Skip to main content

Spatial Structure: Partial Differential Equations Models

  • Chapter
Mathematical Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

This chapter introduces some basic concepts and techniques in modeling spatial spread of diseases involving hosts moving randomly during certain stages of the disease progression. First we derive some reaction diffusion models using the conservation law and Fick's law of diffusion. We then discuss the usefulness of these models in describing disease spread rates and evaluating the effectiveness of some spatially relevant disease control strategies. We illustrate the general theory via two case studies, one about the spread of rabies in continental Europe during the period 1945–1985 and another about spread rates of West Nile virus in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Anderson, H. C. Jackson, R. M. May and A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289, 765–771 (1981).

    Article  Google Scholar 

  2. C. Bowman, A. Gumel, P. van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67, 1107–1133 (2005).

    Article  MathSciNet  Google Scholar 

  3. O. Diekmann, Run for your life, a note on the asymptotic speed of propagation of an epidemic, J. Differ. Equ., 33, 58–73 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  4. S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17, 11–32 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Edelstein Keshet, Mathematical Models in Biology, Birkhäuser Mathematics Series, McGraw-Hill, Toronto, 1988.

    MATH  Google Scholar 

  6. K. P. Hadeler, The role of migration and contact distributions in epidemic spread, in Bioterrorisum: Mathematical Modeling Applications in Homeland Security (H. T. Banks and C. Castillo-Chavez eds.), pp. 199–210, 2003. Siam, Philadelphia.

    Google Scholar 

  7. D. S. Johns and B. D. Sleeman, Differential Equations and Mathematical Biology, Chapman & Hall/CRC Mathematical Biology and Medicine Series, Florida, 2003.

    Google Scholar 

  8. A. Källén, Thresholds and travelling waves in an epidemic model for rabies, Nonlinear Anal. 8, 651–856 (1984).

    Article  Google Scholar 

  9. A. Källén, P. Arcuri and J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116, 377–393 (1985).

    Article  Google Scholar 

  10. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  11. M. Lewis, J. Rencławowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68, 3–23 (2006).

    Article  MathSciNet  Google Scholar 

  12. B. Li, H. Weinberger and M. Lewis, Spreading speed as slowest wave speeds for cooperative systems, Math. Biosci., 196, 82–98 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Liu, J. Shuai, J. Wu and X. Zou, Modelling spatial spread of West Nile virus and impact of directional dispersal of birds, Math. Biosci. Eng., 3, 145–160 (2006).

    MATH  MathSciNet  Google Scholar 

  14. D. W. MacDonald, Rabies and Wildlife. A Biologist’s Prespective, Oxford, Oxford University Press, 1980.

    Google Scholar 

  15. J. D. Murray, Mathematical Biology, Springer, Berlin Heidelberg New York, 1989.

    MATH  Google Scholar 

  16. J. D. Murray, E. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond., B229, 111–150 (1986).

    Article  Google Scholar 

  17. C. Ou and J. Wu, Spatial spread of rabies revisited: influence of age-dependent diffusion on nonlinear dynamics, SIAM J. Appl. Math., 67, 138–164, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. I. Rubinow, Introduction to Mathematical Biology, Wiley, New York, 1975.

    MATH  Google Scholar 

  19. P. van den Driessche, Spatial Structure: Patch Models, Chapter 7 of Mathematical Epidemiology (this volume).

    Google Scholar 

  20. M. J. Wonham, T. de-Camino-Beck and M. Lewis, An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. R. Soc. Lond. B, 271, 501–507, (2004).

    Article  Google Scholar 

  21. M. J. Wonham and M. A. Lewis, A Comparative Analysis of Models for West Nile Virus, Chapter 14 of Mathematical Epidemiology (this volume).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, J. (2008). Spatial Structure: Partial Differential Equations Models. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_8

Download citation

Publish with us

Policies and ethics