
Chapter 5

Deterministic Compartmental Models:
Extensions of Basic Models

P. van den Driessche

Abstract The basic compartmental models for disease transmission are ex-
tended to include three separate biological features. The first such feature is
vertical transmission of disease, for which two ordinary differential equation
models (SIR and SEIR) are formulated and analyzed. In particular, vertical
transmission is shown to increase the basic reproduction number. Immigra-
tion of infective individuals is considered as a second feature, and the re-
sulting model has a unique endemic equilibrium (with no disease-free state).
An illustration is provided that includes screening and isolating infectives to
reduce the spread of disease. A constant period of temporary immunity is
introduced in an SIRS model as the third feature. This results in an integro-
differential equation for the fraction of infectives. Analysis shows that, for
some parameter values, Hopf bifurcation can give rise to periodic solutions.

5.1 Introduction

Basic deterministic compartmental models are introduced and discussed in
chapters by Allen [1] and Brauer [2]; the latter also describes models with
demographic effects and models with infectivity depending on the age of
infection. For some diseases and situations, it is desirable to include other
biological features, and to investigate whether these can qualitatively change
the model results.

In this chapter three such features are considered separately, namely ver-
tical transmission, immigration of infectives, and temporary immunity upon
recovery (which is introduced briefly in Sect. 4.5 of [2]). Models from the
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literature are summarized: readers are encouraged to consult the original pa-
pers for more details and references. These are but a few examples of how
the basic models can be extended to better represent certain diseases. More
examples are given in subsequent chapters.

5.2 Vertical Transmission

5.2.1 Kermack–McKendrick SIR Model

This section is based on a model in the authoritative book on vertically trans-
mitted diseases by Busenberg and Cooke [4, Chap. 2 especially Sect. 2.8]. In
the models of the chapter by Brauer [2], disease is transmitted horizontally
between infective and susceptible individuals. By contrast, vertical disease
transmission is the direct transfer of a disease from an infective parent to
an unborn or newly born offspring. The latter can occur, for example, from
breast-feeding. Chagas’ disease, hepatitis B and HIV/AIDS are examples of
diseases that can be transmitted vertically [4, 8]. The SIR model considered
here is based on the special simple case of that proposed by Kermack and
McKendrick in 1932, but includes input of infectives due to vertical trans-
mission from infective parents.

The model is formulated with the assumptions as in the chapter by Brauer
[2] with the following extensions. A fraction q of offspring of infective individ-
uals are assumed infected at birth; thus a fraction p = 1− q of such offspring
are susceptible. The birth and death rate constant for the susceptible and
recovered compartments is b > 0, whereas b̃ > 0 is the birth and death rate
constant for the infective compartment. The disease is assumed to be non-
fatal, thus the total population size K = S + I + R remains constant, where
S, I,R denotes the number in the susceptible, infective, recovered compart-
ment, respectively. Such a model has the form

S′ = −βSI + pb̃I + b(S + R) − bS

I ′ = βSI + qb̃I − b̃I − γI (5.1)
R′ = γI − bR.

Recall that mass action incidence is assumed, with each individual making
βK > 0 contacts sufficient to transmit infection per unit time, and that γ is
the recovery rate constant for infectives.

The variable R can be eliminated from system (5.1), which reduces to the
2-dimensional system
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S′ = −βSI + pb̃I + b(K − S − I)
I ′ = βSI − pb̃I − γI (5.2)

for which
{
(S, I) ∈ R+

2 : S + I ≤ K
}

is invariant. For p = 1 (no vertical trans-
mission) and b̃ = b, system (5.2) reduces to a model given by Brauer [2,
Sect. 2.1].

To begin analysis of (5.2), first consider the two equilibria. These are the
disease-free equilibrium (S, I) = (K, 0) and the endemic equilibrium (S∞, I∞)
with

S∞ =
pb̃ + γ

β
, I∞ =

b(Kβ − pb̃ − γ)
(γ + b)β

(5.3)

provided that K > (pb̃ + γ)/β. This condition gives a lower bound on the
population size needed to sustain the disease. The basic reproduction number
R0 can be easily found from the I ′ equation as

R0 =
βK + qb̃

γ + b̃
(5.4)

which satisfies R0 > 1 if and only if K > (pb̃ + γ)/β, that is the endemic
equilibrium exists. The expression for R0 given in (5.4) comes from account-
ing for all new infections (due to horizontal and vertical transmission) and
multiplying by the average infective period, namely 1/(γ + b̃). The vertical
transmission has the effect of increasing R0 by a factor of qb̃/(γ + b̃).

It is easy to show that if R0 < 1, then the disease-free equilibrium is
globally asymptotically stable, and the disease dies out. If R0 > 1, then the
disease-free equilibrium is unstable and the endemic equilibrium exists. In
this case a special method using a Lyapunov function due to Beretta and
Capasso, see [5, page 11] or [4, Theorem 2.8], can be used to show that
the endemic equilibrium is globally asymptotically stable, and so the disease
remains in the population. Thus R0 = 1 gives a sharp disease threshold.

Here an alternative method is presented to show that (S∞, I∞) attracts all
solutions with initial values (S(0), I(0)) in {(S, I) : S ≥ 0, I > 0} if R0 > 1.
From (5.2)

∂

∂S

(S′

I

)
+

∂

∂I

(I ′

I

)
= −β − b

I
< 0.

Thus by the Bendixon–Dulac criterion (see e.g., [4, page 72]) there are no
periodic orbits with I > 0. An application of the Poincaré- Bendixon Theorem
(see e.g., [4, page 72]) completes the proof.
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5.2.2 SEIR Model

Consider now a more general model that includes vertical transmission and
also contains an exposed (latent) compartment. Infected individuals are ex-
posed before becoming infective, and the length of this exposed period de-
pends on the disease. This gives an SEIR model, in which E denotes the
exposed compartment.

Li, Smith and Wang [15] formulate such a model that includes a fraction of
the offsprings of infected hosts (both exposed and infective) that are infected
at birth and so enter the exposed compartment, giving vertical transmission
of the disease. They state that their model is appropriate for rubella and
the SEI limit (with no recovery) is appropriate for Chagas’ disease. Since the
total population is constant in their model, they work with fractions in each
compartment; thus S,E, I,R denote the fraction in the susceptible, exposed,
infective, recovered compartment, respectively, with S + E + I + R = 1. The
natural birth and death rate constant is denoted by b, exposed individuals
become infective with rate constant ε, and infective individuals recover with
rate constant γ. Horizontal incidence is assumed to be of the bilinear mass
action form βSI. A fraction p ∈ [0, 1] of the offspring from exposed individuals
and a fraction q ∈ [0, 1] of the offspring from infective individuals are born into
the exposed compartment. Thus vertical transmission gives a term pbE +qbI
entering the exposed compartment and a similar reduction in the birth of
susceptibles. The model is given by the following system [15]

S′ = b − βSI − pbE − qbI − bS

E′ = βSI + pbE + qbI − (ε + b)E
I ′ = εE − (γ + b)I (5.5)
R′ = γI − bR.

Note that if p = q = 0, then the system reduces to the classical SEIR model
with mass action.

Let

Ω :
{
(S,E, I,R) ∈ R4

+ : S + E + I + R = 1
}

.

Any solution starting in Ω does not leave R4
+ by crossing one of its faces.

Since also (S +E + I +R)′ = 0, the solution remains in Ω for all t ≥ 0. Thus
Ω is a positively invariant set that is biologically feasible. Using the relation
R = 1 − S − E − I, (5.5) can be reduced to the equivalent 3-dimensional
system, given by the first three equations in (5.5) on the closed invariant set

Γ :
{
(S,E, I) ∈ R3

+ : S + E + I ≤ 1
}

.

The 3-dimensional system has the disease-free equilibrium (S, I,R) =
(1, 0, 0) and an endemic equilibrium (S∞, I∞, R∞) with
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S∞ =
(
(ε + b)(γ + b) − pb(γ + b) − qbε

)
/βε

provided this is less than one. In this case I∞ = εb(1 − S∞)/((ε + b)(γ + b))
and E∞ = (γ + b)I∞/ε.

The authors define a basic reproduction number [15, equation(2.3)]

R0(p, q) =
βε

(ε + b)(γ + b) − pb(γ + b) − qbε
(5.6)

and show that if R0(p, q) ≤ 1, then the disease-free equilibrium is globally
stable in Γ ; whereas if R0(p, q) > 1, then the unique endemic equilibrium
is globally stable in the interior of Γ . Thus R0(p, q) is a sharp threshold,
determining whether the disease dies out or persists at an endemic level. The
interesting and highly nontrivial proof in [15] for R0(p, q) > 1 employs a
geometric approach introduced by Li and Muldowney [14]. The authors [15]
state that a key step in their proof is the construction of a suitable Lyapunov
function for the second additive compound of the Jacobian matrix of the
system. Interested readers please consult [15, Sect. 4] for details of the proof.

The contribution to R0(p, q) in (5.6) of vertical transmission is given in [15,
Sect. 5]. However, we present here an alternate basic reproduction number,
denoted by R0, that is derived from the next generation matrix method [6]
as elaborated in [16]. From the 3-dimensional system taking E and I as
infecteds, and horizontal and vertical transmission as giving new infecteds,
the matrices F and V defined in [16] (which should be consulted for more
details) are

F =
[

pb qb + β
0 0

]

, V =

[
ε + b 0
−ε γ + b

]

.

Then R0 = ρ(FV −1), where ρ denotes the spectral radius, is easily found
(since F has rank 1) as

R0 =
βε + pb(γ + b) + qbε

(ε + b)(γ + b)
. (5.7)

Here the first term in the numerator comes from horizontal transmission and
the second and third terms come from vertical transmission, which increases
the value of R0. The term pb/(ε + b) accounts for vertical transmission from
exposed individuals with 1/(ε + b) the average exposed period. The term
qbε/(ε+ b)(γ + b) accounts for vertical transmission from infected individuals
with ε/(ε + b) giving the fraction surviving the exposed compartment, and
1/(γ + b) the average time in the infective compartment. Comparing (5.6)
and (5.7) it follows that R0(p, q) = 1 precisely where R0 = 1. Thus the sharp
threshold is given by either number, but the biological interpretation and the
dependence on the model parameters is better given by R0 in (5.7).



152 P. van den Driessche

5.3 Immigration of Infectives

In the previous section, newborn infecteds enter the infected population. Con-
sider now a communicable disease introduced into a population by infectives
immigrating from outside. Given such a situation, a model can be formulated
to describe the dynamical spread of disease and to suggest possible control
strategies. The SIS models considered here are related to the basic models de-
scribed in the chapter by Brauer [2, Sect. 2.2] and are taken from [3]. Consider
a constant flow A into the population per unit time with a fraction p ∈ (0, 1]
infective. The per capita natural death rate constant is denoted by d > 0.
Letting S, I denote the number of susceptible, infective individuals, respec-
tively, the total population N = S + I varies with time. Taking mass action
incidence and denoting the recovery rate constant and the disease death rate
constant by γ and α, respectively, the model equations are

S′ = (1 − p)A − βSI − dS + γI

I ′ = pA + βSI − (d + γ + α)I (5.8)
N ′ = A − dN − αI.

For nonnegative initial values, the model is well posed with N ≤ A/d. From
the second equation, it follows that with immigration of infectives there is no
disease-free equilibrium. Working in I,N variables, and eliminating N , at an
endemic equilibrium

G(I) = β(d + α)I2 − σI − pdA = 0

where σ = βA − d(d + γ + α). Thus there is a unique equilibrium given by

I∞ =
σ +
√

σ2 + 4βAdp(d + α)
2β(d + α)

, N∞ =
A − αI∞

d
. (5.9)

This model can be generalized by replacing mass action incidence by the
assumption that each individual makes β(N)N contacts sufficient to transmit
infection per unit time; see [2]. It is biologically reasonable to assume that
β(N)N is a nondecreasing function of N and β(N) is a nonincreasing function
of N . These assumptions are satisfied by mass action incidence (β(N) = β),
standard incidence (β(N) = λ/N) and saturating incidence (β(N) = a/(1 +
bN)). The model equations are now as in system (5.4) with β replaced by
β(N). It is more convenient to write the equilibrium equation in terms of N ,
namely

[(d + α)N − A] β(N) = − α2pA

A − dN
+ α(d + γ + α).

The left side of this equation is zero at N1 = A/(d + α) and is increasing,
whereas the right side is positive at N1, decreases and is zero at
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N = N0 =
A(d + γ + α(1 − p))

d(d + γ + α)
.

Thus there is a unique endemic equilibrium given by N∞ ∈ [N1, N0], and
I∞ > I0 = pA/(d + γ + α).

To investigate the stability, linearize system (5.8) about this equilibrium
to give the Jacobian matrix

⎡

⎣
−pA

I − Iβ(N) (Nβ(N))′I − β′(N)I2

−α −d

⎤

⎦

at (I∞, N∞). By considering the signs of each entry (noting that the (1, 2)
entry is nonnegative), this matrix is sign stable; see, e.g., [12]. Thus for any
values of the parameters, the endemic equilibrium is locally asymptotically
stable. A Bendixson–Dulac calculation as in Sect. 2.1 shows that there are no
period orbits with I > 0. The Poincaré–Bendixson theorem then completes
the proof that the endemic equilibrium is globally asymptotically stable, so
solutions of the SIS model with immigration of infectives converge to the
endemic equilibrium (I∞, N∞). For mass action incidence, this equilibrium
is given explicitly by (5.9).

If R0 is defined in the usual way with mass action incidence as

R0 =
βA

(d + γ + α)d

then for p close to 0

I∞ ≈

⎧
⎪⎨

⎪⎩

Ad
|σ|p if R0 < 1 (σ < 0)

Ad
σ p + σ

β(d+α) if R0 > 1 (σ > 0).

The limiting infective population is a smooth function of R0, with the thresh-
old R0 = 1 not as sharp as in the classical case (except in the limit as p → 0+).

Gani et al. [7, Sect. 2] formulated models for the spread of HIV in a con-
stant population prison, and considered a program of screening with quaran-
tining of prisoners found to be HIV positive. Note that quarantining is used
here to mean the isolation of infective individuals. A continuous analog of
their SI model is formulated in [3, Sect. 5]. This simple model indicates that
such a program can reduce the infective population size, but a more detailed
model including more realistic assumptions and data on HIV is needed to
give quantitative predictions.

Consider model (5.8) in the limit with γ = 0 and α > 0 (since HIV is a
fatal disease). The demographics now refer to incarceration (at rate A with a
fraction p infective) and release of prisoners (with rate constant d). Taking one
month as the time unit, A = 25, d = 1/24, p = 0.1 giving a prison population
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carrying capacity as 600. The mean infective period is assumed to be ten
years (so α = 1/120). With β = 1/3000 (1 contact every 5 months/infective),
I∞ = 391 and N∞ = 521. Thus 75% are infective at equilibrium, which (by
numerical simulation) is reached in 2.5 years.

For constant τ with 0 ≤ τ ≤ 1, τ(S+I) prisoners are screened in unit time
and the τI found to be infective are moved to a quarantined compartment.
The number in this compartment is denoted by Q(t). This gives the model [3,
Sect. 5]

S′ = (1 − p)A − βSI − dS

I ′ = pA + βSI − (d + α + τ)I (5.10)
Q′ = τI − (d + α)Q.

The total population N = S + I + Q thus satisfies

N ′ = A − dN − αI − αQ.

Analysis of this model is similar to that of (5.8) and shows that there is a
unique endemic equilibrium (S∞, I∞, Q∞) with

I∞ =
σ
√

σ2 + 4βAdp(d + α + τ)
2β(d + α + τ)

with σ = βA−d(d+α+τ), and that this equilibrium is locally asymptotically
stable. For global stability, note that the first two equations of (5.10) do not
contain Q, and so by analogy with (5.8) it follows that (S, I) → (S∞, I∞) as
t → ∞. The third equation then shows that Q → Q∞.

Taking parameters as for the prison population above, if τ = 0.1 (so 42
prisoners screened per month), then I∞ = 71; whereas if τ = 0.2 (so 95
prisoners screened per month), then I∞ = 25. It takes about two years to
reach these equilibria. Thus, from this model, a considerable reduction of
infectives occurs with screening and quarantining of infectives.

5.4 General Temporary Immunity

For diseases that confer only temporary immunity, for example strains of
influenza, an SIRS model is appropriate. If the SIR Kermack–McKendrick
model is assumed with the addition of a recovered period that is exponentially
distributed, then an ordinary differential equation model results. For this
model, the basic reproduction number gives a sharp threshold, determining
whether the disease dies out or goes to an endemic value.

To allow for a more general recovered period, let P (t) be the frac-
tion of recovered individuals remaining in the recovered class t units after
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recovery from infection. It is reasonable to assume that P (t) is nonin-
creasing, P (0+)=1, limt→∞ P (t) = 0 and the average period of immunity∫∞
0

P (v)dv = ω is finite. Assuming that the average infectious period is 1/γ
and neglecting demographics, gives the system for the fractions in the infec-
tive, recovered and susceptible compartment as

I(t) = I(0)e−γt +
∫ t

0

βS(x)I(x)e−γ(t−x)dx

R(t) = R0(t) +
∫ t

0

γI(x)P (t − x)dx (5.11)

S(t) = 1 − I(t) − R(t)

where R0(t) is the number initially removed and still removed at t, with
R0(∞) = 0. This model is formulated and analyzed in [11], and has richer
dynamics than the corresponding ordinary differential equation SIRS model.

System (5.11) is equivalent to the integrodifferential equation

I ′(t) = γI(t) + βI(t)[1 − I(t) − R0(t) − γ

∫ t

0

I(t + u)P (−u)]du. (5.12)

By standard theorems on retarded functional differential equations [10, 13],
there exists a unique solution of (5.12) for all t ≥ 0. Here R0 = β/γ, and
it is shown in [11] that if R0 ≤ 1, then all solutions tend to the disease-free
equilibrium; but if R0 > 1, the disease-free equilibrium is unstable and a
unique endemic equilibrium (S∞, I∞) exists that is given by

S∞ =
1
R0

, I∞ =
1 − 1/R0

1 + ωγ
.

For further analysis with R0 > 1, assume a constant period of temporary
immunity, thus

P (t) =

⎧
⎨

⎩

1 for 0 ≤ t < ω

0 for t ≥ ω.

Then for t ≥ ω, equation (5.12) becomes

I ′(t) = −γI(t) + βI(t)[1 − I(t) − γ

∫ 0

−ω

I(t + u)du].

Translating I∞ to the origin by using I(t) = I∞(1+X(t)) and letting t = ωτ
gives

X ′(τ) =
−ωγ(R0 − 1)

1 + ωγ
(X(τ) + 1)[X(τ) + ωγ

∫ 0

−1

X(τ + v)dv].
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Linearizing about X = 0 and setting X(τ) proportional to ezτ yields the
quasi-polynomial characteristic equation

z +
ωγ(R0 − 1)

1 + ωγ
[1 + ωγ

∫ 0

−1

ezvdv] = 0. (5.13)

The assumption of a constant recovery period (through the step function
P (t)) has resulted in a difficult stability problem, even for the linearized
equation about the endemic equilibrium. However, it is possible to find purely
imaginary roots of (5.13) by setting z = iµ for µ > 0, which on equating real
and imaginary parts becomes

sin µ

µ
= − 1

ωγ
and µ2 =

(ωγ)2(R0 − 1)(1 − cos µ)
1 + ωγ

.

This gives a family of imaginary root curves for µ ∈ ((2k − 1)π, 2kπ), k =
1, 2, .... For ωγ < 1, all roots have negative real parts, so the endemic equilib-
rium is locally asymptotically stable below the lowest imaginary root curve
k = 1. Assume R0 > 1 is fixed and that z = iµc solves (5.13) when ωγ = c,
then there is a Hopf bifurcation from X = 0 for small |ωγ − c| of the form

X(τ) = |A(µc)(ωγ − c)|
1
2 [cos(µcτ) + o(|ωγ − c|

1
2 )]

where ωγ > c and A = 0. If the bifurcation point (R0, c) is on the lowest
imaginary root curve, then the periodic solution is locally asymptotically
stable and has period between ω and 2ω. If the bifurcation point is on a
higher curve (k = 2, 3, ...), then the periodic solution is unstable. Details of
the Hopf bifurcation theorem can be found in [9] and [13].

Thus a constant period of temporary immunity can lead, for some param-
eter values, to solutions of this SIRS model that oscillate about the endemic
equilibrium. For more details of this and oscillatory solutions for an ordinary
differential equation model that has at least three removed classes (corre-
sponding to a gamma-distributed time delay in the recovered class), please
consult [11]. It is interesting to note that an alternate SIRS model with an
arbitrarily distributed time delay in the infectious compartment and an ex-
ponentially distributed delay in the removed compartment does not exhibit
periodic solutions [11, Sect. 5]. For epidemic models that include delays and
vertical transmission see [4, Chap. 4].

Mechanisms that can lead to oscillatory solutions either autonomously or
through external forcing in epidemic models are discussed in [10]. In addition
to delays in the recovered compartment, these mechanisms include nonlinear
incidence, age structure and periodic incidence. Such oscillations are often
seen in disease incidence data; thus models that predict this phenomenon
are useful in understanding disease spread and suggesting possible control
measures.
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