Skip to main content

Lectures on Pseudo-Holomorphic Curves and the Symplectic Isotopy Problem

  • Chapter
Symplectic 4-Manifolds and Algebraic Surfaces

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1938))

This text is an expanded version of the lectures delivered by the authors at the CIME summer school “Symplectic 4-manifolds and algebraic surfaces,” Cetraro (Italy), September 2–10, 2003. The aim of these lectures were mostly to introduce graduate students to pseudo-holomorphic techniques for the study of isotopy of symplectic submanifolds in dimension four. We tried to keep the style of the lectures by emphasizing the basic reasons for the correctness of a result rather than by providing full details.

Essentially none of the content claims any originality, but most of the results are scattered in the literature in sometimes hard-to-read locations. For example, we give a hands-on proof of the smooth parametrization of the space of holomorphic cycles on a complex surface under some positivity assumption. This is usually derived by the big machinery of deformation theory together with Banach-analytic methods. For an uninitiated person it is hard not only to follow the formal arguments needed to deduce the result from places in the literature, but also, and maybe more importantly, to understand whyit is true. While our treatment here has the disadvantage to consider only a particular situation that does not even quite suffice for the proof of the Main Theorem (Theorem 9.1) we hope that it is useful for enhancing the understanding of this result outside the community of hardcore complex analysts and algebraic geometers.

The last section discusses the proof of the main theorem, which is also the main result from [SiTi3]. The logic of this proof is a bit difficult, involving several reduction steps and two inductions, and we are not sure if the current presentation really helps in understanding what is going on. Maybe somebody else has to take this up again and add new ideas into streamlining this piece.

Finally there is one section on the application to symplectic Lefschetz fibrations. This makes the link to the other lectures of the summer school, notably to those by Auroux and Smith.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aronszajn: A unique continuation theorem for elliptic differential equations or inequalities of the second order, J. Math. Pures Appl. 36 (1957),235-239.

    MATH  MathSciNet  Google Scholar 

  2. D. Auroux: Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math. 27(2003),1-10.

    MATH  MathSciNet  Google Scholar 

  3. D. Auroux: A stable classification of Lefschetz fibrations, Geom. Topol. 9(2005)203-217.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Auroux, I. Smith: Lefschetz pencils, branched covers and symplectic invariants, this volume.

    Google Scholar 

  5. Barlet, D. : Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexes de dimension finie. Sem. F. Norguet 1974/75 (Lect. Notes Math. 482), 1-158.

    Article  MathSciNet  Google Scholar 

  6. W. Barth, C. Peters, A. van de Ven: Compact complex surfaces, Springer 1984.

    Google Scholar 

  7. J. Birman: Braids, links and mapping class groups, Princeton University Press 1974.

    Google Scholar 

  8. K. Chakiris: The monodromy of genus two pencils, Thesis, Columbia Univ. 1983.

    Google Scholar 

  9. S.K. Donaldson: Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205-236

    MATH  MathSciNet  Google Scholar 

  10. S. Donaldson, I. Smith: Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743-785.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Fuller: Hyperelliptic Lefschetz fibrations and branched covering spaces, Pacific J. Math. 196 (2000), 369-393.

    MATH  MathSciNet  Google Scholar 

  12. D. Gilbarg and N. S. Trudinger: Elliptic partial differential equations of second order, Springer 1977

    Google Scholar 

  13. R. Gompf: A new construction of symplectic manifolds, Ann. Math. 142 (1995),527-595.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Gompf, A. Stipsicz: 4-manifolds and Kirby calculus, Amer. Math. Soc. 1999.

    Google Scholar 

  15. H. Grauert, R. Remmert: Theory of Stein spaces, Springer 1979.

    Google Scholar 

  16. P. Griffiths, J. Harris: Principles of Algebraic Geometry, Wiley 1978.

    Google Scholar 

  17. M. Gromov: Pseudo-holomorphic curves in symplectic manifolds, Inv. Math. 82 (1985), 307-347.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Harris, I. Morrison: Moduli of curves, Springer 1998.

    Google Scholar 

  19. S. Ivashkovich, V. Shevchishin: Pseudo-holomorphic curves and envelopes of meromorphy of two-spheres in CP2 , preprint math.CV/9804014.

    Google Scholar 

  20. S. Ivashkovich, V. Shevchishin: Structure of the moduli space in a neighbourhood of a cusp curve and meromorphic hulls, Inv. Math. 136 (1998), 571-602.

    Article  MathSciNet  Google Scholar 

  21. A. Kas: On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980), 89-104.

    MATH  MathSciNet  Google Scholar 

  22. B. Kaup, L. Kaup: Holomorphic functions of several variables, de Gruyter 1983.

    Google Scholar 

  23. F. Lárusson: Holomorphic neighbourhood retractions of ample hypersurfaces, Math. Ann. 307 (1997), 695-703.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Li, G. Tian: Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, in: Topics in symplectic 4-manifolds (Irvine, 1996), R. Stern (ed.), Internat. Press 1998.

    Google Scholar 

  25. D. McDuff: The structure of rational and ruled symplectic four-manifolds, J. Amer. Math. Soc. 3 (1990), 679-712.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Univ. Press 1995.

    Google Scholar 

  27. D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology, Amer. Math. Soc. 2004.

    Google Scholar 

  28. M. Micallef, B. White: The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. 141 (1995), 35-85.

    Article  MATH  MathSciNet  Google Scholar 

  29. B. Ozbağçi, A. Stipsicz: Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc. 128(2000),3125-3128.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Pansu: Compactness, in: Holomorphic curves in symplectic geometry, M. Audin, J. Lafontaine (eds.), 233-249, Birkhäuser 1994.

    Google Scholar 

  31. T. Parker and J. Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3(1993), 63-98.

    MATH  MathSciNet  Google Scholar 

  32. U. Persson, H. Pinkham: Some examples of nonsmoothable varieties with normal crossings, Duke Math. J. 50 (1983), 477-486.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y.B. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Diff. Geom. 42(1995), 259-367.

    MATH  MathSciNet  Google Scholar 

  34. V. Shevchishin: Pseudoholomorphic curves and the symplectic isotopy problem, preprint math.SG/0010262, 95 pp.

    Google Scholar 

  35. B. Siebert: Gromov-Witten invariants for general symplectic manifolds, preprint dg-ga 9608005.

    Google Scholar 

  36. B. Siebert, G. Tian: On hyperelliptic symplectic Lefschetz fibrations of four manifolds, Communications Cont. Math. 1 (1999), 255-280

    Article  MATH  MathSciNet  Google Scholar 

  37. B. Siebert, G. Tian: Weierstraß polynomials and plane pseudo-holomorphic curves, Chinese Ann. Math. Ser. B 23 (2002), 1-10.

    Article  MATH  MathSciNet  Google Scholar 

  38. B. Siebert, G. Tian: On the holomorphicity of genus-two Lefschetz fibrations, Ann. of Math. 161 (2005), 955-1016.

    Article  MathSciNet  Google Scholar 

  39. J.-C. Sikorav: The gluing construction for normally generic J -holomorphic curves, in: Symplectic and contact topology: interactions and perspectives (Toronto, 2001), 175-199, Y. Eliashberg et al. (eds.), Amer. Math. Soc. 2003.

    Google Scholar 

  40. I. Smith: Symplectic geometry of Lefschetz fibrations, Ph.D. thesis, Oxford University, 1998.

    Google Scholar 

  41. I. Smith: Lefschetz fibrations and divisors in moduli space, Geom. Topol. 5(2001),579-608.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2 spheres, Ann. of Math. 113 (1981), 1-24.

    Article  MathSciNet  Google Scholar 

  43. M. Teicher: Braid groups, algebraic surfaces and fundamental groups of complements of branch curves, in: Algebraic geometry - Santa Cruz 1995,127-150, J. Kollár et al. (eds.), Amer. Math. Soc. 1997.

    Google Scholar 

  44. G. Tian: Quantum cohomology and its associativity, in: Current developments in mathematics (Cambridge, 1995), 361-401, Internat. Press 1994.

    Google Scholar 

  45. I. N. Vekua: Generalized analytic functions, Pergamon 1962.

    Google Scholar 

  46. R. Ye, Gromov’s compactness theorem for pseudo-holomorphic curves, Trans. Amer. Math. Soc. 342 (1994), 671-694.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siebert, B., Tian, G. (2008). Lectures on Pseudo-Holomorphic Curves and the Symplectic Isotopy Problem. In: Catanese, F., Tian, G. (eds) Symplectic 4-Manifolds and Algebraic Surfaces. Lecture Notes in Mathematics, vol 1938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78279-7_5

Download citation

Publish with us

Policies and ethics