Skip to main content

Monitoring Glacier Changes on the Antarctic Peninsula

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Abstract

The Antarctic Peninsula has exhibited some of the most spectacular changes observed in glacial systems in recent decades. The events include disintegration of ice shelves, acceleration and thinning of glaciers, variations in the limits between glacier facies, and retreat of glacier fronts. However, due to the lack of both consistent systematic observations of the glacial systems and information on their boundary conditions, it is difficult to accurately predict the contribution of Antarctic Peninsula glaciers to sea level rise and further responses of these ice masses to climatic and oceanographic changes. In this context, the activities of the GLIMS Regional Center for the Antarctic Peninsula and its network of international collaborators are based on the use of various types of Earth observation imagery, mainly optical and radar data. Although a complete glacier inventory is still lacking, we present the results of changes in glacier frontal positions and boundaries of glacier facies as well as links to dynamical adjustments for various locations in the Antarctic Peninsula’s ice masses. Evaluation of Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) digital elevation models generated for the Antarctic Peninsula is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arigony-Neto, J., Rau, F., Saurer, H., Jaña, R., Simões, J.C., and Vogt, S. (2007) A time series of SAR data for monitoring changes in boundaries of glacier zones on the Antarctic Peninsula. Annals of Glaciology, 46, 55–60.

    Google Scholar 

  • Arigony-Neto, J., Saurer, H., Simões, J.C., Rau, F., Jaña, R., Vogt, S., and Gossmann, H. (2009) Spatial and temporal changes in dry-snow line altitude on the Antarctic Peninsula. Climatic Change, 94, 19–33.

    Google Scholar 

  • Bamber, J., and Gomez-Dans, J.L. (2005) The accuracy of digital elevation models of the Antarctic Continent. Earth and Planetary Science Letters, 237, 516–523.

    Google Scholar 

  • Benn, D.I., Warren, C.R., and Mottram, R.H. (2007) Calving processes and the dynamics of calving glaciers. Earth Science Reviews, 82, 143–179.

    Google Scholar 

  • Birkenmaier, K. (1994) Evolution of the Pacific margin of the northern Antarctic Peninsula: An overview. Geologische Rundschau, 83(2), 309–321.

    Google Scholar 

  • Braun, M., and Goßmann, H. (2002) Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. In: I. Beyer and M. Bolter (Eds.), Geoecology of Antarctic Ice-Free Coastal Landscapes, Springer Verlag, Heidelberg, Germany, pp. 75–89.

    Google Scholar 

  • Braun, M., and Humbert, A. (2009) Recent retreat of Wilkins Ice Shelf reveals new insights in ice shelf break-up mechanisms. Geosciences and Remote Sensing Letters, 6(2), 263–267, doi: 10.1109/LGRS.2008. 2011925.

  • Braun, M., Rau, F., Saurer, H., and Goßmann, H. (2000) Development of radar glacier zones on the King George Island ice cap, Antarctica, during the austral summer 1996/97 as observed in ERS-2 SAR-data. Annals of Glaciology, 31, 357–363.

    Google Scholar 

  • Braun, M., Humbert, A., and Moll, A. (2009) Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere Discussions, 3, 41–56.

    Google Scholar 

  • Calvet, J., Garcia Sellés, D., and Corbera, J. (1999) Fluctuaciones de la extension del casquete glacial de la isla Livingston (Shetland del Sur) desde 1956 hasta 1996. Acta Geologica Hispanica, 34(4), 365–374 [in Spanish].

    Google Scholar 

  • Chen, J.L., Wilson, C.R., Blankenship, D., and Tapley, B.D. (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, doi: 10.1038/NGE0694.

  • Cook, A.J., and Vaughan, D.G. (2010) Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere Discussions, 3, 579–630.

    Google Scholar 

  • Cook, A.J., Fox, A.J., Vaughan, D.G., and Ferrigno, J.G. (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541–544.

    Google Scholar 

  • De Angelis, H., and Skvarca, P. (2003) Glacier surge after ice shelf collapse. Science, 299, 1560–1562.

    Google Scholar 

  • Doake, C.S.M., and Vaughan, D.G. (1991) Rapid disintegration of Wordie Ice Shelf in response to atmospheric warming. Nature, 350, 328–330.

    Google Scholar 

  • Fahnestock, M.A., Abdalati, W., and Shuman, C.A. (2002) Long melt seasons on ice shelves of the Antarctic Peninsula: An analysis using satellite-based microwave emission measurements. Annals of Glaciology, 34, 127–133.

    Google Scholar 

  • Glasser, N.F., and Scambos, T.A. (2008) A structural glaciological analysis of the 2002 Larsen B Ice Shelf collapse. Journal of Glaciology, 54(184), 3–16.

    Google Scholar 

  • Guttenberg, N., Abbot, D.S., Amundson, J.M., Burton, J.C., Cathles, L.M., MacAyeal, D.R., and Zhang, W.W. (2011) A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration. Annals of Glaciology, 52(59), 51–59.

    Google Scholar 

  • Hambrey, M.J., Smellie, J.L., Nelson, A.E., and Johnson, J.S. (2008) Late Cenozoic glacier-volcano interaction on James Ross Island and adjacent areas, Antarctic Peninsula region. Geological Society of America Bulletin, 120(5/6), 709–731.

    Google Scholar 

  • Harrison, C.G.A., Barron, E.J., and Hay, W.W. (1979) Mesozoic evolution of the Antarctic Peninsula and the southern Andes. Geology, 7(8), 374–378.

    Google Scholar 

  • Humbert, A., and Braun, M. (2008) Wilkins Ice Shelf: Break-up along failure zones. Journal of Glaciology, 54(188), 943–944.

    Google Scholar 

  • Humbert, A., Gross, D., Miiller, R., Braun, M., van de Wal, R.S.W., van den Broeke, M.R., Vaughan, D.G., and van de Berg, W.J. (2010) Deformation and failure of the ice bridge on Wilkins Ice Shelf, Antarctica. Annals of Glaciology, 51(55), 49–55.

    Google Scholar 

  • IfPK TUD (1999) Aerial Photo Map—1:50.000: Base General San Martin, Baie Marguerite, Antarctic Peninsula (produced by the Dynamische Prozesse in antark- tischen Geosystemen, DYPAG, research project done in collaboration with the Bundesamt fur Kartographie und Geodasie, BKG, and the Institut fur Physische Geographie, IPG), Albert-Ludwigs-Universitat Freiburg and supported by the Bundesministerium fur Bildung, Wissenschaft Forschung und Technologie), Institut fur Photogrammetrie und Kartographie Tech- nische, Universitat Darmstadt, Germany.

    Google Scholar 

  • Kääb, A. (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94, 463–474.

    Google Scholar 

  • Kargel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kaab, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005) Multispectral imaging contributions to Global Land Ice Measurements from Space. Remote Sensing of Environment, 99, 187–219.

    Google Scholar 

  • Laur, H., Bally, P., Meadows, P., Sanchez, J., Schattler, B., Lopinto, E., and Esteban, D. (2004) Derivation of the Backscattering Coefficient σ 0 in ESA ERS SAR PRI Products (ESA/ESRIN, ESTN-RS-PM-HL09, Issue 2, Rev. 5f), ESA European Space Research Institute (ESRIN), Frascati, Italy, 53 pp.

    Google Scholar 

  • Lawyer, L.A. (2009) Distributed, active extension in Bransfield Basin, Antarctic Peninsula: Evidence from multibeam bathymetry. Geological Society of America Today, 6(11), 1–6.

    Google Scholar 

  • Liu, H., Jezek, K., and Li, B. (1999) Development of Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach. Journal of Geophysical Research, 104, 23199–23213.

    Google Scholar 

  • Liu, H., Jezek, K., Li, B., and Zhao, Z. (2001) Radarsat Antarctic Mapping Project Digital Elevation Model Version 2, National Snow and Ice Data Center, Boulder, C0 [digital media].

    Google Scholar 

  • Lucchita, B.K., and Rosanova, C.E. (1998) Retreat of northern margins of Georg VI and Wilkins Ice Shelves, Antarctic Peninsula. Annals of Glaciology, 27, 41–46.

    Google Scholar 

  • MacAyeal, D.R., Scambos, T.A., Hulbe, C., and Fahne- stock, M.A. (2003) Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. Journal of Glaciology, 49, 22–36.

    Google Scholar 

  • MacAyeal, D.R., Okal, E.A., Aster, R.C., and Bassis, J.N. (2009) Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. Journal of Glaciology, 55(190), 193–206.

    Google Scholar 

  • Marshall, G.J., Lagun, V., and Lachlan-Cope, T.A. (2002) Changes in Antarctic Peninsula tropospheric temperatures from 1956 to 1999: A synthesis of observations and reanalysis data. International Journal of Climatology, 22(3), 291–310.

    Google Scholar 

  • Meadows, P., Laur, H., and Schattler, B. (1998) The calibration of ERS SAR imagery for land applications. In: M. Borgeaud and T.D. Guyenne (Eds.), Retrieval of Bio-and Geo-Physical Parameters from SAR Data for Land Applications: Proceedings of the Second International Workshop, October 21-23, 1998 (ESA SP- 441), ESA/ESTEC, Noordwijk, The Netherlands, pp. 35–42.

    Google Scholar 

  • Millar, I.L., Pankhurst, R.J., and Fanning, C.M. (2002) Basement chronology of the Antarctic Peninsula: Recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, 159, 145–157.

    Google Scholar 

  • Morris, E.M., and Vaughan, D.G. (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. In: E. Domack, A. Leventer, A. Burnett, R. Bindschadler, P. Convey, and M. Kirby (Eds.), Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (Antarctic Research Series Vol. 79), American Geophysical Union, Washington, D.C., pp. 61–68.

    Google Scholar 

  • Park, B.-K., Chang, S.-K., Yoon, H.I., and Chung, H. (1998) Recent retreat of ice cliffs, King George Island, South Shetland Islands, Antarctic Peninsula. Annals of Glaciology, 27, 633–635.

    Google Scholar 

  • Paul, F. (2001) Evaluation of different methods for glacier mapping using Landsat TM. EARSeL eProceedings, 1, 239–245.

    Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. (2002) The new remote-sensing-derived Swiss glacier inventory, I: Methods. Annals of Glaciology, 34, 355–361.

    Google Scholar 

  • Peel, D.A. (1992) Spatial temperature and accumulation rate variations in the Antarctic Peninsula. In: E.M. Morris (Ed.), The Contribution of Antarctic Peninsula Ice to Sea Kevel Rise (BAS Ice & Climate Special Report 1), British Antarctic Survey, Cambridge, U.K., pp. 11–15.

    Google Scholar 

  • Pfeffer, W.T. (2003) Tidewater glaciers move at their own pace. Nature, 426(6967), 602.

    Google Scholar 

  • Pritchard, H.D., and Vaughan, D.G. (2007) Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. Journal of Geophysical Research, 112, F03S29.

    Google Scholar 

  • Rack, W., and Rott, H. (2004) Pattern of retreat and disintegration of Larsen B Ice Shelf, Antarctic Peninsula. Annals of Glaciology, 39, 505–510.

    Google Scholar 

  • Rau, F., and Braun, M. (2002) The regional distribution of the dry snow zone on the Antarctic Peninsula north of 70° South. Annals of Glaciology, 34, 95–100.

    Google Scholar 

  • Rau, F., Braun, M., Saurer, H., Goßmann, H., Kothe, G., Weber, F., Ebel, M., and Beppler, D. (2000) Monitoring multi-year snow cover dynamics on the Antarctic Peninsula. Polarforschung, 67(1/2), 27–40.

    Google Scholar 

  • Rau, F., Braun, M., Friedrich, M., Weber, F., and Goßmann, H. (2001) Radar glacier zones and their boundaries as indicators of glacier mass balance and climatic variability. EARSeL eProceedings, 1(1), 317–327.

    Google Scholar 

  • Rau, F., Mauz, F., De Angelis, H., Jaña, R., Arigony Neto, J., Skvarca, P., Vogt, S., Saurer, H., and GoBmann, H. (2004) Variations of glacier frontal positions on the Northern Antarctic Peninsula. Annals of Glaciology, 39, 525–530.

    Google Scholar 

  • Raymond, C., Weertman, B., Thompson, L., Mosley-Thompson, E., Peel, D., and Mulvaney, R. (1996) Geometry, motion and mass balance of Dyer Plateau, Antarctica. Journal of Glaciology, 42, 510–518.

    Google Scholar 

  • Reynolds, J.M. (1981) The distribution of mean annual temperatures in the Antarctic Peninsula. British Antarctic Survey Bulletin, 54, 123–133.

    Google Scholar 

  • Ridley, J. (1993) Surface melting on Antarctic Peninsula ice shelves detected by passive microwave sensors. Geophysical Research Letters, 20(23), 2639–2642.

    Google Scholar 

  • Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R. (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters, 31(18), L18401.

    Google Scholar 

  • Rignot, E., Casassa, G., Gogineni, S., Kanagaratnam, P., Krabill, W., Pritchard, H., Rivera, A., Thomas, R., Turner, J., and Vaughan, D.G. (2005) Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophysical Research Letters, 32(7), L07502.

    Google Scholar 

  • Rott, H., Skvarca, P., and Nagler, T. (1996) Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271, 788–792.

    Google Scholar 

  • Rott, H., Rack, W., Nagler, T., and Skvarca, P. (1998) Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Annals of Glaciology, 27, 86–92.

    Google Scholar 

  • Rott, H., Rack, W., Skvarca, P., and De Angelis, H. (2002) Northern Larsen Ice Shelf: Further retreat after the collapse. Annals of Glaciology, 34, 277–282.

    Google Scholar 

  • Scambos, T.A., Hulbe, C., Fahnestock, M., and Bohlander, J. (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530.

    Google Scholar 

  • Scambos, T.A., Hulbe, C., and Fahnestock, M. (2003) Climate-induced ice shelf disintegration in the Antarctic Peninsula. In: E. Domack, A. Leventer, A. Burnett, R. Bindschadler, P. Convey, and M. Kirby (Eds.), Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (Antarctic Research Series Vol. 79), American Geophysical Union, Washington, D.C., pp. 77–92.

    Google Scholar 

  • Scambos, T.A., Bohlander, J.A., Shuman, C.A., and Skvarca, P. (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31(18), doi: 10.1029/2004GL020670.

  • Scambos, T.A., Fricker, H.A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A.-M. (2009) Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth and Planetary Science Letters, 280(1/4), 51–60.

    Google Scholar 

  • SCAR (2010) Antarctic Digital Database. Available at http://www.add.scar.org [Scientific Committee on Antarctic Research].

  • Shepherd, A., Wingham, D., Payne, T., and Skvarca, P. (2003) Larsen Ice Shelf has progressively thinned. Science, 302(5646), 856–859.

    Google Scholar 

  • Simões, J.C., Bremer, U.F., Aquino, F.E., and Ferron, F.A. (1999) Morphology and variations of glacial drainage basins in King George Island ice field, Antarctica. Annals of Glaciology, 29, 220–224.

    Google Scholar 

  • Skvarca, P. (1993) Fast recession of the northern Larsen Ice Shelf monitored by space images. Annals of Glaciology, 17, 317–321.

    Google Scholar 

  • Skvarca, P., and De Angelis, H. (2003) Impact assessment of regional climatic warming on glaciers and ice shelves of the northeastern Antarctic Peninsula. In: E.W. Domack, A. Leventer, A. Burnett, P. Convey, M. Kirby, and R. Bindschadler (Eds.), Antarctic Peninsula Climate Variability: A Historical and Paleoenviron- mental Perspective (Antarctic Research Series Vol. 79). American Geophysical Union, Washington, D.C., pp. 69–78.

    Google Scholar 

  • Skvarca, P., Rott, H., and Nagler, T. (1995) Satellite imagery, a baseline for glacier variation study on James Ross Island, Antarctica. Annals of Glaciology, 21, 291296.

    Google Scholar 

  • Skvarca, P., Rack, W., Rott, H., and Ibarzaabal y Donangelo, T. (1999) Climatic trend, retreat and disintegration of ice shelves on the Antarctic Peninsula: An overview. Polar Research, 18(2), 151–157.

    Google Scholar 

  • Skvarca, P., De Angelis, H., and Ermolin, E. (2004) Mass balance of “Glaciar Bahia del Diablo’’, Vega Island, Antarctic Peninsula. Annals of Glaciology, 39, 209–213.

    Google Scholar 

  • Smellie, J.L., Hole, M.J., and Nell, P.A.R. (1993) Late Miocene valley-confined subglacial volcanism in northern Alexander Island, Antarctic Peninsula. Bulletin of Volcanology, 55(4), 273–288.

    Google Scholar 

  • Smellie, J.L., Nelson, A.E., Johnson, J.S., McIntosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J., and van Wyk de Vries, B. (2007) Six Million Years of Environmental (Glacial-Interglacial) Conditions Preserved in Volcanic Lithofacies of the James Ross Island Volcanic Group, Northern Antarctic Peninsula (USGS Open-File 1047, Extended Abstract 208), U.S. Geological Survey, Reston, VA and the National Academies, Washington, D.C.

    Google Scholar 

  • Thomas, E.R., Marshall, G.J., and McConnell, J.R. (2008) A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophysical Research Letters, 35, L01706, doi: 10.1029/2007GL032529.

  • Thompson L.G., Peel, D.A., Mosley-Thompson, E., Mulvaney, R., Dai, J., Lin, P.N., Davis, M.E., and Raymond, C.F. (1994) Climate since ad 1510 on Dyer Plateau, Antarctic Peninsula: Evidence for recent climate change. Annals of Glaciology, 20, 420–426.

    Google Scholar 

  • Torinesi, O., Fily, M., and Genthon, C. (2003) Inter- annual variability and trend of the Antarctic Ice Sheet summer melting period from 20 years of spaceborne microwave data. Journal of Climate, 16, 1047–1060.

    Google Scholar 

  • Turner, J., Lachlan-Cope, T.A., Thomas, J.P., and Colwell, S.R. (1995) Synoptic origins of precipitation over the Antarctic Peninsula. Antarctic Science, 7(3), 327–337.

    Google Scholar 

  • Turner, J., Colwell, S.R., and Harangozo, S. (1997) Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research, 102(D12), 13999–14007.

    Google Scholar 

  • Turner, J., Leonard, S., Lachlan-Cope, T.A., and Marshall, G.J. (1998) Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model. Annals of Glaciol- ogy, 27, 591–596.

    Google Scholar 

  • Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A., and Iagovkina, S. (2005) Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279–294.

    Google Scholar 

  • Van den Broeke, M. (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815, doi: 10.1029/ 2005GL023247.

    Google Scholar 

  • Van der Veen, C.J. (1998) Fracture mechanics approach to penetration of bottom crevasses on glaciers. Cold Regions Science and Technology, 27, 213–223.

    Google Scholar 

  • Van der Veen, C.J. (2002) Calving glaciers. Progress in Physical Geography, 26, 96–122.

    Google Scholar 

  • Vaughan, D.G. (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic, and Alpine Research, 38(1), 147–152.

    Google Scholar 

  • Vaughan, D.G., Mantripp, D.R., Sievers, J., and Doake, C.S.M. (1993) Synthesis of remote sensing data on Wilkins Ice Shelf, Antarctica. Annals of Glaciology, 17, 211–218.

    Google Scholar 

  • Vaughan, D.G., and Doake, C.S.M. (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379(6563), 328–331.

    Google Scholar 

  • Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Puldsey, C.J., and Turner, J. (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243–274.

    Google Scholar 

  • Weertman, J. (1973) Can a Water-filled Crevasse Reach the Bottom Surface of a Glacier? (IAHS Publication No. 95), International Association of Hydrological Sciences, Rennes, France, pp. 139–145.

    Google Scholar 

  • Wrobel, B.P., Walter, H., Friehl, M., Hoppe, U., Schluter, M., and Steineck, D. (2000) A topographical data set of the glacier region at San Martin, Marguerite Bay, Antarctic Peninsula, generated by digital photo- grammetry. Polarforschung, 67(1/2), 53–63.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported under grants BR 2105/4-1/2/3 and BR 2105/8-1 from the German Research Foundation, and grants CNPq 480701/2008-3 and CNPq 573720/2008-8 (Brazilian National Institute for Cryospheric Sciences) from the Brazilian National Council for Scientific and Technological Development. TerraSAR-X data were acquired by the TerraSAR-X background mission entitled “Antarctic Peninsula and Antarctic Ice Shelves” as well as under proposal LAN_0013 from the German Aerospace Center (DLR). Envisat ASAR data were kindly provided under ESA IPY AO 4032, ERS-1/2 data were available within the CryoSat Data AO Project 2658, and ASTER data were provided in the context of the GLIMS project. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arigony-Neto, J. et al. (2014). Monitoring Glacier Changes on the Antarctic Peninsula. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_30

Download citation

Publish with us

Policies and ethics