Skip to main content

Rescaling Stochastic Processes: Asymptotics

  • Chapter
Multiscale Problems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1940))

In this chapter the authors investigate the links among different scales, from a probabilistic point of view. Particular attention is being paid to the mathematical modelling of the social behavior of interacting individuals in a biological population, on one hand because there is an intrinsic interest in dynamics of population herding, on the other hand since agent based models are being used in complex optimization problems. Among other interesting features, these systems lead to phenomena of self-organization, which exhibit interesting spatial patterns. Here we show how properties on the macroscopic level depend on interactions at the microscopic level; in particular suitable laws of large numbers are shown to imply convergence of the evolution equations for empirical spatial distributions of interacting individuals to nonlinear reaction–diffusion equations for a so called mean field, as the total number of individuals becomes sufficiently large. As a working example, an interacting particle system modelling social behavior has been proposed, based on a system of stochastic differential equations, driven by both aggregating/repelling and external “forces”. In order to support a rigorous derivation of the asymptotic nonlinear integro-differential equation, compactness criteria for convergence in metric spaces of measures, and problems of existence of a weak/entropic solution have been analyzed. Further the temporal asymptotic behavior of the stochastic system of a fixed number of interacting particles has been discussed. This leads to the problem of the existence of nontrivial invariant probability measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash R. B. & Gardner M. F., Topics in Stochastic Processes, Academic Press, London; 1975.

    MATH  Google Scholar 

  2. Banasiak J., Positivity in Natural Sciences. This Volume.

    Google Scholar 

  3. Billingsley P., Convergence of Probability Measures, Wiley, New York; 1968.

    MATH  Google Scholar 

  4. Boi, S., Capasso V., Morale, D. “Modeling the aggregative behavior of ants of the species Polyergus rufescens.”, Nonlinear Analysis: Real World Applications, 1, 2000, p. 163-176.

    Google Scholar 

  5. Bodnar, M., J.J.L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, J. Diff. Eqs., 222, 2, (2006), 341380.

    Google Scholar 

  6. Burger M., Capasso V., Morale D., On an aggregation model with long and short range interactions, Nonlinear Anal. Real World Appl., 2006. In Press.

    Google Scholar 

  7. Capasso V., Mathematical Structures of Epidemic Systems, Springer-Verlag, Heidelberg; 1993.

    MATH  Google Scholar 

  8. Capasso V., Bakstein D. An Introduction to Continuous-Time Stochastic Processes-Theory, Models and Applications to Finance, Biology and Medicine. Birkhäuser, Boston, 2004.

    Google Scholar 

  9. Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rat. Mech. Anal., 269–361, 147; 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. Diekmann, O., M. Gyllenberg, H.R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity, Math. Models and Meth. in Appl. Sciences 10 (2000), 581-592.

    MATH  MathSciNet  Google Scholar 

  11. Dudley, R.M., Convergence of Baire measures, Studia Math. 27 (1966), 251-268.

    MATH  MathSciNet  Google Scholar 

  12. Dudley, R.M., Real Analysis and Probability, Cambridge Studies in Advanced Mathematics 74, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  13. Durrett, R., Levin, S.A., “The importance of being discrete (and spatial).” Theor. Pop. Biol., 46, 1994, 363-394.

    Article  MATH  Google Scholar 

  14. Dynkin E. B., Markov Processes, Springer-Verlag, Berlin, Vols. 1–2; 1965.

    MATH  Google Scholar 

  15. Ethier S. N. & Kurtz T. G., Markov Processes, Characterization and Convergence, Wiley, New York; 1986.

    MATH  Google Scholar 

  16. Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York; 1971.

    MATH  Google Scholar 

  17. Gihman I. I. & Skorohod A. V., The Theory of Random Processes, Springer-Verlag, Berlin; 1974.

    Google Scholar 

  18. Grünbaum, D., Okubo, A. “Modelling social animal aggregations” In “Frontiers of Theoretical Biology” (S. Levin Ed.), Lectures Notes in Biomathematics, 100, Springer Verlag, New York, 1994, 296-325.

    Google Scholar 

  19. Has’minski, R.Z. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands and Rockville, Maryland, USA, 1980.

    Google Scholar 

  20. Karlin S., Taylor H. M., A First Course in Stochastic Processes, Academic Press, New York; 1975.

    MATH  Google Scholar 

  21. Lachowicz M., Links Between Microscopic and Macroscopic Descriptions. This Volume.

    Google Scholar 

  22. Malrieu, F. Convergence to equilibrium for granular media equations and their Euler schemes. The Annals of Applied Probability, 13, 540-560, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  23. Métivier M., Notions Fondamentales de la Théorie des Probabilités, Dunod, Paris; 1968.

    MATH  Google Scholar 

  24. Mogilner A., L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Bio. 38, 534-549, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. Morale, D., V. Capasso, K. Ölschlaeger, An interacting particle system modelling aggregation behavior: from individuals to populations, J. Math. Bio. 50, 49-66(2005).

    Article  MATH  Google Scholar 

  26. Morale D., Capasso V., & Oelschläger K., A rigorous derivation of the mean-field nonlinear integro-differential equation for a population of aggregating individuals subject to stochastic fluctuations, Preprint 98–38 (SFB 359), IWR, Universität Heidelberg, Juni; 1998.

    Google Scholar 

  27. Nagai T. & Mimura M., Some nonlinear degenerate diffusion equations related to population dynamics, J. Math. Soc. Japan, 539–561, 35; 1983.

    Article  MATH  MathSciNet  Google Scholar 

  28. Oelschläger K. A law of large numbers for moderately interacting diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gabiete 69, 279-322; 1985.

    Article  MATH  Google Scholar 

  29. Oelschläger K., Large systems of interacting particles and the porous medium equation, J. Differential Equations, 294–346, 88; 1990.

    Google Scholar 

  30. A. Okubo, S. Levin, Diffusion and Ecological Problems : Modern Perspectives (Springer, Berlin), 2002.

    MATH  Google Scholar 

  31. Ortisi, M. Limiting Behavior of an Interacting Particle Systems, Ph.D., University of Milano, Italy, 2007.

    Google Scholar 

  32. Rogers L. C. G. & Williams D., Diffusions, Markov Processes and Martingales, Vol. 1, Wiley, New York; 1994.

    MATH  Google Scholar 

  33. Shiryaev A. N., Probability, Springer-Verlag, New York; 1995.

    MATH  Google Scholar 

  34. van der Vaart, Aad W. and Wellner, Jon A., Weak Convergence and Empirical Processes, with Applications to Statistics, Springer, New York, 1996.

    MATH  Google Scholar 

  35. Veretennikov, A.Y. On polynomial mixing bounds for stochastic differential equations. Stochastic Processes and their Applications, 70, 115-127, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  36. Veretennikov, A.Y. On polynomial mixing and convergence rate for for stochastic differential equations. Theory Probab. Appl., 44, 361-374, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  37. Veretennikov, A.Y. On subexponential mixing rate for Markov processes. Theory Probab. Appl., 49, 110-122, 2005.

    Article  MathSciNet  Google Scholar 

  38. Conradt, L. and Roper, T.J., Group decision-making in animals, Nature, 42, 155-158, 2003.

    Article  Google Scholar 

  39. Conradt, L. and Roper, T.J., Consensus decision-making in animals, Trends Ecol. Evolut., 20, 449-456, 2005.

    Article  Google Scholar 

  40. Meunier, H., Leca, J. B., Deneubourg, J.L., and Petit,O., Group movement in capuchin monkeys: the utility of an experimental study and a mathematical model to explore the relationship between individual and collective behaviours. Preprint, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capasso, V., Morale, D. (2008). Rescaling Stochastic Processes: Asymptotics. In: Capasso, V., Lachowicz, M. (eds) Multiscale Problems in the Life Sciences. Lecture Notes in Mathematics, vol 1940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78362-6_2

Download citation

Publish with us

Policies and ethics