p-Adic Grassmann Manifold

Summary. In Chap. 9 we give the analogous theory over the p-adic, giving the decomposition of the representation of $GL_d(\mathbb{Z}_p)$ afforded by the p-adic Grassmannian. The relative position of two planes $\mathfrak{p},\mathfrak{q}\subseteq\mathbb{Z}_p^d$ is given by the type of the \mathbb{Z}_p -module $\mathfrak{p}\cap\mathfrak{q}$, i.e., by a partition. We calculate the measure on Ω_m^d , and describe the idempotents - the p-adic multivariable Jacobi polynomials.

9.1 Representation of $GL_d(\mathbb{Z}_p)$

9.1.1 Measures on $GL_d(\mathbb{Z}_p),\,V_m^d$ and X_m^d

Let p be a finite prime. First of all, we see that $GL_d(\mathbb{Z}_p)$ is expressed as the inverse limit;

$$GL_d(\mathbb{Z}_p) = \varprojlim G_{N^d},$$

where $G_{N^d} := GL_d(\mathbb{Z}/p^N)$. Then we obtain the following diagram by the determinant;

$$\operatorname{Mat}_{d\times d}(\mathbb{Z}_p) \xrightarrow{\operatorname{det}} \mathbb{Z}_p$$

$$\cup \qquad \qquad \cup$$

$$\operatorname{GL}_d(\mathbb{Z}_p) \xrightarrow{\operatorname{det}} \mathbb{Z}_p^*$$

Note that $GL_d(\mathbb{Z}_p)$ is the maximal compact subgroup of $GL_d(\mathbb{Q}_p)$. This is similar to the real case. Namely, O_d is the maximal compact subgroup of $GL_d(\mathbb{R})$ and U_d is of $GL_d(\mathbb{C})$. But unlike the real case (where O_d and U_d are closed subset of $\operatorname{Mat}_{d\times d}$), the above diagram shows that $GL_d(\mathbb{Z}_p)$ is an open subset of $\operatorname{Mat}_{d\times d}(\mathbb{Z}_p)$. Now we have the measure on $\operatorname{Mat}_{d\times d}(\mathbb{Z}_p)$ defined by the additive Haar measure

$$dx := \bigotimes_{1 < i, j < d} dx_{ij}.$$

This measure satisfies $d(gx) = |\det g| dx$ for $g \in \operatorname{Mat}_{d \times d}(\mathbb{Z}_p)$. In particular, dx is $GL_d(\mathbb{Z}_p)$ -invariant measure on $\operatorname{Mat}_{d \times d}(\mathbb{Z}_p)$.

Let $A_1, \ldots, A_m \in \mathbb{Z}_p^{\oplus d} \subseteq \mathbb{Q}_p^{\oplus d}$. We call A_1, \ldots, A_m orthonormal if

$$\mathbb{Z}_p^{\oplus d} \Big/ \sum_{1 \le i \le m} \mathbb{Z}_p A_i \simeq \mathbb{Z}_p^{\oplus (d-m)}$$

as \mathbb{Z}_p -module. Let \overline{A}_i be the image of A_i modulo p for $1 \leq i \leq m$. Then A_1, \ldots, A_m are orthonormal if and only if $\overline{A}_1, \ldots, \overline{A}_m \in \mathbb{F}_p^{\oplus d}$ are linearly independent over \mathbb{F}_p . This is also equivalent to the existence of $B_1, \ldots, B_{d-m} \in \mathbb{Z}_p^{\oplus d}$ such that $(A_1, \ldots, A_m | B_1, \ldots, B_{d-m}) \in GL_d(\mathbb{Z}_p)$. Then we denote by

$$V_m^d := \{ A = (A_1, \dots, A_m) \in \operatorname{Mat}_{d \times m}(\mathbb{Z}_p) \mid A_1, \dots, A_m \text{ are orthonormal.} \}.$$

The group $GL_d(\mathbb{Z}_p)$ acts on V_m^d transitively and the stabilizer of the standard basis $1 = (E_1, \ldots, E_m)$ is given by $GL_{d-m}(\mathbb{Z}_p) \ltimes \operatorname{Mat}_{m \times (d-m)}(\mathbb{Z}_p)$. Hence it holds that

$$V_m^d \simeq GL_d(\mathbb{Z}_p)/GL_{d-m}(\mathbb{Z}_p) \ltimes \operatorname{Mat}_{m \times (d-m)}(\mathbb{Z}_p).$$

Note that the factor $\operatorname{Mat}_{m\times (d-m)}(\mathbb{Z}_p)$ does not appear in the real case. Let us first consider the case of m=1. It is easy to see that

$$V_1^d = \{ A \in \mathbb{Z}_p^{\oplus d} \, | \, |A|_p = 1 \},$$

where $|A|_p = |^t(\underline{a_1}, \dots, \underline{a_d})|_p := \max_{1 \le i \le d} |a_i|_p$. Then the condition $|A|_p = 1$ is equivalent to $\overline{A} \not\equiv 0$ modulo p. The measure of V_1^d can be calculated as follows;

$$\begin{split} \int_{V_1^d} dx &= (1-p^{-1}) + p^{-1} \int_{V_1^{d-1}} dx = \cdots \\ &= (1-p^{-1}) + p^{-1} (1-p^{-1}) + p^{-2} (1-p^{-1}) + \cdots + p^{-(d-1)} (1-p^{-1}) \\ &= 1 - p^{-d} \\ &= \frac{1}{\zeta_n(d)}. \end{split}$$

Similarly, for general $m \geq 1$, we have

$$\int_{V_m^d} dx = \int_{V_1^d} dx \int_{V_{m-1}^{d-1}} dx = \dots = \prod_{d-m < j < d} \frac{1}{\zeta_p(j)}.$$

In particular if we take m = d, we have $V_d^d = GL_d(\mathbb{Z}_p)$ and

$$\int_{GL_d(\mathbb{Z}_p)} dx = \prod_{1 \le j \le d} \frac{1}{\zeta_p(j)}.$$

Normalizing the additive Haar measure dx by dividing by the above constant, one obtains the $GL_d(\mathbb{Z}_p)$ invariant probability measure on V_m^d . We denote by τ_m^d this measure on V_m^d , and $\tau^d := \tau_d^d$ the Haar measure on $GL_d(\mathbb{Z}_p)$.

Now we are interested in space

$$X_m^d := \operatorname{Grass}(m, d; \mathbb{Q}_p),$$

where $\operatorname{Grass}(m,d;\mathbb{Q}_p)$ is the Grassmann manifold of all m-dimensional space in d-dimensional plane over \mathbb{Q}_p . Note that $\operatorname{Grass}(m,d;\mathbb{Q}_p) = \operatorname{Grass}(m,d;\mathbb{Z}_p)$. Since $GL_d(\mathbb{Q}_p)$ (resp. $GL_d(\mathbb{Z}_p)$) acts transitively on X_m^d and the stabilizer of 1 is the Borel subgroup $B_{m,d-m}(\mathbb{Q}_p)$ (resp. $B_{m,d-m}(\mathbb{Z}_p)$) where

$$B_{m,d-m} := \left\{ \left(\frac{A \mid B}{0 \mid D} \right) \in \operatorname{Mat}_{d \times d} \mid A \in GL_m, \ D \in GL_{d-m}, \ B \in \operatorname{Mat}_{m \times (d-m)} \right\}$$
$$= (GL_m \times GL_{d-m}) \ltimes \operatorname{Mat}_{m \times (d-m)},$$

we have

$$X_m^d = GL_d(\mathbb{Q}_p)/B_{m,d-m}(\mathbb{Q}_p) = GL_d(\mathbb{Z}_p)/B_{m,d-m}(\mathbb{Z}_p).$$

It can also be expressed as

$$X_m^d = \big\{ \mathfrak{p} \subseteq \mathbb{Z}_p^{\oplus d} \, \big| \, \mathbb{Z}_p^{\oplus d}/\mathfrak{p} \simeq \mathbb{Z}_p^{\oplus (d-m)} \big\}.$$

Note that in the real case the factor $\operatorname{Mat}_{m\times(d-m)}(\mathbb{Z}_{\eta})$ disappear, and the real Grassmann manifold resembles more the space

$$\widetilde{X}_{m}^{d} = \left\{ (\mathfrak{p}, \mathfrak{p}') \, \middle| \, \mathfrak{p} \simeq \mathbb{Z}_{p}^{\oplus m}, \, \mathfrak{p}' \simeq \mathbb{Z}_{p}^{\oplus (d-m)}, \, \mathfrak{p} \oplus \mathfrak{p}' \simeq \mathbb{Z}_{p}^{\oplus d} \right\} \\ = GL_{d}(\mathbb{Z}_{p}) / GL_{m}(\mathbb{Z}_{p}) \times GL_{d-m}(\mathbb{Z}_{p}).$$

The measure $\overline{\tau}_m^d$ on X_m^d is obtained as follows; Let pr be the projection

$$\operatorname{pr}: V_m^d \longrightarrow X_m^d = V_m^d/GL_m(\mathbb{Z}_p); \quad \operatorname{pr}(A_1, \dots, A_m) = \operatorname{Span}_{\mathbb{Z}_p}(A_1, \dots, A_m).$$

Then we see that the image $\operatorname{pr}_*(\tau_m^d)$ of the probability measure τ_m^d is the unique $GL_d(\mathbb{Z}_p)$ invariant probability measure on X_m^d . Hence, by the uniqueness, we have $\overline{\tau}_m^d = \operatorname{pr}_*(\tau_m^d)$. On the other hand, notice that the set of matrices $X \in \operatorname{Mat}_{d \times m}(\mathbb{Z}_p)$ of rank X = m is of full measure with respect to the additive Haar measure dx. Then we have the projection

 $\widetilde{\operatorname{pr}}: \operatorname{Mat}_{d \times m}(\mathbb{Z}_p) \longrightarrow X_m^d = V_m^d/GL_m(\mathbb{Z}_p); \quad \widetilde{\operatorname{pr}}(X) = \operatorname{Span}_{\mathbb{Q}_p}(X_1, \dots, X_m) \cap \mathbb{Z}_p^{\oplus d}$ and also $\overline{\tau}_m^d = \widetilde{\operatorname{pr}}_*(dx)$. Note that $\widetilde{\operatorname{pr}}(X)$ is not the space spanned by X over \mathbb{Z}_p .

The space X_m^d can be also represented as the inverse limit;

$$X_m^d = GL_d(\mathbb{Z}_p)/B_{m,d-m}(\mathbb{Z}_p) = \underline{\lim} X_{N^m}^{N^d},$$

where $X_{N^m}^{N^d}$ is the finite set defined by $X_{N^m}^{N^d} := GL_d(\mathbb{Z}/p^N)/B_{m,d-m}(\mathbb{Z}/p^N) \simeq G_{N^d}/B_{N^m}$ and $B_{N^m} := B_{m,d-m}(\mathbb{Z}/p^N)$. One can also check that G_{N^d} acts on $X_{N^m}^{N^d}$ transitively and the stabilizer of 1 is given by B_{N^m} .

9.1.2 Unitary Representations of $GL_d(\mathbb{Z}_p)$ and G_{N^d}

We are interested in the unitary representation of $GL_d(\mathbb{Z}_p)$ defined by

$$\pi: GL_d(\mathbb{Z}_p) \longrightarrow U(H_m^d); \quad \pi(g)f(x) := f(g^{-1}x),$$

where $H_m^d := L^2(X_m^d, \overline{\tau}_m^d)$. Now the Hilbert space H_m^d can be written as the direct limit of the finite dimensional spaces as follows;

$$H_m^d = \varinjlim H_{N^m}^{N^d},$$

where $H_{N^m}^{N^d} := L^2(X_{N^m}^{N^d})$. We have a unitary embedding from the finite dimensional space $H_{N^m}^{N^d}$ to H_m^d and $\bigcup_N H_{N^m}^{N^d}$ is dense in H_m^d . Moreover, each finite dimensional space is invariant under the group $GL_d(\mathbb{Z}_p)$ and the representation of $GL_d(\mathbb{Z}_p)$ on it factors through the projection $GL_d(\mathbb{Z}_p) \twoheadrightarrow G_{N^d} \longrightarrow U(H_{N^m}^{N^d})$. The commutant of this representation are generated by the Hecke algebra

$$\mathcal{H}_m^d := C^{\infty}(\Omega_m^d).$$

Notice that, in the p-adic cases, smoothness means locally constant. Here

$$\Omega_m^d := B_{m,d-m}(\mathbb{Z}_p) \backslash GL_d(\mathbb{Z}_p) / B_{m,d-m}(\mathbb{Z}_p) = \lim_{l \to \infty} \Omega_{N^m}^{N^d},$$

where $\Omega_{N^m}^{N^d} := B_{N^m} \backslash G_{N^d} / B_{N^m}$. The commutant of the representation of the finite group G_{N^d} on the finite dimensional space $H_{N^m}^{N^d}$ is also generated by the Hecke algebra

$$\mathcal{H}_{N^m}^{N^d} = C^{\infty}(\Omega_{N^m}^{N^d}).$$

Again \mathcal{H}_m^d is expressed as the direct limit of the space $\mathcal{H}_{N^m}^{N^d}$;

$$\mathcal{H}_m^d = \lim_{N \to \infty} \mathcal{H}_{N^m}^{N^d}$$
.

More generally, if we want the intertwining operator of the various representation for different m, say $H_{N^m}^{N^d} \to H_{N^n}^{N^d}$, we have to consider the module

$$\mathcal{H}_{N^m N^n}^{N^d} := C^{\infty}(B_{N^m} \backslash G_{N^d} / B_{N^n}).$$

Notice that we always assume $m \le n \le \frac{1}{2}d$.

Now remember the simple facts for finite \mathbb{Z}_p -modules. Let \mathfrak{m} be a finite \mathbb{Z}_p -module (resp. \mathbb{Z}/p^N -module). Then it is of the form of

$$\mathfrak{m} \simeq \bigoplus_{i} \mathbb{Z}/p^{\lambda_i} =: \mathbb{Z}/p^{\lambda},$$

where $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l > 0)$ is a partition (resp. with $\lambda_1 \leq N$). In this case, we say the type of \mathfrak{m} is λ and write $\operatorname{typ}(\mathfrak{m}) = \lambda$. This is a

complete isomorphism invariant. Namely, two modules are isomorphic if and only if they have the same type. (Note that all partitions are decreasing. All the people working in real or q-special functions use increasing partition while Macdonald use decreasing partition ([Mac]). Hence we have to change the notation unfortunately if we treat both the real and the p-adic cases.) We also use the following notation

$$(1^{r_1}, 2^{r_2}, \dots, N^{r_N}) := (\underbrace{N, \dots, N}_{d}, \dots, \underbrace{1, \dots, 1}_{r_1})$$

In particular, $(N^d) = (\underbrace{N, \dots, N}_{d})$ and hence

$$\mathbb{Z}/p^{(N^d)} \simeq (\mathbb{Z}/p^N)^{\oplus d}.$$

This is why we use the notation G_{N^d} , which is the automorphism group of $(\mathbb{Z}/p^N)^{\oplus d}$. These are the highly symmetric modules. If we take a module $\mathfrak{m} \subset (\mathbb{Z}/p^N)^{\oplus d}$ of $\operatorname{typ}(\mathfrak{m}) = \lambda$, there exist a basis X_1, \ldots, X_d for the free module $(\mathbb{Z}/p^N)^{\oplus d}$ such that $p^{N-\lambda_1}X_1, \ldots, p^{N-\lambda_d}X_d$ is the basis for \mathfrak{m} . Here y_1, \ldots, y_l is the basis for \mathfrak{m} of type λ means that (note that \mathfrak{m} is not free) y_i 's generate \mathfrak{m} and of order exactly λ_i . Equivalently, every $m \in \mathfrak{m}$ can be uniquely written as $m = a_1y_1 + \cdots + a_ly_l$ for some $a_i \in \mathbb{Z}/p^{\lambda_i}$. For example, given such a module $\mathfrak{m} \subseteq (\mathbb{Z}/p^N)^{\oplus d}$ of $\operatorname{typ}(\mathfrak{m}) = \lambda$, we have

$$\operatorname{typ}((\mathbb{Z}/p^N)^{\oplus d}/\mathfrak{m}) = (N - \lambda_d, \dots, N - \lambda_1).$$

As a corollary of the elementary divisor, we have

Corollary 9.1.1. Any isomorphism $g: \mathfrak{m} \to \mathfrak{m}'$ between two finite submodules $\mathfrak{m}, \mathfrak{m}' \subseteq (\mathbb{Z}/p^N)^{\oplus d}$ can be extended to $g \in \operatorname{Aut}((\mathbb{Z}/p^N)^{\oplus d}) = G_{N^d}$.

Therefore, the space of the relative positions $\Omega_{N^m}^{N^d}$ can be written as follows;

Corollary 9.1.2.

$$\Omega_{N^m}^{N^d} \simeq \left\{ \lambda = (\lambda_1, \dots, \lambda_l) \, \middle| \, \lambda_1 \leq N, \, \lambda_1' \leq m \right\} =: \Lambda_{N^m},$$

where the isomorphism is given by

$$G_{N^d}(\mathfrak{m}_1,\mathfrak{m}_2) \longmapsto \operatorname{typ}(\mathfrak{m}_1 \cap \mathfrak{m}_2).$$

Here we denote by $\lambda' = (\lambda'_1, \ldots, \lambda'_n)$ the conjugate of λ defined by $\lambda'_j = \#\{i \mid \lambda_i \geq j\}$.

Indeed, if for some $g \in G_{N^d}$ with $g(\mathfrak{m}_i) = \mathfrak{m}'_i$, then we have $\operatorname{typ}(\mathfrak{m}_1 \cap \mathfrak{m}_2) = \operatorname{typ}(\mathfrak{m}'_1 \cap \mathfrak{m}'_2)$. Conversely, if $\operatorname{typ}(\mathfrak{m}_1 \cap \mathfrak{m}_2) = \operatorname{typ}(\mathfrak{m}'_1 \cap \mathfrak{m}'_2)$, we have an isomorphism $g : \mathfrak{m}_1 \cap \mathfrak{m}_2 \to \mathfrak{m}'_1 \cap \mathfrak{m}'_2$. By Corollary 9.1.1, this can be extended

to isomorphisms $g_i: \mathfrak{m}_i \to \mathfrak{m}'_i$ for i=1,2. Hence we have an isomorphism $g: \mathfrak{m}_1 + \mathfrak{m}_2 \to \mathfrak{m}'_1 + \mathfrak{m}'_2$. By Corollary 9.1.1 again, g can be extended to $g \in G_{N^d}$. This shows that $g(\mathfrak{m}_1, \mathfrak{m}_2) = (\mathfrak{m}'_1, \mathfrak{m}'_2)$.

Since $\operatorname{typ}(\mathfrak{m}_1 \cap \mathfrak{m}_2) = \operatorname{typ}(\mathfrak{m}_2 \cap \mathfrak{m}_1)$, we have the following

Corollary 9.1.3. The Hecke algebra $\mathcal{H}_{N^m}^{N^d}$ is commutative. The dimension of $\mathcal{H}_{N^m}^{N^d}$ is given by $\#\Lambda_{N^m} = \binom{N+m}{m}$. Hence their direct limit $\mathcal{H}_m^d = \varinjlim \mathcal{H}_{N^m}^{N^d}$ is also commutative.

Therefore the representations of G_{N^d} and $GL_d(\mathbb{Z}_p)$ are multiplicity free, whence they decompose as follows

$$H_{N^m}^{N^d} = \bigoplus_{\lambda \in \Lambda_{N^m}} V_{\lambda}, \qquad H_m^d = \bigoplus_{\lambda'_1 \le m} V_{\lambda}.$$

We have the following diagrams using the quotient maps from modulo p^N to modulo p^{N-1} . Here the projection $\Lambda_{N^m} \to \Lambda_{(N-1)^m}$ is given by "chopping the right-most column", that is, $(\lambda_1' \geq \lambda_2' \geq \cdots \geq \lambda_N') \mapsto (\lambda_1' \geq \lambda_2' \geq \cdots \geq \lambda_{N-1}')$;

$$G_{N^d} \xrightarrow{\hspace*{1cm}} X_{N^m}^{N^d} \qquad \qquad \Omega_{N^m}^{N^d} \xrightarrow{\hspace*{1cm}} \Lambda_{N^m}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G_{(N-1)^d} \xrightarrow{\hspace*{1cm}} X_{(N-1)^m}^{(N-1)^d} \qquad \qquad \Omega_{(N-1)^m}^{(N-1)^d} \xrightarrow{\hspace*{1cm}} \Lambda_{(N-1)^m}$$

Taking the inverse limit, we have the following trees;

V-th layer tree boundary
$$X_{N^m}^{N^d} \quad \bigsqcup_N X_{N^m}^{N^d} \quad X_m^d = \varprojlim_N X_{N^m}^{N^d}$$

$$\Lambda_{N^m} \quad \bigsqcup_N \Lambda_{N^m} \quad \Omega_m^d = \varprojlim_N \Omega_{N^m}^{N^d}$$

Notice that, we have infinite partitions in $\varprojlim \Lambda_{N^m} \simeq \varprojlim \Omega_{N^m}^{N^d}$, that is,

$$\varprojlim_{M-j} \Lambda_{N^m} = \Lambda_m \sqcup \Lambda_{m-1} \sqcup \cdots \sqcup \Lambda_1 \sqcup \Lambda_0 = \{\infty\},$$

$$\Lambda_{m-j} := \{\lambda = (\underbrace{\infty, \dots, \infty}_{j} > \lambda_{j+1} \ge \dots \ge \lambda_m \ge 0)\}.$$

We have the two types of embedding

$$\Omega_m^d = \lim_{m \to \infty} \Lambda_{N^m} \longrightarrow [0, 1]^m$$

defined as follows:

sin-embedding :
$$\lambda \longmapsto (p^{-\lambda_1}, \dots, p^{-\lambda_m})$$
, cos-embedding : $\lambda \longmapsto (1 - p^{-\lambda_1}, \dots, 1 - p^{-\lambda_m})$.

Here we understand $p^{-\infty} = 0$. It is important to note that we have two types of topologies in Ω_m^d , that is, the inverse limit topology, and the topology induced from $[0,1]^m$, and these are the same topology. This shows that the set of all finite partitions Λ_m (these do not have the 0 coordinate in $[0,1]^m$ by the embedding above) is an open and dense subspace of Ω_m^d ; it is also of full measure with respect to the probability measure $\overline{\tau}_{m,n}^d$ on Ω_m^d . Here the measure $\overline{\tau}_{m,n}^d$ is obtained as follows; Let us write

$$\Omega_m^d = B_{m,d-m}(\mathbb{Z}_p) \backslash GL_d(\mathbb{Z}_p) / B_{n,d-n}(\mathbb{Z}_p)$$

Then $\overline{\tau}_{m,n}^d$ is the measure induced from the Haar measure τ^d on $GL_d(\mathbb{Z}_p)$. As in the case of the reals, $\overline{\tau}_{m,n}^d$ can be obtained by $t_*(dx \otimes dy)$. Here $dx \otimes dy$ is the additive measure on $\operatorname{Mat}_{d \times (m+n)}(\mathbb{Z}_p)$ and t is the map

$$t: \operatorname{Mat}_{d \times (m+n)}(\mathbb{Z}_p) \xrightarrow{\widetilde{\operatorname{pr}}} X_m^d \times X_n^d \xrightarrow{\operatorname{typ}} \Omega_m^d$$

It can be also expressed as

$$\overline{\tau}_{m,n}^d = t_*(dx \otimes dy) = t_*(dx \otimes \delta_{y_0}) = t_*(\delta_{x_0} \otimes dy)$$

for some $x_0 \in \operatorname{Mat}_{d \times m}(\mathbb{Z}_p)$, or some $y_0 \in \operatorname{Mat}_{d \times n}(\mathbb{Z}_p)$. We get the Markov chain on $\coprod_N \Lambda_{N^m}$ with harmonic measure $\overline{\tau}_{m,n}^d$ (remember that we have the Markov chain if we have a tree and a measure on the boundary).

Now we try to see the relative position more like in the real case. Let $A,B\in\mathbb{P}^{d-1}(\mathbb{Z}_n^{\oplus d}).$ Define

$$|(A,B)| = 1 - \rho(A,B) := \sup\{1 - p^{-n} \mid A \equiv B \pmod{p^n}, \ n \ge 0\}.$$

For example, we have

$$A \not\equiv B \pmod{p} \iff |(A, B)| = 1 - p^0 = 0$$

 $\iff A, B \text{ are orthonormal,}$

and

$$A = B \iff A \equiv B \pmod{p^n}$$
 for all $n \ge 0$
 $\iff |(A, B)| = 1$.

Hence we have for $\mathfrak{p} \in X_m^d$ and $\mathfrak{q} \in X_n^d$, $\operatorname{typ}(\mathfrak{p},\mathfrak{q}) = \lambda \in \varprojlim \Lambda_{N^m}$ if and only if there exists orthonormal basis A_1, \ldots, A_m for \mathfrak{p} and B_1, \ldots, B_n for \mathfrak{q} such that $|(A_i, B_j)| = \delta_{i,j} (1 - p^{-\lambda_i})$.

9.2 Harmonic Measure

9.2.1 Notations

Let $\lambda, \mu, \overline{\mu}$ be partitions. We put $G_{\lambda} := \operatorname{Aut}(\mathbb{Z}/p^{\lambda})$ and fixing $\mathfrak{m}_0 = \mathbb{Z}/p^{\lambda}$ we define

$$X_{\mu}^{\lambda} := \operatorname{Grass} (\mathfrak{m} \subseteq \mathfrak{m}_0 \mid \operatorname{typ}(\mathfrak{m}) = \mu),$$

$$X_{\mu,\overline{\mu}}^{\lambda} := \operatorname{Grass} (\mathfrak{m} \subseteq \mathfrak{m}_0 \mid \operatorname{typ}(\mathfrak{m}) = \mu, \operatorname{typ}(\mathfrak{m}_0/\mathfrak{m}) = \overline{\mu}).$$

More generally, for the modules \mathfrak{m}_0 of $\operatorname{typ}(\mathfrak{m}_0) = \lambda$ and $\mathfrak{m} \subseteq \mathfrak{m}_0$ of $\operatorname{typ}(\mathfrak{m}) = \mu$, we get the sequence of the partitions $\{\operatorname{typ}(\mathfrak{m}_0/\mathfrak{m} \cap p^i\mathfrak{m}_0)\}_{i=0,1,\dots}$ from $\overline{\mu}$ to λ . Hence

$$T := \left\{ \operatorname{typ}(\mathfrak{m}_0/\mathfrak{m} \cap p^i \mathfrak{m}_0) \right\}_{i \ge 0}$$

is a tableau of shape $\operatorname{sh}(T) = \lambda \setminus \overline{\mu}$ and weight $\operatorname{wt}(T) = \mu$. We define for a given tableau T

$$X_T^\lambda:=\operatorname{Grass}\bigl(\mathfrak{m}\subseteq\mathfrak{m}_0\,\big|\,\bigl\{\operatorname{typ}(\mathfrak{m}_0/\mathfrak{m}\cap p^i\mathfrak{m}_0)\bigr\}_{i\geq 0}=T\bigr).$$

Then the group G_{N^d} acts on the spaces X^{λ}_{μ} , $X^{\lambda}_{\mu,\overline{\mu}}$ and X^{λ}_{T} . Note that $X^{\lambda}_{\mu} = \bigcup_{\overline{\mu}} X^{\lambda}_{\mu,\overline{\mu}}$ and $X^{\lambda}_{\mu,\overline{\mu}} = \bigcup_{T} X^{\lambda}_{T}$ the union taken over T with $\operatorname{sh}(T) = \lambda \setminus \overline{\mu}$ and $\operatorname{wt}(T) = \mu$. G_{N^d} is not transitive on X^{λ}_{T} (It is very difficult combinatorial problem to describe all the equivalence classes of embedding $\mathbb{Z}/p^{\mu} \hookrightarrow \mathbb{Z}/p^{\lambda}$). We denote respectively by

$$\begin{pmatrix} \lambda \\ T \end{pmatrix}_p := \# X_T^\lambda, \quad \begin{pmatrix} \lambda \\ \mu, \overline{\mu} \end{pmatrix}_p := \# X_{\mu, \overline{\mu}}^\lambda = \sum_T \begin{pmatrix} \lambda \\ T \end{pmatrix}_p, \quad \begin{pmatrix} \lambda \\ \mu \end{pmatrix}_p := \# X_\mu^\lambda = \sum_{\overline{\mu}} \begin{pmatrix} \lambda \\ \mu, \overline{\mu} \end{pmatrix}_p$$

 $\binom{\lambda}{T}_p$ are monic polynomials in p, and $\binom{\lambda}{\mu,\overline{\mu}}_p$ are the Hall polynomial (see [Mac]). One can see that the leading term of $\binom{\lambda}{\mu,\overline{\mu}}_p$ is the number $c^\lambda_{\mu,\overline{\mu}}$ of tableau T with $\mathrm{sh}(T) = \lambda \setminus \overline{\mu}$ and $\mathrm{wt}(T) = \mu; \ c^\lambda_{\mu,\overline{\mu}}$ are the Littlewood-Richardson coefficients.

Let

$$[n]_p := \frac{1}{\zeta_p(n)} = 1 - p^{-n}, \quad [n]_p! := [n]_p \cdots [1]_p, \quad \begin{bmatrix} n \\ m \end{bmatrix}_p := \frac{[n]_p!}{[m]_p![n-m]_p!}.$$

Then it is easy to see that

$$\begin{split} &\#\mathrm{Hom}(\mathbb{Z}/p^{\lambda},\mathbb{Z}/p^{\mu}) = p^{\langle \lambda',\mu' \rangle}, \\ &\#\mathrm{Hom}^{1:1}(\mathbb{Z}/p^{\lambda},\mathbb{Z}/p^{\mu}) = p^{\langle \lambda',\mu' \rangle} \prod_{i} \frac{[\mu'_{i} - \lambda'_{i+1}]_{p}!}{[\mu'_{i} - \lambda'_{i}]_{p}!}, \end{split}$$

where $\langle \lambda', \mu' \rangle := \sum_i \lambda_i' \mu_i'$. In particular, taking $\mu = \lambda$, we have

$$\#G_{\lambda} = p^{\langle \lambda', \lambda' \rangle} \prod_{i} [\lambda'_{i} - \lambda'_{i+1}]_{p}!.$$

Hence we have

$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix}_{p} = \#X_{\mu}^{\lambda} = \sum_{\overline{\mu}} \begin{pmatrix} \lambda \\ \mu, \overline{\mu} \end{pmatrix}_{p} = \frac{\# \operatorname{Hom}^{1:1}(\mathbb{Z}/p^{\mu}, \mathbb{Z}/p^{\lambda})}{\#G_{\mu}}$$

$$= p^{\langle \mu', \lambda' - \mu' \rangle} \prod_{i} \begin{bmatrix} \lambda'_{i} - \mu'_{i+1} \\ \lambda'_{i} - \mu'_{i} \end{bmatrix}_{p}.$$

Also we set

$$\{n\}_p := \frac{-1}{\zeta_p(-n)} = p^n - 1, \quad \{n\}_p! := \{n\}_p \cdots \{1\}_p, \quad \begin{Bmatrix} n \\ m \end{Bmatrix}_p := \frac{\{n\}_p!}{\{m\}_p! \{n-m\}_p!}.$$

These are useful notations when we count things. On the other hand we use the notation $[n]_p$ when we are working with the probability measure. Notice that

$$\binom{n}{m}_p = \begin{bmatrix} n \\ m \end{bmatrix}_p p^{m(n-m)}.$$

Then it can be calculated as

$$\binom{N^d}{N^m} = \#X_{N^m}^{N^d} = p^{Nm(d-m)} \begin{bmatrix} d \\ d-m \end{bmatrix}_p.$$

Similarly, for a general partition λ , it is useful to calculate

$$\frac{{\binom{N^d}{\lambda}_p}}{{\binom{(N-1)^d}{\overline{\lambda}}_p}} = \frac{\#X_{\lambda}^{N^d}}{\#X_{\overline{\lambda}}^{(N-1)^d}} = \frac{p^{\sum_{i=1}^N \lambda_i'(d-\lambda_i')} \prod_{i=1}^N {\binom{d-\lambda_{i+1}'}{d-\lambda_i'}_p}}{p^{\sum_{i=1}^{N-1} \lambda_i'(d-\lambda_i')} \prod_{i=1}^{N-1} {\binom{d-\overline{\lambda}_{i+1}'}{d-\overline{\lambda}_i'}_p}} = p^{\lambda_N'(d-\lambda_N')} \frac{{\binom{d}{d-\lambda_N'}}_p {\binom{d-\lambda_N'}{d-\lambda_{N-1}'}}_p}{{\binom{d}{d-\lambda_{N-1}'}}_p}.$$

Here $\overline{\lambda}$ is the projection of λ ; $\overline{\lambda'} = (\lambda'_1, \dots, \lambda'_{N-1})$.

9.2.2 Harmonic Measure on Ω_m^d

Now we determine the harmonic measure $\tau := \overline{\tau}_{m,n}^d$ on the boundary space $\Omega_m^d = \varprojlim \Lambda_{N^m}$ of the relative positions of m-plane and n-plane from the transition probability of the Markov chain (see Sect. 9.2). We here work with the conjugate coordinate, that is, $\lambda = (\lambda'_1, \dots, \lambda'_N)$ and $\overline{\lambda} = (\lambda'_1, \dots, \lambda'_{N-1})$.

Let τ_N be the probability measure on Λ_{N^m} . First of all, let us calculate the measure in the finite layer $\tau_1(\lambda_1')$. Fix a subspace $\mathfrak{q}_1 = \mathbb{F}_p^{\lambda_1'}$ with $\mathfrak{q}_1 \subseteq \mathfrak{q}_0 = \mathbb{F}_p^n \subseteq \mathbb{F}_p^d$. Note that

$$\begin{split} \# \big\{ \mathfrak{p} \subseteq \mathbb{F}_p^d \, \big| \, \mathrm{dim} \mathfrak{p} &= m, \ \mathfrak{p} \cap \mathfrak{q}_0 = \mathfrak{q}_1 \big\} = \left\{ \begin{matrix} d - n \\ m - \lambda_1' \end{matrix} \right\}_p p^{(m - \lambda_1')(n - \lambda_1')}, \\ \# \big\{ \mathfrak{q}_1 \subseteq \mathbb{F}_p^n \, \big| \, \mathrm{dim} \mathfrak{q}_1 = \lambda_1' \big\} &= \left\{ \begin{matrix} n \\ \lambda_1' \end{matrix} \right\}_p, \\ \# \big\{ \mathfrak{p} \subseteq \mathbb{F}_p^d \, \big| \, \mathrm{dim} \mathfrak{p} = m \big\} &= \left\{ \begin{matrix} d \\ m \end{matrix} \right\}_p. \end{split}$$

Hence the first transition probability of the Markov chain is calculated as

$$\tau_{1}(\lambda'_{1}) = \frac{\#\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \dim\mathfrak{p} = m, \dim\mathfrak{p} \cap \mathfrak{q}_{0} = \lambda'_{1}\}}{\#\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \dim\mathfrak{p} = m\}}$$

$$= \frac{\#\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \dim\mathfrak{p} = m, \mathfrak{p} \cap \mathfrak{q}_{0} = \mathfrak{q}_{1}\} \cdot \#\{\mathfrak{q}_{1} \subseteq \mathbb{F}_{p}^{n} \mid \dim\mathfrak{q}_{1} = \lambda'_{1}\}}{\#\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \dim\mathfrak{p} = m\}}$$

$$= \frac{\{\binom{d-n}{m-\lambda'_{1}}\}_{p} p^{(m-\lambda'_{1})(n-\lambda'_{1})} \cdot \binom{n}{\lambda'_{1}}\}_{p}}{\binom{d}{m}}_{p}}$$

$$= \frac{\binom{d-n}{m-\lambda'_{1}}_{p} \binom{n}{\lambda'_{1}}_{p}}{\binom{d}{m}_{p}} p^{-\lambda'_{1}(d-n-m+\lambda'_{1})}.$$
(9.1)

Next we work on the N-th layer. For details see [On1]. Fix also a subspace $\mathfrak{q}_0 = (\mathbb{Z}/p^N)^{\oplus n} \subseteq (\mathbb{Z}/p^N)^{\oplus d}$. Then we have

$$\frac{\tau_{N}(\lambda)}{\tau_{N-1}(\overline{\lambda})} = \frac{\binom{N^{d}}{N^{m}}_{p}^{-1} \# \{ \mathfrak{p} \subseteq (\mathbb{Z}/p^{N})^{\oplus d} \mid \operatorname{typ}(\mathfrak{p}) = N^{m}, \operatorname{typ}(\mathfrak{p} \cap \mathfrak{q}_{0}) = \lambda \}}{\binom{(N-1)^{d}}{(N-1)^{m}}_{p}^{-1} \# \{ \overline{\mathfrak{p}} \subseteq (\mathbb{Z}/p^{N-1})^{\oplus d}, \mid \operatorname{typ}(\overline{\mathfrak{p}}) = (N-1)^{m}, \operatorname{typ}(\overline{\mathfrak{p}} \cap \overline{\mathfrak{q}_{0}}) = \overline{\lambda} \}}$$

$$= \frac{\binom{N^{d}}{(N-1)^{d}}_{p}^{-1} \binom{N^{n}}{\lambda}_{p} \# \{ \mathfrak{p} \subseteq (\mathbb{Z}/p^{N})^{\oplus d} \mid \operatorname{typ}(\mathfrak{p}) = N^{m}, \mathfrak{p} \cap \mathfrak{q}_{0} = \mathfrak{q}_{1} \}}{\binom{(N-1)^{d}}{(N-1)^{m}}_{p}^{-1} \binom{(N-1)^{n}}{\lambda}_{p} \# \{ \overline{\mathfrak{p}} \subseteq (\mathbb{Z}/p^{N-1})^{\oplus d} \mid \operatorname{typ}(\overline{\mathfrak{p}}) = (N-1)^{m}, \overline{\mathfrak{p}} \cap \overline{\mathfrak{q}_{0}} = \overline{\mathfrak{q}_{1}} \}}$$

Here we fix \mathfrak{q}_1 of $\operatorname{typ}(\mathfrak{q}_1) = \lambda$. The independence of this choice of \mathfrak{q}_1 is justified by the symmetry of \mathfrak{q}_0 . Hence we have

$$\frac{\tau_N(\lambda)}{\tau_{N-1}(\overline{\lambda})} = p^{-m(d-m)} \begin{bmatrix} \lambda'_{N-1} \\ \lambda'_N \end{bmatrix}_p p^{\lambda'_N(n-\lambda'_N)} \\
\times \# \{ \mathfrak{p} \subseteq (\mathbb{Z}/p^N)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p}) = N^m, \, \mathfrak{p} \cap \mathfrak{q}_0 = \mathfrak{q}_1, \, \overline{\mathfrak{p}} = \overline{\mathfrak{p}_0} \}. \tag{9.2}$$

Here we again fix the submodule $\overline{\mathfrak{p}_0} \subseteq \left(\mathbb{Z}/p^{N-1}\right)^{\oplus d}$ of $\operatorname{typ}(\overline{\mathfrak{p}_0}) = (N-1)^m$ such that $\overline{\mathfrak{p}_0} \cap \overline{\mathfrak{q}_0} = \overline{\mathfrak{q}_1}$. To calculate (9.2), without loss of generality, we assume that

$$\lambda_N' = 0 \tag{9.3}$$

since we can factor out $(\mathbb{Z}/p^N)^{\oplus \lambda_N'} \subseteq \mathfrak{p} \cap \mathfrak{q}$. Hence, to calculate (9.2), it is sufficient to count

$$\#\{\mathfrak{p}\subseteq (\mathbb{Z}/p^N)^{\oplus (d-\lambda_N')}\,\big|\,\mathrm{typ}(\mathfrak{p})=N^{m-\lambda_N'},\,\mathfrak{p}\cap\mathfrak{q}_0=\mathfrak{q}_1,\,\overline{\mathfrak{p}}=\overline{\mathfrak{p}_0}\}.\tag{9.4}$$

Fix $\mathfrak{q}_0 \subseteq (\mathbb{Z}/p^N)^{\oplus n-\lambda_N'}$, \mathfrak{q}_1 of $\operatorname{typ}(\mathfrak{q}_1) = \overline{\lambda}$ and $\overline{\mathfrak{p}_0}$ of $\operatorname{typ}(\overline{\mathfrak{p}_0}) = (N-1)^{m-\lambda_N'}$. Also fix a lifting \mathfrak{p}_0 of $\overline{\mathfrak{p}_0}$. Let $\mathfrak{A} := \{A_1, \ldots, A_m\}$ be a basis for \mathfrak{p}_0 and $\mathfrak{B} := \{B_1, \ldots, B_m\}$ a completion to a basis for $(\mathbb{Z}/p^N)^{\oplus d}$. Then any other lifting \mathfrak{p} of $\overline{\mathfrak{p}_0}$ has basis of the form

$$A_i + p^{N-1} \{ \sum_{1 \le j \le m} a_{ij} A_j + \sum_{1 \le k \le m} b_{ik} B_k \},$$

where $a_{ij}, b_{ik} \in \mathbb{F}_p$. Now note that a_{ij} 's do not change \mathfrak{p} . Hence we ignore a_{ij} 's and consider only b_{ik} 's. Note also that, for two liftings \mathfrak{p} and \mathfrak{p}' of $\overline{\mathfrak{p}_0}$ given by $\{b_{ik}\}$ and $\{b'_{ik}\}$ respectively, it holds that $\mathfrak{p} = \mathfrak{p}'$ if and only if $b_{ik} = b'_{ik}$. Therefore the choice of the $\{b_{ik}\}$ determines the space uniquely. Now let $\mathfrak{C} = \{C_1, \ldots, C_n\}$ be the basis for \mathfrak{q}_0 such that $p^{N-\lambda_i}C_i = p^{N-\lambda_i}A_i$ is a basis for $\mathfrak{q}_0 \cap \mathfrak{p}_0 = \mathfrak{q}_1 = \mathbb{Z}/p^{\lambda}$. Write

$$\mathfrak{A} = \bigsqcup_{0 \leq k \leq N} \mathfrak{A}^{(k)}, \qquad \mathfrak{C} = \bigsqcup_{0 \leq k \leq N} \mathfrak{C}^{(k)}$$

with $p^{N-k}\mathfrak{C}^{(k)} = p^{N-k}\mathfrak{A}^{(k)}$. Hence we have $\#\mathfrak{C}^{(k)} = \#\mathfrak{A}^{(k)} = \#\{i \mid \lambda_i = k\}$. By the assumption (9.3), $\#\mathfrak{C}^{(N)} = \mathfrak{A}^{(N)} = 0$. Note that the element of $\bigsqcup_{0 \leq k < N-1} \mathfrak{A}^{(k)}$ can be changed arbitrary and the number of such choices (i.e., the choices of $\{b_{ij}\}$'s) are equal to $p^{(d-m)(n-\lambda'_{N-1})}$. On the other hand the element of $\mathfrak{A}^{(N-1)} = \{A_{m-\lambda'_{N-1}+1}, \ldots, A_m\}$ cannot be changed arbitrary, only by b_{ij} 's, which avoid $p^{N-1}(\mathfrak{C}\backslash\mathfrak{C}^{(N-1)})$ (notice that $\dim_{\mathbb{F}_p}(\mathfrak{C}\backslash\mathfrak{C}^{(N-1)}) = n - \lambda'_{N-1}$). Hence when we chose $\{b_{ij}\}$'s, we have to avoid not only the space $\mathfrak{C}\backslash\mathfrak{C}^{(N-1)}$ but also the space spanned by (i-1) elements chosen previously. Because we fix $\mathfrak{p}_0 \cap \mathfrak{q}_1 = \mathfrak{q}_0$, the number of choices of such elements is $p^{d-m} - p^{n-\lambda'_{N-1}+i-1}$. Therefore all the number (9.4) is given by

$$\begin{split} p^{(d-m)(m-\lambda'_{N-1})}(p^{d-m}-p^{n-\lambda'_{N-1}})(p^{d-m}-p^{n-\lambda'_{N-1}+1})\cdots\\ &(p^{d-m}-p^{n-\lambda'_{N-1}+\lambda'_{N-1}-1})\\ &=p^{(d-m)m}(1-p^{-(d-m-n+\lambda'_{N-1})})\cdots(1-p^{-(d-m-n+1)})\\ &=p^{(d-m)m}\frac{[d-m-n+\lambda'_{N-1}]_p!}{[d-m-n]_p!}. \end{split}$$

To remove the assumption (9.3), we substitute $d - \lambda'_N$ for d, and so on, i.e., subtract λ'_N from d, m, n and λ'_{N-1} . Then we have

$$\# \{ \mathfrak{p} \subseteq (\mathbb{Z}/p^N)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p}) = N^m, \, \mathfrak{p} \cap \mathfrak{q}_0 = \mathfrak{q}_1, \, \overline{\mathfrak{p}} = \overline{\mathfrak{p}_0} \} \\
= \frac{[d - m - n + \lambda'_{N-1}]_p!}{[d - m - n + \lambda'_N]_p!} p^{(d-m)(m-\lambda'_N)}. \tag{9.5}$$

Hence, from (9.2) and (9.5), the transition probability is given by

$$\frac{\tau_N(\lambda)}{\tau_{N-1}(\overline{\lambda})} = p^{-m(d-m)} \begin{bmatrix} \lambda'_{N-1} \\ \lambda'_N \end{bmatrix}_p p^{\lambda'_N(n-\lambda'_N)} \frac{[d-m-n+\lambda'_{N-1}]_p!}{[d-m-n+\lambda'_N]_p!} p^{(d-m)(m-\lambda'_N)}$$
$$= \begin{bmatrix} \lambda'_{N-1} \\ \lambda'_N \end{bmatrix}_p \frac{[d-m-n+\lambda'_{N-1}]_p!}{[d-m-n+\lambda'_N]_p!} p^{-\lambda'_N(d-m-n+\lambda'_N)}.$$

Therefore, taking the product of all $0 \le j \le N$ of the transition probability, the measure τ_N on the N-th layer is calculated as follows;

$$\tau_{N}(\lambda) = \frac{{n \brack \lambda'_{1} \brack p}_{p} {m-\lambda'_{1} \brack p}_{p}}{{d \brack m \brack p}_{p}} p^{-\lambda'_{1}(d-n-m+\lambda'_{1})}$$

$$\prod_{1 \leq j \leq N} {\lambda'_{j-1} \brack \lambda'_{j}}_{p} \frac{[d-m-n+\lambda'_{j-1}]_{p}!}{[d-m-n+\lambda'_{j}]_{p}!} p^{-\lambda'_{j}(d-m-n+\lambda'_{j})}$$

$$= \begin{bmatrix} n \\ n-\lambda'_{1}, \lambda'_{1}-\lambda'_{2}, \dots, \lambda'_{N} \end{bmatrix}_{p}$$

$$\frac{[d-n]_{p}!}{[m-\lambda'_{1}]_{p}![d-m-n+\lambda_{N}]_{p}!} p^{-\sum_{i=1}^{N} \lambda'_{i}(d-m-n+\lambda'_{i})}$$

$$\begin{bmatrix} d \\ m \end{bmatrix}_{p}$$

where

$$\begin{bmatrix} n \\ m_1, \dots, m_N \end{bmatrix}_p := \frac{[n]_p!}{[m_1]_p! \cdots [m_N]_p!} \qquad (m_1 + \dots + m_N = n)$$

is the multinomial coefficient. Then the harmonic measure τ is obtained by taking the limit $N \to \infty$ of the measure τ_N on the N-th layer;

$$\tau(\lambda) := \begin{bmatrix} n \\ n - \lambda_1', \lambda_1' - \lambda_2', \dots \end{bmatrix}_p \frac{\frac{[d-n]_p!}{[m-\lambda_1']_p![d-m-n]_p!} p^{-\sum_{i\geq 1} \lambda_i'(d-m-n+\lambda_i')}}{\begin{bmatrix} d \\ m \end{bmatrix}_p}.$$

It can be written as follows

$$\tau(\lambda) = \frac{\binom{d}{m+n} \binom{d}{p}}{\binom{d}{m} \binom{d}{p} \binom{d}{n}} \frac{[m+n]!}{[m-\lambda'_1]_p! [n-\lambda'_1]_p!} \prod_{j \ge 1} \frac{1}{[\lambda'_j - \lambda'_{j+1}]_p!} p^{-\sum_{i \ge 1} \lambda_i (d-m-n+2i-1)}.$$
(9.6)

This expression shows that $\tau(\lambda)$ is symmetric in m and n. We call this measure the harmonic Selberg measure, which is a p-adic analogue of the Selberg measure.

9.3 Basis for the Hecke Algebra

In the last section, we see the unitary representation of $G_{N^d} = GL_d(\mathbb{Z}/p^N)$; $\pi: G_{N^d} \to U(H_{N^m}^{N^d})$ where $H_{N^m}^{N^d} := L^2(X_{N^m}^{N^d}, \tau)$. The commutant is generated by the Hecke algebra $\mathcal{H}_{N^m}^{N^d} = L^2(\Lambda_{N^m})$. We have the geometric basis $\{\delta_\lambda\}_{\lambda\subseteq N^m}$ for $\mathcal{H}_{N^m}^{N^d}$, which act on the function in $H_{N^m}^{N^d}$ as

$$\delta_{\lambda}\varphi(y):=\int_{\operatorname{typ}(x\cap y)=\lambda}\varphi(x)\tau(x) \qquad (\varphi\in H^{N^d}_{N^m}).$$

On the other hand, we denote by $\ell^2(X_{N^m}^{N^d})$ the Hilbert space with the counting measure (not normalized to be a probability measure). In this case, we denote by g_{λ} the geometric basis, acting via

$$g_{\lambda}\varphi(y):=\sum_{\operatorname{typ}(x\cap y)=\lambda}\varphi(x) \qquad (\varphi\in H^{N^d}_{N^m}).$$

Note that g_{λ} is up to constant identical with δ_{λ} , that is,

$$g_{\lambda} = \binom{N^d}{N^m}_p \delta_{\lambda}.$$

Let $\lambda' \subseteq \lambda \subseteq N^d$. We define "gradient" and "divergent" operators

$$\ell^2(X_{\lambda}^{N^d}) \xrightarrow{T_{\lambda' \subseteq \lambda}} \ell^2(X_{\lambda'}^{N^d})$$

by

$$T_{\lambda'\subseteq\lambda}\varphi(x'):=\sum_{x'\subseteq x}\varphi(x), \qquad T_{\lambda\supseteq\lambda'}\varphi(x):=\sum_{x\supseteq x'}\varphi(x').$$

It is clear that these operators are adjoint to each other and commute with the action of G_{N^d} on the Grassmann manifolds. Let $\lambda_1, \lambda_2 \subseteq \lambda \subseteq N^d$. Then we also define

$$T^{\lambda}_{\lambda_1,\lambda_2}:\ell^2(X^{N^d}_{\lambda_2})\longrightarrow \ell^2(X^{N^d}_{\lambda_1})$$

by

$$T_{\lambda_1,\lambda_2}^{\lambda}\varphi(x_1) = \sum_{\mathrm{typ}(x_1+x_2)=\lambda}\varphi(x_2).$$

Then we have $(T_{\lambda_1,\lambda_2}^{\lambda})^* = T_{\lambda_2,\lambda_1}^{\lambda}$. This also commutes with G_{N^d} -action.

The "Laplacian" $c_{\lambda}: \ell^2(X_{N^m}^{N^d}) \to \ell^2(X_{N^m}^{N^d})$ is expressed in terms of the geometric basis:

$$c_{\lambda} = T_{N^m \supseteq \lambda} \circ T_{\lambda \subseteq N^m} = \sum_{\lambda \subseteq \lambda' \subseteq N^m} {\lambda' \choose \lambda}_p g_{\lambda'}.$$

The collection $\{c_{\lambda}\}_{{\lambda}\subseteq N^m}$ is called the cellular basis for $\mathcal{H}_{N^m}^{N^d}$. Note that the matrix $\{\binom{\lambda'}{\lambda}_p\}_{{\lambda},{\lambda'}}$, which transforms the geometric basis $\{g_{\lambda}\}$ to the cellular basis $\{c_{\lambda}\}$, is upper triangular with $\binom{\lambda}{\lambda}_p = 1$. Let $\{\binom{\lambda'}{\lambda}_p^*\}_{{\lambda},{\lambda'}} := \{\binom{\lambda'}{\lambda}_p\}_{{\lambda},{\lambda'}}^{-1}$ denote the coefficients of inverse matrix. Then we have

$$g_{\lambda} = \sum_{p^{\lambda'} \subset \lambda \subset \lambda' \subset N^m} {\binom{\lambda'}{\lambda}}_p^* c_{\lambda'}$$

Moreover, we have explicit expression of $\binom{\beta}{\lambda}_p^*$;

$$\binom{\beta}{\lambda}_p^* := (-1)^{|\beta|-|\lambda|} p^{n(\beta)-n(\lambda)} \prod_{1 < i < m} \begin{bmatrix} \beta_i' - \beta_{i+1}' \\ \beta_i' - \lambda_i' \end{bmatrix}_p,$$

where $|\lambda| := \sum_i \lambda_i$ and $n(\lambda) := \sum_i \lambda_i (i-1)$ (these are the standard notations for partitions). Remark that

$$\mathcal{H}_{N^m}^{N^d}(\lambda) := \operatorname{Span}\{c_{\alpha} \mid \alpha \subseteq \lambda\}, \qquad \mathcal{H}_{N^m}^{N^d}(\lambda^-) := \operatorname{Span}\{c_{\alpha} \mid \alpha \subseteq \lambda\}$$

are ideals of $\mathcal{H}_{N^m}^{N^d}$. Let us consider the quotient

$$\mathcal{W}_{\lambda} := \mathcal{H}_{N^m}^{N^d}(\lambda) / \mathcal{H}_{N^m}^{N^d}(\lambda^-) \qquad (\lambda \in \Lambda_m).$$

Then $\{W_{\lambda}\}_{{\lambda}\in\Lambda_m}$ gives the complete list of the irreducible representations of the Hecke algebra $\mathcal{H}_{N^m}^{N^d}$. Note that $\dim \mathcal{W}_{\lambda} = 1$. Hence we have idempotents $\{\varphi_{\lambda}\}_{{\lambda}\in\Lambda_{N^m}}$ for $\mathcal{H}_{N^m}^{N^d}$:

$$\mathcal{W}_{\lambda} = \mathbb{C} \cdot \varphi_{\lambda} = \mathcal{H}_{Nm}^{N^d} * \varphi_{\lambda}.$$

The function φ_{λ} is characterized as

$$c_{\alpha} \cdot \varphi_{\lambda} = 0$$
 for $\alpha \subsetneq \lambda$,
 $c_{\lambda} \cdot \varphi_{\lambda} \neq 0$.

Then, the irreducible decomposition of $\ell^2(X_{N^m}^{N^d})$ is given by

$$\ell^2(X_{N^m}^{N^d}) = \bigoplus_{\lambda \in \Lambda_m} \mathcal{V}_{\lambda},$$

we have also $\mathcal{V}_{\lambda} = \ell^2(X_{N^m}^{N^d}) * \varphi_{\lambda}$. Notice that \mathcal{V}_{λ} is the unique irreducible representation of G_{N^d} which occurs in the Grassmann manifold $X_{\lambda}^{N^d}$ but does not occur in $X_{\alpha}^{N^d}$ for any $\alpha \subseteq \lambda$.

Let us write

$$c_{\lambda} = \sum_{\alpha \subset \lambda} A_{\lambda,\alpha} \varphi_{\alpha}, \qquad \varphi_{\lambda} = \sum_{\alpha \subset \lambda} A_{\lambda,\alpha}^* c_{\alpha}$$

with some coefficients $A_{\lambda,\alpha}$ and $A_{\lambda,\alpha}^*$. Then the matrix $\{A_{\lambda,\alpha}\}_{\lambda,\alpha}$ is lower triangular and $\{A_{\lambda,\alpha}^*\}_{\lambda,\alpha} = \{A_{\lambda,\alpha}\}_{\lambda,\alpha}^{-1}$. Moreover, let

$$c_{\lambda_1} * c_{\lambda_2} = \sum_{\alpha \subseteq \lambda_1, \lambda_2} C_{\alpha}^{\lambda_1, \lambda_2} \cdot c_{\alpha}.$$

Then we have $A_{\lambda,\alpha}=C_{\alpha}^{\lambda,\alpha}$ for $\alpha\subseteq\lambda$. One can explicitly calculate the number $A_{\lambda,\alpha}$ as follows: Fixed submodules $\mathbb{Z}/p^{\alpha}\subseteq\left(\mathbb{Z}/p^{N}\right)^{\oplus m}$ and $\mathbb{Z}/p^{\lambda},\mathbb{Z}/p^{\alpha}\subseteq\left(\mathbb{Z}/p^{N}\right)^{\oplus d}$ such that $\mathbb{Z}/p^{\lambda}\cap\mathbb{Z}/p^{\alpha}=0$. Then we have

$$\begin{split} A_{\lambda,\alpha} &= \# \big\{ \mathfrak{m} \subseteq \big(\mathbb{Z}/p^N \big)^{\oplus m} \, \big| \, \mathbb{Z}/p^\alpha \subseteq \mathfrak{m}, \, \mathrm{typ}(\mathfrak{m}) = \lambda \big\} \\ &\qquad \times \# \big\{ \mathfrak{m} \subseteq \big(\mathbb{Z}/p^N \big)^{\oplus d} \, \big| \, \mathbb{Z}/p^\lambda \subseteq \mathfrak{m}, \, \mathfrak{m} \cap \mathbb{Z}/p^\alpha = 0, \, \mathrm{typ}(\mathfrak{m}) = N^m \big\} \binom{N^d}{N^m}_p^{-1} \\ &= p^{-(d-2m)|\lambda| - m|\alpha| - \langle \lambda', \lambda' - \alpha' \rangle} \binom{m - \alpha'_1}{m - \lambda'_1} \prod_{p \ i > 1} \binom{\lambda'_i - \alpha'_{i+1}}{\lambda'_i - \lambda'_{i+1}} \prod_p \binom{d - \lambda'_1 - \alpha'_1}{m - \lambda'_1} \prod_p \binom{d}{m}_p^{-1}. \end{split}$$

It seems that the inverse matrix $\{A_{\lambda,\alpha}^*\}_{\lambda,\alpha}$ should be also calculated explicitly, however, unfortunately, we can not obtain this (it should be possible). For the reference of this section, see [BO1].

