Skip to main content

Mathematical Properties of Quantum Evolution Equations

  • Chapter
Quantum Transport

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1946))

Abstract

This chapter focuses on the mathematical analysis of nonlinear quantum transport equations that appear in the modeling of nano-scale semi-conductor devices. We start with a brief introduction on quantum devices like the resonant tunneling diode and quantum waveguides. For the mathematical analysis of quantum evolution equations we shall mostly focus on whole space problems to avoid the technicalities due to boundary conditions. We shall discuss three different quantum descriptions: Schrödinger wave functions, density matrices, and Wigner functions. For the Schrödinger–Poisson analysis (in H 1 and L 2) we present Strichartz inequalities. As for density matrices, we discuss both closed and open quantum systems (in Lindblad form). Their evolution is analyzed in the space of trace class operators and energy subspaces, employing Lieb–Thirring-type inequalities. For the analysis of the Wigner–Poisson–Fokker–Planck system we shall first derive (quantum) kinetic dispersion estimates (for Vlasov–Poisson and Wigner–Poisson). The large-time behavior of the linear Wigner–Fokker–Planck equation is based on the (parabolic) entropy method. Finally, we discuss boundary value problems in the Wigner framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., and Schädle A.: A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations. Commun. Compound. Phys. 4, Nr. 4, 729–796 (2008)

    Google Scholar 

  2. Arnold, A., Carrillo, J.A., Dhamo, E.: The periodic Wigner-Poisson-Fokker-Planck system. JMAA, 275, 263–276 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Arnold, A., Carrillo, J.A., Tidriri, M.D.: Large-time behavior of discrete kinetic equations with non-symmetric interactions. Math. Models Meth. Appl. Sc., 12, no.11, 1555–1564 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, A., Dhamo, E., Manzini, C.: The Wigner-Poisson-Fokker-Planck system: global-in-time solutions and dispersive effects. Annales de l’IHP (C) - Analyse non linéaire 24, no.4, 645–676 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, A., Dhamo, E., Manzini, C.: Dispersive effects in quantum kinetic equations. Indiana Univ. Math. J., 56, no.3, 1299–1331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press (2001)

    Google Scholar 

  7. Arnold, A., Gamba, I.M., Gualdani, M.P., Sparber, C.: The Wigner-Fokker-Planck equation: Stationary states and large time behavior. Submitted (2007)

    Google Scholar 

  8. Arnold, A., Jüngel, A.: Multi-scale modeling of quantum semiconductor devices., p. 331–363 in: Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke (Ed.), Springer, Berlin-Heidelberg (2006)

    Chapter  Google Scholar 

  9. Attal, S., Joye, A., Pillet, C.A. (Eds.): Open Quantum Systems I-III - Lecture Notes in Mathematics, 1880–1882, Springer, Berlin-Heidelberg (2006)

    Google Scholar 

  10. Arnold, A., López, J.L., Markowich, P., Soler, J.: An analysis of quantum Fokker-Planck models: A Wigner function approach. Revista Matem. Iberoam., 20, no.3, 771–814 (2004)

    MATH  Google Scholar 

  11. Arnold, A., Lange, H., Zweifel, P.F.: A discrete-velocity, stationary Wigner equation. J. Math. Phys., 41, no.11, 7167–7180 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: Comm. PDE, 26, no.1–2, 43–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Arnold, A., Nier, F.: The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case. Math. Meth. Appl. Sc., 14, 595–613 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Arnold, A.: Self-consistent relaxation-time models in quantum mechanics. Comm. PDE, 21, no.3&4, 473–506 (1996)

    Article  MATH  Google Scholar 

  15. Arnold, A.: The relaxation-time von Neumann-Poisson equation. Proceedings of ICIAM 95, Hamburg (1995), Mahrenholtz, O., Mennicken, R. (eds.); ZAMM 76 S2 (1996)

    Google Scholar 

  16. Arnold, A.: Mathematical concepts of open quantum boundary conditions. Transp. Theory Stat. Phys., 30, no.4–6, 561–584 (2001)

    Article  MATH  Google Scholar 

  17. Arnold, A.: Entropy method and the large-time behavior of parabolic equations. Lecture notes for the XXVII Summer school in mathematical physics, Ravello, Italy (2002). http://www.anum.tuwien.ac.at/\~arnold/papers/ravello.pdf

  18. Arnold, A., Schulte, M.: Transparent boundary conditions for quantum-waveguide simulations. to appear in Mathematics and Computers in Simulation (2007), Proceedings of MATHMOD 2006, Vienna, Austria.

    Google Scholar 

  19. Arnold, A., Sparber, C.: Conservative Quantum Dynamical Semigroups for mean-field quantum diffusion models. Comm. Math. Phys., 251, no.1 179–207 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ben Abdallah, N.: A Hybrid Kinetic-Quantum Model for Stationary Electron Transport. J. Stat. Phys., 90, no.3–4, 627–662 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Brezis, H.: Analyse fonctionelle - Théorie et applications. Masson (1987)

    Google Scholar 

  22. Brezzi, F., Markowich, P.A.: The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation. Math. Methods Appl. Sci., 14, no.1, 35–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ben Abdallah, N., Méhats, F., Pinaud, O.: On an open transient Schrödinger-Poisson system. Math. Models Methods Appl. Sci., 15, no.5, 667–688 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Benatti, F., Narnhofer, H.: Entropy Behaviour under Completely Positive Maps. Lett. Math. Phys., 15, 325–334 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bohm, D.: Quantum Theory. Dover (1989); reprint from 1951.

    Google Scholar 

  26. Castella, F.: L 2–solutions to the Schrödinger-Poisson System: Existence, Uniqueness, Time Behaviour, and Smoothing Effects. Math. Mod. Meth. Appl. Sci., 7, no.8, 1051–1083 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Castella, F.: The Vlasov-Poisson-Fokker-Planck System with Infinite Kinetic Energy. Indiana Univ. Math. J., 47, no.3, 939–964 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Cazenave, T.: An introduction to nonlinear Schrödinger equation. Textos de Métodos Matemáticos 26, Univ. Federal do Rio de Janeiro, (1996)

    Google Scholar 

  29. Castella, F., Erdös, L., Frommlet, F., Markowich, P.A.: Fokker-Planck equations as Scaling limits of Reversible Quantum Systems. J. Statist. Phys., 100, no.3-4, 543–601 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A, 121, 587–616 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cañizo, J.A., López, J.L., Nieto, J.: Global L 1–theory and regularity for the 3D nonlinear Wigner-Poisson-Fokker-Planck system. J. Diff. Eq., 198, 356–373 (2004)

    Article  MATH  Google Scholar 

  32. Castella, F., Perthame, B.: Estimations de Strichartz pour les Equations de transport Cinétique. C. R. Acad. Sci. Paris, t. 322, Série I, 535–540 (1996)

    Google Scholar 

  33. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London-New York (1976)

    MATH  Google Scholar 

  34. Davies, E.B.: Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys., 11, no.2, 169–188 (1977)

    Article  MATH  Google Scholar 

  35. Degond, P.: Introduction à la théorie quantique, DEA–Lecture Notes, UPS Toulouse.

    Google Scholar 

  36. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods of Science and Technology; vol 1 Pysical Origins and Classical Methods. Springer (1990)

    Google Scholar 

  37. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods of Science and Technology; vol 5 Evolution Problems I. Springer (1988)

    Google Scholar 

  38. Fagnola, F., Rebolledo, R.: The approach to equilibrium of a class of quantum dynamical semigroups. Infinite Dim. Analysis, Quantum Prob. and Rel. Topics, 1, no.4, 561–572 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys., 62, 745–791 (1990). http://www.utdallas.edu/\~frensley/technical/opensyst/opensyst.html

  40. Frensley, W.R.: Quantum Transport. In: Frensley, W.R., Einspruch, N.G. (eds.) Heterostructures and Quantum Devices. Academic Press, San Diego (1994). http://www.utdallas.edu/\~frensley/technical/qtrans/qtrans.html

  41. Greenberg, W., van der Mee, C., Protopopescu, V.: Boundary Value Problems in Abstract Kinetic Theory. Birkhäuser, Basel-Boston-Stuttgart (1997)

    Google Scholar 

  42. Ginibre, J., Velo, G.: The global Cauchy problem for the non linear Schrödinger equation revisited. Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 2, no.4, 309–327 (1985)

    MATH  MathSciNet  Google Scholar 

  43. Hayashi, N., Ozawa, T.: Smoothing Effect for Some Schrödinger Equations. J. Funct. Anal, 85, 307–348 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  44. Illner, R., Lange, H., Zweifel, P.: Global existence, uniqueness, and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger systems. Math. Meth. Appl. Sci., 17, 349–376 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  45. Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B, 39, 7720–7735 (1989)

    Article  Google Scholar 

  46. Kosina, H., Nedjalkov, M.: Wigner Function-Based Device Modeling, §67. In: Handbook of Theoretical and Computational Nanotechnology. Rieth, M., Schommers, W. (eds.) American Scientific Publishers. (2006)

    Google Scholar 

  47. Levinson, I.B.: Translational invariance in uniform fields and the equation for the density matrix in the Wigner representation. Sov. Phys. JETP, 30, 362–367 (1970)

    MathSciNet  Google Scholar 

  48. Lindblad, G.: On the generators of quantum mechanical semigroups. Comm. Math. Phys., 48, 119–130 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method, J. of Appl. Phys., 67, no.10, 6353–6359 (1990)

    Article  Google Scholar 

  50. Landau, L.D., Lifschitz, E.M.: Quantenmechanik. Akademie-Verlag, Berlin. (1985)

    Google Scholar 

  51. Lions, P.L., Paul, T.: Sur les measures de Wigner, Rev. Math. Iberoam., 9, no.3, 553–618 (1993)

    MATH  MathSciNet  Google Scholar 

  52. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Lieb, E.H., Simon, B., Wightman, A.S. (eds.) Studies in Mathematical Physics. Essays in honor of Valentine Bargmann. Princeton Univ. Press (1976)

    Google Scholar 

  53. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equation. Springer-Verlag, Wien-New York. (1990)

    Google Scholar 

  54. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  55. Perthame, B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Comm. P.D.E., 21, no.1&2, 659–686 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ringhofer, C.: Thermodynamic principles in modeling nano-scale transport in semiconductors. Lecture Notes for: Nanolab Spring School. Toulouse (2003). http://math.la.asu.edu/~chris/nano030529.pdf

  57. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press (1975)

    Google Scholar 

  58. Schulte, M., Arnold, A.: Discrete transparent boundary conditions for the Schrödinger equation – a compact higher order scheme. Kinetic and Related Models 1, no.1, 101–125 (2008)

    MATH  MathSciNet  Google Scholar 

  59. Săndulescu, A., Scutaru, H.: Open Quantum Systems and the Damping of Collective Modes in Deep Inelastic Collisions. Annals of Phys., 173, 277–317 (1987)

    Article  Google Scholar 

  60. Sparber, C., Carrillo, J.A., Dolbeault, J., Markowich, P.A.: On the Long-Time Behavior of the Quantum Fokker-Planck Equation. Monatsh. Math., 141, 237–257 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  61. Simon, B.: Trace Ideals and Their Applications. Cambridge University Press (1979)

    Google Scholar 

  62. Spohn, H.: Approach to equilibrium for completely positive dynamical semigroups. Rep. Math. Phys., 10, no.2, 189–194 (1976)

    Article  MathSciNet  Google Scholar 

  63. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys., 19, no.5, 1227–1230 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  64. Thaller, B.: Advanced Visual Quantum Mechanics. Springer (2005)

    Google Scholar 

  65. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749–759 (1932)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnold, A. (2008). Mathematical Properties of Quantum Evolution Equations. In: Abdallah, N.B., Frosali, G. (eds) Quantum Transport. Lecture Notes in Mathematics, vol 1946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79574-2_2

Download citation

Publish with us

Policies and ethics