
Chapter 8

Spatial Structure: Partial Differential
Equations Models

Jianhong Wu

Abstract This chapter introduces some basic concepts and techniques in
modeling spatial spread of diseases involving hosts moving randomly dur-
ing certain stages of the disease progression. First we derive some reaction
diffusion models using the conservation law and Fick’s law of diffusion. We
then discuss the usefulness of these models in describing disease spread rates
and evaluating the effectiveness of some spatially relevant disease control
strategies. We illustrate the general theory via two case studies, one about
the spread of rabies in continental Europe during the period 1945–1985 and
another about spread rates of West Nile virus in North America.

8.1 Introduction

As discussed in [19], spatial structures play an important role in describing
the spreading of communicable diseases, not only because the environment
is heterogeneous but also because individuals move around in space. Many
prevention and control strategies involve spatial aspects such as immigration,
vaccination, border control and restriction of individual movements.

In this chapter, we introduce an approach, based on reaction diffusion
equations, to describe the spread of communicable diseases in spatially struc-
tured populations. We shall also illustrate this approach and demonstrate its
applications via two case studies; one is about the spread of rabies in con-
tinental Europe during the period 1945–1985 and another is about spread
rates of West Nile virus.
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We have no intention here to give a comprehensive introduction to a sub-
ject that has been intensively studied, and we refer to [10] that has great
influence on the next two sections of this chapter, and [5–7, 15, 18] for rele-
vant literature and detailed discussions.

8.2 Model Derivation

We first consider the case in which a collection of individuals moves randomly
in one dimensional space, with an average step length ∆x in every time unit
∆t. Assume the growth rate (with respect to time) at spatial location x and
time t is given by f(t, x) (this term, in most cases, also depends explicitly on
the numbers of the individuals) and assume the probability of moving to the
left and to the right are both equal, and hence are 0.5.

Let u(t, x) be the number of individuals within the spatial segment [x, x+
∆x] at the time t. Then

u(t + ∆t, x) − u(t, x) =
1
2
u(t, x − ∆x) +

1
2
u(t, x + ∆x) − u(t, x) + f(t, x)∆t.

Using the Taylor series expansions for u(t, x±∆x) and u(t+∆t, x) as follows

u(t, x ± ∆x) = u(t, x) ± ∂
∂xu(t, x)∆x + 1

2
∂2

∂x2 u(t, x, )(∆x)2 + · · · ,

u(t + ∆t, x) = u(t, x) + ∂
∂tu(t, x)∆t + 1

2
∂2

∂t2 u(t, x)(∆t)2 + · · · ,

we obtain

∂

∂t
u(t, x)∆t +

1
2

∂2

∂t2
u(t, x)(∆t)2 + · · · =

1
2

∂2

∂x2
u(t, x)(∆x)2 + · · · + f(t, x)∆t,

(8.1)
where · · · denotes higher order terms. Assume that the temporal and spatial
scales are chosen appropriately so that

(∆x)2

2∆t
= D (8.2)

remains to be a given constant, called the diffusion coefficient. Dividing (8.1)
by ∆t and then letting ∆t → 0 and ∆x → 0, we get

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) + f(t, x). (8.3)

Note the above derivation also suggests how D can be estimated from field
data.

The above reaction diffusion equation can also be established through the
conservation equation based on a certain balance law [5]. To describe the
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model derivation, we consider the spatial segment [x, x + ∆x] and note that
the change of the total number of individuals in this segment is due to the
flow into and out of the interval through its boundary points; and due to the
(local) growth process that reproduces the individuals within the segment.
In other words, if we denote by J(t, x) the number of individuals crossing at
x in the positive direction per unit time, then we have the following balance
law:

∂

∂t
u(t, x)∆x = J(t, x) − J(t, x + ∆x) + f(t, x)∆x.

Again, we use the Taylor series expansion for J(t, x + ∆x) to obtain that

∂

∂t
u(t, x)∆x = − ∂

∂x
J(t, x)∆x − 1

2
∂2

∂x2
J(t, x)(∆x)2 + · · · + f(t, x)∆x.

Dividing by ∆x and then letting ∆x → 0 gives

∂

∂t
u(t, x) = − ∂

∂x
J(t, x) + f(t, x). (8.4)

It remains to specify J(t, x), the flux of individuals at (t, x). A popular
choice of such a flux is based on the so-called Fick’s law, which states that
the flux due to random motion is approximately proportional to the local
gradient of the number of individuals. This yields

J(t, x) = −D
∂

∂x
u(t, x). (8.5)

Combining (8.4) and (8.5) gives the reaction diffusion equation (8.3).
In population ecology, we can translate Fick’s law of diffusion into the

statement that the individuals move from a region of high concentration to a
region of low concentration in search for limited resources. We must, however,
use this law with caution when modeling spatial spread of infectious diseases
since the individual movement behaviors may be altered during the course of
outbreaks of diseases.

To determine the value of u(t, x) in space and for all future time t ≥ 0,
we need to specify the initial distribution of the population u(0, x) (initial
condition). Also, when the space is bounded, say x ∈ (0, L), we need to
specify the boundary conditions. Typical boundary conditions include the
homogeneous Dirichlet condition

u(t, 0) = u(t, L) = 0

when the boundary is uninhabitable, or the homogeneous Neumann condition

∂

∂x
u(t, 0) =

∂

∂x
u(t, L) = 0

when there is no flux through boundaries.
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8.3 Case Study I: Spatial Spread of Rabies
in Continental Europe

We now demonstrate the usefulness of the partial differential equation ap-
proach for the study of spatial spread of rabies in continental Europe during
the period roughly 1945–1985.

Starting on the edge of the German/Polish border, the front of the epi-
zootic moved westward at an average speed of about 30–60 km a year. The
spread of the epizootic was essentially determined by the ecology of the fox
population as foxes are the main carrier of the rabies under consideration. If
the fox population density is estimated at different times as the rabies epi-
zootic passes, the wave is seen to consist of two main parts: the front through
which the population is rapidly decreasing in magnitude and the much longer
tail where there are essentially periodic outbreaks of the disease.

A model was formulated in [9] in order to describe the front of the wave,
its speed and the total number of foxes infected after the front passes, and the
connection of the wave speed to the so-called propagation speed of the disease.
We shall also use this case study to illustrate how the partial differential
equation model can help us in designing some spatial intervention strategies
by considering the minimal length of protective zones. Various extensions
of this basic model were also proposed to discover the mechanism for the
periodic outbreaks and to estimate the periods and amplitudes, and we shall
briefly discuss these extensions at the end of this section.

We start with a list of basic facts and some standing assumptions that we
will use in our modeling and analysis.

• Foxes are the main carriers of rabies in the rabies epizootic considered.
• The rabies virus is contained in the saliva of the rabid fox and is normally

transmitted by bite.
• Rabies is invariably fatal in foxes.
• Foxes are territorial and seem to divide the countryside into non-overlapping

home ranges which are marked out by scent.
• The rabies virus enters the central nervous system and induces behavioral

changes in its host. If the spinal cord is involved it often causes paralysis.
However, if it enters the limbic system the foxes become aggressive, lose
their sense of direction and territorial behavior and wander about in a
more or less random way.

The last observation is the basis on which a reaction diffusion equation can
be used to model the dynamics of rabid foxes. To formulate a deterministic
model, at time t and spatial location x, let

S(t, x) = the total number of susceptible foxes,
I(t, x) = the total number of infective foxes.
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Note that for the sake of simplicity in the above definition of I(t, x), we do
not distinguish rabid foxes and those in the incubation period, although it
should be pointed out that only a fraction of infective foxes, namely, rabid
foxes, transmit the disease.

A salient feature of rabies is the rather lengthy incubation period of be-
tween 12 and 150 days from the time of an infected bite to the onset of
the clinical infectious stage. This feature was taken into account in the ordi-
nary differential equation model [1] and its reaction diffusion analogue was
developed in [16].

Ignoring this lengthy incubation period, then the model formulated in [9]
in a one-dimensional unbounded domain takes the following form

{ ∂
∂tS(t, x) = −KS(t, x)I(t, x),
∂
∂tI(t, x) = D ∂2

∂x2 I(t, x) + KS(t, x)I(t, x) − µI(t, x),

where
K = the transmission coefficient,
µ−1 = life expectancy of an infective fox,
D = diffusion coefficient = A/k,
k = the average time until a fox leaves its territory,
A = the average area of a typical fox’s territory.

In [16], other approaches, based on field observations of net distances trav-
eled by infectives during observation periods, were developed for estimating
the parameter D.

Rescaling the variables by

u(t, x) = I(t, x)/S0, v(t, x) = S(t, x)/S0,
x∗ = (KS0/D)1/2x, t∗ = KS0t,
r = µ/(KS0),

where S0 is the initial susceptible density that is assumed to be uniform
in space, and dropping the asterisks for convenience, we obtain the non-
dimensional system

{
∂
∂tu(t, x) = ∂2

∂x2 u(t, x) + u(t, x)(v(t, x) − r),
∂
∂tv(t, x) = −u(t, x)v(t, x).

(8.6)

Observe that r−1 is in fact the basic reproduction number of the cor-
responding ODE model. Therefore, if r > 1 the infection dies out quickly.
Epidemiologically, this is reasonable since r > 1 if and only if µ > KS0. That
is, r > 1 (or equivalently, the basic reproduction number is less than 1) if
the mortality rate is greater than the rate of recruitment of new infectives.
In this case, rabies cannot persist.

The above discussion also gives the minimum fox density Sc := µ/K below
which rabies cannot persist. Mathematically, in [8], it was proven that if r ≥ 1,
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u(0, x) ≥ 0 for all x ∈ R and u has bounded support, and if v(0, x) = 1 for
x ∈ R, then u(t, x) → 0 as t → ∞ uniformly on R.

A natural question is what happens if r < 1. In what follows, we will
illustrate that if the initial distribution of susceptibles is uniformly equal to
1 (that is, S = S0 everywhere), then a small localized introduction of rabies
evolves into a traveling wave with a certain wave speed.

A solution of (8.6) is called a traveling wave (or traveling wavefront) at
speed c if

u(t, x) = f(z), v(t, x) = g(z)

where
z = x − ct

is the wave variable and f and g are waveforms (or wave profiles).
Intuitively speaking, a traveling wave is a solution that moves in space

with a constant speed c and without changing shape. In other words, if a fox
or an observer moves at the same speed of the wave, the fox will not notice
the change of the wave.

Substituting the above special form into system (8.6), we obtain the equa-
tions for the waveforms:

{
f ′′ + cf ′ + fg − rf = 0,
cg′ − fg = 0.

(8.7)

This is a system of ordinary differential equations, where primes denote dif-
ferentiation with respect to z.

To solve the above system for the waveforms, we need to specify the asymp-
totic boundary conditions that are given naturally by

f(±∞) = 0, g(+∞) = 1, g(−∞) = a, (8.8)

where a is an important parameter to be found, that tells us the proportion
of susceptible foxes that remain after the infective wave has passed, and this
number is given by

a − r ln a = 1. (8.9)

To obtain the above formula (8.9), we rewrite the system for the waveforms as

1
c
f ′′ + f ′ + g′ − r

g′

g
= 0

that gives, after integration, the following

1
c
f ′ + f + g − r ln g = B (8.10)

for a constant B that can be found, using the boundary condition at z = ∞, as
B = 1. Therefore, using the boundary condition at −∞, we get a−r ln a = 1.
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This is a very useful relation in order to obtain an estimation of r (and
hence K). For example, in [14], it is suggested that the mortality rate is about
65–80% during the height of the epizootic. Therefore, if we take the fraction
a of surviving foxes to be 0.2, we obtain approximately r = 0.5.

It follows also from (8.10) that system (8.7) is equivalent to the following
planar system {

f ′ = c[r ln g − f − g + 1],
g′ = fg/c.

(8.11)

The linearization around the stationary point (0, 1) has eigenvalues

λ± = −1
2
[c ±
√

c2 − 4(1 − r)].

Hence, if c2 < 4(1−r) we have complex eigenvalues and all of the trajectories
cannot stay in the positive quadrant near (0, 1).

If c ≥ 2
√

1 − r, (0, 1) is a stable node and (0, a) is a saddle point with the
unstable trajectory entering the positive quadrant that, using some phase-
plane analysis (see [8]), converges to (0, 1) as z → ∞. Therefore, in [9] it is
shown that if r < 1 there exists a traveling wave of system (8.6) subject to
boundary condition (8.8) with the speed

c ≥ c0 = 2
√

1 − r. (8.12)

The traveling wave with the minimal wave speed c0 is of paramount im-
portance since any initial function u(0, x) of compact support splits up into
two traveling waves going in opposite directions with the same speed. More
precisely, it was proved in [8] that if u(0, ·) has compact support, then for
every δ > 0 there exists N so that

u(t, x + c0t − ln t/c0) ≤ δ

for every t > 0 and for all x > N . Therefore, if a fox travels with speed
c(t) = c0 − (c0t)−1 ln t towards +∞ (in space) to the right of the support
of u(0, ·), the infection will never overtake the fox (hence the title “Run for
your life, a note on the asymptotic speed of propagation of an epidemic” of
the paper [3]). In other words, the asymptotic speed of the infection must be
less than c(t). As a consequence, if u(t, x) takes the form of a traveling wave
for large t, it must do so for the one with the minimal speed c0.

A key issue for potential applications of the model is to identify all pa-
rameters involved. The parameter r is related to the transmission coefficient
K which can hardly be estimated directly. Fortunately, as discussed above,
formula (8.9) enables us to calculate r indirectly by considering the mortality
as the epizootic front passes. We have r = 0.5, hence the disease reduces the
fox population by about 50%.

The next parameter is µ. Recall that 1/µ is the life expectancy of an
infective fox. An infective fox first goes through an incubation period that
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can vary from 12 to 150 days, and then a rabid state lasting from 3 to 10 days.
Thus, a life expectancy of about 35 days give µ as approximately (1/10 yr)−1.

The diffusion coefficient D is the one related to the spatial spread and, as
shown in [9], this can be calculated by the formula D = A/k. Fox territories
can range from 2.5 km2 to 16km 2 depending on the habitat, food availability
and fox density. If we assume an average territory to be about 5 km2 and
that an infective fox leaves its territory about the time it becomes rabid,
that is after about a month, then k is approximately 12yr−1. Thus we get D
as approximately 60 km2yr−1.

Putting this together, we then obtain the minimal wave speed of about
50 km per year, which seems to be in good agreement with the empirical data
from Europe.

The diffusion model provides a useful framework to evaluate some spa-
tially related control measures. For example, in [9], some estimate about a
protective barrier is given. The mathematical formulation can be stated as
follows: Let 0 ≤ x ≤ L be a protective barrier between a rabies free region
x > L and an infected region x < 0. How large should L > 0 be in order for
I(t, x) < ε for all t ≥ 0 and for all x > L, where ε > 0 is a parameter, below
which the infection is regarded as dying out?

This problem was investigated in [9] via numerical simulations, and the
result of course also depends on the susceptible fox density in the protective
zone and the parameter r. Reduction of the susceptible fox population in
the protective zone can be achieved be shooting, gassing, vaccination, etc.
Admittedly, the above model is only an approximation, but such a relatively
simple model that captures some basic features of the disease spread requires
very fewer parameters to estimate.

In the model considered so far, the natural birth and death are assumed
to be balanced. Using a classical logistic model for the growth of suscepti-
ble foxes, we can explain the tail part of the wave, and in particular, the
oscillatory behavior. Indeed, Anderson et al. [1] speculated that the periodic
outbreak is primarily an effect of the incubation period, and Dunbar [4] and
Murray et al. [16] obtained some qualitative results that show sustained os-
cillations if the classical logistic model is used and the carrying capacity of
the environment is sufficiently large.

The model also ignores the fact that juvenile foxes leave their home terri-
tory in the fall, traveling distances that typically may be 10 times a territory
size in search of a new territory. If a fox happens to have contracted rabies
around the time of such long-distance movement, it could certainly increase
the rate of spread of the disease into uninfected areas. This factor was pointed
out in [16], and the impact of the age-dependent diffusion of susceptible foxes
was recently considered in [17] by using structured population models.
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8.4 Case Study II: Spread Rates of West Nile Virus

Although West Nile virus (WNv) was isolated in the West Nile district of
Uganda in 1937, and WNv in the Eastern Hemisphere has been maintained
in an enzootic cycle involving culicine mosquitoes (vectors) and birds (reser-
voirs), WNv activities in North America were not recorded until August of
1999 in the borough of Queens, New York City [2]. In the subsequent five
years the epidemic has spread spatially to most of the west coast of North
America, as a consequence of the interplay of disease dynamics and bird and
mosquito movement. We refer to [21] for a detailed discussion of the ecologi-
cal and epidemiological aspects of the disease spread and the recent modeling
efforts of the WNv transmission dynamics.

Here we present the work [11], where the spread of WNv is investigated by
spatially extending the non-spatial dynamical model [20] to include diffusive
movements of birds and mosquitoes. The simplified spatial model that is
analyzed takes the form:

{
∂IV

∂t = αV βR
IR

NR
(AV − IV ) − dV IV + ε∂2IV

∂x2 ,
∂IR

∂t = αRβR
NR−IR

NR
IV − γRIR + D ∂2II

∂x2 ,
(8.13)

where the parameters and variables are defined below:

dV : adult female mosquito death rate,
γR: bird recovery rate from WNv,
βR: biting rate of mosquitoes on birds,
αV , αR: WNv transmission probability per bite to mosquitoes and birds,

respectively,
ε,D: diffusion coefficients for mosquitoes and birds respectively,
IV (t, x), IR(t, x): numbers of infectious (infective) female mosquitoes and

birds at time t and spatial location x ∈ R,
NR: number of live birds,
AV : number of adult mosquitoes.

The initial model is much more complicated and system (8.13) is obtained
after a sequential procedure of simplification. Indeed, in the work [11] the
female mosquito population is divided into larval, susceptible, exposed and
infectious classes, and the bird population consists of compartments for sus-
ceptible, infectious, removed and dead birds. Under the assumption that the
death rate of birds due to WNv can be ignored and the removed birds be-
come immediately susceptible (no temporary immunity arising from WNv),
it is shown that NR remains a constant and the number of removed birds
tend to zero. Hence the spatially homogeneous model for infectious birds is
given by

dIR

dt
= αRβR

NR − IR

NR
IV − γRIR. (8.14)



200 J. Wu

Furthermore, if exposed mosquitoes are immediately infective, then the ex-
posed class (of mosquitoes) can be ignored and the dynamical system for
the adult and larval mosquitoes is a simple planar linear system, solutions of
which approach constants. Therefore, the spatially homogeneous version for
the infectious mosquitoes becomes

dIV

dt
= αV βR

IR

NR
(AV − IV ) − dV IV . (8.15)

Phase-plane analysis of the spatially homogeneous coupled system (8.14)-
(8.15) shows that a nontrivial (endemic) equilibrium (I∗V , I∗R) exists if and
only if the basic reproduction number R0 is large than 1, where

R0 =

√
αV αRβ2

RAV

dV γRNR
.

Moreover, this endemic equilibrium, if it exists, is globally asymptotically
stable in the positive quadrant.

For the spatially varying model (8.13), the vector field is cooperative,
therefore an application of the general result in [12] ensures that there exists
a minimal speed of traveling fronts c0 such that for every c ≥ c0, the nonlinear
system (8.13) has a nonincreasing traveling wave solution (IV (x− ct), IR(x−
ct)) with speed c so that

lim
(x−ct)→−∞

(IV , IR) = (I∗V , I∗R), lim
(x−ct)→∞

(IV , IR) = (0, 0).

Here a traveling wavefront with speed c for system (8.13) is a solution that
has the form (IV (x−ct), IR(x−ct)) and connects the disease-free and endemic
equilibria so that the above boundary conditions are satisfied. Note that the
traveling wave solution is then given by

{
−cI ′V = εI ′′V + αV βR

IR

NR
(AV − IV ) − dV IV ,

−cI ′R = DI ′′R + αRβR
NR−IR

NR
IV − γRIR.

What makes the minimal wave speed c0 so important epidemiologically is
the following mathematical relation: the minimal wave speed c0 coincides with
the spread rate c∗ defined as follows: if the initial values of (IV (·, 0), IR(·, 0))
have compact support and are not identical to either equilibrium, then for
small ε > 0,

limt→∞
{

sup|x|≥(c∗+ε)t ||(IV (t, x), IR(t, x))||
}

= 0,

limt→∞
{

sup|x|≤(c∗−ε)t ||(IV (t, x), IR(t, x)) − (I∗V , I∗R)||
}

= 0.

This relation holds due to the cooperative nature of the vector field. It is also
due to this nature that the spread speed c∗ is linearly determined: namely,
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the spread speed is the same as the number c̃ so that the solution (ĨV , ĨR)
with nontrivial initial values of compact support of the linearized system of
(8.13) about the disease endemic equilibrium satisfies, for small ε,

limt→∞
{

sup|x|≥(c̃+ε)t ||(ĨV (t, x), ĨR(t, x))||
}

= 0,

limt→∞
{

sup|x|≤(c̃−ε)t ||(ĨV (t, x), ĨR(t, x))||
}

> 0.

Consequently, it is shown in [11] that

c0 = c∗ = c̃ = inf
λ>0

σ1(λ)

where σ1(λ) is the largest eigenvalue of the matrix

Bλ = λ

(
ε 0
0 D

)

+ λ−1

(
−dV αV βR

AV

NR

αRβR −γR

)

.

The characteristic equation of Bλ is given by

p(σ;λ, ε) = σ2 − σλ−1[θ + (D + ε)λ2]
+λ−2[dV γR − αV αRβ2

R
AV

NR
] − DdV − εγR + εDλ2 = 0.

In the general case ε > 0, the larger root σ1(λ, ε) can have more than one ex-
tremum and hence it is difficult to obtain a result for the minimal spread rate
by examining roots of p(σ;λ, ε). However, the case with ε = 0 is sufficiently
simple and due to the continuous dependence of eigenvalues on parameters, it
is shown in [11] that as ε → 0, the spread speed rate approaches the positive
square root of the largest zero of an explicitly defined cubic.

In [11], an example is provided to show how the spread rate varies as a func-
tion of the bird diffusion coefficient D, in the range D ∈ [0, 14] km2/day as
estimated in [20]. This example is based on the assumption that AV /NR = 20
and γR = 0.01/day and using the parameters dV = 0.029, αV = 0.16, αR =
0.88, βR = 0.3/day estimated in [20]. Since WNv has spread across North
America in about five years, the observed spread rate is about 1, 000 km/year.
This, together with the aforementioned functional relation between the
spread rate and the diffusion rate of birds, shows that a diffusion coefficient
of about 5.94 is needed in the model to achieve the observed spread rate.

Needless to say, the reaction-diffusion system (8.13) is a first approxima-
tion for the spatial spread of WNv, and it is based on the assumption of
random flight of birds and mosquitoes. In reality, as pointed out in [11],
flight is influenced by topographical, environmental and other factors. The
work in [13] based on a patchy model seems to indicate the spread speed may
be different if the movement of birds has preference to direction. Certainly,
to incorporate more ecology and epidemiology, models should contain more
realistic bird and mosquito movements.
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8.5 Remarks

We conclude this chapter with a few remarks. First of all, we note that
reaction diffusion equations arise naturally from modeling spatial spread of
infectious diseases when a subpopulation moves randomly in space, and use
of such a model is appropriate when transmission mechanisms and control
measures involve spatial movements.

We must, however, be extremely cautious when modeling spatial spread
when individual movement is not so obviously random. Other type of models
will be needed, and in particular, the discrete space models considered in
[19] seem to be more appropriate. When other factors such as disease age
and social structures are considered, model systems could be much more
complicated.

We have shown that when the space is large in scale, traveling waves of
the reaction diffusion equations are important as they describe the progress
of the disease to uninfected regions. The wave speed is obviously important
to understand the speed of propagation: in some cases it coincides with the
spread rate and can be determined by considering the linearization of the
nonlinear system at a disease endemic equilibrium.
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