\left(Y_{\phi}\right)_{*}(?)_{j}\left(f_{\bullet}\right)_{*} \xrightarrow{c}\left(Y_{\phi}\right)_{*}\left(f_{j}\right)_{*}(?)_{j} \tag{6.22}\\
\downarrow c \\
\left(f_{i}\right)_{*}(?)_{i} \xrightarrow{\left(f_{i}\right)_{*} \beta} \\
\\
\left(f_{i}\right)_{*}\left(X_{\phi}\right)_{*}(?)_{j}
\end{gather*}
$$

is commutative. Indeed, when we apply the functor $\Gamma(U, ?)$ for an open subset U of Y_{i}, then we get an obvious commutative diagram

$$
\begin{gathered}
\Gamma\left(\left(i, f_{i}^{-1}(U)\right), ?\right) \xrightarrow{\downarrow \text { id }} \Gamma\left(\left(j, f_{j}^{-1}\left(Y_{\phi}^{-1}(U)\right)\right), ?\right) \xrightarrow{\text { id }} \Gamma\left(\left(j, f_{j}^{-1}\left(Y_{\phi}^{-1}(U)\right)\right), ?\right) \\
\downarrow\left(\left(i, f_{i}^{-1}(U)\right), ?\right) \xrightarrow[\text { res }]{\longrightarrow} \Gamma\left(\left(j, X_{\phi}^{-1}\left(f_{i}^{-1}(U)\right)\right), ?\right) .
\end{gathered}
$$

Now the assertion of the lemma follows from the commutativity of the diagram

Indeed, the commutativity of (a) and (e) is the definition of α. The commutativity of (b) follows from the naturality of ε. The commutativity of (c) follows from the commutativity of (6.22). The commutativity of (d) is the naturality of θ. The commutativity of (f) follows from the definition of θ and the fact that the composite

$$
\left(X_{\phi}\right)_{*} \xrightarrow{u}\left(X_{\phi}\right)_{*} X_{\phi}^{*}\left(X_{\phi}\right)_{*} \xrightarrow{\varepsilon}\left(X_{\phi}\right)_{*}
$$

is the identity.
Proposition 6.23. Let $f_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ be a morphism in \mathcal{P}, J a subcategory of I, and $i \in I$. Then the composite map

$$
(?)_{i} L_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*} \xrightarrow{\text { via } \theta}(?)_{i}\left(f_{\bullet}\right)_{*} L_{J} \xrightarrow{\text { via } c_{i, f}}\left(f_{i}\right)_{*}(?)_{i} L_{J}
$$

agrees with the composite map

$$
\begin{aligned}
(?)_{i} L_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*} \xrightarrow{\text { via } \lambda_{J, i}} & \xrightarrow[\longrightarrow]{\lim } Y_{\phi}^{*}(?)_{j}\left(\left.f_{\bullet}\right|_{J}\right)_{*} \xrightarrow{\text { via }\left.c_{j, f \bullet}\right|_{J}} \\
& \xrightarrow[\longrightarrow]{\lim } Y_{\phi}^{*}\left(f_{j}\right)_{*}(?)_{j} \\
& \xrightarrow{\lim }\left(f_{i}\right)_{*} X_{\phi}^{*}(?)_{j} \rightarrow\left(f_{i}\right)_{*} \xrightarrow[\longrightarrow]{\lim } X_{\phi}^{*}(?)_{j} \xrightarrow{\text { via } \lambda_{J, i}^{-1}}\left(f_{i}\right)_{*}(?)_{i} L_{J} .
\end{aligned}
$$

Proof. Note that θ in the first composite map is the composite

$$
\theta=\theta\left(J, f_{\bullet}\right): L_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*} \xrightarrow{\text { via } u} L_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*}(?)_{J} L_{J} \xrightarrow{c} L_{J}(?)_{J}\left(f_{\bullet}\right)_{*} L_{J} \xrightarrow{\varepsilon}\left(f_{\bullet}\right)_{*} L_{J} .
$$

The description of u and ε are already given, and the proof is reduced to the iterative use of $(6.10),(6.12),(6.13)$, and Lemma 6.20. The detailed argument is left to a patient reader. The reason why the second map involves θ is Lemma 6.20.

Similarly, we have the following.
Proposition 6.24. Let $f_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ be a morphism in \mathcal{P}, J a subcategory of I, and $i \in I$. Then the composite map

$$
\left(f_{i}\right)^{*}(?)_{i} L_{J} \xrightarrow{\text { via } \theta\left(f_{\bullet}, i\right)}(?)_{i}\left(f_{\bullet}\right)^{*} L_{J} \xrightarrow{\text { via } d_{f_{\bullet}, J}}(?)_{i} L_{J}\left(\left.f_{\bullet}\right|_{J}\right)^{*}
$$

agrees with the composite map

$$
\begin{aligned}
& \left(f_{i}\right)^{*}(?)_{i} L_{J} \xrightarrow{\text { via } \lambda_{J, i}}\left(f_{i}\right)^{*} \xrightarrow[\longrightarrow]{\lim } Y_{\phi}^{*}(?)_{j} \cong \xrightarrow{\lim }\left(f_{i}\right)^{*} Y_{\phi}^{*}(?)_{j} \\
& \quad \xrightarrow{d} \xrightarrow{\lim } X_{\phi}^{*}\left(f_{j}\right)^{*}(?)_{j} \xrightarrow{\text { via } \theta\left(\left.f_{\bullet}\right|_{J, j)}\right.} \xrightarrow{\lim } X_{\phi}^{*}(?)_{j}\left(\left.f_{\bullet}\right|_{J}\right)^{*} \xrightarrow{\text { via } \lambda_{J, i}^{-1}}(?)_{i} L_{J}\left(\left.f_{\bullet}\right|_{J}\right)^{*} .
\end{aligned}
$$

The proof is left to the reader. The proof of Proposition 6.23 and Proposition 6.24 are formal, and the propositions are valid for $\bigcirc=$ PM, Mod, PA, and AB.

Let $f_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ be a morphism in \mathcal{P}, and $J \subset I$ a subcategory. The inverse image $\left(f_{\bullet}\right)_{\circlearrowleft}^{*}$ is compatible with the restriction (?) $)_{J}$.
Lemma 6.25. The natural map

$$
\theta_{\circlearrowleft}=\theta_{\circlearrowleft}\left(f_{\bullet}, J\right):\left(\left.\left(f_{\bullet}\right)\right|_{J}\right)_{\circlearrowleft}^{*} \circ(?)_{J} \rightarrow(?)_{J} \circ\left(f_{\bullet}\right)_{\circlearrowleft}^{*}
$$

is an isomorphism for $\bigcirc=\mathrm{PA}, \mathrm{AB}, \mathrm{PM}$, Mod. In particular, $f_{\bullet}^{-1}: \operatorname{Zar}\left(Y_{\bullet}\right) \rightarrow$ $\operatorname{Zar}\left(X_{\bullet}\right)$ is an admissible continuous functor.

Proof. We consider the case where $\Omega=$ PM.
Let $\mathcal{M} \in \operatorname{PM}\left(Y_{\bullet}\right)$, and $(j, U) \in \operatorname{Zar}\left(\left.X_{\bullet}\right|_{J}\right)$. We have

$$
\Gamma\left((j, U),\left(\left.f_{\bullet}\right|_{J}\right)^{*} \mathcal{M}_{J}\right)=\underset{\longrightarrow}{\lim } \Gamma\left((j, U), \mathcal{O}_{X_{\bullet}}\right) \otimes_{\Gamma\left(\left(j^{\prime}, V\right), \mathcal{O}_{Y_{\bullet}}\right)} \Gamma\left(\left(j^{\prime}, V\right), \mathcal{M}\right)
$$

where the colimit is taken over $\left(j^{\prime}, V\right) \in\left(I_{(j, U)}^{\left(f_{\bullet} \mid J\right)^{-1}}\right)^{\mathrm{op}}$. On the other hand, we have

$$
\Gamma\left((j, U),(?)_{J} f_{\bullet}^{*} \mathcal{M}\right)=\underset{\longrightarrow}{\lim } \Gamma\left((j, U), \mathcal{O}_{X_{\bullet}}\right) \otimes_{\Gamma\left((i, V), \mathcal{O}_{Y_{\bullet}}\right)} \Gamma((i, V), \mathcal{M}),
$$

where the colimit is taken over $(i, V) \in\left(I_{(j, U)}^{f_{0}^{-1}}\right)^{\text {op }}$. There is an obvious map from the first to the second. This obvious map is θ, see (2.57).

To verify that this is an isomorphism, it suffices to show that the category $\left(I_{(j, U)}^{\left(f_{\bullet} \mid J\right)^{-1}}\right)^{\mathrm{op}}$ is final in the category $\left(I_{(j, U)}^{f_{\dot{\prime}}^{-1}}\right)^{\mathrm{op}}$. In fact, any $(\phi, h):(j, U) \rightarrow$ $\left(i, f_{i}^{-1}(V)\right)$ with $(i, V) \in \operatorname{Zar}\left(Y_{\bullet}\right)$ factors through

$$
\left(\mathrm{id}_{j}, h\right):(j, U) \rightarrow\left(j, f_{j}^{-1} Y_{\phi}^{-1}(V)\right)
$$

Hence, $\theta_{\circlearrowleft}$ is an isomorphism for $\odot=P M$. The construction for the case where $\Omega=\mathrm{PA}$ is similar.

As $(?)_{J}$ is compatible with the sheafification by Lemma 2.31, we have that θ is an isomorphism for $\odot=\operatorname{Mod}, \mathrm{AB}$ by Lemma 2.59.

Corollary 6.26. The conjugate

$$
\xi_{\odot}=\xi_{\odot}\left(f_{\bullet}, J\right):\left(f_{\bullet}\right)_{*}^{\varrho} R_{J} \rightarrow R_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*}^{\varrho}
$$

of $\theta_{\odot}\left(f_{\bullet}, J\right)$ is an isomorphism for $\odot=\mathrm{PA}, \mathrm{AB}, \mathrm{PM}, \mathrm{Mod}$.
Proof. Obvious by Lemma 6.25.
(6.27) By Corollary 6.26 , we may define the composite

$$
\begin{aligned}
\mu_{\odot}= & \mu_{\varrho}\left(f_{\bullet}, J\right): f_{\bullet}^{*} R_{J} \xrightarrow{u} f_{\bullet}^{*} R_{J}\left(\left.f_{\bullet}\right|_{J}\right)_{*}\left(\left.f_{\bullet}\right|_{J}\right)^{*} \\
& \xrightarrow{\xi^{-1}} f_{\bullet}^{*}\left(f_{\bullet}\right)_{*} R_{J}\left(\left.f_{\bullet}\right|_{J}\right)^{*} \xrightarrow{\varepsilon} R_{J}\left(\left.f_{\bullet}\right|_{J}\right)^{*} .
\end{aligned}
$$

Observe that the diagram

is commutative.
Lemma 6.28. Let the notation be as above, and $\mathcal{M}, \mathcal{N} \in \odot\left(Y_{\bullet}\right)$. Then the diagram

$$
\begin{array}{cccc}
\left(\left.f_{\bullet}\right|_{J}\right)_{\circlearrowleft}^{*}\left(\mathcal{M}_{J} \otimes \mathcal{N}_{J}\right) & \xrightarrow{m} \quad\left(\left.f_{\bullet}\right|_{J}\right)_{\circlearrowleft}^{*}\left((\mathcal{M} \otimes \mathcal{N})_{J}\right) & \xrightarrow{\theta}\left(\left(f_{\bullet}\right)_{\circlearrowleft}^{*}(\mathcal{M} \otimes \mathcal{N})\right)_{J} \\
\downarrow \Delta(?)_{J} \Delta
\end{array}
$$

is commutative.
Proof. This is an immediate consequence of Lemma 1.44.

Corollary 6.30. The adjoint pair $\left((?)_{\text {Mod }}^{*},(?)_{*}^{\text {Mod }}\right)$ over the category $\mathcal{P}(I, \underline{\mathrm{Sch}} / S)$ is Lipman.
Proof. Let $f_{\bullet}: X_{\bullet} \rightarrow Y_{\bullet}$ be a morphism of $\mathcal{P}(I, \underline{\operatorname{Sch}} / S)$. It is easy to see that the diagram

is commutative. So utilizing Lemma 1.25, it is easy to see that

is also commutative. Since $C: f_{i}^{*} \mathcal{O}_{Y_{i}} \rightarrow \mathcal{O}_{X_{i}}$ is an isomorphism by Corollary 2.65, (?) ${ }_{i} C$ is an isomorphism for any $i \in I$. Hence $C: f_{\bullet}^{*} \mathcal{O}_{Y_{\bullet}} \rightarrow$ $\mathcal{O}_{X_{0}}$ is also an isomorphism.

Let us consider $\mathcal{M}, \mathcal{N} \in \bigcirc\left(Y_{\bullet}\right)$. To verify that Δ is an isomorphism, it suffices to show that

$$
(?)_{i} \Delta:\left(f_{\bullet}^{*}(\mathcal{M} \otimes \mathcal{N})\right)_{i} \rightarrow\left(f_{\bullet}^{*} \mathcal{M} \otimes f_{\bullet}^{*} \mathcal{N}\right)_{i}
$$

is an isomorphism for any $i \in \mathrm{ob}(I)$. Now consider the diagram (6.29) for $J=i$. Horizontal maps in the diagram are isomorphisms by (6.3) and Lemma 6.25. The left Δ is an isomorphism, since f_{i} is a morphism of single schemes. By Lemma 6.28, (?) $)_{i} \Delta$ is also an isomorphism.
(6.31) The description of the translation map α_{ϕ} for f_{\bullet}^{*} is as follows. For $\phi \in I(i, j)$,

$$
\alpha_{\phi}: X_{\phi}^{*}(?)_{i} f_{\bullet}^{*} \rightarrow(?)_{j} f_{\bullet}^{*}
$$

is the composite

$$
X_{\phi}^{*}(?)_{i} f_{\bullet}^{*} \xrightarrow{X_{\phi}^{*} \theta^{-1}} X_{\phi}^{*} f_{i}^{*}(?)_{i} \xrightarrow{d} f_{j}^{*} Y_{\phi}^{*}(?)_{i} \xrightarrow{f_{j}^{*} \alpha_{\phi}} f_{j}^{*}(?)_{j} \xrightarrow{\theta}(?)_{j} f_{\bullet}^{*}
$$

(6.32) Let $X_{\bullet} \in \mathcal{P}$, and $\mathcal{M}, \mathcal{N} \in \bigcirc_{(}\left(X_{\bullet}\right)$. Although there is a canonical map

$$
H_{i}: \underline{\operatorname{Hom}}_{\mathcal{O}\left(X_{\bullet}\right)}(\mathcal{M}, \mathcal{N})_{i} \rightarrow \underline{\operatorname{Hom}}_{\mathscr{O}\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)
$$

arising from the closed structure for $i \in I$, this may not be an isomorphism. However, we have the following.

Lemma 6.33. Let $i \in I$. If \mathcal{M} is equivariant, then the canonical map

$$
H_{i}: \underline{\operatorname{Hom}}_{\mathscr{(X \cdot}}(\mathcal{M}, \mathcal{N})_{i} \rightarrow \underline{\operatorname{Hom}}_{\left.\mathscr{(} X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)
$$

is an isomorphism of presheaves. In particular, it is an isomorphism in $\bigcirc\left(X_{i}\right)$.

Proof. It suffices to prove that

$$
H_{i}: \operatorname{Hom}_{\varrho\left(\operatorname{Zar}\left(X_{\bullet}\right) /(i, U)\right)}\left(\left.\mathcal{M}\right|_{(i, U)},\left.\mathcal{N}\right|_{(i, U)}\right) \rightarrow \operatorname{Hom}_{\varrho(U)}\left(\left.\mathcal{M}_{i}\right|_{U},\left.\mathcal{N}_{i}\right|_{U}\right)
$$

is an isomorphism for any Zariski open set U in X_{i}.
To give an element of $\varphi \in \operatorname{Hom}_{\left(\operatorname{Zar}\left(X_{\bullet}\right) /(i, U)\right)}\left(\left.\mathcal{M}\right|_{(i, U)},\left.\mathcal{N}\right|_{(i, U)}\right)$ is the same as to give a family $\left(\varphi_{\phi}\right)_{\phi: i \rightarrow j}$ with

$$
\varphi_{\phi} \in \operatorname{Hom}_{\bigcirc\left(X_{\phi}^{-1}(U)\right)}\left(\left.\mathcal{M}_{j}\right|_{X_{\phi}^{-1}(U)},\left.\mathcal{N}_{j}\right|_{X_{\phi}^{-1}(U)}\right)
$$

such that for any $\phi: i \rightarrow j$ and $\psi: j \rightarrow j^{\prime}$,

$$
\begin{equation*}
\left.\left.\varphi_{\psi \phi} \circ\left(\alpha_{\psi}(\mathcal{M})\right)\right|_{X_{\psi \phi}^{-1}(U)}=\left.\left(\alpha_{\psi}(\mathcal{N})\right)\right|_{X_{\psi \phi}^{-1}(U)} \circ\left(\left.\left(X_{\psi}\right)\right|_{X_{\psi}(U)} ^{-1}\right)\right)_{\mathcal{O}}^{*}\left(\varphi_{\phi}\right) \tag{6.34}
\end{equation*}
$$

As $\alpha_{\phi}(\mathcal{M})$ is an isomorphism for any $\phi: i \rightarrow j$, we have that such a $\left(\varphi_{\phi}\right)$ is uniquely determined by $\varphi_{\mathrm{id}_{i}}$ by the formula

$$
\begin{equation*}
\varphi_{\phi}=\left.\left.\left(\alpha_{\phi}(\mathcal{N})\right)\right|_{X_{\phi}^{-1}(U)} \circ\left(\left.\left(X_{\phi}\right)\right|_{X_{\phi}^{-1}(U)}\right)_{\mathcal{S}}^{*}\left(\varphi_{\mathrm{id}_{i}}\right) \circ\left(\alpha_{\phi}(\mathcal{M})\right)\right|_{X_{\phi}^{-1}(U)} ^{-1} \tag{6.35}
\end{equation*}
$$

Conversely, fix $\varphi_{\mathrm{id}_{i}}$, and define φ_{ϕ} by (6.35). Consider the diagram

The diagram (a) is commutative by the naturality of d^{-1}. The diagram (b) and $(\mathrm{a})+(\mathrm{b})+(\mathrm{c})$ are commutative, by the definition of φ_{ϕ} and $\varphi_{\psi \phi}$ (6.35), respectively. Since d^{-1} and $\alpha_{\phi}(\mathcal{M})$ are isomorphisms, the diagram (c) is commutative, and hence (6.34) holds. Hence H_{i} is bijective, as desired.

Lemma 6.36. Let J be a subcategory of I. If \mathcal{M} is equivariant, then the canonical map

$$
H_{J}: \underline{\operatorname{Hom}}_{\circlearrowleft\left(X_{\bullet}\right)}(\mathcal{M}, \mathcal{N})_{J} \rightarrow \underline{\operatorname{Hom}}_{\left(X_{\bullet} \mid J\right)}\left(\mathcal{M}_{J}, \mathcal{N}_{J}\right)
$$

is an isomorphism of presheaves. In particular, it is an isomorphism in $\bigcirc\left(\left.X_{\bullet}\right|_{J}\right)$.

Proof. It suffices to show that

$$
\left.\left(H_{J}\right)_{i}:{\underline{\operatorname{Hom}_{\varrho(X}}}^{(X)}(\mathcal{M}, \mathcal{N})_{J}\right)_{i} \rightarrow \underline{\operatorname{Hom}}_{\circlearrowleft\left(X_{J}\right)}\left(\mathcal{M}_{J}, \mathcal{N}_{J}\right)_{i}
$$

is an isomorphism for each $i \in J$. By Lemma 1.39, the composite map

$$
\begin{aligned}
\underline{\operatorname{Hom}}_{\bigcirc(X)}(\mathcal{M}, \mathcal{N})_{i} \cong & \left(\underline{\operatorname{Hom}}_{\varrho(X}^{\bullet}\right) \\
\bullet & \left.\mathcal{M}, \mathcal{N})_{J}\right)_{i} \\
& \xrightarrow{\left(H_{J}\right)_{i}} \underline{\operatorname{Hom}}_{\varrho\left(X_{J}\right)}\left(\mathcal{M}_{J}, \mathcal{N}_{J}\right)_{i} \xrightarrow{H_{i}} \underline{\operatorname{Hom}}_{\varrho\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)
\end{aligned}
$$

agrees with H_{i}. As \mathcal{M}_{J} is also equivariant, we have that the two H_{i} are isomorphisms by Lemma 6.33, and hence $\left(H_{J}\right)_{i}$ is an isomorphism for any $i \in J$.
(6.37) By the lemma, the sheaf $\underline{\operatorname{Hom}}_{\bigcirc\left(X_{\bullet}\right)}(\mathcal{M}, \mathcal{N})$ is given by the collection

$$
\left(\underline{\operatorname{Hom}}_{\varrho\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)\right)_{i \in I}
$$

provided \mathcal{M} is equivariant. The structure map is the canonical composite map

$$
\begin{aligned}
& \alpha_{\phi}:\left(X_{\phi}\right)_{\circlearrowleft}^{*} \underline{\operatorname{Hom}}_{\varrho\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right) \xrightarrow{P} \underline{\operatorname{Hom}}_{\varrho\left(X_{j}\right)}\left(\left(X_{\phi}\right)_{\circlearrowleft}^{*} \mathcal{M}_{i},\left(X_{\phi}\right)_{\circlearrowleft}^{*} \mathcal{N}_{i}\right) \\
& \xrightarrow{\operatorname{Hom}_{\varrho\left(X_{j}\right)}\left(\alpha_{\phi}^{-1}, \alpha_{\phi}\right)} \\
& \underline{\operatorname{Hom}}_{\varrho\left(X_{j}\right)}\left(\mathcal{M}_{j}, \mathcal{N}_{j}\right) .
\end{aligned}
$$

Similarly, the following is also easy to prove.
Lemma 6.38. Let $i \in I$ be an initial object of I. Then the following hold:
1 If $\mathcal{M} \in \bigcirc\left(X_{\bullet}\right)$ is equivariant, then

$$
(?)_{i}: \operatorname{Hom}_{\varrho\left(X_{\bullet}\right)}(\mathcal{M}, \mathcal{N}) \rightarrow \operatorname{Hom}_{\varrho\left(X_{i}\right)}\left(\mathcal{M}_{i}, \mathcal{N}_{i}\right)
$$

is an isomorphism.
$2(?)_{i}: \operatorname{EM}\left(X_{\bullet}\right) \rightarrow \operatorname{Mod}\left(X_{i}\right)$ is an equivalence, whose quasi-inverse is L_{i}.
The fact that $L_{i}(\mathcal{M})$ is equivariant for $\mathcal{M} \in \operatorname{Mod}\left(X_{i}\right)$ is checked directly from the definition.

