Skip to main content

Further Notes on the Basic Reproduction Number

  • Chapter
Mathematical Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

The basic reproduction number, R 0 is a measure of the potential for disease spread in a population. Mathematically, R 0 is a threshold for stability of a disease-free equilibrium and is related to the peak and final size of an epidemic. The purpose of these notes is to give a precise definition and algorithm for obtaining R 0 for a general compartmental ordinary differential equation model of disease transmission. Several examples of calculating R 0 are included, and the epidemiological interpretation of this threshold parameter is connected to the local and global stability of a disease-free equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University Press, Oxford, 1991.

    Google Scholar 

  2. V. Andreasen, J. Lin, and S. A. Levin, The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35 (1997), pp. 825–842.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1970.

    Google Scholar 

  4. S. M. Blower, P. M. Small, and P. C. Hopewell, Control strategies for tuberculosis epidemics: new models for old problems, Science, 273 (1996), pp. 497–500.

    Article  Google Scholar 

  5. C. Castillo-Chavez and Z. Feng, To treat or not to treat: the case of tuberculosis, J. Math. Biol., 35 (1997), pp. 629–656.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Castillo-Chavez, Z. Feng, and W. Huang, On the computation of \({{\cal R}}_{o}\) and its role on global stability, in Mathematical approaches for emerging and reemerging infectious diseases: models, methods and theory, C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, and A.-A. Yakubu, eds., Springer, Berlin Heidelberg New York, 2002, pp. 229–250.

    Google Scholar 

  7. B. R. Cherry, M. J. Reeves, and G. Smith, Evaluation of bovine viral diarrhea virus control using a mathematical model of infection dynamics, Prev. Vet. Med., 33 (1998), pp. 91–108.

    Article  Google Scholar 

  8. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases, Wiley series in mathematical and computational biology, Wiley, West Sussex, England, 2000.

    Google Scholar 

  9. Z. Feng and J. X. Velasco-Hernández, Competitive exclusion in a vector-host model for the Dengue fever, J. Math. Biol., 35 (1997), pp. 523–544.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Gandon, M. Mackinnon, S. Nee, and A. Read, Imperfect vaccination: some epidemiological and evolutionary consequences, Proc. R. Soc. Lond. B., 270 (2003), pp. 1129–1136.

    Article  Google Scholar 

  11. J. M. Heffernan, R. J. Smith, and L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), pp. 281–293.

    Article  Google Scholar 

  12. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), pp. 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic, Orlando, 1974.

    MATH  Google Scholar 

  14. Y.-H. Hsieh and C. H. Chen, Modelling the social dynamics of a sex industry: its implications for spread of HIV/AIDS, Bull. Math. Biol., 66 (2004), pp. 143–166.

    Article  MathSciNet  Google Scholar 

  15. C. M. Kribs-Zaleta and J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), pp. 183–201.

    Article  MATH  Google Scholar 

  16. M. Nuño, Z. Feng, M. Martcheva, and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), pp. 964–982.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. G. Roberts and J. A. P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. R. Soc. Lond., 270 (2003), pp. 1359–1364.

    Article  Google Scholar 

  18. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), pp. 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, Berlin Heidelberg New York, 1990.

    MATH  Google Scholar 

  20. M. J. Wonham, T. de Camino-Beck, and M. Lewis, An epidemiological model for West Nile virus: Invasion, analysis and control applications, Proc. R. Soc. Lond. B, 271 (2004), pp. 501–507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Driessche, P., Watmough, J. (2008). Further Notes on the Basic Reproduction Number. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_6

Download citation

Publish with us

Policies and ethics