Skip to main content

Modelling Aspects of Cancer Growth: Insight from Mathematical and Numerical Analysis and Computational Simulation

  • Chapter
Multiscale Problems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1940))

In this chapter we present a variety of reaction-diffusion-taxis (i.e. macroscopic) models of several key stages of solid tumour growth – avascular growth, the immune response to solid tumours and invasive growth. The basis for all of the models is deriving the continuum PDE using a conservation of mass argument. In the model for avascular growth we examine the potential role prepattern theory (diffusion-driven instability à la Turing) may play in the generation of spatio-temporal heterogeneity of mitotic activity on the surface of multicell spheroids. In the model for the immune response to cancer, working from an initial “microscale” cell interaction scheme, we derive a system of PDEs which are used to predict the capacity of the immune system to eradicate cancer (or not). In the final model of cancer invasion, once again we initially focus on “microscale” activity of matrix degrading enzymes and their binding to cell-surface receptors to derive a PDE model of the process of cancer invasion of the local tissue. For each system, we carry out mathematical and numerical analyses of the model and perform computational simulations and attempt to draw relevant biological conclusions and make experimentally-testable predictions from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albo, D., Berger, D.H., Wang, T.N., Xu, X.L., Rothman, V. and Tuszynski, G.P.: Thrombospondin-1 and transforming-growth-factor-beta1 promote breast tumor cell invasion through up-regulation of the plasminogen/plasmin system. Surgery, 122, 493–499 (1997)

    Article  Google Scholar 

  2. Ambrosi, D., Bellomo, N., Preziosi, L.: Modelling tumor progression, heterogeneity, and immune competition. J. Theor. Medicine, 4, 51–65 (2002)

    Article  MATH  Google Scholar 

  3. Anderson. A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  4. Andreasen P.A., Kjøller L., Christensen L. and Duffy M.J.: The urokinase-type plasminogen activator system in cancer metastasis: A review. Int. J. Cancer, 72, 1–22 (1997)

    Article  Google Scholar 

  5. Andreasen P.A., Egelund R. and Petersen H.H.: The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci., 57, 25–40 (2000)

    Article  Google Scholar 

  6. Arlotti, L., Gamba, A., Lachowicz, M.: A kinetic model of tumor/immune system cellular interactions. J. Theor. Medicine, 4, 39–50 (2002)

    Article  MATH  Google Scholar 

  7. Becciolini, A., Balzi, M., Barbarisi, M., Faraoni, P., Biggeri, A. and Potten, C.S.: 3H-thymidine labelling index (TLI) as a marker of tumour growth heterogeneity: evaluation in human solid carcinomas. Cell Prolif. 30, 117–126 (1997)

    Article  Google Scholar 

  8. Bellomo, N., Firmani, B., Guerri, L.: Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition. Appl. Math. Letters, 12, 39–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comp. Modelling, 32, 413–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bellomo, N., Bellouquid, A., De Angelis, E.: The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives. Math. Comp. Modelling, 37, 65–86 (2003)

    Article  MATH  Google Scholar 

  11. Berestycki, H., Larrouturou, B., Lions, P.L.: Multi-dimensional travelling wave solutions of a flame propagation model. Arch. Rational Mech. Anal., 111, 33–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chaplain, M.A.J.: Reaction-diffusion prepatterning and its potential role in tumor invasion. J. Bio. Sys., 3, 929–936 (1995)

    Article  Google Scholar 

  13. Chaplain, M.A.J., Ganesh, M. and Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol., 42, 387–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Math. Modell. Methods. Appl. Sci., 15, 1685–1734 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Net. Hetero. Med. 1, 399–439 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Coulie, P.G.: Human tumor antigens recognized by T-cells: new perspectives for anti-cancer vaccines? Mol. Med. Today, 3, 261–268 (1997)

    Article  Google Scholar 

  17. Crampin, E.J., Gaffney, E.A. and Maini, P.K.: Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol., 61, 1093–1120 (1999)

    Article  Google Scholar 

  18. Crampin, E.J., Hackborn, W.W. and Maini, P.K.: Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol., 64, 747–769 (2002)

    Article  Google Scholar 

  19. Danforth, D.N., Sgagias, M.K.: Tumor-necrosis-factor-alpha enhances secretion of transforming-growth-factor-beta (2) in MCF-7 breast-cancer cells, Clin. Canc. Res. 2:827-835, 1996.

    Google Scholar 

  20. De Angelis, E., Delitala, M., Marasco, A., Romano, A.: Bifurcation analysis for a mean field modelling of tumor and immune system competition. Math. Comp. Modelling, 37, 1131–1142 (2003)

    Article  MATH  Google Scholar 

  21. Deweger, R.A., Wilbrink, B., Moberts, R.M.P., Mans, D., Oskam, R., den Otten, W.: Immune reactivity in SL2 lymphoma-bearing mice compared with SL2-immunized mice. Cancer Immun. Immunotherapy, 24, 1191–1192 (1987)

    Google Scholar 

  22. Dillon, R., Maini, P.K., Othmer, H.G.: Pattern formation in generalized Turing systems. I. Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32:345-393, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biology, 17, 11–32 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Edelstein-Keshet L.: Mathematical Models in Biology. Random House, New York (1988)

    MATH  Google Scholar 

  25. Ethier, S.P.: Growth factor synthesis and human breast cancer progression. J. Natl. Cancer Inst., 87, 964–973 (1995)

    Article  Google Scholar 

  26. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqns., 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Forni, G., Parmiani, G., Guarini, A., Foa, R.: Gene transfer in tumour therapy. Annals Oncol., 5, 789–794 (1994)

    Google Scholar 

  28. Foryś, U.: Marchuk’s model of immune system dynamics with application to tumour growth. J. Theor. Medicine, 4, 85–93 (2002)

    Article  MATH  Google Scholar 

  29. Freyer, J.P. and Sutherland, R.M.: Proliferative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply. Cancer Res., 46, 3513–3520 (1986)

    Google Scholar 

  30. Gatenby R.A., Gawlinski, E.: A reaction-diffusion model of cancer invasion. Cancer Research, 56, 5745–5753 (1996)

    Google Scholar 

  31. Gerisch, A., Chaplain, M.A.J.: Robust Numerical Methods for Taxis–Diffusion–Reaction Systems: Applications to Biomedical Problems. Math. Comput. Modell., 43, 49–75 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ghiso, J.A.: Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene, 21, 2513–2524 (2002)

    Article  Google Scholar 

  33. Gierer, A. and Meinhardt, H.: A theory of biological pattern formation. Kybernetik, 12, 30–39 (1972)

    Article  Google Scholar 

  34. Ashwin, P.B., Bartuccelli, M.V., Bridges, T.J., Gourley, S.A.: Travelling fronts for the KPP equation with spatio-temporal delay Z. Angew. Math. Phys., 53, 103–122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Guckenheimer, J., Holmes. P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  36. Hata, A., Shi, Y.G. and Massagué, J.: TGF-β signaling and cancer: structural and functional consequences of mutations in Smads. Molecular Medicine Today, 4, 257–262 (1998)

    Article  Google Scholar 

  37. Horváth, Z.: Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl. Numer. Math., 28, 309–326 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ito, R., Kitadai, Y., Kyo, E., Yokozaki, H., Yasui, W., Yamashita, U., Nikai, H. and Tahara, E.: Interleukin 1α acts as an autocrine growth stimulator for human gastric carcinoma cells. Cancer Res., 53, 4102–4106 (1993)

    Google Scholar 

  39. Iversen, O.H.: The hunt for endogenous growth-inhibitory and or tumor suppression factors - their role in physiological and pathological growth-regulation. Adv. Cancer Res., 57, 413–453 (1991)

    Article  Google Scholar 

  40. Jannink, I., Risberg, B., Vandiest, P.J., and Baak, J.P.A.: Heterogeneity of mitotic-activity in breast-cancer. Histopathol., 29, 421–428 (1996)

    Article  Google Scholar 

  41. Keski-Oja, J., Postlethwaite, A.E. and Moses, H.L.: Transforming growth factors and the regulation of malignant cell growth and invasion. Cancer Invest., 6, 705–724 (1988)

    Article  Google Scholar 

  42. Kelly, C.E., Leek, R.D., Byrne, H.M., Cox, S.M., Harris, A.L., Lewis, C.E.: Modelling macrophage infiltration into avascular tumours. J. Theor. Med., 4, 21–38 (2002)

    Article  MATH  Google Scholar 

  43. Loeffler, D., Ratner, S.: In vivo localization of lymphocytes labeled with low concentrations of HOECHST-33342. J. Immunol. Meth., 119, 95–101 (1989)

    Article  Google Scholar 

  44. Lolas, G.: Spatio-temporal pattern formation and reaction diffusion equations. MSc Thesis, University of Dundee, Dundee (1999)

    Google Scholar 

  45. Lord, E.M., Burkhardt, G.: Assessment of in situ host immunity to syngeneic tumours utilizing the multicellular spheroid model. Cell. Immunol., 85, 340–350 (1984)

    Article  Google Scholar 

  46. Massagué, J.: TGFβ signal transduction. Annu. Rev. Biochem., 67, 753–791 (1998)

    Article  Google Scholar 

  47. Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol., 21, 1–34 (2004)

    Article  MATH  Google Scholar 

  48. Matzavinos, A., Chaplain, M.: Travelling wave analysis of a model of the immune response to cancer. C. R. Biologies, 327, 995–1008 (2004)

    Article  Google Scholar 

  49. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London, (1982)

    Google Scholar 

  50. Moses, M.L., Yang, E.Y. and Pietenpol, J.A.: TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell, 63, 245–247 (1990)

    Article  Google Scholar 

  51. Mueller, M.M., Herold-Mende, C.C., Riede, D., Lange, M., Steiner, H.-H. and Fusenig, N.E.: Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am. J. Pathol., 155, 1557–1567 (1999)

    Google Scholar 

  52. Mueller-Klieser, W.: Multicellular spheroids: A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol., 113, 101–122 (1987)

    Article  Google Scholar 

  53. Murray, J.D.: Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models. J. theor. Biol.. 98, 143–163 (1982)

    Article  Google Scholar 

  54. Murray, J.D.: Mathematical Biology (Second Edition). Springer-Verlag, London (1993)

    Google Scholar 

  55. Nagy N., Vanky, F.: Transforming-growth-factor-beta, (TGF beta), secreted by the immunogenic ex vivo human carcinoma cells, counteracts the activation and inhibits the function of autologous cytotoxic lymphocytes. Pretreatment with interferon gamma and tumor-necrosis-factor-alpha reduces the production of active TGF beta. Canc. Immunol. Immunother. 45, 306–312, (1998)

    Article  Google Scholar 

  56. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, New York (1980)

    MATH  Google Scholar 

  57. Orme M.E., Chaplain M.A.J.: A mathematical model of vascular tumour growth and invasion, Math. Comp. Model., 23, 43–60 (1996)

    Article  MATH  Google Scholar 

  58. Othmer, H., Stevens, A.: Aggregation, blowup and collapse: The ABCs of taxis and reinforced random walks. SIAM J. Appl. Math., 57, 1044–1081 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  59. Owen, M.R., Sherratt, J.A.: Pattern formation and spatio-temporal irregularity in a model for macrophage-tumour interactions. J. Theor. Biol., 189, 63–80 (1997)

    Article  Google Scholar 

  60. Owen, M.R., Sherratt, J.A.: Modelling the Macrophage Invasion of Tumours: Effects on Growth and Composition. IMA J. Math. Appl. Med. Biol., 15, 165–185 (1998)

    Article  MATH  Google Scholar 

  61. Owen, M.R., Sherratt, J.A.: Mathematical modelling of macrophage dynamics in tumours. Math. Models Meth. Appl. Sci., 9, 513–539 (1999)

    Article  MATH  Google Scholar 

  62. Parsons S.L., Watson S.A., Brown P.D., Collins H.M., Steele R.J.C.: Matrix metalloproteinases. British Journal of Surgery, 84, 160 – 166 (1997).

    Article  Google Scholar 

  63. Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M.: Biological inferences from a mathematical model for malignant invasion. Invasion & Metastasis, 16, 209–221, (1996)

    Google Scholar 

  64. Palmqvist, R., Oberg, A., Bergstrom, C., Rutegard, J.N., Zackrisson, B. and Stenling, R.: Systematic heterogeneity and prognostic significance of cell proliferation in colorectal cancer. Br. J. Cancer, 77, 917–925 (1998)

    Google Scholar 

  65. Preziosi, L. (Ed.): Cancer Modelling and Simulation. Chapman & Hall/CRC Press (2003)

    Google Scholar 

  66. Pusztai, L., Lewis, C.E. and Yap, E. (eds.). Cell Proliferation in Cancer: Regulatory Mechanisms of Neoplastic Cell Growth. Oxford University Press, Oxford, (1996)

    Google Scholar 

  67. Quinn, K.A., Treston, A.M., Unsworth, E.J., Miller, M.-J., Vos, M., Grimley, C., Battey, J., Mulshine, J.L. and Cuttitta, F.: Insulin-like growth factor expression in human cancer cell lines. J. Biol. Chem., 271, 11477–11483 (1996)

    Article  Google Scholar 

  68. Rahimi, N., Tremblay, E., McAdam, L., Roberts, A. and Elliott, B.: Autocrine secretion of TGF-beta 1 and TGF-beta 2 by pre-adipocytes and adipocytes: A potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells. In Vitro Cell. Dev. Biol. Animal, 34, 412–420 (1998)

    Article  Google Scholar 

  69. Rosfjord, E.C. and Dickson, R.B.: Growth factors, apoptosis and survival of mammary epithelial cells. J. Mammary Gland Biol. Neoplasia, 4, 229–237 (1999)

    Article  Google Scholar 

  70. Rozengurt, E.: Autocrine loops, signal transduction and cell cycle abnormalities in the molecular biology of lung cancer. Curr. Opin. Oncol., 11, 116–122 (1999)

    Article  Google Scholar 

  71. Schirrmacher, V.: T-cell immunity in the induction and maintenance of a tumour dormant state. Semin. Cancer Biol., 11, 285–295 (2001)

    Article  Google Scholar 

  72. Sessa, F., Bonato, M., Bisoni, D., Bosi, F. and Capella, C.: Evidence of a wide heterogeneity in cancer cell population in gallbladder adenocarcinomas. Lab. Invest., 76, 860 (1997)

    Google Scholar 

  73. Sherratt J.A., Nowak M.A.: Oncogenes, anti-oncogenes and the immune response to cancer: A mathematical model. Proc. Roy. Soc. Series B, 248, 261–271 (1992)

    Article  Google Scholar 

  74. Sherratt, J.A., Lewis, M.A., Fowler, A.C.: Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92, 2524–2528 (1995)

    Article  MATH  Google Scholar 

  75. Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)

    Article  Google Scholar 

  76. Szymańska, Z.: Analysis of Immunotherapy Models in the Context of Cancer Dynamics. Appl. Math. Comp. Sci., 13, 407–418 (2003)

    MATH  Google Scholar 

  77. Tahara, E., Yasui W. and Yokozaki, H.: Abnormal growth factor networks in neoplasia, chapter 6, pp. 133-153, in: L. Pusztai, C.E. Lewis and E. Yap (eds.). Cell Proliferation in Cancer: Regulatory Mechanisms of Neoplastic Cell Growth. Oxford University Press, Oxford, (1996)

    Google Scholar 

  78. Takahashi, J.A., Mori, H., Fukumoto, M., Igarashi, K., Jaye, M., Oda, Y., Kikuchi, H. and Hatanaka, M.: Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc. Natl. Acad. Sci. USA, 87, 5710–5714 (1990)

    Article  Google Scholar 

  79. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond., B237, 37–72 (1952)

    Google Scholar 

  80. Udagawa, T., Fernandez, A., Achilles, E.G., Folkman, J., D’Amato, R.J.: Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J., 16, 1361–1370 (2002)

    Article  Google Scholar 

  81. Uhr, J.W., Marches, R.: Dormancy in a model of murine B-cell lymphoma. Semin. Cancer Biol., 11, 277–283 (2001)

    Article  Google Scholar 

  82. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems. American Mathematical Society, Translations of Mathematical Monographs, 140 (2000)

    Google Scholar 

  83. Webb, S.D., Sherratt, J.A., Fish, R.G.: Cells behaving badly: a theoretical model for the Fas/FasL system in tumour immunology. Math. Biosci., 179, 113–129 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  84. Weiner, R., Schmitt, B.A., Podhaisky, H.: ROWMAP — a ROW-code with Krylov techniques for large stiff ODEs. Appl. Numer. Math., 25, 303–319 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  85. Westermark, B. and Heldin, C.-H.: Platelet-derived growth factor in autocrine transformation. Cancer Res., 51, 5087–5092 (1991)

    Google Scholar 

  86. Wibe, E., Lindmo, T. and Kaalhus, O.: Cell kinetic characteristics in different parts of multicellular spheroids of human origin. Cell Tissue Kinet., 14, 639–651 (1981)

    Google Scholar 

  87. Wilson, K.M., Lord, E.M.: Specific (EMT6) and non-specific (WEHI-164) cytolytic activity by host cells infiltrating tumour spheroids. Brit. J. Cancer, 55, 141–146 (1987)

    Google Scholar 

  88. Wu, S., Boyer, C.M., Whitaker, R.S., Berchuck, A., Wiener, J.R., Wienberg, J.B., Bast, R.C.: Tumor-necrosis-factor-alpha as an autocrine and paracrine growth-factor for ovarian cancer - monokine induction of tumor-cell proliferation and tumor-necrosis-factor-alpha expression. Cancer Res. 53:1939-1944, 1993.

    Google Scholar 

  89. Yanagihara, K. and Tsumuraya, M.: Transforming growth factor β1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res., 52, 4042–4045 (1992)

    Google Scholar 

  90. Yefenof, E.: Cancer dormancy: from observation to investigation and onto clinical intervention. Semin. Cancer Biol., 11, 277–283 (2001)

    Article  Google Scholar 

  91. Yoshida, K., Kyo, E., Tsujino, T., Sano, T., Niimoto, M., and Tahara, E.: Expression of epidermal growth factor, transforming growth factor-α and their receptor genes in human carcinomas: implication for autocrine growth. Cancer Res., 81, 43–51 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaplain, M.A.J. (2008). Modelling Aspects of Cancer Growth: Insight from Mathematical and Numerical Analysis and Computational Simulation. In: Capasso, V., Lachowicz, M. (eds) Multiscale Problems in the Life Sciences. Lecture Notes in Mathematics, vol 1940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78362-6_3

Download citation

Publish with us

Policies and ethics