Skip to main content

Lins Between Microscopic and Macroscopic Descriptions

  • Chapter
Multiscale Problems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1940))

The problem of relationships between various scales of description seems to be one of the most important problems of the mathematical modeling of complex systems (including e.g. the modeling of solid tumor growth). In the lecture we provide the theoretical framework for modeling at the microscopic scale in such a way that the corresponding models at the macro–, meso– and micro– scales are asymptotically equivalent, i.e. the solutions are close to each other in a properly chosen norm.

In mathematical terms we state the rigorous links between the following mathematical structures:

  1. 1.

    Continuous (linear) semigroups of Markov operators: the micro–scale of stochastically interacting entities (cells, individuals,);

  2. 2.

    Continuous nonlinear semigroups related to the solutions of bilinear Boltzmann– type nonlocal kinetic equations: the meso–scale of statistical entities;

  3. 3.

    Dynamical systems related to bilinear reaction–diffusion–chemotaxis equations: the macro-scale of densities of interacting entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.A., Bellomo, N., Eds.: A Survey of Models for Tumor–Immune System Dynamics. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Agazzi, A., Faye, J., Eds.: The Problem of the Unity of Science. World Scientific, Singapore (2001)

    Google Scholar 

  4. Arlotti, L., Bellomo, N.: Population dynamics with stochastic interaction. Transport Theory Statist. Phys., 24, 431–443 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arlotti, L., Bellomo, N.: Solution of a new class of nonlinear kinetic models of population dynamics. Appl. Math. Lett., 9, 65–70 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arlotti, L., Bellomo, N., De Angelis, E., Lachowicz, M.: Generalized Kinetic Models in Applied Sciences, World Scientific, New Jersey (2003)

    MATH  Google Scholar 

  7. Arlotti, L., Bellomo, N., Lachowicz, M.: Kinetic equations modelling population dynamics. Transport Theory Statist. Phys., 29, 125–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Arlotti, L., Gamba, A., Lachowicz, M.: A kinetic model of tumour/immune system cellular interactions. J. Theoret. Medicine, 4, 39–50 (2002)

    Article  MATH  Google Scholar 

  9. Arlotti, L., Lachowicz, M.: Qualitative analysis of a nonlinear integro-differential equation modelling tumor–host dynamics. Math. Comput. Modelling, 23, 11–29 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aronson, D.G.: The porous medium equation. In: Fasano, A., Primicerio, M. (eds) Nonlinear Diffusion Problems, Lecture Notes in Math. 1224, Springer, Berlin (1986), 1–46

    Google Scholar 

  11. Bajzer, Ž, Marušic̀, M., Vuk–Pavlovic̀, S.: Conceptual frameworks for mathematical modelling of tumor growth dynamics. Math. Comput. Model., 23, 31–46 (1996)

    Article  MATH  Google Scholar 

  12. Ball, J.M., Carr, J., The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation. J. Statist. Phys., 61, 203–234 (1990)

    Article  MathSciNet  Google Scholar 

  13. Banasiak, J.: Positivity in natural sciences. In this volume

    Google Scholar 

  14. Banasiak, J., Arlotti, L.: Positive Perturbation of Semigroups with Applications, Springer, New York (2005)

    Google Scholar 

  15. Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. Compt. Rend. Acad. Sci. Paris, 329, Série IIb, 439–444 (2001)

    Google Scholar 

  16. Banasiak, J., Lachowicz, M.: Topological chaos for birth–and–death–type models with proliferation. Math. Models Methods Appl. Sci., 12, 755–775 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Banasiak, J., Lachowicz, M., Moszyński, M.: Chaotic behaviour of semigroups related to the process of gene amplification–deamplification with cell proliferation. Math. Biosci., to appear.

    Google Scholar 

  18. Banasiak, J., Mika, J.: Singularly perturbed evolution equations with applications to kinetic theory, World Sci., River Edge (1995)

    MATH  Google Scholar 

  19. Barbu, V.: Nonlinear Semigroups and differential equations in Banach spaces, Noordhoff (1976)

    Google Scholar 

  20. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci., 14, 1683–1733 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling, 20, 107–122 (1994)

    Article  MATH  Google Scholar 

  22. Bellomo, N., Forni, G.: Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems. Math. Models Methods Appl. Sci., 16, 1001–1029 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumour evolution and its interaction with immune system. Math. Comput. Model., 32, 413–453 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Benilan, Ph., Brezis, H., Crandall, M.G.: A semilinear elliptic equation in L 1(R N). Ann. Scuola Norm. Sup. Pisa, 2, 523–555 (1975)

    MATH  MathSciNet  Google Scholar 

  25. Biler, P., Existence and asymptotic of solutions for a parabolic–elliptic system with nonlinear no–flux boundary conditions. Nonlin. Anal., 12, 1121–1136 (1992)

    Article  MathSciNet  Google Scholar 

  26. Capasso, V., Morale, D.: Rescaling stochastic processes: Asymptotics. In this volume

    Google Scholar 

  27. Capasso, V., Bakstein, D.: An Introduction to Continuous–Time Stochastic Processes, Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  28. Cercignani, C.: Theory and Application of the Boltzmann Equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  29. Cercignani, C.: The Grad limit for a system of soft spheres. Comm. Pure Appl. Math., 36, 479–494 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cercignani, C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases, Springer, New York (1994)

    MATH  Google Scholar 

  31. Chaplain, M.A.J.: Modelling tumour growth. In this volume

    Google Scholar 

  32. Chaplain, M.A.J., Anderson, A.R.A.: Mathematical Modelling of Tissue Invasion. In: Cancer Modelling and Simulation. Ed. Preziosi L., Chapman & Hall/CRT, 269–297 (2003)

    Google Scholar 

  33. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci., 15, 1685–1734 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math., 72, 1–28 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Deaconu, M., Fournier, N.: Probabilistic approach of some discrete and continuous coagulation equation with diffusion. Stochastic Process. Appl., 101, 83–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. DeMasi, A., Ferrari, A., Lebowitz, J.L.: Reaction–diffusion equations for interacting particle systems. J. Statist. Phys., 44, 589–644 (1986)

    Article  MathSciNet  Google Scholar 

  37. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. 2nd edn., Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  38. Donnelly, P., Simons, S.: On the stochastic approach to cluster size distribution during particle coagulation. J. Phys. A: Math. Gen., 26, 2755–2767 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Durrett, R., Neuhauser, C.: Particle systems and reaction–diffusion equations. Ann. Probab., 22, 289–333 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  41. Filbert, F., Laurençot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol., 50, 189–207 (2005)

    Article  MathSciNet  Google Scholar 

  42. Friedman, A.: A hierarchy of cancer models and their mathematical challenges. Discr. Contin. Dyn. Systems, 4, 147–159 (2004)

    Article  MATH  Google Scholar 

  43. Geigant, E., Ladizhansky, K., Mogilner, A.: An intergrodifferential model for orientational distribution of F–Actin in cells. SIAM J. Appl. Math., 59, 787–809 (1998)

    Article  MathSciNet  Google Scholar 

  44. Geymonat, L.: Filosofia e filosofia della scienza. Feltrinelli, Milano (1960)

    Google Scholar 

  45. Glass, L., Mackey, M.C.: From clocks to chaos. The rhythms of life. Princeton Univ. Press, Princeton (1988)

    MATH  Google Scholar 

  46. Goel, N.S., Maitra, S.C., Montroll, E.W.: On the Volterra and other nonlinear models of interacting populations. Rev. Modern Phys., 43, 231–276 (1971)

    Article  MathSciNet  Google Scholar 

  47. Golse, F., Saint–Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math., 155, 81–161 (2004)

    MATH  MathSciNet  Google Scholar 

  48. Grad, H.: Asymptotic theory of the Boltzmann equation II. In: Laurmann, J. (ed) Rarefied Gas Dynamics vol. I, Academic Press, (1963), 26–59

    Google Scholar 

  49. Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab., 25, 115–132 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Guias, F.: Coagulation–fragmentation processes: relations between finite particle models and differential equations, Preprint 98–41 (SFB 359), Juli 1998, Heidelberg.

    MATH  Google Scholar 

  51. Jäger, E, Segel, L.: On the distribution of dominance in a population of interacting anonymous organisms. SIAM J. Appl. Math., 52, 1442–1468 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  52. Herberman, R.B.: NK Cells and Other Natural Effector Cells, Academic Press, New York (1982)

    Google Scholar 

  53. Heisenberg, W.: Der Teil und das Ganze. Piper, München (1969)

    Google Scholar 

  54. Heisenberg, W.: Physics and Beyond. Encounters and Conversations. Haper and Row, New York (1971)

    Google Scholar 

  55. Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection. Cambridge Univ. Press, New York (1988)

    MATH  Google Scholar 

  56. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch Math.–Verein., 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  57. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch Math.–Verein., 106, 51–69 (2004)

    MATH  MathSciNet  Google Scholar 

  58. Kac, M.: Probability and Related Topics in Physical Sciences, Wiley–Interscience, New York (1959)

    Google Scholar 

  59. Kolev, M., Kozłowska, E., Lachowicz, M.: A mathematical model for a single cell cancer — immune system dynamics. Math. Comput. Model., 41, 1083–1095 (2005)

    Article  MATH  Google Scholar 

  60. Kolokoltsov, V.N.: On extension of mollified Boltzmann and Smoluchowski equations to particle systems with a k–nary interaction. Russian J. Math. Phys., 10, 268–295 (2003)

    MATH  MathSciNet  Google Scholar 

  61. Kolokoltsov, V.N.: Hydrodynamic limit of coagulation-fragmentation type models of k–nary interacting particles. J. Statist. Phys., 115, 1621–1653 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  62. Lachowicz, M.: A system of stochastic differential equations modeling the Euler and the Navier-Stokes hydrodynamic equations. Japan J. Industr. Appl. Math., 10, 109–131 (1993)

    MATH  MathSciNet  Google Scholar 

  63. Lachowicz, M.: Asymptotic analysis of nonlinear kinetic equations: The hydrodynamic limit. In: Bellomo, N. (ed) Lecture Notes on the Mathematical Theory of the Boltzmann equation, World Scientific, Singapore (1995), 65–148

    Google Scholar 

  64. Lachowicz, M.: Hydrodynamic limits of some kinetic equations. In: Matsumura, A., Kawashima, S. (eds) Mathematical Analysis in Fluid and Gas Dynamics, RIMS Kokyuroku 1146, Kyoto (2000), 121–142

    Google Scholar 

  65. Lachowicz, M.: Competition tumor–immune system. In: Proceedings of the Sixth National Conference on Application of Mathematics in Biology and Medicine, Kraków (2000), 89–93

    Google Scholar 

  66. Lachowicz, M.: From microscopic to macroscopic description for generalized kinetic models. Math. Models Methods Appl. Sci., 12, 985–1005 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  67. Lachowicz, M.: Describing competitive systems at the level of interacting individuals. In: Proceedins of the Eight Nat. Confer. Appl. Math. Biol. Medicine, Kraków (2002), 95–100

    Google Scholar 

  68. Lachowicz, M.: From microscopic to macroscopic descriptions of complex systems. Comp. Rend. Mecanique (Paris), 331, 733–738 (2003)

    Article  MATH  Google Scholar 

  69. Lachowicz, M.: On bilinear kinetic equations. Between micro and macro descriptions of biological populations. In: Rudnicki, R. (ed) Banach Center Publ. 63, Warszawa (2004), 217–230

    Google Scholar 

  70. Lachowicz, M.: General population systems. Macroscopic limit of a class of stochastic semigroups. J. Math. Anal. Appl. 307, 585–605 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  71. Lachowicz, M.: Stochastic semigroups and coagulation equations. Ukrainian Math. J., 57, 770–777 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  72. Lachowicz, M.: Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours. Math. Models Methods Appl. Sci., 15, 1667–1683 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  73. Lachowicz M., Laurençot Ph., Wrzosek D.: On the Oort–Hulst–Safronov coagulation equation and its relation to the Smoluchowski equation. SIAM J. Math. Anal., 34, 1399–1421 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  74. Lachowicz, M., Pulvirenti, M.: A stochastic particle system modeling the Euler equation. Arch. Rational Mech. Anal., 109, 81–93 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  75. Lachowicz, M., Wrzosek, D.: A nonlocal coagulation-fragmentation model. Appl. Math. (Warsaw), 27, 45–66 (2000)

    MATH  MathSciNet  Google Scholar 

  76. Lachowicz, M., Wrzosek, D.: Nonlocal bilinear equations. Equilibrium solutions and diffusive limit. Math. Models Methods Appl. Sci., 11, 1393–1409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  77. Lanford III, O.: Time evolution of large classical systems. In: Moser, E.J. (ed) Lecture Notes in Physics 38, Springer, New York (1975), 1–111

    Google Scholar 

  78. Lang, R., Xanh, N.: Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann–Grad limit. Z. Wahrscheinlichkeits. verw. Geb., 54, 227–280 (1980)

    Article  MATH  Google Scholar 

  79. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise, Springer, New York (1994)

    MATH  Google Scholar 

  80. Leontovich, M.A.: Fundamental equations of the kinetic theory of gases from the point of view of stochastic processes. Zhur. Exper. Teoret. Fiz. 5, 211–231 (1935, in Russian)

    Google Scholar 

  81. Lolas, G.: Mathematical modelling of the urokinase plasminogen activation system and its role in cancer invasion of tissue. Ph.D. Thesis, Department of Mathematics, University of Dundee, June 2003.

    Google Scholar 

  82. McKean, H.P.: Speed of approach to equilibrium for Kac’s caricature of maxwellian gas. Arch. Rational Mech. Anal., 21, 347–367 (1966)

    Article  MathSciNet  Google Scholar 

  83. Mie¸kisz, J.: Evolutionary game theory and population dynamics. In this volume

    Google Scholar 

  84. Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behaviour: from individuals to populations. J. Math. Biol., 50 49–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  85. Murray, J.D.: Mathematical Biology, Springer, New York (2003)

    MATH  Google Scholar 

  86. Oelschläger, K.: On the derivation of reaction–diffusion equations as the limit dynamics of systems of moderately interacting processes. Probab. Theory Related Fields, 82, 565–586 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  87. O’Malley, R.E., Jr.: Singular Perturbation Methods for Ordinary Differential Equations, Springer, New York (1991)

    MATH  Google Scholar 

  88. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol., 26, 263–298 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  89. Pavlotsky, I.P.: Vlasov equations for Volterra dynamical systems. Dokl. AN SSSR, 285, 1985, 331–339 (1985)

    Google Scholar 

  90. Perthame, B.: PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic. Appl. Math., 49, 539–564 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  91. Petrina, D.Ya., Gerasimenko, V.I., Malyshev, P.V.: Mathematical Foundations of Classical Statistical Mechanics. Gordon and Breach, New York (1989)

    MATH  Google Scholar 

  92. Poupaud, F.: On a system of nonlinear Boltzmann equation of semiconductor physics. SIAM J. Appl. Math., 50, 1593–1606 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  93. Pulvirenti, M., Wagner, W., Zavelani Rossi, M.B.: Convergence of particle schemes for the Boltzmann equation. European J. Mech. B Fluids, 13, 339–351 (1994)

    MATH  MathSciNet  Google Scholar 

  94. Redner, O., Baake, M.: Unequal crossover dynamics in discrete and continuous time. J. Math. Biol., 49, 201–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  95. Skorohod, A.V.: Stochastic Equation for Complex Systems, Nauka, Moscow (1983,in Russian) and Reidel Pub. Co., Dordrecht (1988)

    Google Scholar 

  96. Sleeman, B.D., Levine, H.A.: Partial differential equations of chemotaxis and angiogenesis. Math. Methods Appl. Sci., 24 405–426 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  97. Smoller, J.: Shock Waves and Reaction–Diffusion Equations, II ed., Springer, New York (1994)

    MATH  Google Scholar 

  98. Smoluchowski M.: Versuch einer mathematischen Theorie der kolloiden Lösungen. Z. Phys. Chem., 92, 129–168 (1917)

    Google Scholar 

  99. Stevens, A.: The derivation of chemotakxis equations as limit dynamics of moderately interacting stochastic many–particle systems. SIAM J. Appl. Math. (electronic) 61, 183–212 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  100. Thompson, C.J.: Mathematical Statistical Mechanics. Princeton University Press, Princeton (1972)

    MATH  Google Scholar 

  101. Tikhonov, A.N., Vasileva, A.B., Sveshnikov, A.G.: Differential Equations. Nauka, Moscow (1985), in Russian

    Google Scholar 

  102. Wagner, W.: A stochastic particle system associated with the spatially inhomogeneous Boltzmann equation. Transport Theory Statist. Phys. 23, 455–478 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  103. Wagner, W.: A functional law of large numbers for Boltzmann type stochastic particle systems. Stochastic Anal. Appl., 14, 591–636 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  104. Waluś, W.: Computational methods for the Boltzmann equation, In Bellomo, N. (ed.), Lecture Notes on the Mathematical Theory of the Boltzmann equation, World Sci., Singapore (1995), 179–223

    Google Scholar 

  105. von Weizsacker, C.F.: Die Einheit der Natur. Hanser, Munchen (1971)

    Google Scholar 

  106. Wightman, A.S.: Hilbert’s sixth problem: Mathematical treatment of the axioms of Physics. Proceedings of Symposia in Pure Math. Northern Illinois Univ., Amer. Math. Soc., Providence, 28, 147–240 (1976)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lachowicz, M. (2008). Lins Between Microscopic and Macroscopic Descriptions. In: Capasso, V., Lachowicz, M. (eds) Multiscale Problems in the Life Sciences. Lecture Notes in Mathematics, vol 1940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78362-6_4

Download citation

Publish with us

Policies and ethics