Skip to main content

Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations

  • Chapter
Mixed Finite Elements, Compatibility Conditions, and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1939))

The presented notes review the concept and main results concerning commuting projections and projection-based interpolation operators defined for one-, two- and three-dimensional exact sequences involving the gradient, curl, and divergence operators, and Sobolev spaces. The discrete sequences correspond to polynomial spaces defining the classical, continuous finite elements, the “edge elements” of Nédélec, and “face elements” of Raviart-Thomas. All discussed results extend to the elements of variable order as well as parametric elements. The presentation reproduces results for 2D from [19] and 3D from [17, 25, 20, 13] and attempts to present them in a unified manner for all types of finite elements forming the exact sequences. The idea of the projection-based interpolation for elliptic problems was introduced in [37] and generalized to the exact sequence in [21]. The presented results build on the existence of polynomial preserving extension operators [15, 22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and L. Demkowicz. Explicit polynomial preserving trace liftings on a triangle. Math. Nachr., in press. ICES Report 03-47.

    Google Scholar 

  2. D.N. Arnold, B. Boffi, and R.S. Falk. Quadrilateral H(d i v) finite element. SIAM J. Numer. Anal., 42:2429–2451, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuška, A. Craig, J. Mandel, and J. Pitkaränta. Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal, 28(3): 624–661, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Babuška and M. Suri. The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal., 24:750–776, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Ben Belgacem, Polynomial extensions of compatible polynomial traces in three dimensions. Comput. Methods Appl. Mech. Engrg., 116:235–241, 1994. ICOSAHOM’92, Montpellier, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Bernardi, M. Dauge, and Y. Maday. Polynomials in the Sobolev world. Technical Report R 03038, Laboratoire Jacques-Louis Lions, Université Pierre at Marie Curie, 2003. http://www.ann.jussieu.fr/.

  7. D. Boffi. Fortin operator and discrete compactness for edge elements. Numer. Math., 87(2):229–246, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Boffi. A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett., 14(1):33–38, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Boffi, M. Dauge, M. Costabel, and L. Demkowicz. Discrete compactness for the h p version of rectangular edge finite elements. SIAM J. Numer. Anal., 44(3):979–1004, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal., 36(4):1264–1290, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. R.A.I.R.O., 8(R2):129–151, 1974.

    MathSciNet  Google Scholar 

  12. A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations. Part i: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci., 24:9–30, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Cao and L. Demkowicz. Optimal error estimate for the projection based interpolation in three dimensions. Comput. Math. Appl., 50:359–366, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Cessenat. Mathematical Methods in Electromagnetism. World Scientific, Singapore, 1996.

    MATH  Google Scholar 

  15. M. Costabel, M. Dauge, and L. Demkowicz. Polynomial extension operators for H 1, H(curl) and H(div) spaces on a cube. Math. Comput., accepted. IRMAR Rennes Report 07-15.

    Google Scholar 

  16. L. Demkowicz. Edge finite elements of variable order for Maxwell’s equations. In D. Hecht, U. van Rienen, M. Günther, editors, Scientific Computing in Electrical Engineering, Lecture Notes in Computational Science and Engineering, vol. 18, pp. 15–34. Springer, Berlin Heidelberg New York, 2000. Proceedings of the 3rd International Workshop, August 20-23, Warnemuende, Germany.

    Google Scholar 

  17. L. Demkowicz. Projection based interpolation. In Transactions on Structural Mechanics and Materials. Cracow University of Technology Publications, Cracow, 2004. Monograph 302, A special issue in honor of 70th Birthday of Prof. Gwidon Szefer. ICES Report 04-03.

    Google Scholar 

  18. L. Demkowicz. Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC, 2006.

    Google Scholar 

  19. L. Demkowicz and I. Babuška. p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal., 41(4):1195–1208 (electronic), 2003.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Demkowicz and A. Buffa. H 1,H(curl) and H(div)-conforming projection-based interpolation in three dimensions. Quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Eng., 194:267–296, 2005.

    MATH  MathSciNet  Google Scholar 

  21. L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz. De Rham diagram for h p finite element spaces. Comput. Math. Appl., 39(7–8):29–38, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Demkowicz, J. Gopalakrishnan and J. Schoeberl. Polynomial Extension Operators. Part I and II. SIAM J. Numer. Anal, submitted. RICAM Reports 07-15, 07-16.

    Google Scholar 

  23. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz and A. Zdunek. Computing with hp Finite Elements. II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC, 2007.

    Google Scholar 

  24. L. Demkowicz and L. Vardapetyan. Modeling of electromagnetic absorption/scattering problems using h p-adaptive finite elements. Comput. Methods Appl. Mech. Eng., 152 (1–2):103–124, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Gopalakrishnan and L. Demkowicz. Quasioptimality of some spectral mixed methods. J. Comput. Appl. Math., 167(1):163–182, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Gopalakrishnan, L.E. García-Castillo, and L. Demkowicz. Nédélec spaces in affine ccordinates. Comput. Math. Appl., 49:1285–1294, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Gradinaru and R. Hiptmair. Whitney elements on pyramids. ETNA, 8:154–168, 1999. Report 113, SFB 382, Universitt Tbingen, March 1999.

    MATH  MathSciNet  Google Scholar 

  28. P. Grisvard. Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22. Masson, Paris, 1992.

    MATH  Google Scholar 

  29. R. Hiptmair. Canonical construction of finite elements. Math. Comput., 68:1325–1346, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Hiptmair. Higher order Whitney forms. Technical Report 156, Universität Tübingen, 2000.

    Google Scholar 

  31. Y. Maday. Relévement de traces polynomiales et interpolations hilbertiennes entre espaces de polynomes. C. R. Acad. Sci. Paris, 309:463–468, 1989.

    MATH  MathSciNet  Google Scholar 

  32. W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.

    Google Scholar 

  33. R. Munoz-Sola. Polynomial lifting on a tetrahedron and application to the h p-version of the finite element method. SIAM J. Numer. Anal., 34:282–314, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.C. Nédélec. Mixed finite elements in 3. Numer. Math., 35:315–341, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  35. J.C. Nédélec. A new family of mixed finite elements in 3. Numer. Math., 50:57–81, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  36. N. Nigam and J. Phillips. Higher-order finite flements on pyramids. LanL arXiV preprint: arXiv:math/0610206v3.

    Google Scholar 

  37. J.T. Oden, L. Demkowicz, R. Rachowicz, and T.A. Westermann. Toward a universal h p adaptive finite element strategy. Part 2: a posteriori error estimation. Comput. Methods Appl. Mech. Eng., 77:113–180, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  38. L.F. Pavarino and O. B. Widlund. A polylogarithmic bound for iterative subtructuring method for spectral elements in three dimensions. SIAM J. Numer. Anal., 33(4):1303–1335, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Schoeberl. Commuting quasi-interpolation operators for mixed finite elements. Technical report, Texas A&M University, 2001. Preprint ISC-01-10-MATH.

    Google Scholar 

  40. Ch. Schwab. p and hp-Finite Element Methods. Clarendon Press, Oxford, 1998.

    MATH  Google Scholar 

  41. J.P. Webb. Hierarchical vector based funtions of arbitrary order for triangular and tetrahedral finite elements. IEEE Antennas Propagat. Mag., 47(8):1244–1253, 1999.

    Article  MATH  Google Scholar 

  42. H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demkowicz, L.F. (2008). Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations. In: Boffi, D., Gastaldi, L. (eds) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol 1939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78319-0_3

Download citation

Publish with us

Policies and ethics