p-Adic Grassmann Manifold

Summary. In Chap. 9 we give the analogous theory over the p-adic, giving the decomposition of the representation of $G L_{d}\left(\mathbb{Z}_{p}\right)$ afforded by the p-adic Grassmannian. The relative position of two planes $\mathfrak{p}, \mathfrak{q} \subseteq \mathbb{Z}_{p}^{d}$ is given by the type of the \mathbb{Z}_{p}-module $\mathfrak{p} \cap \mathfrak{q}$, i.e., by a partition. We calculate the measure on Ω_{m}^{d}, and describe the idempotents - the p-adic multivariable Jacobi polynomials.

9.1 Representation of $G L_{d}\left(\mathbb{Z}_{p}\right)$

9.1.1 Measures on $G L_{d}\left(\mathbb{Z}_{p}\right), V_{m}^{d}$ and X_{m}^{d}

Let p be a finite prime. First of all, we see that $G L_{d}\left(\mathbb{Z}_{p}\right)$ is expressed as the inverse limit;

$$
G L_{d}\left(\mathbb{Z}_{p}\right)=\lim G_{N^{d}},
$$

where $G_{N^{d}}:=G L_{d}\left(\mathbb{Z} / p^{N}\right)$. Then we obtain the following diagram by the determinant;

$$
\begin{array}{cc}
\operatorname{Mat}_{d \times d}\left(\mathbb{Z}_{p}\right) \xrightarrow{\operatorname{det}} & \mathbb{Z}_{p} \\
U & \\
G L_{d}\left(\mathbb{Z}_{p}\right) \xrightarrow[\text { det }]{ } \longrightarrow & \mathbb{Z}_{p}^{*}
\end{array}
$$

Note that $G L_{d}\left(\mathbb{Z}_{p}\right)$ is the maximal compact subgroup of $G L_{d}\left(\mathbb{Q}_{p}\right)$. This is similar to the real case. Namely, O_{d} is the maximal compact subgroup of $G L_{d}(\mathbb{R})$ and U_{d} is of $G L_{d}(\mathbb{C})$. But unlike the real case (where O_{d} and U_{d} are closed subset of $\left.\mathrm{Mat}_{d \times d}\right)$, the above diagram shows that $G L_{d}\left(\mathbb{Z}_{p}\right)$ is an open subset of $\operatorname{Mat}_{d \times d}\left(\mathbb{Z}_{p}\right)$. Now we have the measure on $\operatorname{Mat}_{d \times d}\left(\mathbb{Z}_{p}\right)$ defined by the additive Haar measure

$$
d x:=\bigotimes_{1 \leq i, j \leq d} d x_{i j}
$$

This measure satisfies $d(g x)=|\operatorname{det} g| d x$ for $g \in \operatorname{Mat}_{d \times d}\left(\mathbb{Z}_{p}\right)$. In particular, $d x$ is $G L_{d}\left(\mathbb{Z}_{p}\right)$-invariant measure on $\operatorname{Mat}_{d \times d}\left(\mathbb{Z}_{p}\right)$.

Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}_{p}^{\oplus d} \subseteq \mathbb{Q}_{p}^{\oplus d}$. We call A_{1}, \ldots, A_{m} orthonormal if

$$
\mathbb{Z}_{p}^{\oplus d} / \sum_{1 \leq i \leq m} \mathbb{Z}_{p} A_{i} \simeq \mathbb{Z}_{p}^{\oplus(d-m)}
$$

as \mathbb{Z}_{p}-module. Let \bar{A}_{i} be the image of A_{i} modulo p for $1 \leq i \leq m$. Then A_{1}, \ldots, A_{m} are orthonormal if and only if $\bar{A}_{1}, \ldots, \bar{A}_{m} \in \mathbb{F}_{p}^{\oplus d}$ are linearly independent over \mathbb{F}_{p}. This is also equivalent to the existence of $B_{1}, \ldots, B_{d-m} \in$ $\mathbb{Z}_{p}^{\oplus d}$ such that $\left(A_{1}, \ldots, A_{m} \mid B_{1}, \ldots, B_{d-m}\right) \in G L_{d}\left(\mathbb{Z}_{p}\right)$. Then we denote by

$$
V_{m}^{d}:=\left\{A=\left(A_{1}, \ldots, A_{m}\right) \in \operatorname{Mat}_{d \times m}\left(\mathbb{Z}_{p}\right) \mid A_{1}, \ldots, A_{m} \text { are orthonormal. }\right\}
$$

The group $G L_{d}\left(\mathbb{Z}_{p}\right)$ acts on V_{m}^{d} transitively and the stabilizer of the standard basis $1=\left(E_{1}, \ldots, E_{m}\right)$ is given by $G L_{d-m}\left(\mathbb{Z}_{p}\right) \ltimes \operatorname{Mat}_{m \times(d-m)}\left(\mathbb{Z}_{p}\right)$. Hence it holds that

$$
V_{m}^{d} \simeq G L_{d}\left(\mathbb{Z}_{p}\right) / G L_{d-m}\left(\mathbb{Z}_{p}\right) \ltimes \operatorname{Mat}_{m \times(d-m)}\left(\mathbb{Z}_{p}\right) .
$$

Note that the factor $\operatorname{Mat}_{m \times(d-m)}\left(\mathbb{Z}_{p}\right)$ does not appear in the real case. Let us first consider the case of $m=1$. It is easy to see that

$$
V_{1}^{d}=\left\{\left.A \in \mathbb{Z}_{p}^{\oplus d}| | A\right|_{p}=1\right\}
$$

where $|A|_{p}=\left.\left.\right|^{t}\left(\underline{a_{1}}, \ldots, a_{d}\right)\right|_{p}:=\max _{1 \leq i \leq d}\left|a_{i}\right|_{p}$. Then the condition $|A|_{p}=1$ is equivalent to $\bar{A} \not \equiv 0$ modulo p. The measure of V_{1}^{d} can be calculated as follows;

$$
\begin{aligned}
\int_{V_{1}^{d}} d x & =\left(1-p^{-1}\right)+p^{-1} \int_{V_{1}^{d-1}} d x=\cdots \\
& =\left(1-p^{-1}\right)+p^{-1}\left(1-p^{-1}\right)+p^{-2}\left(1-p^{-1}\right)+\cdots+p^{-(d-1)}\left(1-p^{-1}\right) \\
& =1-p^{-d} \\
& =\frac{1}{\zeta_{p}(d)} .
\end{aligned}
$$

Similarly, for general $m \geq 1$, we have

$$
\int_{V_{m}^{d}} d x=\int_{V_{1}^{d}} d x \int_{V_{m-1}^{d-1}} d x=\cdots=\prod_{d-m<j \leq d} \frac{1}{\zeta_{p}(j)}
$$

In particular if we take $m=d$, we have $V_{d}^{d}=G L_{d}\left(\mathbb{Z}_{p}\right)$ and

$$
\int_{G L_{d}\left(\mathbb{Z}_{p}\right)} d x=\prod_{1 \leq j \leq d} \frac{1}{\zeta_{p}(j)}
$$

Normalizing the additive Haar measure $d x$ by dividing by the above constant, one obtains the $G L_{d}\left(\mathbb{Z}_{p}\right)$ invariant probability measure on V_{m}^{d}. We denote by τ_{m}^{d} this measure on V_{m}^{d}, and $\tau^{d}:=\tau_{d}^{d}$ the Haar measure on $G L_{d}\left(\mathbb{Z}_{p}\right)$.

Now we are interested in space

$$
X_{m}^{d}:=\operatorname{Grass}\left(m, d ; \mathbb{Q}_{p}\right)
$$

where $\operatorname{Grass}\left(m, d ; \mathbb{Q}_{p}\right)$ is the Grassmann manifold of all m-dimensional space in d-dimensional plane over \mathbb{Q}_{p}. Note that $\operatorname{Grass}\left(m, d ; \mathbb{Q}_{p}\right)=\operatorname{Grass}\left(m, d ; \mathbb{Z}_{p}\right)$. Since $G L_{d}\left(\mathbb{Q}_{p}\right)$ (resp. $\left.G L_{d}\left(\mathbb{Z}_{p}\right)\right)$ acts transitively on X_{m}^{d} and the stabilizer of 1 is the Borel subgroup $B_{m, d-m}\left(\mathbb{Q}_{p}\right)$ (resp. $B_{m, d-m}\left(\mathbb{Z}_{p}\right)$) where

$$
\begin{aligned}
B_{m, d-m}: & =\left\{\left.\left(\frac{A \mid B}{0 \mid D}\right) \in \operatorname{Mat}_{d \times d} \right\rvert\, A \in G L_{m}, D \in G L_{d-m}, B \in \operatorname{Mat}_{m \times(d-m)}\right\} \\
& =\left(G L_{m} \times G L_{d-m}\right) \ltimes \operatorname{Mat}_{m \times(d-m)},
\end{aligned}
$$

we have

$$
X_{m}^{d}=G L_{d}\left(\mathbb{Q}_{p}\right) / B_{m, d-m}\left(\mathbb{Q}_{p}\right)=G L_{d}\left(\mathbb{Z}_{p}\right) / B_{m, d-m}\left(\mathbb{Z}_{p}\right)
$$

It can also be expressed as

$$
X_{m}^{d}=\left\{\mathfrak{p} \subseteq \mathbb{Z}_{p}^{\oplus d} \mid \mathbb{Z}_{p}^{\oplus d} / \mathfrak{p} \simeq \mathbb{Z}_{p}^{\oplus(d-m)}\right\}
$$

Note that in the real case the factor $\operatorname{Mat}_{m \times(d-m)}\left(\mathbb{Z}_{\eta}\right)$ disappear, and the real Grassmann manifold resembles more the space

$$
\begin{aligned}
\widetilde{X}_{m}^{d} & =\left\{\left(\mathfrak{p}, \mathfrak{p}^{\prime}\right) \mid \mathfrak{p} \simeq \mathbb{Z}_{p}^{\oplus m}, \mathfrak{p}^{\prime} \simeq \mathbb{Z}_{p}^{\oplus(d-m)}, \mathfrak{p} \oplus \mathfrak{p}^{\prime} \simeq \mathbb{Z}_{p}^{\oplus d}\right\} \\
& =G L_{d}\left(\mathbb{Z}_{p}\right) / G L_{m}\left(\mathbb{Z}_{p}\right) \times G L_{d-m}\left(\mathbb{Z}_{p}\right)
\end{aligned}
$$

The measure $\bar{\tau}_{m}^{d}$ on X_{m}^{d} is obtained as follows; Let pr be the projection

$$
\operatorname{pr}: V_{m}^{d} \longrightarrow X_{m}^{d}=V_{m}^{d} / G L_{m}\left(\mathbb{Z}_{p}\right) ; \quad \operatorname{pr}\left(A_{1}, \ldots, A_{m}\right)=\operatorname{Span}_{\mathbb{Z}_{p}}\left(A_{1}, \ldots, A_{m}\right)
$$

Then we see that the image $\operatorname{pr}_{*}\left(\tau_{m}^{d}\right)$ of the probability measure τ_{m}^{d} is the unique $G L_{d}\left(\mathbb{Z}_{p}\right)$ invariant probability measure on X_{m}^{d}. Hence, by the uniqueness, we have $\bar{\tau}_{m}^{d}=\operatorname{pr}_{*}\left(\tau_{m}^{d}\right)$. On the other hand, notice that the set of matrices $X \in \operatorname{Mat}_{d \times m}\left(\mathbb{Z}_{p}\right)$ of rank $X=m$ is of full measure with respect to the additive Haar measure $d x$. Then we have the projection
$\widetilde{\mathrm{pr}}: \operatorname{Mat}_{d \times m}\left(\mathbb{Z}_{p}\right) \longrightarrow X_{m}^{d}=V_{m}^{d} / G L_{m}\left(\mathbb{Z}_{p}\right) ; \quad \widetilde{\mathrm{pr}}(X)=\operatorname{Span}_{\mathbb{Q}_{p}}\left(X_{1}, \ldots, X_{m}\right) \cap \mathbb{Z}_{p}^{\oplus d}$ and also $\bar{\tau}_{m}^{d}=\widetilde{\mathrm{pr}}_{*}(d x)$. Note that $\widetilde{\mathrm{pr}}(X)$ is not the space spanned by X over \mathbb{Z}_{p}.

The space X_{m}^{d} can be also represented as the inverse limit;

$$
X_{m}^{d}=G L_{d}\left(\mathbb{Z}_{p}\right) / B_{m, d-m}\left(\mathbb{Z}_{p}\right)=\lim _{\rightleftarrows} X_{N^{m}}^{N^{d}},
$$

where $X_{N^{m}}^{N^{d}}$ is the finite set defined by $X_{N^{m}}^{N^{d}}:=G L_{d}\left(\mathbb{Z} / p^{N}\right) / B_{m, d-m}\left(\mathbb{Z} / p^{N}\right) \simeq$ $G_{N^{d}} / B_{N^{m}}$ and $B_{N^{m}}:=B_{m, d-m}\left(\mathbb{Z} / p^{N}\right)$. One can also check that $G_{N^{d}}$ acts on $X_{N^{m}}^{N^{d}}$ transitively and the stabilizer of 1 is given by $B_{N^{m}}$.

9.1.2 Unitary Representations of $G L_{d}\left(\mathbb{Z}_{p}\right)$ and $G_{N^{d}}$

We are interested in the unitary representation of $G L_{d}\left(\mathbb{Z}_{p}\right)$ defined by

$$
\pi: G L_{d}\left(\mathbb{Z}_{p}\right) \longrightarrow U\left(H_{m}^{d}\right) ; \quad \pi(g) f(x):=f\left(g^{-1} x\right)
$$

where $H_{m}^{d}:=L^{2}\left(X_{m}^{d}, \bar{\tau}_{m}^{d}\right)$. Now the Hilbert space H_{m}^{d} can be written as the direct limit of the finite dimensional spaces as follows;

$$
H_{m}^{d}=\lim _{\longrightarrow} H_{N^{m}}^{N^{d}}
$$

where $H_{N^{m}}^{N^{d}}:=L^{2}\left(X_{N^{m}}^{N^{d}}\right)$. We have a unitary embedding from the finite dimensional space $H_{N^{m}}^{N^{d}}$ to H_{m}^{d} and $\bigcup_{N} H_{N^{m}}^{N^{d}}$ is dense in H_{m}^{d}. Moreover, each finite dimensional space is invariant under the group $G L_{d}\left(\mathbb{Z}_{p}\right)$ and the representation of $G L_{d}\left(\mathbb{Z}_{p}\right)$ on it factors through the projection $G L_{d}\left(\mathbb{Z}_{p}\right) \rightarrow G_{N^{d}} \rightarrow$ $U\left(H_{N^{m}}^{N^{d}}\right)$. The commutant of this representation are generated by the Hecke algebra

$$
\mathcal{H}_{m}^{d}:=C^{\infty}\left(\Omega_{m}^{d}\right)
$$

Notice that, in the p-adic cases, smoothness means locally constant. Here

$$
\Omega_{m}^{d}:=B_{m, d-m}\left(\mathbb{Z}_{p}\right) \backslash G L_{d}\left(\mathbb{Z}_{p}\right) / B_{m, d-m}\left(\mathbb{Z}_{p}\right)=\lim _{\longleftrightarrow} \Omega_{N^{m}}^{N^{d}}
$$

where $\Omega_{N^{m}}^{N^{d}}:=B_{N^{m}} \backslash G_{N^{d}} / B_{N^{m}}$. The commutant of the representation of the finite group $G_{N^{d}}$ on the finite dimensional space $H_{N^{m}}^{N^{d}}$ is also generated by the Hecke algebra

$$
\mathcal{H}_{N^{m}}^{N^{d}}=C^{\infty}\left(\Omega_{N^{m}}^{N^{d}}\right)
$$

Again \mathcal{H}_{m}^{d} is expressed as the direct limit of the space $\mathcal{H}_{N^{m}}^{N^{d}}$;

$$
\mathcal{H}_{m}^{d}=\underset{\longrightarrow}{\lim } \mathcal{H}_{N^{m}}^{N^{d}}
$$

More generally, if we want the intertwining operator of the various representation for different m, say $H_{N^{m}}^{N^{d}} \rightarrow H_{N^{n}}^{N^{d}}$, we have to consider the module

$$
\mathcal{H}_{N^{m}, N^{n}}^{N^{d}}:=C^{\infty}\left(B_{N^{m}} \backslash G_{N^{d}} / B_{N^{n}}\right)
$$

Notice that we always assume $m \leq n \leq \frac{1}{2} d$.
Now remember the simple facts for finite \mathbb{Z}_{p}-modules. Let \mathfrak{m} be a finite \mathbb{Z}_{p}-module (resp. \mathbb{Z} / p^{N}-module). Then it is of the form of

$$
\mathfrak{m} \simeq \bigoplus_{i} \mathbb{Z} / p^{\lambda_{i}}=: \mathbb{Z} / p^{\lambda}
$$

where $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}>0\right)$ is a partition (resp. with $\left.\lambda_{1} \leq N\right)$. In this case, we say the type of \mathfrak{m} is λ and $\operatorname{write} \operatorname{typ}(\mathfrak{m})=\lambda$. This is a
complete isomorphism invariant. Namely, two modules are isomorphic if and only if they have the same type. (Note that all partitions are decreasing. All the people working in real or q-special functions use increasing partition while Macdonald use decreasing partition ([Mac]). Hence we have to change the notation unfortunately if we treat both the real and the p-adic cases.) We also use the following notation

$$
\left(1^{r_{1}}, 2^{r_{2}}, \ldots, N^{r_{N}}\right):=(\underbrace{N, \ldots, N}_{d}, \ldots, \underbrace{1, \ldots, 1}_{r_{1}})
$$

In particular, $\left(N^{d}\right)=(\underbrace{N, \ldots, N}_{d})$ and hence

$$
\mathbb{Z} / p^{\left(N^{d}\right)} \simeq\left(\mathbb{Z} / p^{N}\right)^{\oplus d}
$$

This is why we use the notation $G_{N^{d}}$, which is the automorphism group of $\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$. These are the highly symmetric modules. If we take a module $\mathfrak{m} \subset\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$ of $\operatorname{typ}(\mathfrak{m})=\lambda$, there exist a basis X_{1}, \ldots, X_{d} for the free module $\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$ such that $p^{N-\lambda_{1}} X_{1}, \ldots, p^{N-\lambda_{d}} X_{d}$ is the basis for \mathfrak{m}. Here y_{1}, \ldots, y_{l} is the basis for \mathfrak{m} of type λ means that (note that \mathfrak{m} is not free) y_{i} 's generate \mathfrak{m} and of order exactly λ_{i}. Equivalently, every $m \in \mathfrak{m}$ can be uniquely written as $m=a_{1} y_{1}+\cdots+a_{l} y_{l}$ for some $a_{i} \in \mathbb{Z} / p^{\lambda_{i}}$. For example, given such a module $\mathfrak{m} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$ of $\operatorname{typ}(\mathfrak{m})=\lambda$, we have

$$
\operatorname{typ}\left(\left(\mathbb{Z} / p^{N}\right)^{\oplus d} / \mathfrak{m}\right)=\left(N-\lambda_{d}, \ldots, N-\lambda_{1}\right)
$$

As a corollary of the elementary divisor, we have
Corollary 9.1.1. Any isomorphism $g: \mathfrak{m} \rightarrow \mathfrak{m}^{\prime}$ between two finite submodules $\mathfrak{m}, \mathfrak{m}^{\prime} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$ can be extended to $g \in \operatorname{Aut}\left(\left(\mathbb{Z} / p^{N}\right)^{\oplus d}\right)=G_{N^{d}}$.

Therefore, the space of the relative positions $\Omega_{N^{m}}^{N^{d}}$ can be written as follows;

Corollary 9.1.2.

$$
\Omega_{N^{m}}^{N^{d}} \simeq\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right) \mid \lambda_{1} \leq N, \lambda_{1}^{\prime} \leq m\right\}=: \Lambda_{N^{m}}
$$

where the isomorphism is given by

$$
G_{N^{d}}\left(\mathfrak{m}_{1}, \mathfrak{m}_{2}\right) \longmapsto \operatorname{typ}\left(\mathfrak{m}_{1} \cap \mathfrak{m}_{2}\right)
$$

Here we denote by $\lambda^{\prime}=\left(\lambda_{1}^{\prime} \ldots, \lambda_{n}^{\prime}\right)$ the conjugate of λ defined by $\lambda_{j}^{\prime}=$ $\#\left\{i \mid \lambda_{i} \geq j\right\}$.

Indeed, if for some $g \in G_{N^{d}}$ with $g\left(\mathfrak{m}_{i}\right)=\mathfrak{m}_{i}^{\prime}$, then we have $\operatorname{typ}\left(\mathfrak{m}_{1} \cap\right.$ $\left.\mathfrak{m}_{2}\right)=\operatorname{typ}\left(\mathfrak{m}_{1}^{\prime} \cap \mathfrak{m}_{2}^{\prime}\right)$. Conversely, if $\operatorname{typ}\left(\mathfrak{m}_{1} \cap \mathfrak{m}_{2}\right)=\operatorname{typ}\left(\mathfrak{m}_{1}^{\prime} \cap \mathfrak{m}_{2}^{\prime}\right)$, we have an isomorphism $g: \mathfrak{m}_{1} \cap \mathfrak{m}_{2} \rightarrow \mathfrak{m}_{1}^{\prime} \cap \mathfrak{m}_{2}^{\prime}$. By Corollary 9.1.1, this can be extended
to isomorphisms $g_{i}: \mathfrak{m}_{i} \rightarrow \mathfrak{m}_{i}^{\prime}$ for $i=1,2$. Hence we have an isomorphism $g: \mathfrak{m}_{1}+\mathfrak{m}_{2} \rightarrow \mathfrak{m}_{1}^{\prime}+\mathfrak{m}_{2}^{\prime}$. By Corollary 9.1 .1 again, g can be extended to $g \in G_{N^{d}}$. This shows that $g\left(\mathfrak{m}_{1}, \mathfrak{m}_{2}\right)=\left(\mathfrak{m}_{1}^{\prime}, \mathfrak{m}_{2}^{\prime}\right)$.

Since $\operatorname{typ}\left(\mathfrak{m}_{1} \cap \mathfrak{m}_{2}\right)=\operatorname{typ}\left(\mathfrak{m}_{2} \cap \mathfrak{m}_{1}\right)$, we have the following
Corollary 9.1.3. The Hecke algebra $\mathcal{H}_{N^{m}}^{N^{d}}$ is commutative. The dimension of $\mathcal{H}_{N^{m}}^{N^{d}}$ is given by $\# \Lambda_{N^{m}}=\binom{N+m}{m}$. Hence their direct limit $\mathcal{H}_{m}^{d}=\underline{\lim } \mathcal{H}_{N^{m}}^{N^{d}}$ is also commutative.

Therefore the representations of $G_{N^{d}}$ and $G L_{d}\left(\mathbb{Z}_{p}\right)$ are multiplicity free, whence they decompose as follows

$$
H_{N^{m}}^{N^{d}}=\bigoplus_{\lambda \in \Lambda_{N^{m}}} V_{\lambda}, \quad H_{m}^{d}=\bigoplus_{\lambda_{1}^{\prime} \leq m} V_{\lambda}
$$

We have the following diagrams using the quotient maps from modulo p^{N} to modulo p^{N-1}. Here the projection $\Lambda_{N^{m}} \rightarrow \Lambda_{(N-1)^{m}}$ is given by "chopping the right-most column", that is, $\left(\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{N}^{\prime}\right) \mapsto\left(\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq\right.$ $\left.\lambda_{N-1}^{\prime}\right)$;

Taking the inverse limit, we have the following trees;

$$
\begin{array}{ccc}
N \text {-th layer } & \text { tree } & \text { boundary } \\
X_{N^{m}}^{N^{d}} & \bigsqcup_{N} X_{N^{m}}^{N^{d}} & X_{m}^{d}=\lim X_{N^{m}}^{N^{d}} \\
\Lambda_{N^{m}} & \bigsqcup_{N}^{N} \Lambda_{N^{m}} & \Omega_{m}^{d}=\lim _{\leftrightarrows} \Omega_{N^{m}}^{N^{d}}
\end{array}
$$

Notice that, we have infinite partitions in $\lim _{\leftrightarrows} \Lambda_{N^{m}} \simeq \lim \Omega_{N^{m}}^{N^{d}}$, that is,

$$
\begin{aligned}
\lim _{\leftrightarrows} \Lambda_{N^{m}} & =\Lambda_{m} \sqcup \Lambda_{m-1} \sqcup \cdots \sqcup \Lambda_{1} \sqcup \Lambda_{0}=\{\infty\}, \\
\Lambda_{m-j} & :=\{\lambda=(\underbrace{\infty, \ldots, \infty}_{j}>\lambda_{j+1} \geq \ldots \geq \lambda_{m} \geq 0)\} .
\end{aligned}
$$

We have the two types of embedding

$$
\Omega_{m}^{d}=\lim _{\longleftarrow} \Lambda_{N^{m}} \longrightarrow[0,1]^{m}
$$

defined as follows;

$$
\begin{aligned}
& \text { sin-embedding }: \lambda \longmapsto\left(p^{-\lambda_{1}}, \ldots, p^{-\lambda_{m}}\right) \\
& \text { cos-embedding }: \lambda \longmapsto\left(1-p^{-\lambda_{1}}, \ldots, 1-p^{-\lambda_{m}}\right)
\end{aligned}
$$

Here we understand $p^{-\infty}=0$. It is important to note that we have two types of topologies in Ω_{m}^{d}, that is, the inverse limit topology, and the topology induced from $[0,1]^{m}$, and these are the same topology. This shows that the set of all finite partitions Λ_{m} (these do not have the 0 coordinate in $[0,1]^{m}$ by the embedding above) is an open and dense subspace of Ω_{m}^{d}; it is also of full measure with respect to the probability measure $\bar{\tau}_{m, n}^{d}$ on Ω_{m}^{d}. Here the measure $\bar{\tau}_{m, n}^{d}$ is obtained as follows; Let us write

$$
\Omega_{m}^{d}=B_{m, d-m}\left(\mathbb{Z}_{p}\right) \backslash G L_{d}\left(\mathbb{Z}_{p}\right) / B_{n, d-n}\left(\mathbb{Z}_{p}\right)
$$

Then $\bar{\tau}_{m, n}^{d}$ is the measure induced from the Haar measure τ^{d} on $G L_{d}\left(\mathbb{Z}_{p}\right)$. As in the case of the reals, $\bar{\tau}_{m, n}^{d}$ can be obtained by $t_{*}(d x \otimes d y)$. Here $d x \otimes d y$ is the additive measure on $\operatorname{Mat}_{d \times(m+n)}\left(\mathbb{Z}_{p}\right)$ and t is the map

$$
t: \operatorname{Mat}_{d \times(m+n)}\left(\mathbb{Z}_{p}\right) \xrightarrow{\widetilde{\mathrm{pr}}} X_{m}^{d} \times X_{n}^{d} \xrightarrow{\mathrm{typ}} \Omega_{m}^{d}
$$

It can be also expressed as

$$
\bar{\tau}_{m, n}^{d}=t_{*}(d x \otimes d y)=t_{*}\left(d x \otimes \delta_{y_{0}}\right)=t_{*}\left(\delta_{x_{0}} \otimes d y\right)
$$

for some $x_{0} \in \operatorname{Mat}_{d \times m}\left(\mathbb{Z}_{p}\right)$, or some $y_{0} \in \operatorname{Mat}_{d \times n}\left(\mathbb{Z}_{p}\right)$. We get the Markov chain on $\bigsqcup_{N} \Lambda_{N^{m}}$ with harmonic measure $\bar{\tau}_{m, n}^{d}$ (remember that we have the Markov chain if we have a tree and a measure on the boundary).

Now we try to see the relative position more like in the real case. Let $A, B \in \mathbb{P}^{d-1}\left(\mathbb{Z}_{p}^{\oplus d}\right)$. Define

$$
|(A, B)|=1-\rho(A, B):=\sup \left\{1-p^{-n} \mid A \equiv B \quad\left(\bmod p^{n}\right), n \geq 0\right\}
$$

For example, we have

$$
\begin{aligned}
A \not \equiv B \quad(\bmod p) & \Longleftrightarrow|(A, B)|=1-p^{0}=0 \\
& \Longleftrightarrow A, B \text { are orthonormal, }
\end{aligned}
$$

and

$$
\begin{aligned}
A=B & \Longleftrightarrow A \equiv B \quad\left(\bmod p^{n}\right) \text { for all } n \geq 0 \\
& \Longleftrightarrow|(A, B)|=1
\end{aligned}
$$

Hence we have for $\mathfrak{p} \in X_{m}^{d}$ and $\mathfrak{q} \in X_{n}^{d}, \operatorname{typ}(\mathfrak{p}, \mathfrak{q})=\lambda \in \lim _{\longleftrightarrow} \Lambda_{N^{m}}$ if and only if there exists orthonormal basis A_{1}, \ldots, A_{m} for \mathfrak{p} and B_{1}, \ldots, B_{n} for \mathfrak{q} such that $\left|\left(A_{i}, B_{j}\right)\right|=\delta_{i, j}\left(1-p^{-\lambda_{i}}\right)$.

9.2 Harmonic Measure

9.2.1 Notations

Let $\lambda, \mu, \bar{\mu}$ be partitions. We put $G_{\lambda}:=\operatorname{Aut}\left(\mathbb{Z} / p^{\lambda}\right)$ and fixing $\mathfrak{m}_{0}=\mathbb{Z} / p^{\lambda}$ we define

$$
\begin{aligned}
X_{\mu}^{\lambda} & :=\operatorname{Grass}\left(\mathfrak{m} \subseteq \mathfrak{m}_{0} \mid \operatorname{typ}(\mathfrak{m})=\mu\right) \\
X_{\mu, \bar{\mu}}^{\lambda} & :=\operatorname{Grass}\left(\mathfrak{m} \subseteq \mathfrak{m}_{0} \mid \operatorname{typ}(\mathfrak{m})=\mu, \operatorname{typ}\left(\mathfrak{m}_{0} / \mathfrak{m}\right)=\bar{\mu}\right)
\end{aligned}
$$

More generally, for the modules \mathfrak{m}_{0} of $\operatorname{typ}\left(\mathfrak{m}_{0}\right)=\lambda$ and $\mathfrak{m} \subseteq \mathfrak{m}_{0}$ of $\operatorname{typ}(\mathfrak{m})=\mu$, we get the sequence of the partitions $\left\{\operatorname{typ}\left(\mathfrak{m}_{0} / \mathfrak{m} \cap p^{i} \mathfrak{m}_{0}\right)\right\}_{i=0,1, \ldots}$ from $\bar{\mu}$ to λ. Hence

$$
T:=\left\{\operatorname{typ}\left(\mathfrak{m}_{0} / \mathfrak{m} \cap p^{i} \mathfrak{m}_{0}\right)\right\}_{i \geq 0}
$$

is a tableau of shape $\operatorname{sh}(T)=\lambda \backslash \bar{\mu}$ and weight $\operatorname{wt}(T)=\mu$. We define for a given tableau T

$$
X_{T}^{\lambda}:=\operatorname{Grass}\left(\mathfrak{m} \subseteq \mathfrak{m}_{0} \mid\left\{\operatorname{typ}\left(\mathfrak{m}_{0} / \mathfrak{m} \cap p^{i} \mathfrak{m}_{0}\right)\right\}_{i \geq 0}=T\right)
$$

Then the group $G_{N^{d}}$ acts on the spaces $X_{\mu}^{\lambda}, X_{\mu, \bar{\mu}}^{\lambda}$ and X_{T}^{λ}. Note that $X_{\mu}^{\lambda}=$ $\bigcup_{\bar{\mu}} X_{\mu, \bar{\mu}}^{\lambda}$ and $X_{\mu, \bar{\mu}}^{\lambda}=\bigcup_{T} X_{T}^{\lambda}$ the union taken over T with $\operatorname{sh}(T)=\lambda \backslash \bar{\mu}$ and $\mathrm{wt}(T)=\mu . G_{N^{d}}$ is not transitive on X_{T}^{λ} (It is very difficult combinatorial problem to describe all the equivalence classes of embedding $\left.\mathbb{Z} / p^{\mu} \hookrightarrow \mathbb{Z} / p^{\lambda}\right)$. We denote respectively by

$$
\binom{\lambda}{T}_{p}:=\# X_{T}^{\lambda}, \quad\binom{\lambda}{\mu, \bar{\mu}}_{p}:=\# X_{\mu, \bar{\mu}}^{\lambda}=\sum_{T}\binom{\lambda}{T}_{p},\binom{\lambda}{\mu}_{p}:=\# X_{\mu}^{\lambda}=\sum_{\bar{\mu}}\binom{\lambda}{\mu, \bar{\mu}}_{p}
$$

$\binom{\lambda}{T}_{p}$ are monic polynomials in p, and $\binom{\lambda}{\mu, \bar{\mu}}_{p}$ are the Hall polynomial (see [Mac]). One can see that the leading term of $\binom{\lambda}{\mu, \bar{\mu}}_{p}$ is the number $c_{\mu, \bar{\mu}}^{\lambda}$ of tableau T with $\operatorname{sh}(T)=\lambda \backslash \bar{\mu}$ and $\operatorname{wt}(T)=\mu ; c_{\mu, \bar{\mu}}^{\lambda}$ are the LittlewoodRichardson coefficients.

Let

$$
[n]_{p}:=\frac{1}{\zeta_{p}(n)}=1-p^{-n}, \quad[n]_{p}!:=[n]_{p} \cdots[1]_{p}, \quad\left[\begin{array}{c}
n \\
m
\end{array}\right]_{p}:=\frac{[n]_{p}!}{[m]_{p}![n-m]_{p}!}
$$

Then it is easy to see that

$$
\begin{aligned}
\# \operatorname{Hom}\left(\mathbb{Z} / p^{\lambda}, \mathbb{Z} / p^{\mu}\right) & =p^{\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle} \\
\# \operatorname{Hom}^{1: 1}\left(\mathbb{Z} / p^{\lambda}, \mathbb{Z} / p^{\mu}\right) & =p^{\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle} \prod_{i} \frac{\left[\mu_{i}^{\prime}-\lambda_{i+1}^{\prime}\right]_{p}!}{\left[\mu_{i}^{\prime}-\lambda_{i}^{\prime}\right]_{p}!}
\end{aligned}
$$

where $\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle:=\sum_{i} \lambda_{i}^{\prime} \mu_{i}^{\prime}$. In particular, taking $\mu=\lambda$, we have

$$
\# G_{\lambda}=p^{\left\langle\lambda^{\prime}, \lambda^{\prime}\right\rangle} \prod_{i}\left[\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}\right]_{p}!
$$

Hence we have

$$
\begin{aligned}
\binom{\lambda}{\mu}_{p}=\# X_{\mu}^{\lambda}=\sum_{\bar{\mu}}\binom{\lambda}{\mu, \bar{\mu}}_{p} & =\frac{\# \operatorname{Hom}^{1: 1}\left(\mathbb{Z} / p^{\mu}, \mathbb{Z} / p^{\lambda}\right)}{\# G_{\mu}} \\
& =p^{\left\langle\mu^{\prime}, \lambda^{\prime}-\mu^{\prime}\right\rangle} \prod_{i}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\mu_{i+1}^{\prime} \\
\lambda_{i}^{\prime}-\mu_{i}^{\prime}
\end{array}\right]_{p}
\end{aligned}
$$

Also we set

$$
\{n\}_{p}:=\frac{-1}{\zeta_{p}(-n)}=p^{n}-1, \quad\{n\}_{p}!:=\{n\}_{p} \cdots\{1\}_{p}, \quad\left\{\begin{array}{l}
n \\
m
\end{array}\right\}_{p}:=\frac{\{n\}_{p}!}{\{m\}_{p}!\{n-m\}_{p}!} .
$$

These are useful notations when we count things. On the other hand we use the notation $[n]_{p}$ when we are working with the probability measure. Notice that

$$
\left\{\begin{array}{l}
n \\
m
\end{array}\right\}_{p}=\left[\begin{array}{l}
n \\
m
\end{array}\right]_{p} p^{m(n-m)}
$$

Then it can be calculated as

$$
\binom{N^{d}}{N^{m}}=\# X_{N^{m}}^{N^{d}}=p^{N m(d-m)}\left[\begin{array}{c}
d \\
d-m
\end{array}\right]_{p}
$$

Similarly, for a general partition λ, it is useful to calculate

$$
\begin{aligned}
& \frac{\left[\begin{array}{c}
N^{d} \\
\lambda
\end{array}\right]_{p}}{\left[\begin{array}{c}
(N-1)^{d} \\
\bar{\lambda}
\end{array}\right]_{p}}=\frac{\# X_{\lambda}^{N^{d}}}{\# X_{\bar{\lambda}}^{(N-1)^{d}}}=\frac{p^{\sum_{i=1}^{N} \lambda_{i}^{\prime}\left(d-\lambda_{i}^{\prime}\right)} \prod_{i=1}^{N}\left[\begin{array}{c}
d-\lambda_{i+1}^{\prime} \\
d-\lambda_{i}^{\prime}
\end{array}\right]_{p}}{p^{\sum_{i=1}^{N-1} \lambda_{i}^{\prime}\left(d-\lambda_{i}^{\prime}\right)} \prod_{i=1}^{N-1}\left[\begin{array}{c}
d-\bar{\lambda}_{i+1}^{\prime} \\
d-\lambda_{i}^{\prime}
\end{array}\right]_{p}} \\
&=p^{\lambda_{N}^{\prime}\left(d-\lambda_{N}^{\prime}\right)} \frac{\left[\begin{array}{c}
d \\
d-\lambda_{N}^{\prime}
\end{array}\right]_{p}\left[\begin{array}{c}
d-\lambda_{N}^{\prime} \\
d-\lambda_{N-1}^{\prime}
\end{array}\right]_{p}}{d} \\
& {\left[\begin{array}{c}
d \\
d-\lambda_{N-1}^{\prime}
\end{array}\right]_{p} }
\end{aligned}
$$

Here $\bar{\lambda}$ is the projection of $\lambda ; \overline{\lambda^{\prime}}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N-1}^{\prime}\right)$.

9.2.2 Harmonic Measure on $\boldsymbol{\Omega}_{m}^{d}$

Now we determine the harmonic measure $\tau:=\bar{\tau}_{m, n}^{d}$ on the boundary space $\Omega_{m}^{d}=\lim _{\longleftarrow} \Lambda_{N^{m}}$ of the relative positions of m-plane and n-plane from the transition probability of the Markov chain (see Sect. 9.2). We here work with the conjugate coordinate, that is, $\lambda=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N}^{\prime}\right)$ and $\bar{\lambda}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{N-1}^{\prime}\right)$.

Let τ_{N} be the probability measure on $\Lambda_{N^{m}}$. First of all, let us calculate the measure in the finite layer $\tau_{1}\left(\lambda_{1}^{\prime}\right)$. Fix a subspace $\mathfrak{q}_{1}=\mathbb{F}_{p}^{\lambda_{1}^{\prime}}$ with $\mathfrak{q}_{1} \subseteq \mathfrak{q}_{0}=$ $\mathbb{F}_{p}^{n} \subseteq \mathbb{F}_{p}^{d}$. Note that

$$
\begin{aligned}
\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dim} \mathfrak{p}\right. & \left.=m, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}\right\}
\end{aligned}=\left\{\begin{array}{c}
d-n \\
m-\lambda_{1}^{\prime}
\end{array}\right\}_{p} p^{\left(m-\lambda_{1}^{\prime}\right)\left(n-\lambda_{1}^{\prime}\right)}, ~ \begin{aligned}
\#\left\{\mathfrak{q}_{1} \subseteq \mathbb{F}_{p}^{n} \mid \operatorname{dim} \mathfrak{q}_{1}=\lambda_{1}^{\prime}\right\} & =\left\{\begin{array}{c}
n \\
\lambda_{1}^{\prime}
\end{array}\right\}_{p} \\
\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dim} \mathfrak{p}=m\right\} & =\left\{\begin{array}{c}
d \\
m
\end{array}\right\}_{p}
\end{aligned}
$$

Hence the first transition probability of the Markov chain is calculated as

$$
\begin{align*}
\tau_{1}\left(\lambda_{1}^{\prime}\right) & =\frac{\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dimp}=m, \operatorname{dimp} \cap \mathfrak{q}_{0}=\lambda_{1}^{\prime}\right\}}{\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dimp}=m\right\}} \\
& =\frac{\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dimp}=m, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}\right\} \cdot \#\left\{\mathfrak{q}_{1} \subseteq \mathbb{F}_{p}^{n} \mid \operatorname{dimq}_{1}=\lambda_{1}^{\prime}\right\}}{\#\left\{\mathfrak{p} \subseteq \mathbb{F}_{p}^{d} \mid \operatorname{dimp}=m\right\}} \\
& =\frac{\left\{\begin{array}{c}
d-n \\
m-\lambda_{1}^{\prime}
\end{array}\right\}_{p} p^{\left(m-\lambda_{1}^{\prime}\right)\left(n-\lambda_{1}^{\prime}\right)} \cdot\left\{\begin{array}{c}
n \\
\lambda_{1}^{\prime}
\end{array}\right\}_{p}}{\left\{\begin{array}{l}
d \\
m
\end{array}\right\}_{p}} \\
& =\frac{\left[\begin{array}{c}
d-n \\
m-\lambda_{1}^{\prime}
\end{array}\right]_{p}\left[\begin{array}{c}
n \\
\lambda_{1}^{\prime}
\end{array}\right]_{p}}{\left[\begin{array}{l}
d \\
m
\end{array}\right]_{p}} p^{-\lambda_{1}^{\prime}\left(d-n-m+\lambda_{1}^{\prime}\right)} . \tag{9.1}
\end{align*}
$$

Next we work on the N-th layer. For details see [On1]. Fix also a subspace $\mathfrak{q}_{0}=\left(\mathbb{Z} / p^{N}\right)^{\oplus n} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$. Then we have

$$
\begin{aligned}
\frac{\tau_{N}(\lambda)}{\tau_{N-1}(\bar{\lambda})} & =\frac{\binom{N^{d}}{N^{m}}_{p}^{-1} \#\left\{\mathfrak{p} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p})=N^{m}, \operatorname{typ}\left(\mathfrak{p} \cap \mathfrak{q}_{0}\right)=\lambda\right\}}{\left(\begin{array}{c}
N-1)^{d} \\
\left.(N-1)^{m}\right)_{p}^{-1}
\end{array}\left\{\overline{\mathfrak{p}} \subseteq\left(\mathbb{Z} / p^{N-1}\right)^{\oplus d}, \mid \operatorname{typ}(\overline{\mathfrak{p}})=(N-1)^{m}, \operatorname{typ}\left(\overline{\mathfrak{p}} \cap \overline{\mathfrak{q}_{0}}\right)=\bar{\lambda}\right\}\right.} \\
& =\frac{\binom{N^{d}}{N^{m}}_{p}^{-1}\binom{N_{\lambda}^{n}}{\lambda_{p}}_{p} \#\left\{\mathfrak{p} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p})=N^{m}, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}\right\}}{\left(\begin{array}{c}
(N-1)^{d} \\
\left.(N-1)^{m}\right)_{p}^{-1}\binom{(N-1)^{n}}{\bar{\lambda}}_{p} \#\left\{\overline{\mathfrak{p}} \subseteq\left(\mathbb{Z} / p^{N-1}\right)^{\oplus d} \mid \operatorname{typ}(\overline{\mathfrak{p}})=(N-1)^{m}, \overline{\mathfrak{p}} \cap \overline{\mathfrak{q}_{0}}=\overline{\mathfrak{q}_{1}}\right\}
\end{array}\right.}
\end{aligned}
$$

Here we fix \mathfrak{q}_{1} of $\operatorname{typ}\left(\mathfrak{q}_{1}\right)=\lambda$. The independence of this choice of \mathfrak{q}_{1} is justified by the symmetry of \mathfrak{q}_{0}. Hence we have

$$
\begin{align*}
& \frac{\tau_{N}(\lambda)}{\tau_{N-1}(\bar{\lambda})}=p^{-m(d-m)}\left[\begin{array}{c}
\lambda_{N-1}^{\prime} \\
\lambda_{N}^{\prime}
\end{array}\right]_{p} p^{\lambda_{N}^{\prime}\left(n-\lambda_{N}^{\prime}\right)} \\
& \quad \times \#\left\{\mathfrak{p} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p})=N^{m}, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}, \overline{\mathfrak{p}}=\overline{\mathfrak{p}_{0}}\right\} . \tag{9.2}
\end{align*}
$$

Here we again fix the submodule $\overline{\mathfrak{p}_{0}} \subseteq\left(\mathbb{Z} / p^{N-1}\right)^{\oplus d}$ of $\operatorname{typ}\left(\overline{\mathfrak{p}_{0}}\right)=(N-1)^{m}$ such that $\overline{\mathfrak{p}_{0}} \cap \overline{\mathfrak{q}_{0}}=\overline{\mathfrak{q}_{1}}$. To calculate (9.2), without loss of generality, we assume that

$$
\begin{equation*}
\lambda_{N}^{\prime}=0 \tag{9.3}
\end{equation*}
$$

since we can factor out $\left(\mathbb{Z} / p^{N}\right)^{\oplus \lambda_{N}^{\prime}} \subseteq \mathfrak{p} \cap \mathfrak{q}$. Hence, to calculate (9.2), it is sufficient to count

$$
\begin{equation*}
\#\left\{\mathfrak{p} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus\left(d-\lambda_{N}^{\prime}\right)} \mid \operatorname{typ}(\mathfrak{p})=N^{m-\lambda_{N}^{\prime}}, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}, \overline{\mathfrak{p}}=\overline{\mathfrak{p}_{0}}\right\} \tag{9.4}
\end{equation*}
$$

Fix $\mathfrak{q}_{0} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus n-\lambda_{N}^{\prime}}, \mathfrak{q}_{1}$ of $\operatorname{typ}\left(\mathfrak{q}_{1}\right)=\bar{\lambda}$ and $\overline{\mathfrak{p}_{0}}$ of $\operatorname{typ}\left(\overline{\mathfrak{p}_{0}}\right)=(N-1)^{m-\lambda_{N}^{\prime}}$. Also fix a lifting \mathfrak{p}_{0} of $\overline{\mathfrak{p}_{0}}$. Let $\mathfrak{A}:=\left\{A_{1}, \ldots, A_{m}\right\}$ be a basis for \mathfrak{p}_{0} and $\mathfrak{B}:=\left\{B_{1}, \ldots, B_{m}\right\}$ a completion to a basis for $\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$. Then any other lifting \mathfrak{p} of $\overline{\mathfrak{p}_{0}}$ has basis of the form

$$
A_{i}+p^{N-1}\left\{\sum_{1 \leq j \leq m} a_{i j} A_{j}+\sum_{1 \leq k \leq m} b_{i k} B_{k}\right\}
$$

where $a_{i j}, b_{i k} \in \mathbb{F}_{p}$. Now note that $a_{i j}$'s do not change \mathfrak{p}. Hence we ignore $a_{i j}$'s and consider only $b_{i k}$'s. Note also that, for two liftings \mathfrak{p} and \mathfrak{p}^{\prime} of $\overline{p_{0}}$ given by $\left\{b_{i k}\right\}$ and $\left\{b_{i k}^{\prime}\right\}$ respectively, it holds that $\mathfrak{p}=\mathfrak{p}^{\prime}$ if and only if $b_{i k}=b_{i k}^{\prime}$. Therefore the choice of the $\left\{b_{i k}\right\}$ determines the space uniquely. Now let $\mathfrak{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be the basis for \mathfrak{q}_{0} such that $p^{N-\lambda_{i}} C_{i}=p^{N-\lambda_{i}} A_{i}$ is a basis for $\mathfrak{q}_{0} \cap \mathfrak{p}_{0}=\mathfrak{q}_{1}=\mathbb{Z} / p^{\lambda}$. Write

$$
\mathfrak{A}=\bigsqcup_{0 \leq k \leq N} \mathfrak{A}^{(k)}, \quad \mathfrak{C}=\bigsqcup_{0 \leq k \leq N} \mathfrak{C}^{(k)}
$$

with $p^{N-k} \mathfrak{C}^{(k)}=p^{N-k} \mathfrak{A}^{(k)}$. Hence we have $\# \mathfrak{C}^{(k)}=\# \mathfrak{A}^{(k)}=\#\left\{i \mid \lambda_{i}=k\right\}$. By the assumption (9.3), $\# \mathfrak{C}^{(N)}=\mathfrak{A}^{(N)}=0$. Note that the element of $\bigsqcup_{0 \leq k<N-1} \mathfrak{A}^{(k)}$ can be changed arbitrary and the number of such choices (i.e., the choices of $\left\{b_{i j}\right\}$'s) are equal to $p^{(d-m)\left(n-\lambda_{N-1}^{\prime}\right)}$. On the other hand the element of $\mathfrak{A}^{(N-1)}=\left\{A_{m-\lambda_{N-1}^{\prime}+1}, \ldots, A_{m}\right\}$ cannot be changed arbitrary, only by $b_{i j}$'s, which avoid $p^{N-1}\left(\mathfrak{C} \backslash \mathfrak{C}^{(N-1)}\right.$) (notice that $\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathfrak{C} \backslash \mathfrak{C}^{(N-1)}\right)=$ $\left.n-\lambda_{N-1}^{\prime}\right)$. Hence when we chose $\left\{b_{i j}\right\}$'s, we have to avoid not only the space $\mathfrak{C} \backslash \mathfrak{C}^{(N-1)}$ but also the space spanned by $(i-1)$ elements chosen previously. Because we fix $\mathfrak{p}_{0} \cap \mathfrak{q}_{1}=\mathfrak{q}_{0}$, the number of choices of such elements is $p^{d-m}-p^{n-\lambda_{N-1}^{\prime}+i-1}$. Therefore all the number (9.4) is given by

$$
\begin{aligned}
& p^{(d-m)\left(m-\lambda_{N-1}^{\prime}\right)}\left(p^{d-m}-p^{\left.n-\lambda_{N-1}^{\prime}\right)\left(p^{d-m}-p^{n-\lambda_{N-1}^{\prime}+1}\right) \cdots} \begin{array}{l}
\left(p^{d-m}-p^{n-\lambda_{N-1}^{\prime}+\lambda_{N-1}^{\prime}-1}\right) \\
=p^{(d-m) m}\left(1-p^{-\left(d-m-n+\lambda_{N-1}^{\prime}\right)}\right) \cdots\left(1-p^{-(d-m-n+1)}\right) \\
=p^{(d-m) m} \frac{\left[d-m-n+\lambda_{N-1}^{\prime}\right]_{p}!}{[d-m-n]_{p}!}
\end{array} .\right.
\end{aligned}
$$

To remove the assumption (9.3), we substitute $d-\lambda_{N}^{\prime}$ for d, and so on, i.e., subtract λ_{N}^{\prime} from d, m, n and λ_{N-1}^{\prime}. Then we have

$$
\begin{gather*}
\#\left\{\mathfrak{p} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d} \mid \operatorname{typ}(\mathfrak{p})=N^{m}, \mathfrak{p} \cap \mathfrak{q}_{0}=\mathfrak{q}_{1}, \overline{\mathfrak{p}}=\overline{\mathfrak{p}_{0}}\right\} \\
=\frac{\left[d-m-n+\lambda_{N-1}^{\prime}\right]_{p}!}{\left[d-m-n+\lambda_{N}^{\prime}\right]_{p}!} p^{(d-m)\left(m-\lambda_{N}^{\prime}\right)} \tag{9.5}
\end{gather*}
$$

Hence, from (9.2) and (9.5), the transition probability is given by

$$
\begin{aligned}
\frac{\tau_{N}(\lambda)}{\tau_{N-1}(\bar{\lambda})} & =p^{-m(d-m)}\left[\begin{array}{c}
\lambda_{N-1}^{\prime} \\
\lambda_{N}^{\prime}
\end{array}\right]_{p} p^{\lambda_{N}^{\prime}\left(n-\lambda_{N}^{\prime}\right)} \frac{\left[d-m-n+\lambda_{N-1}^{\prime}\right]_{p}!}{\left[d-m-n+\lambda_{N}^{\prime}\right]_{p}!} p^{(d-m)\left(m-\lambda_{N}^{\prime}\right)} \\
& =\left[\begin{array}{c}
\lambda_{N-1}^{\prime} \\
\lambda_{N}^{\prime}
\end{array}\right]_{p} \frac{\left[d-m-n+\lambda_{N-1}^{\prime}\right]_{p}!}{\left[d-m-n+\lambda_{N}^{\prime}\right]_{p}!} p^{-\lambda_{N}^{\prime}\left(d-m-n+\lambda_{N}^{\prime}\right)}
\end{aligned}
$$

Therefore, taking the product of all $0 \leq j \leq N$ of the transition probability, the measure τ_{N} on the N-th layer is calculated as follows;

$$
\tau_{N}(\lambda)=\frac{\left[\begin{array}{c}
n \\
\lambda_{1}^{\prime}
\end{array}\right]_{p}\left[\begin{array}{c}
d-n \\
m-\lambda_{1}^{\prime}
\end{array}\right]_{p}}{\left[\begin{array}{c}
d \\
m
\end{array}\right]_{p}} p^{-\lambda_{1}^{\prime}\left(d-n-m+\lambda_{1}^{\prime}\right)}
$$

$$
\prod_{1 \leq j \leq N}\left[\begin{array}{c}
\lambda_{j-1}^{\prime} \\
\lambda_{j}^{\prime}
\end{array}\right]_{p} \frac{\left[d-m-n+\lambda_{j-1}^{\prime}\right]_{p}!}{\left[d-m-n+\lambda_{j}^{\prime}\right]_{p}!} p^{-\lambda_{j}^{\prime}\left(d-m-n+\lambda_{j}^{\prime}\right)}
$$

$$
=\left[\begin{array}{c}
n \\
n-\lambda_{1}^{\prime}, \lambda_{1}^{\prime}-\lambda_{2}^{\prime}, \ldots, \lambda_{N}^{\prime}
\end{array}\right]_{p}
$$

where

$$
\frac{\frac{[d-n]_{p}!}{\left[m-\lambda_{1}^{\prime}\right]_{p}!\left[d-m-n+\lambda_{N}\right]_{p}!} p^{-\sum_{i=1}^{N} \lambda_{i}^{\prime}\left(d-m-n+\lambda_{i}^{\prime}\right)}}{\left[\begin{array}{c}
d \\
m
\end{array}\right]_{p}}
$$

$$
\left[\begin{array}{c}
n \\
m_{1}, \ldots, m_{N}
\end{array}\right]_{p}:=\frac{[n]_{p}!}{\left[m_{1}\right]_{p}!\cdots\left[m_{N}\right]_{p}!} \quad\left(m_{1}+\cdots+m_{N}=n\right)
$$

is the multinomial coefficient. Then the harmonic measure τ is obtained by taking the limit $N \rightarrow \infty$ of the measure τ_{N} on the N-th layer;

$$
\tau(\lambda):=\left[\begin{array}{c}
n \\
n-\lambda_{1}^{\prime}, \lambda_{1}^{\prime}-\lambda_{2}^{\prime}, \ldots
\end{array}\right]_{p} \frac{\frac{[d-n]_{p}!}{\left[m-\lambda_{1}^{\prime}\right]_{p}![d-m-n]_{p}!} p^{-\sum_{i \geq 1} \lambda_{i}^{\prime}\left(d-m-n+\lambda_{i}^{\prime}\right)}}{\left[\begin{array}{l}
d \\
m
\end{array}\right]_{p}} .
$$

It can be written as follows

$$
\tau(\lambda)=\frac{\left[\begin{array}{c}
d \tag{9.6}\\
m+n
\end{array}\right]_{p}}{\left[\begin{array}{l}
d \\
m
\end{array}\right]_{p}\left[\begin{array}{l}
d \\
n
\end{array}\right]_{p}} \frac{[m+n]!}{\left[m-\lambda_{1}^{\prime}\right]_{p}!\left[n-\lambda_{1}^{\prime}\right]_{p}!} \prod_{j \geq 1} \frac{1}{\left[\lambda_{j}^{\prime}-\lambda_{j+1}^{\prime}\right]_{p}!} p^{-\sum_{i \geq 1} \lambda_{i}(d-m-n+2 i-1)} .
$$

This expression shows that $\tau(\lambda)$ is symmetric in m and n. We call this measure the harmonic Selberg measure, which is a p-adic analogue of the Selberg measure.

9.3 Basis for the Hecke Algebra

In the last section, we see the unitary representation of $G_{N^{d}}=G L_{d}\left(\mathbb{Z} / p^{N}\right) ; \pi$: $G_{N^{d}} \rightarrow U\left(H_{N^{m}}^{N^{d}}\right)$ where $H_{N^{m}}^{N^{d}}:=L^{2}\left(X_{N^{m}}^{N^{d}}, \tau\right)$. The commutant is generated by the Hecke algebra $\mathcal{H}_{N^{m}}^{N^{d}}=L^{2}\left(\Lambda_{N^{m}}\right)$. We have the geometric basis $\left\{\delta_{\lambda}\right\}_{\lambda \subseteq N^{m}}$ for $\mathcal{H}_{N^{m}}^{N^{d}}$, which act on the function in $H_{N^{m}}^{N^{d}}$ as

$$
\delta_{\lambda} \varphi(y):=\int_{\operatorname{typ}(x \cap y)=\lambda} \varphi(x) \tau(x) \quad\left(\varphi \in H_{N^{m}}^{N^{d}}\right)
$$

On the other hand, we denote by $\ell^{2}\left(X_{N^{m}}^{N^{d}}\right)$ the Hilbert space with the counting measure (not normalized to be a probability measure). In this case, we denote by g_{λ} the geometric basis, acting via

$$
g_{\lambda} \varphi(y):=\sum_{\operatorname{typ}(x \cap y)=\lambda} \varphi(x) \quad\left(\varphi \in H_{N^{m}}^{N^{d}}\right) .
$$

Note that g_{λ} is up to constant identical with δ_{λ}, that is,

$$
g_{\lambda}=\binom{N^{d}}{N^{m}}_{p} \delta_{\lambda}
$$

Let $\lambda^{\prime} \subseteq \lambda \subseteq N^{d}$. We define "gradient" and "divergent" operators

$$
\ell^{2}\left(X_{\lambda}^{N^{d}}\right) \stackrel{T_{\lambda^{\prime} \subseteq \lambda}}{\rightleftarrows} T_{\lambda \supseteq \lambda^{\prime}} \ell^{2}\left(X_{\lambda^{\prime}}^{N^{d}}\right)
$$

by

$$
T_{\lambda^{\prime} \subseteq \lambda} \varphi\left(x^{\prime}\right):=\sum_{x^{\prime} \subseteq x} \varphi(x), \quad T_{\lambda \supseteq \lambda^{\prime}} \varphi(x):=\sum_{x \supseteq x^{\prime}} \varphi\left(x^{\prime}\right) .
$$

It is clear that these operators are adjoint to each other and commute with the action of $G_{N^{d}}$ on the Grassmann manifolds. Let $\lambda_{1}, \lambda_{2} \subseteq \lambda \subseteq N^{d}$. Then we also define

$$
T_{\lambda_{1}, \lambda_{2}}^{\lambda}: \ell^{2}\left(X_{\lambda_{2}}^{N^{d}}\right) \longrightarrow \ell^{2}\left(X_{\lambda_{1}}^{N^{d}}\right)
$$

by

$$
T_{\lambda_{1}, \lambda_{2}}^{\lambda} \varphi\left(x_{1}\right)=\sum_{\operatorname{typ}\left(x_{1}+x_{2}\right)=\lambda} \varphi\left(x_{2}\right) .
$$

Then we have $\left(T_{\lambda_{1}, \lambda_{2}}^{\lambda}\right)^{*}=T_{\lambda_{2}, \lambda_{1}}^{\lambda}$. This also commutes with $G_{N^{d} \text {-action. }}$.

The "Laplacian" $c_{\lambda}: \ell^{2}\left(X_{N^{m}}^{N^{d}}\right) \rightarrow \ell^{2}\left(X_{N^{m}}^{N^{d}}\right)$ is expressed in terms of the geometric basis:

$$
c_{\lambda}=T_{N^{m} \supseteq \lambda} \circ T_{\lambda \subseteq N^{m}}=\sum_{\lambda \subseteq \lambda^{\prime} \subseteq N^{m}}\binom{\lambda^{\prime}}{\lambda}_{p} g_{\lambda^{\prime}}
$$

The collection $\left\{c_{\lambda}\right\}_{\lambda \subseteq N^{m}}$ is called the cellular basis for $\mathcal{H}_{N^{m}}^{N^{d}}$. Note that the matrix $\left\{\binom{\lambda^{\prime}}{\lambda}_{p}\right\}_{\lambda, \lambda^{\prime}}$, which transforms the geometric basis $\left\{g_{\lambda}\right\}$ to the cellular basis $\left\{c_{\lambda}\right\}$, is upper triangular with $\binom{\lambda}{\lambda}_{p}=1$. Let $\left\{\binom{\lambda^{\prime}}{\lambda}_{p}^{*}\right\}_{\lambda, \lambda^{\prime}}:=\left\{\binom{\lambda^{\prime}}{\lambda}_{p}\right\}_{\lambda, \lambda^{\prime}}^{-1}$ denote the coefficients of inverse matrix. Then we have

$$
g_{\lambda}=\sum_{p^{\lambda^{\prime}} \subseteq \lambda \subseteq \lambda^{\prime} \subseteq N^{m}}\binom{\lambda^{\prime}}{\lambda}_{p}^{*} c_{\lambda^{\prime}}
$$

Moreover, we have explicit expression of $\binom{\beta}{\lambda}_{p}^{*}$;

$$
\binom{\beta}{\lambda}_{p}^{*}:=(-1)^{|\beta|-|\lambda|} p^{n(\beta)-n(\lambda)} \prod_{1 \leq i \leq m}\left[\begin{array}{c}
\beta_{i}^{\prime}-\beta_{i+1}^{\prime} \\
\beta_{i}^{\prime}-\lambda_{i}^{\prime}
\end{array}\right]_{p}
$$

where $|\lambda|:=\sum_{i} \lambda_{i}$ and $n(\lambda):=\sum_{i} \lambda_{i}(i-1)$ (these are the standard notations for partitions). Remark that

$$
\mathcal{H}_{N^{m}}^{N^{d}}(\lambda):=\operatorname{Span}\left\{c_{\alpha} \mid \alpha \subseteq \lambda\right\}, \quad \mathcal{H}_{N^{m}}^{N^{d}}\left(\lambda^{-}\right):=\operatorname{Span}\left\{c_{\alpha} \mid \alpha \subsetneq \lambda\right\}
$$

are ideals of $\mathcal{H}_{N^{m}}^{N^{d}}$. Let us consider the quotient

$$
\mathcal{W}_{\lambda}:=\mathcal{H}_{N^{m}}^{N^{d}}(\lambda) / \mathcal{H}_{N^{m}}^{N^{d}}\left(\lambda^{-}\right) \quad\left(\lambda \in \Lambda_{m}\right)
$$

Then $\left\{\mathcal{W}_{\lambda}\right\}_{\lambda \in \Lambda_{m}}$ gives the complete list of the irreducible representations of the Hecke algebra $\mathcal{H}_{N^{m}}^{N^{d}}$. Note that $\operatorname{dim} \mathcal{W}_{\lambda}=1$. Hence we have idempotents $\left\{\varphi_{\lambda}\right\}_{\lambda \in \Lambda_{N^{m}}}$ for $\mathcal{H}_{N^{m}}^{N^{d}}$:

$$
\mathcal{W}_{\lambda}=\mathbb{C} \cdot \varphi_{\lambda}=\mathcal{H}_{N^{m}}^{N^{d}} * \varphi_{\lambda}
$$

The function φ_{λ} is characterized as

$$
\begin{aligned}
& c_{\alpha} \cdot \varphi_{\lambda}=0 \quad \text { for } \alpha \subsetneq \lambda, \\
& c_{\lambda} \cdot \varphi_{\lambda} \neq 0 .
\end{aligned}
$$

Then, the irreducible decomposition of $\ell^{2}\left(X_{N^{m}}^{N^{d}}\right)$ is given by

$$
\ell^{2}\left(X_{N^{m}}^{N^{d}}\right)=\bigoplus_{\lambda \in \Lambda_{m}} \mathcal{V}_{\lambda}
$$

we have also $\mathcal{V}_{\lambda}=\ell^{2}\left(X_{N^{m}}^{N^{d}}\right) * \varphi_{\lambda}$. Notice that \mathcal{V}_{λ} is the unique irreducible representation of $G_{N^{d}}$ which occurs in the Grassmann manifold $X_{\lambda}^{N^{d}}$ but does not occur in $X_{\alpha}^{N^{d}}$ for any $\alpha \subsetneq \lambda$.

Let us write

$$
c_{\lambda}=\sum_{\alpha \subseteq \lambda} A_{\lambda, \alpha} \varphi_{\alpha}, \quad \varphi_{\lambda}=\sum_{\alpha \subseteq \lambda} A_{\lambda, \alpha}^{*} c_{\alpha}
$$

with some coefficients $A_{\lambda, \alpha}$ and $A_{\lambda, \alpha}^{*}$. Then the matrix $\left\{A_{\lambda, \alpha}\right\}_{\lambda, \alpha}$ is lower triangular and $\left\{A_{\lambda, \alpha}^{*}\right\}_{\lambda, \alpha}=\left\{A_{\lambda, \alpha}\right\}_{\lambda, \alpha}^{-1}$. Moreover, let

$$
c_{\lambda_{1}} * c_{\lambda_{2}}=\sum_{\alpha \subseteq \lambda_{1}, \lambda_{2}} C_{\alpha}^{\lambda_{1}, \lambda_{2}} \cdot c_{\alpha} .
$$

Then we have $A_{\lambda, \alpha}=C_{\alpha}^{\lambda, \alpha}$ for $\alpha \subseteq \lambda$. One can explicitly calculate the number $A_{\lambda, \alpha}$ as follows: Fixed submodules $\mathbb{Z} / p^{\alpha} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus m}$ and $\mathbb{Z} / p^{\lambda}, \mathbb{Z} / p^{\alpha} \subseteq$ $\left(\mathbb{Z} / p^{N}\right)^{\oplus d}$ such that $\mathbb{Z} / p^{\lambda} \cap \mathbb{Z} / p^{\alpha}=0$. Then we have

$$
\begin{aligned}
A_{\lambda, \alpha}= & \#\left\{\mathfrak{m} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus m} \mid \mathbb{Z} / p^{\alpha} \subseteq \mathfrak{m}, \operatorname{typ}(\mathfrak{m})=\lambda\right\} \\
& \times \#\left\{\mathfrak{m} \subseteq\left(\mathbb{Z} / p^{N}\right)^{\oplus d} \mid \mathbb{Z} / p^{\lambda} \subseteq \mathfrak{m}, \mathfrak{m} \cap \mathbb{Z} / p^{\alpha}=0, \operatorname{typ}(\mathfrak{m})=N^{m}\right\}\binom{N^{d}}{N^{m}}_{p}^{-1} \\
= & p^{-(d-2 m)|\lambda|-m|\alpha|-\left\langle\lambda^{\prime}, \lambda^{\prime}-\alpha^{\prime}\right\rangle}\left[\begin{array}{c}
m-\alpha_{1}^{\prime} \\
m-\lambda_{1}^{\prime}
\end{array}\right]_{p} \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\alpha_{i+1}^{\prime} \\
\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}
\end{array}\right]_{p}\left[\begin{array}{c}
d-\lambda_{1}^{\prime}-\alpha_{1}^{\prime} \\
m-\lambda_{1}^{\prime}
\end{array}\right]_{p}\left[\begin{array}{c}
d \\
m
\end{array}\right]_{p}^{-1} .
\end{aligned}
$$

It seems that the inverse matrix $\left\{A_{\lambda, \alpha}^{*}\right\}_{\lambda, \alpha}$ should be also calculated explicitly, however, unfortunately, we can not obtain this (it should be possible). For the reference of this section, see [BO1].

