Skip to main content

Glacier fluctuations and dynamics around the margin of the Greenland Ice Sheet

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 3352 Accesses

Abstract

Greenland’s ice cover has undergone remarkable changes in the last two decades as a response to forcing from the atmosphere and ocean. This period coincides with the evolution of remote-sensing platforms towards higher spatiotemporal resolutions. In this chapter, we give an overview of some of the key glaciological findings emerging from Greenland in the past two decades, and describe two case studies in which GLIMS data are used to provide new insights into regional changes in Greenland’s glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlstrøm, A.P., and the PROMICE project team (2008) A new programme for monitoring the mass loss of the Greenland ice sheet. Geological Survey of Denmark and Greenland Bulletin, 15.

    Google Scholar 

  • Ahn, Y., and Howat, I.M. (2010) Efficient, Automated Glacier Surface Velocity Measurement from Repeat Images Using Multi-Image)Multi-Chip (MIMC) and Null Exclusion Feature Tracking (Tech. Rep. TGRS-2010-00396.R2), Institute of Electrical and Electronics Engineers, Washington, D.C.

    Google Scholar 

  • Ahn, Y„ and Howat, I.M. (2011) Efficient, automated glacier surface velocity measurement from repeat images using multi-image/multi-chip (MIMC) and null exclusion feature tracking. IEEE Trans, on Geoscience and Remote Sensing, 49(8), 2838–2846.

    Google Scholar 

  • Amundson, J.M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M.P., and Motyka, R.J. (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbrs, Greenland. Journal of Geophysical Research, 115(F1), F01005, doi: 10.1029/ 2009JF001405.

    Google Scholar 

  • Andersen, M.L., Larsen, T.B., Nettles, M., Elósegui, P., van As, D., Hamilton, G.S., Stearns, L.A., Davis, J.L., Ahlstrøm, A.P., de Juan, J. et al. (2010) Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. Journal of Geophysical Research, 115(F4), F04041, doi: 10.1029/ 2010JF001760.

    Google Scholar 

  • Bales, R.C., Guo, Q., Shen, D., McConnell, J.R., Du, G., Burkhart, J.F., Spikes, V.B., Hanna, E., and Cappelen, J. (2009) Annual accumulation for Greenland updated using ice core data developed during 2000-2006 and analysis of daily coastal meteorological data. Journal of Geophysical Research, 114(D6), 1–14.

    Google Scholar 

  • Bamber, J.L., Layberry, R.L., and Gogineni, S.P. (2001) A new ice thickness and bedrock data set for the Greenland Ice Sheet, 1: Measurement, data reduction, and errors. Journal of Geophysical Research, 106(D4), 33773–33780.

    Google Scholar 

  • Banta, J.R., and McConnell, J.R. (2007) Annual accumu-lation over recent centuries at four sites in central Greenland. Journal of Geophysical Research, 112(D10114).

    Google Scholar 

  • Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K., Remy, F., and Legresy, B. (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment, 95(1), 14–28.

    Google Scholar 

  • Bhattacharya, I., Jezek, K.C., Wang, L., and Liu, H. (2009) Surface melt area variability of the Greenland ice sheet: 1979-2008. Geophysical Research Letters, 36(L20502), doi: 10.1029/2009GL039,798.

  • Bindoff, N„ and Willebrand, J. (2007) Observations: Oceanic climate change and sea level, Climate Change 2007: Working Group I: The Physical Science Basis, Intergovernmental Panel on Climate Change (IPCC), Washington, D.C., p. 48.

    Google Scholar 

  • Bindschadler, R.A., and Scambos, T. (1991) Satellite- image-derived velocity field of an Antarctic Ice Stream. Science, 252, 242–246.

    Google Scholar 

  • Box, J.E., Bromwich, D.H., Veenhuis, B.A., Bai, L.S., and Wang, S.H. (2006) Greenland ice sheet surface mass balance variability (1988-2004) from calibrated Polar MM5 output. Journal of Climate, 19(12), 2783–2800.

    Google Scholar 

  • Chen, J., Wilson, C., and Tapley, B. (2006) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, 313(5795), 1958–1960.

    Google Scholar 

  • Chen, J.L., Wilson, C.R., and Tapley, B.D. (2011) Inter- annual variability of Greenland ice losses from satellite gravimetry. Journal of Geophysical Research, 116(B7).

    Google Scholar 

  • Christensen, E.L., Reeh, N., Forsberg, R., Jorgensen, J.H., Skou, N., and Woelders, K. (2000) A low-cost glacier-mapping system. Journal of Glaciology, 46(154), 531-537, doi: 10.3189/172756500781833142.

  • Christoffersan, P., Mugford, R. I., Heywood, K.J., Joughin, I., Dowdeswell, J.A., Syvitski, J.P.M., Luck- man, A., and Benham, T.J. (2011) Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmo-spheric conditions. The Cryosphere, 5, 701–714.

    Google Scholar 

  • Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., Woodworth, P.L., Anisimov, O.A. et al. (2001) Changes in sea level. In: J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (Eds.), Climate Change 2001: The Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cam-bridge, U.K.

    Google Scholar 

  • Citterio, M., and Ahlstrøm, A.P. (2013) (Brief commun-ication) The aerophotogrammetric map of Greenland ice masses. The Cryosphere, 7(2), 445–449.

    Google Scholar 

  • Citterio, M., Mottram, R., Larsen, S.H., and Ahlstrøm, A. (2009) Glaciological investigations at the Malm- bjerg mining prospect, central East Greenland. Geo-logical Survey of Denmark and Greenland Bulletin, 17.

    Google Scholar 

  • Dall, J., Madsen, S.N., Keller, K., and Forsberg, R. (2001) Topography and penetration of the Greenland Ice Sheet measured with airborne SAR interferometry. Geophysical Research Letters, 28(9), doi: 10.1029/ 2000GL011,787.

    Google Scholar 

  • De Angelis, H. (2003) Glacier surge after ice shelf col-lapse. Science, 299(5612), 1560–1562.

    Google Scholar 

  • de Juan, J., Elósegui, P., Nettles, M., Larsen, T.B., Davis, J.L., Hamilton, G.S., Stearns, L.A., Andersen, M.L., Ekström, G., Ahlstrøm, A.P. et al. (2010) Sudden increase in tidal response linked to calving and accel-eration at a large Greenland outlet glacier. Geophysical Research Letters, 37(12), L12,501.

    Google Scholar 

  • Dwyer, J. (1995) Mapping tide-water glacier dynamics in East Greenland using Landsat data. Journal of Glaciol-ogy, 41, 584–595.

    Google Scholar 

  • Eisen, O., Frezzotti, M., Genthon, C., Isaksson, E., Magand, O., van den Broeke, M.R., Dixon, D.A., Ekaykin, A., Holmlund, P., Kameda, T. et al. (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Reviews of Geophysics, 46(RG2001), 139.

    Google Scholar 

  • Elósegui, P., Davis, J.L., Johansson, J.M., and Shapiro, I. (1996) Detection of transient motions with the Global Positioning System. Journal of Geophysical Research, 101(B5), 11249–11262.

    Google Scholar 

  • Elósegui, P., Davis, J.L., Oberlander, D., Baena, R., and Ekström, G. (2006) Accuracy of high-rate GPS for seismology. Geophysical Research Letters, 33(L11308), doi: 10.1029/2006GL026065.

  • Ettema, J., van den Broeke, M.R., Van Meijgaard, E., Van De Berg, W.J., Bamber, J.L., Box, J.E., and Bales, R.C. (2009) Higher surface mass balance of the Green-land ice sheet revealed by high-resolution climate modeling. Geophysical Research Letters, 36(12), 1–5.

    Google Scholar 

  • Ewert, H., Groh, A., and Dietrich, R. (2011) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. Journal of Geodynamics, doi: 10.1016/j.jog.2011.06.003.

  • Ferrigno, J.G., Lucchitta, B.K., Mullins, K.F., Allison, A.L., Alen, R.J., and Gould, W.G. (1993) Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data. Annals of Glaciology, 17, 239–244.

    Google Scholar 

  • Fettweis, X., Van Ypersele, J.-P., Gallée, H., Lefebre, F., and Lefebvre, W. (2007) The 1979-2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algo-rithm. Geophysical Research Letters, 34(5), 5.

    Google Scholar 

  • Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J. (2011) Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models. The Cryosphere, 5, 359–375.

    Google Scholar 

  • Fujisada, H., Bailey, G., Kelly, G., Hara, S., and Abrams, M. (2005) ASTER DEM performance. IEEE Transac-tions on Geoscience and Remote Sensing, 43(12), 2707–2714.

    Google Scholar 

  • Furbish, D.J., and Andrews, J.T. (1984) The use of hyp- sometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology, 41(139), 199–211.

    Google Scholar 

  • Gillett, N.P., Stone, D.A., Stott, P.A., Nozawa, T., Kar- pechko, A.Y., Hegerl, G.C., Wehner, M.F., and Jones, P.D. (2008) Attribution of polar warming to human influence. Nature Geoscience, 1(11), 750-754.

    Google Scholar 

  • Gregory, J., Huybrechts, P., and Raper, S. (2004) Threatened loss of the Greenland Ice Sheet. Nature—News&Views, 428, 616.

    Google Scholar 

  • Hall, D.K., Williams, J.R.S., Luthcke, S.B., and Digirolamo, N.E. (2008) Greenland ice sheet surface temperature, melt and mass loss: 2000–06. Journal of Glaciology, 54(184), 81–93.

    Google Scholar 

  • Hamilton, G., and Whillans, I. (2000) Point measure-ments of mass balance of the Greenland Ice Sheet using precision vertical Global Positioning System (GPS) survey. Journal of Geophysical Research, 105(B7), 16295–16301.

    Google Scholar 

  • Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., and Stephens, A. (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. Journal of Geophysical Research, 110(D13108).

    Google Scholar 

  • Hanna, E., McConnell, J., Das, S., Cappelen, J., and Stephens, A.G. (2006) Observed and modeled Green-land Ice Sheet snow accumulation, 1958–2003, and links with regional climate forcing. Journal of Climate, 19, 344–358.

    Google Scholar 

  • Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M. (2008) Increased runoff from melt from the Greenland Ice Sheet: A response to global warm-ing. Journal of Climate, 21(2), 331–341.

    Google Scholar 

  • Holland, D., Thomas, R., de Young, B., and Ribergaard, M. (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience, 1, 659–664.

    Google Scholar 

  • Howat, I.M., Joughin, I., Tulaczyk, S., and Gogineni, S. (2005) Rapid retreat and acceleration of Helheim Glacier, East Greenland. Geophysical Research Letters, 32(L22502), doi: 10.1029/2005GL024,737.

  • Howat, I., Joughin, I., and Scambos, T. (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 607, doi: 10.1126/science.1138478.

  • Howat, I.M., Box, J.E., and Ahn, Y. (2011) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. Journal of Glaciology, 56(198), 113.

    Google Scholar 

  • Jiskoot, H. (2002) Central East Greenland GLIMS Glacier Database, Digital Media, National Snow and Ice Data Center/World Data Center for Glaciology.

    Google Scholar 

  • Jiskoot, H., and Juhlin, D.T. (2009) Surge of a small East Greenland glacier, 2001-2007, suggests Svalbard-type surge mechanism. Journal of Glaciology, 55(181), 567-570.

    Google Scholar 

  • Jiskoot, H., Pedersen, A.K., and Murray, T. (2001) Multi-model photogrammetric analysis of the 1990s surge of Sortebrs, East Greenland. Journal of Glaciol-ogy, 47(159), 677–687.

    Google Scholar 

  • Jiskoot, H., Murray, T., and Luckman, A. (2003) Surge potential and drainage basin characteristics in East Greenland. Annals of Glaciology, 36, 142–148.

    Google Scholar 

  • Jiskoot, H., Curran, C.M., Tessler, D.L., and Shenton, L.R. (2009) Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, length-slope and area-aspect relations. Annals of Glaciology, 50(53), 133–143.

    Google Scholar 

  • Jiskoot, H., Juhlin, D., Citterio, M., and St. Pierre, H. (2012) Tidewater glacier fluctuations in central East Greenland coastal and fjord regions (1980 s-2005). Annals of Glaciology, 53(60), 35–44.

    Google Scholar 

  • Joughin, I., Gray, L., Bindschadler, R., Price, S., Morse, D., Hulbe, C., Mattar, K., and Werner, C. (1999) Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286(5438), 283–286.

    Google Scholar 

  • Joughin, I., Abdalati, W., and Fahnestock, M. (2004) Large fluctuations in speed on Greenland’s Jakobs-havn Isbrffi glacier. Nature, 432, 608–610.

    Google Scholar 

  • Joughin, I., Smith, B.E., Howat, I.M., Scambos, T., and Moon, T. (2010) Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology, 56(197), 415–430.

    Google Scholar 

  • Kääb, A. (2002) Monitoring high-mountain terrain deformation from air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing, 57(1/2), 39–52.

    Google Scholar 

  • Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J. (2002) Glacier monitoring from ASTER imagery: Accuracy and applications. Paper presented at Proceedings of EARSeL LISSIG Workshop: Observing Our Cryosphere from Space, p. 43.

    Google Scholar 

  • Kargel, J.S., Ahlstrøm, A.P., Alley, R.B., Bamber, J.L., Benham, T.J., Box, J.E., Chen, C., Christoffersen, P., Citterio, M., Cogley, J.G. et al. (2012) (Brief commun-ication) Greenland’s shrinking ice cover: Fast times but not that fast. The Cryosphere, 6, 533–537.

    Google Scholar 

  • Khan, S.A., Wahr, J., Bevis, M., Velicogna, I., and Ken- drick, E. (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys-ical Research Letters, 37(6), L06,501.

    Google Scholar 

  • Kirchner, G. (1963) Observations at bore holes sunk through the Schuchert Gletscher in north-east Green-land. Journal of Glaciology, 4(36), 817–818.

    Google Scholar 

  • Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Sonntag, J., Swift, R., Wright, W., and Yungel, J. (2000) Greenland ice sheet: High elevation balance and peripheral thinning. Science, 289(5478), 428–430.

    Google Scholar 

  • Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., and Sonntag, J. (2004) Greenland Ice Sheet: Increased coastal thinning. Geophysical Research Letters, 31(L24402).

    Google Scholar 

  • Lemke, P. (2007) Changes in snow, ice, and frozen ground, Climate Change 2007: Working Group I: The Physical Science Basis, Intergovernmental Panel on Climate Change (IPCC), Washington, D.C., p. 48.

    Google Scholar 

  • Lichten, S.M., and Border, J.S. (1987) Strategies for high- precision Global Positioning System orbit determina-tion. Journal of Geophysical Research, 92, 12751–12762.

    Google Scholar 

  • Lie, Ø., and Paasche, Ø. (2006) How extreme was north-ern hemisphere seasonality during the Younger Dryas? Quaternary Science Reviews, 25, 404–407.

    Google Scholar 

  • Lucchitta, B., and Ferguson, H. (1986) Antarctica: Measuring glacier velocity from satellite images. Science, 234, 1105–1108.

    Google Scholar 

  • Luckman, A., and Murray, T. (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbrs, Green-land. Geophysical Research Letters, 32(L08501).

    Google Scholar 

  • Luckman, A., Murray, T., Jiskoot, H., Pritchard, H., and Strozzi, T. (2003) Automatic feature-tracing measure-ment of outlet glacier velocities on a regional scale in East Greenland. Annals of Glaciology, 36, 129–134.

    Google Scholar 

  • Luckman, A., Murray, T., de Lange, R., and Hanna, E. (2006) Rapid and synchronous ice-dynamic changes in East Greenland. Geophysical Research Letters, 33(L03503).

    Google Scholar 

  • Luthcke, S., Zwally, H., Abdalati, W., Rowlands, D., Ray, R., Nerem, R., Lemoine, F., McCarthy, J., and Chinn, D. (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(1286), 5.

    Google Scholar 

  • Mernild, S.H., Liston, G.E., and Hasholt, B. (2008) East Greenland freshwater runoff to the Greenland- Iceland-Norwegian Seas 1999-2004 and 2071-2100. Hydrological Processes, 22(23), 4571–4586.

    Google Scholar 

  • Mernild, S.H., Mote, T.L., and Liston, G.E. (2011) Greenland ice sheet surface melt extent and trends: 1960-2010. Journal of Glaciology, 57(204), 621–628.

    Google Scholar 

  • Mote, T.L. (2007) Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophysical Research Letters, 34(L22507).

    Google Scholar 

  • Murray, T., Sharrer, K., James, T.D., Dye, S.R., Hanna, E., Selmes, N., Luckman, A., Hughes, A.L.C., Cook, S., and Huybrechts, P. (2010) Ocean regulation hypothesis for glacier dynamics in southeast Green-land and implications for ice sheet mass changes. Journal of Geophysical Research, 115(F03026), doi: 10.1029/2009JF001522.

  • Parizek, B., and Alley, R. (2004) Implications of increased Greenland surface melt under global- warming scenarios: ice-sheet simulations. Quaternary Science Reviews, 23(9/10), 1013–1027.

    Google Scholar 

  • Paterson, W. (1994) The Physics of Glaciers (Third Edi-tion), Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Paul, F., Huggel, C., and Kääb, A. (2004) Combining satellite multispectral image data and a digital eleva-tion model for mapping debris-covered glaciers. Remote Sensing of Environment, 89, 510–518.

    Google Scholar 

  • Paul, F., Barry, R.G., Cogley, J.G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C.S.L., Raup, B., Rivera, A., and Zemp, M. (2009) Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119–126.

    Google Scholar 

  • Polyakov, I., Alekseev, G., Timokhov, L., Bhatt, U., Simmons, H., Walsh, D., Walsh, J., and Zakharov, V. (2004) Variability of the Intermediate Atlantic Water of the Arctic Ocean over the last 100 years. Journal of Climate, 17, 4485–4497.

    Google Scholar 

  • Price, S., Payne, A.J., Howat, I.M., and Smith, B. (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proceedings National Academy Sciences U.S.A., 108, 1–6.

    Google Scholar 

  • Pritchard, H., Murray, T., Strozzi, T., Barr, S., and Luckman, A. (2003) Glacier surge-related topographic change derived from Synthetic Aperture Radar inter- ferometry. Journal of Glaciology, 49(166), 381–390.

    Google Scholar 

  • Pritchard, H.D., Murray, T., Luckman, A., Strozzi, T., and Barr, S. (2005) Glacier surge dynamics of Sortebrs, East Greenland, from synthetic aperture radar feature tracking. Journal of Geophysical Research, 110(F03005).

    Google Scholar 

  • Ramillien, G., Lombard, A., Cazenave, A., Ivins, E., Llubes, M., Remy, F., and Biancale, R. (2006) Inter- annual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global and Planetary Change, 53(3), 198–208.

    Google Scholar 

  • Raper, S.C.B., and Braithwaite, R.J. (2009) Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. The Cryosphere, 3, 183–194.

    Google Scholar 

  • Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., and Paul, F. (2012) The first complete inventory of the local glaciers and ice caps on Greenland. The Cryo-sphere, 6(6), 1483–1495.

    Google Scholar 

  • Raup, B.H., Kieffer, H.H., Hare, T.M., and Kargel, J.S. (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: Glaciers. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 1105–1112.

    Google Scholar 

  • Rennermalm, A.K., Smith, L.C., Stroeve, J.C., and Chu, V.W. (2009) Does sea ice influence Greenland ice sheet surface-melt? Environmental Research Letters, 4(024011), doi: 10.1088/17489326/4/2/024,011.

  • Rignot, E., and Kanagaratnam, P. (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986–990.

    Google Scholar 

  • Rignot, E., Velicogna, I., van den Broeke, M.R., Monaghan, A., and Lenaerts J. (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5), L05,503, doi: 10.1029/2011GL046,583.

  • Rivera, A., Casassa, G., Bamber, J., and Kääb, A. (2005) Ice-elevation changes of Glaciar Chico, southern Pata-gonia, using ASTER DEMs, aerial photographs and GPS data. Journal of Glaciology, 51(172), 105–112.

    Google Scholar 

  • Scambos, T., and Fahnestock, M.A. (1998) Improving digital elevation models over ice sheets using AVHRR-based photoclinometry. Journal of Glaciol-ogy, 44(146), 97–103.

    Google Scholar 

  • Scambos, T., Dutkiewicz, M., Wilson, J., and Bind- schadler, R. (1992) Application of image cross- correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environ-ment, 42(3), 177–186.

    Google Scholar 

  • Schrama, E.J.O., and Wouters, B. (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. Journal of Geophysical Research, 116(B2), B02,407.

    Google Scholar 

  • Serreze, M., Holland, M., and Stroeve, J. (2007) Perspec-tives on the Arctic’s shrinking sea-ice cover. Science— Perspectives, 315, 1533–1536.

    Google Scholar 

  • Shepherd, A., Wingham, D., Mansley, J., and Corr, H. (2001) Inland thinning of Pine Island Glacier, West Antarctica. Science, 291(5505), 862–864.

    Google Scholar 

  • Slobbe, D.C., Ditmar, P., and Lindenbergh, R.C. (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophysical Journal International, 176(1), 95–106.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H. (Eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Stearns, L., Hamilton, G., and Reeh, N. (2005) Multi- decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements. Annals of Glaciology, 42(1), 53–58.

    Google Scholar 

  • Stearns, L.A., and Hamilton, G.S. (2007) Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geo-physical Research Letters, 34(L05503), doi: 10.1029/ 2006GL028982.

    Google Scholar 

  • Steffen, K. (2004) The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive micro-wave satellite observations. Geophysical Research Let-ters, 31(L20402).

    Google Scholar 

  • Stevens, N., Garbeil, H., and Mouginis-Mark, P. (2004) NASA EOS Terra ASTER: Volcanic topographic mapping and capability. Remote Sensing of Environ-ment, 90(3), 405–414.

    Google Scholar 

  • Straneo, F., Hamilton, G.S., Sutherland, D.A., Stearns, L.A., Davidson, F., Hammill, M.O., Stenson, G.B., and Rosing-Asvid, A. (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geoscience, 3(3), 1–5.

    Google Scholar 

  • Straneo, F., Curry, R., Sutherland, D., Hamilton, G.S., Cenedese, C., Våge, K., and Stearns, L.A. (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geoscience, 4, 322–327.

    Google Scholar 

  • Tedesco, M. (2007) Snowmelt detection over the Green-land ice sheet from SSM/I brightness temperature daily variations. Geophysical Research Letters, 34(2), 6.

    Google Scholar 

  • Tedesco, M., Fettweis, X., van den Broeke, M.R., Van De Wal, R.S.W., Smeets, C.J.P.P., Van De Berg, W.J., Serreze, M.C., and Box J.E. (2011) The role of albedo and accumulation in the 2010 melting record in Green-land. Environmental Research Letters, 6(1), 014,005.

    Google Scholar 

  • Thomas, R., Csatho, B., Davis, C., Kim, C., Krabill, W., Manizade, S., McConnell, J., and Sonntag, J. (2001) Mass balance of higher-elevation parts of the Green-land ice sheet. Journal of Geophysical Research, 106(D24), 33707–33716.

    Google Scholar 

  • Thomas, R., Abdalati, E., Frederick, E., Krabill, W., Manizade, S., and Steffen, K. (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland. Journal of Glaciology, 49(165), 231–239.

    Google Scholar 

  • Thomas, R., Fredrick, E., Krabill, W., Manizade, S., and Martin, C. (2006) Progressive increase in ice loss from Greenland. Geophysical Research Letters, 33(L10503), 4.

    Google Scholar 

  • Thomas, R., Frederick, E., Krabill, W., Manizade, S., and Martin, C. (2009) Recent changes on Greenland outlet glaciers. Journal of Glaciology, 55(189), 147–162.

    Google Scholar 

  • van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., Van De Berg, W.J., Van Meijgaard, E., Velicogna, I., and Wouters, B. (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984–986.

    Google Scholar 

  • Velicogna, I. (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36(19), L19,503.

    Google Scholar 

  • Velicogna, I., Wahr, J., Hanna, E., and Huybrechts, P. (2005) Short term mass variability in Greenland, from GRACE. Geophysical Research Letters, 32(L05501).

    Google Scholar 

  • Vignon, F., Arnaud, Y., and Kaser, G. (2003) Quantifica-tion of glacier volume change using topographic and ASTER DEMs. Paper presented at Geoscience and Remote Sensing Symposium, IGARSS’03, Proceedings. 2003 IEEE International, 4, 2605–2607.

    Google Scholar 

  • Weidick, A. (1988) Surging Glaciers in Greenland: A Status Report (Tech. Rep. 140), Rapport Gronlands Geologiske Undersogels.

    Google Scholar 

  • Weidick, A. (1995) Satellite Image Atlas of Glaciers of the World: Greenland (Tech. Rep. 1386-C), U.S. Geo-logical Survey Professional Paper.

    Google Scholar 

  • Whillans, I.M., and Tseng, Y.H. (1995) Automatic track-ing of crevasses on satellite images. Cold Regions Science and Technology, 23, 201–214.

    Google Scholar 

  • Wingham, D., Shepherd, A., Muir, A., and Marshall, G. (2006) Mass balance of the Antarctic ice sheet. Philo-sophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences, 364(1844), 1627–1635.

    Google Scholar 

  • Wouters, B., Chambers, D., and Schrama, E.J.O. (2008) GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(L20501).

    Google Scholar 

  • Wuite, J. (2006) Spatial and temporal dynamics of three East Antarctic outlet glaciers and their floating ice tongues, Ph.D. thesis, The Ohio State University.

    Google Scholar 

  • Yde, J. (2011) Greenland glaciers outside the ice sheet. In: V.P. Singh, P. Singh, and U.K. Haritashya (Eds.), Encyclopedia of Snow, Ice and Glaciers (Encyclopedia of Earth Sciences Series), Springer-Verlag, Berlin.

    Google Scholar 

  • Zwally, H., and Giovinetto, M. (2001) Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. Journal of Geophysical Research, 106(D24), 33717–33728.

    Google Scholar 

  • Zwally, H.J., and Li, J. (2002) Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. Journal of Glaciology, 48(161), 199–207.

    Google Scholar 

Download references

Acknowledgments

L.A.S. partially carried out her work at the University of Maine and thanks Gordon S. Hamilton for collaborative input. Research support for L.A.S. was provided by NASA grant NNX08AD38G awarded to G.S. Hamilton. H.J. thanks her student Dan Junlin for assistance with glacier inventory development and analysis. Research support to H.J. was through NSERC Discovery and NSERC UFA grants. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stearns, L.A., Jiskoot, H. (2014). Glacier fluctuations and dynamics around the margin of the Greenland Ice Sheet. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_8

Download citation

Publish with us

Policies and ethics