Skip to main content

Evolutionary Game Theory and Population Dynamics

  • Chapter
Multiscale Problems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1940))

Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. We introduce fundamental concepts of evolutionary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss the problem of the selection of efficient equilibria and the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, E.: Domination or equilibrium. Mathematical Biosciences, 50, 239–250 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alboszta, J., Mie¸kisz, J.: Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay. J. Theor. Biol., 231, 175–179 (2004)

    Article  MathSciNet  Google Scholar 

  3. Antal, T., Redner, S., Sood, V.: Evolutionary dynamics on degree-heterogeneous graphs. Phys. Rev. Lett., 96, 188104 (2006)

    Article  Google Scholar 

  4. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    Google Scholar 

  5. Blume, L.E.: The statistical mechanics of strategic interaction. Games Econ. Behav., 5, 387–424 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blume, L.E.: How noise matters. Games Econ. Behav., 44, 251–271 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brauchli, K., Killingback, T., Doebeli, M.: Evolution of cooperation in spatially structured populations. J. Theor. Biol., 200, 405–417 (1999)

    Article  Google Scholar 

  8. Bricmont, J., Slawny, J.: First order phase transitions and perturbation theory. In: Statistical Mechanics and Field Theory: Mathematical Aspects. Lecture Notes in Physics, 257, Springer-Verlag (1986)

    Google Scholar 

  9. Bricmont, J., Slawny, J.: Phase transitions in systems with a finite number of dominant ground states. J. Stat. Phys., 54, 89–161 (1989)

    Article  MathSciNet  Google Scholar 

  10. Broom, M., Cannings, C., Vickers, G.T.: Multi-player matrix games. Bull. Math. Biology, 59, 931–952 (1997)

    Article  MATH  Google Scholar 

  11. Bukowski, M., Mie¸kisz, J.: Evolutionary and asymptotic stability in symmetric multi-player games. Int. J. Game Theory, 33, 41–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley (2000)

    Google Scholar 

  13. Condensed Matter and Quantitative Biology archives at xxx.lanl.gov

    Google Scholar 

  14. Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge, USA (2003)

    MATH  Google Scholar 

  15. Dostálková, I., Kindlmann, P.: Evolutionarily stable strategies for stochastic processes. Theor. Popul. Biol., 65 205–210 (2004)

    Article  MATH  Google Scholar 

  16. Econophysics bulletin at www.unifr.ch/econophysics

  17. Ellison, G.: Learning, local interaction, and coordination. Econometrica, 61, 1047–1071 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ellison, G. Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution. Review of Economic Studies, 67, 17–45 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ewens, W.J.: Mathematical Population Genetics. Springer (2004)

    Google Scholar 

  20. Fisher, R. A.: On the dominance ratio. Proc. Roy. Soc. Edinb., 42, 321–341 (1922)

    Google Scholar 

  21. Fisher, R. A.: The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930)

    MATH  Google Scholar 

  22. Foster, D., Young, P.H.: Stochastic evolutionary game dynamics. Theor. Popul. Biol., 38, 219–232 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Freidlin, M.I, Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer Verlag, New York (1984)

    MATH  Google Scholar 

  24. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge, USA (1991)

    Google Scholar 

  25. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge, USA (1998)

    MATH  Google Scholar 

  26. Georgii, H. O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (1988)

    MATH  Google Scholar 

  27. Gintis, H.: Game Theory Evolving. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  28. Gulyas, L., Płatkowski, T.: On evolutionary 3-person Prisoner’s Dilemma games on 2d lattice. Lecture Notes in Computer Science, 3305, 831–840 (2004)

    Google Scholar 

  29. Harsányi, J., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge, USA (1988)

    MATH  Google Scholar 

  30. Hauert, C.: Effects of space in 2x2 games. Int. J. Bifurcat. Chaos, 12, 1531–1548 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428, 643–646 (2004)

    Article  Google Scholar 

  32. Hauert, C.: Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecology Letters, 8, 748–766 (2005)

    Article  Google Scholar 

  33. Hauert, C.: Spatial effects in social dilemmas. J. Theor. Biol., 240, 627–636 (2006)

    Article  MathSciNet  Google Scholar 

  34. Herz, A.V.M.: Collective phenomena in spatially extended evolutionary games. J. Theor. Biol., 169, 65–87 (1994)

    Article  Google Scholar 

  35. Hofbauer, J., Schuster, P., Sigmund, K.: A note on evolutionarily stable strategies and game dynamics. J. Theor. Biol., 81, 609–612 (1979)

    Article  MathSciNet  Google Scholar 

  36. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  37. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bulletin AMS, 40, 479–519 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Imhof, L.A., Nowak, M.A.: Evolutionary game dynamics in a Wright-Fisher process. J. Math. Biol., 52, 667–681 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kamiński, D., Mie¸kisz, J., Zaborowski, M.: Stochastic stability in three-player games. Bull. Math. Biol., 67, 1195–1205 (2005)

    Article  MathSciNet  Google Scholar 

  40. Kandori, M., Mailath, G.J, Rob, R.: Learning, mutation, and long-run equilibria in games. Econometrica, 61, 29–56 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Killingback, T., Doebeli, M.: Spatial evolutionary game theory: hawks and doves revisited. Proc. R. Soc. London, 263, 1135–1144 (1996)

    Article  Google Scholar 

  42. Kim, Y.: Equilibrium selection in n-person coordination games. Games Econ. Behav., 15, 203–227 (1996)

    Article  MATH  Google Scholar 

  43. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature, 433, 312–316 (2005)

    Article  Google Scholar 

  44. Lindgren, K., Nordahl, M.G.: Evolutionary dynamics of spatial games. Physica D, 75, 292–309 (1994)

    Article  MATH  Google Scholar 

  45. Maruta, T.: On the relationship between risk-dominance and stochastic stability. Games Econ. Behav., 19, 221–234 (1977)

    Article  MathSciNet  Google Scholar 

  46. Maynard Smith, J., Price, G.R.: The logic of animal conflicts. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  47. Maynard Smith, J.: The theory of games and the evolution of animal conflicts. J. Theor. Biol., 47, 209–221 (1974)

    Article  MathSciNet  Google Scholar 

  48. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  49. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav., 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. Moran, P.A.P.: The Statistical Processes of Evolutionary Theory. Clarendon, Oxford (1962)

    MATH  Google Scholar 

  51. Mie¸kisz, J.: Statistical mechanics of spatial evolutionary games. Phys. A: Math. Gen., 37, 9891–9906 (2004)

    Article  MathSciNet  Google Scholar 

  52. Mie¸kisz, J.: Stochastic stability in spatial games. J. Stat. Phys., 117, 99–110 (2004)

    Article  MathSciNet  Google Scholar 

  53. Mie¸kisz, J.: Stochastic stability in spatial three-player games. Physica A, 343, 175–184 (2004)

    Article  MathSciNet  Google Scholar 

  54. Mie¸kisz, J.: Equilibrium selection in evolutionary games with random matching of players. J. Theor. Biol., 232, 47–53 (2005)

    Article  MathSciNet  Google Scholar 

  55. Mie¸kisz, J., Płatkowski, T.: Population dynamics with a stable efficient equilibrium. J. Theor. Biol., 237, 363–368 (2005)

    Article  MathSciNet  Google Scholar 

  56. Mie¸kisz, J.: Long-run behavior of games with many players. Markov Processes and Relat. Fields, 11, 371–388 (2005)

    MathSciNet  Google Scholar 

  57. Mie¸kisz, J.: Equilibrium transitions in finite populations of players. In: Game Theory and Mathematical Economics. Banach Center Publications, 71, 237–242 (2006)

    Article  MathSciNet  Google Scholar 

  58. Myatt, D.P., Wallace, C.: A multinomial probit model of stochastic evolution. J. Econ. Theory, 113, 286–301 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Nash, J.: Equilibrium points in n-person games. Proc. Nat. Ac. Sc., 36, 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  60. Nash, J.: Non-cooperative games. Ann. Math., 54, 287–295 (1951)

    Article  MathSciNet  Google Scholar 

  61. Neill, D.B.: Evolutionary stability for large populations. J. Theor. Biol., 227, 397–401 (2004)

    Article  MathSciNet  Google Scholar 

  62. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature, 359, 826–829 (1992)

    Article  Google Scholar 

  63. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurcat. Chaos, 3, 35–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  64. Nowak, M.A., Bonhoeffer, S., May, R.M.: More spatial games. Int. J. Bifurcat. Chaos, 4, 33–56 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  65. Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature, 428, 646–650 (2004)

    Article  Google Scholar 

  66. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science, 303, 793–799 (2004)

    Article  Google Scholar 

  67. Nowak, M.A.: Evolutionary Dynamics. Harvard University Press, Cambridge, USA (2006)

    MATH  Google Scholar 

  68. Ohtsuki, H., Nowak, M.A.: Evolutionary games on cycles. Proc. R. Soc. B., 273, 2249–2256 (2006)

    Article  Google Scholar 

  69. Ohtsuki, H., Nowak, M.A.: The replicator equation on graphs. J. Theor. Biol., 243, 86–97 (2006)

    Article  MathSciNet  Google Scholar 

  70. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441, 502–505 (2006)

    Article  Google Scholar 

  71. Ordershook, P.: Game Theory and Political Theory. Cambridge University Press (1986)

    Google Scholar 

  72. Poundstone, W.: Prisoner’s Dilemma. Doubleday (1992)

    Google Scholar 

  73. Płatkowski, T.: Evolution of populations playing mixed multi-player games. Mathematical and Computer Modelling, 39, 981–989 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  74. Płatkowski, T., Stachowska, J.: ESS in multiplayer mixed games. Applied Mathematics and Computations, 167, 592–606 (2005)

    Article  MATH  Google Scholar 

  75. Robson, A., Vega-Redondo, F.: Efficient equilibrium selection in evolutionary games with random matching. J. Econ. Theory 70, 65–92 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  76. Russell, B.: Common Sense and Nuclear Warfare. Allen and Unwin Ltd., London (1959)

    Google Scholar 

  77. Samuelson, L., Zhang, J.: Evolutionary stability in asymmetric games. J. Econ. Theory, 57, 363–391 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  78. Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, USA (1997)

    MATH  Google Scholar 

  79. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett., 95, 098104 (2005)

    Article  Google Scholar 

  80. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA, 103, 3490–3494 (2006)

    Article  Google Scholar 

  81. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B, 273, 51–55 (2006)

    Article  Google Scholar 

  82. Shubert, B.: A flow-graph formula for the stationary distribution of a Markov chain. Trans. Systems Man. Cybernet., 5, 565–566 (1975)

    MATH  MathSciNet  Google Scholar 

  83. Sigmund, K.: Games of Life - Explorations in Ecology, Evolution and Behaviour. Oxford University Press (1993)

    Google Scholar 

  84. Sinai, Y.G.: Theory of Phase Transitions: Rigorous Results. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  85. Szabo, G., Toke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E, 58, 69–73 (1998)

    Article  Google Scholar 

  86. Szabo, G., Antal, T., Szabo, P., Droz, M.: Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints. Phys. Rev. E, 62, 1095–1103 (2000)

    Article  Google Scholar 

  87. Szabo, G., Szolnoki, A., Izsak, R.: Rock-scissors-paper game on regular small-world networks. J. Phys. A: Math. Gen., 37, 2599–2609 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  88. Szabo, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E, 72, 047107 (2005)

    Article  Google Scholar 

  89. Szabo, G., Gabor, F.: Evolutionary games on graphs. arXiv: cond-mat/0607344 (2006)

    Google Scholar 

  90. Szolnoki, A., Szabo, G.: Phase transitions for rock-scissors-paper game on different networks. Phys. Rev. E, 70, 037102 (2004)

    Article  Google Scholar 

  91. Tao, Y., Wang, Z.: Effect of time delay and evolutionarily stable strategy. J. Theor. Biol., 187, 111–116 (1997)

    Article  Google Scholar 

  92. Taylor, C., Fudenberg, D., Sasaki, A., Nowak, M.A.: Evolutionary game dynamics in finite populations. Bull. Math. Biol., 66, 1621–1644 (2004)

    Article  MathSciNet  Google Scholar 

  93. Taylor, P.D., Jonker, L.B.: Evolutionarily stable strategy and game dynamics. Mathematical Biosciences, 40, 145–156 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  94. Traulsen, A., Claussen, J.C., Hauert, C.: Coevolutionary dynamics: from finite to infinite populations. Phys. Rev. Lett., 95, 238701 (2005)

    Article  Google Scholar 

  95. Traulsen, A., Claussen, J.C., Hauert, C.: Coevolutionary dynamics in large but finite populations. Phys. Rev. E, 74, 011901 (2006)

    Article  MathSciNet  Google Scholar 

  96. Traulsen, A., Pacheco, J., Imhof, L.A.: Stochasticity and evolutionary stability. Phys. Rev. E, 74, 021905 (2006)

    Article  MathSciNet  Google Scholar 

  97. Vega-Redondo, F.: Evolution, Games, and Economic Behaviour. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  98. Vukov, J., Szabo, G.: Evolutionary prisoner’s dilemma game on hierarchical lattices. Phys. Rev. E, 71, 71036133 (2005)

    Article  Google Scholar 

  99. Vukov, J., Szabo, Szolnoki, A.: Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E, 74, 067103 (2006)

    Article  Google Scholar 

  100. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge, USA (1995)

    MATH  Google Scholar 

  101. Wild, G., Taylor, P.D.: Fitness and evolutionary stability in game theoretic models of finite populations. Proc. R. Soc. B, 271, 2345–2349 (2004)

    Article  Google Scholar 

  102. Young, P.H.: The evolution of conventions. Econometrica, 61, 57–84 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  103. Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (1998)

    Google Scholar 

  104. Wentzell, A.D., Freidlin, M.I.: On small random perturbations of dynamical systems. Russian Math. Surveys, 25, 1–55 (1970)

    Google Scholar 

  105. Wright, S.: Evolution in Mendelian populations. Genetics, 6, 97–159 (1931)

    Google Scholar 

  106. Zeeman, E.: Dynamics of the evolution of animal conflicts. J. Theor. Biol., 89, 249–270 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miękisz, J. (2008). Evolutionary Game Theory and Population Dynamics. In: Capasso, V., Lachowicz, M. (eds) Multiscale Problems in the Life Sciences. Lecture Notes in Mathematics, vol 1940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78362-6_5

Download citation

Publish with us

Policies and ethics