Skip to main content

Time-Reversal and the Adjoint Imaging Method with an Application in Telecommunication

  • Chapter
Inverse Problems and Imaging

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1943))

  • 1464 Accesses

These lecture notes provide a mathematical treatment of time-reversal experiments with a special emphasis on telecommunication. A direct link is established between time-reversal experiments and the adjoint imaging method. Based on this relationship, several iterative schemes are proposed for optimizing MIMO (multiple-input multiple-output) time-reversal systems in underwater acoustic and in wireless communication systems. Whereas in typical imaging applications these iterative schemes require the repeated solution of forward problems in a computer, the analogue in timereversal communication schemes consists of a small number of physical time-reversal experiments and does not require exact knowledge of the environment in which the communication system operates. The discussion is put in the general framework of wave propagation by symmetric hyperbolic systems, with detailed discussions of the linear acoustic system for underwater communication and of the time-dependent system of Maxwell's equations for telecommunication. Moreover, in its general form as treated here, the theory will also apply for several other models of wave-propagation, such as for example linear elastic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I.A. Stegun (1970): Handbook of Mathematical Functions. Dover.

    Google Scholar 

  2. G. Beylkin (1995): ‘On the fast Fourier transform of functions with singularities’, Appl. Comp. Harm. Anal. 2, 363-381.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Censor (1981): ‘Row–action methods for huge and sparce systems and their applications’, SIAM Review 23, 444-466.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Clack and M. Defrise (1994): ‘A Cone–Beam Reconstruction Algorithm Using Shift–Variant Filtering and Cone–Beam Backprojection’, IEEE Trans. Med. Imag. 13, 186-195.

    Article  Google Scholar 

  5. P.E. Danielsson, P. Edholm, J. Eriksson, M. Magnusson Seger, and H. Turbell (1999): The original π-method for helical cone-beam CT, Proc. Int. Meeting on Fully 3D-reconstruction, Egmond aan Zee, June 3-6.

    Google Scholar 

  6. L.A. Feldkamp, L.C. Davis, and J.W. Kress (1984): ‘Practical cone–beam algorithm’, J. Opt. Soc. Amer. A 6, 612-619.

    Article  Google Scholar 

  7. K. Fourmont (1999): ‘Schnelle Fourier–Transformation bei nicht–äquidistanten Gittern und tomographische Anwendungen’, Dissertation Fachbereich Mathematik und Informatik der Universität Münster, Münster, Germany.

    Google Scholar 

  8. I.M. Gel‘fand, M.I. Graev, N.Y. Vilenkin (1965): Generalized Functions, Vol. 5: Integral Geometry and Representation Theory. Academic Press.

    Google Scholar 

  9. P. Grangeat (1991): ‘Mathematical framework of cone–beam reconstruction via the first derivative of the Radon transform’ in: G.T. Herman, A.K. Louis and F. Natterer (eds.): Lecture Notes in Mathematics 1497, 66-97.

    Article  MathSciNet  Google Scholar 

  10. C. Hamaker, K.T. Smith, D.C. Solmon and Wagner, S.L. (1980): ‘The divergent beam X-ray transform’, Rocky Mountain J. Math. 10, 253-283.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Hamaker and D.C. Solmon (1978): ‘The angles between the null spaces of X-rays’, J. Math. Anal. Appl. 62, 1-23.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Helgason (1999): The Radon Transform. Second Edition. Birkhäuser, Boston.

    MATH  Google Scholar 

  13. G.T. Herman (1980): Image Reconstruction from Projection. The Fundamentals of Computerized Tomography. Academic Press.

    Google Scholar 

  14. G.T. Herman and L. Meyer (1993): ‘Algebraic reconstruction techniques can be made computationally efficient’, IEEE Trans. Med. Imag. 12, 600-609.

    Article  Google Scholar 

  15. H.M. Hudson and R.S. Larkin (1994): ‘Accelerated EM reconstruction using ordered subsets of projection data’, IEEE Trans. Med. Imag. 13, 601-609.

    Article  Google Scholar 

  16. A.C. Kak and M. Slaney (1987): Principles of Computerized Tomography Imaging. IEEE Press, New York.

    Google Scholar 

  17. A. Katsevich (2002): ‘Theoretically exact filtered backprojection-type inversion algorithm for spiral CT’, SIAM J. Appl. Math. 62, 2012-2026.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Kudo and T. Saito (1994): ‘Derivation and implementation of a cone–beam reconstruction algorithm for nonplanar orbits’, IEEE Trans. Med. Imag. 13, 196-211.

    Article  Google Scholar 

  19. F. Natterer (1986): The Mathematics of Computerized Tomography. John Wiley & Sons and B.G. Teubner. Reprint SIAM 2001.

    Google Scholar 

  20. F. Natterer and F. Wübbeling (2001): Mathematical Methods in Image Reconstruction. SIAM, Philadelphia.

    MATH  Google Scholar 

  21. F. Natterer and E.L. Ritman (2002): ‘Past and Future Directions in X-Ray Computed Tomography (CT)’, to appear in Int. J. Imaging Systems & Technology.

    Google Scholar 

  22. R.G. Novikov (2000): ‘An inversion formula for the attenuated X-ray transform’, Preprint, Departement de Mathématique, Université de Nantes.

    Google Scholar 

  23. V.A. Sharafutdinov (1994): Integral geometry of Tensor Fields. VSP, Utrecht.

    Google Scholar 

  24. G. Steidl (1998): ‘A note on fast Fourier transforms for nonequispaced grids’, Advances in Computational Mathematics 9, 337-352.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Webb (1990): From the Watching of Shadows. Adam Hilger.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dorn, O. (2008). Time-Reversal and the Adjoint Imaging Method with an Application in Telecommunication. In: Bonilla, L.L. (eds) Inverse Problems and Imaging. Lecture Notes in Mathematics, vol 1943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78547-7_6

Download citation

Publish with us

Policies and ethics