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Summary. The purpose of these notes is a more self-contained presentation of the
results of the authors in Siebert and Tian (Ann Math 161:955–1016, 2005). Some
applications are also given.

1 Introduction

This text is an expanded version of the lectures delivered by the authors at the
CIME summer school “Symplectic 4-manifolds and algebraic surfaces,” Ce-
traro (Italy), September 2–10, 2003. The aim of these lectures were mostly to
introduce graduate students to pseudo-holomorphic techniques for the study
of isotopy of symplectic submanifolds in dimension four. We tried to keep the
style of the lectures by emphasizing the basic reasons for the correctness of a
result rather than by providing full details.

Essentially none of the content claims any originality, but most of the
results are scattered in the literature in sometimes hard-to-read locations. For
example, we give a hands-on proof of the smooth parametrization of the space
of holomorphic cycles on a complex surface under some positivity assumption.
This is usually derived by the big machinery of deformation theory together
with Banach-analytic methods. For an uninitiated person it is hard not only
to follow the formal arguments needed to deduce the result from places in the
literature, but also, and maybe more importantly, to understand why it is true.
While our treatment here has the disadvantage to consider only a particular
situation that does not even quite suffice for the proof of the Main Theorem
(Theorem 9.1) we hope that it is useful for enhancing the understanding of
this result outside the community of hardcore complex analysts and algebraic
geometers.

One lecture was devoted to the beautiful theorem of Micallef and White
on the holomorphic nature of pseudo-holomorphic curve singularities. The
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original paper is quite well written and this might be the reason that a proof
of this theorem has not appeared anywhere else until very recently, in the
excellent monograph [McSa2]. It devotes an appendix of 40 pages length to a
careful derivation of this theorem and of most of the necessary analytical tools.
Following the general principle of these lecture notes our purpose here is not to
give a complete and necessarily technical proof, but to condense the original
proof to the essentials. We tried to achieve this goal by specializing to the
paradigmical case of tacnodal singularities with a “half-integrable” complex
structure.

Another section treats the compactness theorem for pseudo-holomorphic
curves. A special feature of the presented proof is that it works for sequences
of almost complex structures only converging in the C 0-topology. This is es-
sential in the application to the symplectic isotopy problem.

We also give a self-contained presentation of Shevchishin’s study of moduli
spaces of equisingular pseudo-holomorphic maps and of second variations of
pseudo-holomorphic curves. Here we provide streamlined proofs of the two
results from [Sh] by only computing the second variation in the directions
actually needed for our purposes.

The last section discusses the proof of the main theorem, which is also the
main result from [SiTi3]. The logic of this proof is a bit difficult, involving
several reduction steps and two inductions, and we are not sure if the current
presentation really helps in understanding what is going on. Maybe somebody
else has to take this up again and add new ideas into streamlining this piece.

Finally there is one section on the application to symplectic Lefschetz
fibrations. This makes the link to the other lectures of the summer school,
notably to those by Auroux and Smith.

2 Pseudo-Holomorphic Curves

2.1 Almost Complex and Symplectic Geometry

An almost complex structure on a manifold M is a bundle endomorphism
J : TM → TM with square − idTM

. In other words, J makes TM into a
complex vector bundle and we have the canonical decomposition

TM ⊗R C = T 1,0
M ⊕ T 0,1

M = TM ⊕ TM

into real and imaginary parts. The second equality is an isomorphism of com-
plex vector bundles and TM is just another copy of TM with complex structure
−J . For switching between complex and real notation it is important to write
down the latter identifications explicitly:

TM −→ T 1,0
M , X �−→ 1

2

(
X − iJX

)
,

and similarly withX+iJX for T 0,1
M . Standard examples are complex manifolds

with J(∂xµ
) = ∂yµ

, J(∂yµ
) = −∂xµ

for holomorphic coordinates zµ = xµ+iyµ.
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Then the above isomorphism sends ∂xµ
, ∂yµ

∈ TM to ∂zµ
, i∂zµ

∈ T 1,0
M and to

∂z̄µ
, i∂z̄µ

∈ T 0,1
M respectively. Such integrable almost complex structures are

characterized by the vanishing of the Nijenhuis tensor, a (2, 1)-tensor depend-
ing only on J . In dimension 2 an almost complex structure is nothing but a
conformal structure and hence it is integrable by classical theory. In higher
dimensions there are manifolds having almost complex structures but no inte-
grable ones. For example, any symplectic manifold (M,ω) possesses an almost
complex structure, as we will see instantly, but there are symplectic manifolds
not even homotopy equivalent to a complex manifold, see e.g. [OzSt].

The link between symplectic and almost complex geometry is by the notion
of tameness. An almost complex structure J is tamed by a symplectic form ω
if ω(X,JY ) > 0 for any X,Y ∈ TM \ {0}. The space J ω of ω-tamed almost
complex structures is contractible. In fact, one first proves this for the space
of compatible almost complex structures, which have the additional property
ω(JX, JY ) = ω(X,Y ) for all X,Y . These are in one-to-one correspondence
with Riemannian metrics g via g(X,Y ) = ω(X,JY ), and hence form a con-
tractible space. In particular, a compatible almost complex structure J0 in
(M,ω) exists. Then the generalized Cayley transform

J �−→ (J + J0)−1 ◦ (J − J0)

produces a diffeomorphism of J ω with the space of J0-antilinear endomor-
phisms A of TM with ‖A‖ < 1 (this is the mapping norm for g0 = ω( . , J0 . )).

A differentiable map ϕ : N → M between almost complex manifolds is
pseudo-holomorphic if Dϕ is complex linear as map between complex vector
bundles. If ϕ is an embedding this leads to the notion of pseudo-holomorphic
submanifold ϕ(N) ⊂M . If the complex structures are integrable then pseudo-
holomorphicity specializes to holomorphicity. However, there are many more
cases:

Proposition 2.1 For any symplectic submanifold Z ⊂ (M,ω) the space of
J ∈ J ω(M) making Z into a pseudo-holomorphic submanifold is non-empty
and contractible.

The proof uses the same arguments as for the contractibility of J ω out-
lined above. Another case of interest for us is the following, which can be
proved by direct computation.

Proposition 2.2 [SiTi3, Proposition 1.2] Let (M,ω) be a closed symplectic
4-manifold and p : M → B a smooth fiber bundle with all fibers symplectic.
Then for any symplectic form ωB on B and any almost complex structure J
on M making the fibers of p pseudo-holomorphic, ωk := ω + k p∗(ωB) tames
J for k � 0.

The Cauchy–Riemann equation is over-determined in dimensions greater
than two and hence the study of pseudo-holomorphic maps ϕ : N → M
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promises to be most interesting for dimN = 2. Then N is a (not necessarily
connected) Riemann surface, that we write Σ with almost complex struc-
ture j understood. The image of ϕ is called pseudo-holomorphic curve, or
J-holomorphic curve if one wants to explicitly refer to an almost complex
structure J on M . A pseudo-holomorphic curve is irreducible if Σ is con-
nected, otherwise reducible, and its irreducible components are the images of
the connected components of Σ. If ϕ does not factor non-trivially over a holo-
morphic map to another Riemann surface we call ϕ reduced or non-multiply
covered, otherwise non-reduced or multiply covered.

2.2 Basic Properties of Pseudo-Holomorphic Curves

Pseudo-holomorphic curves have a lot in common with holomorphic curves:

(1) Regularity. If ϕ : Σ → (M,J) is of Sobolev class W 1,p, p > 2
(one weak derivative in Lp) and satisfies the Cauchy–Riemann equation
1
2 (Dϕ+J ◦Dϕ◦ j) = 0 weakly, then ϕ is smooth (C∞; we assume J smooth).
Note that by the Sobolev embedding theorem W 1,p(Σ,M) ⊂ C0(Σ,N), so it
suffices to work in charts.

(2) Critical points. The set of critical points crit(ϕ) ⊂ Σ of a pseudo-
holomorphic map ϕ : Σ →M is discrete.

(3) Intersections and identity theorem. Two different irreducible pseudo-
holomorphic curves intersect discretely and, if dimM = 4, with positive,
finite intersection indices.

(4) Local holomorphicity. Let C ⊂ (M,J) be a pseudo-holomorphic curve with
finitely many irreducible components and P ∈ C. Then there exists a neigh-
borhood U ⊂ M of P and a C1-diffeomorphism Φ : U → Φ(U) ⊂ C

n such
that Φ(C) is a holomorphic curve near Φ(P ).

This is the content of the theorem of Micallef and White that we discuss
in detail in Sect. 4. Note that this implies (2) and (3).

(5) Removable singularities. Let ∆∗ ⊂ C denote the pointed unit disk and
ϕ : ∆∗ → (M,J) a pseudo-holomorphic map. Assume that ϕ has bounded
energy, that is

∫
∆∗ |Dϕ|2 < ∞ for any complete Riemannian metric on M .

Then ϕ extends to a pseudo-holomorphic map ∆→M .
If ω tames the almost complex structure the energy can be bounded by

the symplectic area:
∫

∆∗ |Dϕ|2 < c ·
∫

Σ
ϕ∗ω. Note that

∫
Σ
ϕ∗ω is a topological

entity provided Σ is closed.

(6) Local existence. For any X ∈ TM of sufficiently small length there exists
a pseudo-holomorphic map ϕ : ∆ → M with Dϕ|0(∂t) = X. Here t is the
standard holomorphic coordinate on the unit disk.

The construction is by application of the implicit function theorem to ap-
propriate perturbations of the exponential map. Therefore it also works in
families. In particular, any almost complex manifold can locally be fibered
into pseudo-holomorphic disks. In dimension 4 this implies the local exis-
tence of complex (-valued) coordinates z, w such that z = const is a pseudo-
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holomorphic disk with w restricting to a holomorphic coordinate. There exist
then complex functions a, b with

T 0,1
M = C · (∂z̄ + a∂z + b∂w) + C · ∂w̄.

Conversely, any choices of a, b lead to an almost complex structure with
z, w having the same properties. This provides a convenient way to work
with almost complex structures respecting a given fibration of M by pseudo-
holomorphic curves.

2.3 Moduli Spaces

The real use of pseudo-holomorphic curves in symplectic geometry comes from
looking at whole spaces of them rather than single elements. There are various
methods to set up the analysis to deal with such spaces. Here we follow the
treatment of [Sh], to which we refer for details. Let Tg be the Teichmüller
space of complex structures on a closed oriented surface Σ of genus g. The
advantage of working with Tg rather than with the Riemann moduli space is
that Tg parametrizes an actual family of complex structures on a fixed closed
surface Σ. Let G be the holomorphic automorphism group of the identity
component of any j ∈ Tg, that is G = PGL(2,C) for g = 0, G = U(1)× U(1)
for g = 1 and G = 0 for g ≥ 2. Then Tg is an open ball in C

3g−3+dimC G,
and it parametrizes a family of G-invariant complex structures. Let J be
the Banach manifold of almost complex structures on M , of class Cl for some
integer l > 2 fixed once and for all. The particular choice is insignificant. The
total moduli space M of pseudo-holomorphic maps Σ →M is then a quotient
of a subset of the Banach manifold

B := Tg ×W 1,p(Σ,M) × J .

The local shape of this Banach manifold is exhibited by its tangent spaces

TB,(j,ϕ,J) = H1(TΣ) ×W 1,p(ϕ∗TM ) × C l(EndTM ).

Here H1(TΣ) is the cohomology with values in TΣ , viewed as holomorphic
line bundle over Σ. In more classical notation H1(TΣ) may be replaced by
the space of holomorphic quadratic differentials. In any case, the tangent space
to Tg is also a subspace of C∞(End(TΣ)) via variations of j and this is how
we are going to represent its elements. To describe M consider the Banach
bundle E over B with fibers

E(j,ϕ,J) = Lp(Σ,ϕ∗(TM , J) ⊗C Λ
0,1),

where Λ0,1 is our shorthand notation for (T 0,1
Σ )∗ and where we wrote (TM , J)

to emphasize that TM is viewed as a complex vector bundle via J . Consider
the section s : B → E defined by the condition of complex linearity of Dϕ:

s(j, ϕ, J) = Dϕ+ J ◦Dϕ ◦ j.
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Thus s(j, ϕ, J) = 0 iff ϕ : (Σ, j) → (M,J) is pseudo-holomorphic. We call the
operator defined by the right-hand side the nonlinear ∂̄-operator. If M = C

n

with its standard complex structure this is just twice the usual ∂̄-operator
applied to the components of ϕ. Define M̂ as the zero locus of s minus those
(j, ϕ, J) defining a multiply covered pseudo-holomorphic map. In other words,
we consider only generically injective ϕ. This restriction is crucial for transver-
sality to work, see Lemma 2.4. There is an obvious action of G on B by com-
posing ϕ with biholomorphisms of (Σ, j). The moduli space of our interest is
the quotient M := M̂ /G of the induced action on M̂ ⊂ B.

Proposition 2.3 M̂ ⊂ B is a submanifold and G acts properly and freely.

Sketch of proof. A torsion-free connection ∇ on M induces connections on
ϕ∗TM (also denoted ∇) and on E (denoted ∇E ). For (j′, v, J ′) ∈ T(j,ϕ,J) and
w ∈ TΣ a straightforward computation gives, in real notation

(
∇E

(j′,v,J ′)s
)
w = ∇wv+J ◦∇j(w)v+∇vJ ◦Dj(w)ϕ+J ′ ◦Dj(w)ϕ+J ◦Dj′(w)ϕ.

Replacing w by j(w) changes signs, so ∇E
(j′,v,J ′)s lies in Lp(ϕ∗TM ⊗C Λ

0,1) =
E(j,ϕ,J) as it should. The last two terms treat the variations of J and j re-
spectively. The first three terms compute the derivative of s for fixed almost
complex structures. They combine to a first order differential operator on
ϕ∗TM denoted by

Dϕ,Jv = ∇v + J ◦ ∇j(.)v + ∇vJ ◦Dj(.)ϕ. (2.1)

This operator is not generally J-linear, but has the form

Dϕ,J = 2∂̄ϕ,J +R,

with a J-linear differential operator ∂̄ϕ,J of type (0, 1) and with the J-anti-
linear part R of order 0. (With our choices R = NJ ( . ,Dϕ ◦ j) for NJ the Ni-
jenhuis tensor of J .) Then ∂̄ϕ,J defines a holomorphic structure on ϕ∗TM , and
this ultimately is the source of the holomorphic nature of pseudo-holomorphic
maps. It is then standard to deduce that Dϕ,J is Fredholm as map from
W 1,p(ϕ∗TM ) to Lp(ϕ∗TM ⊗Λ0,1). To finish the proof apply the implicit func-
tion theorem taking into account the following Lemma 2.4, whose proof is an
exercise.

The statements on the action of G are elementary to verify.

Lemma 2.4 If ϕ : Σ →M is injective over an open set in Σ, then cokerDϕ,J

can be spanned by terms of the form J ′◦Dϕ◦j for J ′ ∈ TJJ = C l(End(TM )).

The proof of the proposition together with the Riemann–Roch count (index
theorem) for the holomorphic vector bundle (ϕ∗TM , ∂̄ϕ,J ) give the following.
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Corollary 2.5 The projection π : M̂ → Tg × J is Fredholm of index

ind(Dϕ,J ) = ind(∂̄ϕ,J ) = 2 (degϕ∗TM + dimCM · (1 − g))
= 2 (c1(M) · ϕ∗[Σ] + dimCM · (1 − g))

A few words of caution are in order. First, for g = 0, 1 the action of G
on B is not differentiable, although it acts by differentiable transformations.
The reason is that differentiating along a family of biholomorphisms costs one
derivative and hence leads out of any space of finite differentiability. A related
issue is that the differentiable structure on B depends on the choice of map
from Tg to the space of complex structures on Σ. Because of elliptic regularity
all of these issues disappear after restriction to M̂ , so we may safely take the
quotient by G there. One should also be aware that there is still the mapping
class group of Σ acting on M . Only the quotient is the set of isomorphism
classes of pseudo-holomorphic curves on M . However, this quotient does not
support a universal family of curves anymore, at least not in the näıve sense.
As our interest in M is for Sard-type results it is technically simpler to work
with M rather than with this discrete quotient.

Moreover, for simplicity we henceforth essentially ignore the action of G.
This merely means that we drop some correction terms in the dimension
counts for g = 0, 1.

Remark 2.6 (1) The derivative of a section of a vector bundle E over a
manifold B does not depend on the choice of a connection after restriction to
the zero locus. In fact, if v ∈ Ep lies on the zero locus, then TE ,v = TM,p ⊕ Ep

canonically, and this decomposition is the same as induced by any connection.
Thus Formula (2.1) has intrinsic meaning along M̂ . In particular, Ds defines
a section of Hom(TB,E )|M̂ that we need later on.

(2) The projection π : M̂ → Tg × J needs not be proper – sequences of
pseudo-holomorphic maps can have reducible or lower genus limits. Here are
two typical examples in the integrable situation.

(a) A family of plane quadrics degenerating to two lines.
Let Σ = CP

1, M = CP
2 and ϕε([t, u]) = [εt2, tu, εu2]. Then im(ϕε) is the

plane algebraic curve V (xz−ε2y2) = {[x, y, z] ∈ CP
2 |xz−ε2y2 = 0}. For

ε → 0 the image Hausdorff converges to the union of two lines xz = 0.
Hence ϕε can not converge in any sense to a pseudo-holomorphic map
Σ →M .

(b) A drop of genus by the occurrence of cusps.
For ε �= 0 the cubic curve V (x2z−y3−εz3) ⊂ CP

2 is a smooth holomorphic
curve of genus 1, hence the image of a holomorphic map ϕε from Σ =
S1 × S1. For ε → 0 the image of ϕε converges to the cuspidal cubic
V (x2z − y3), which is the bijective image of

CP
1 → CP

2, [t, u] → [t3, t2u, u3].
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The Gromov compactness theorem explains the nature of this non-
compactness precisely. In its modern form it states the compactness of a Haus-
dorff enlargement of the space of isomorphism classes of pseudo-holomorphic
curves over any compact subset of the space of almost complex structures J .
The elements of the enlargement are so-called stable maps, which are maps
with domains nodal Riemann surfaces. For a detailed discussion see Sect. 6.

2.4 Applications

I. Ruled surfaces. In complex geometry a ruled surface is a holomorphic CP
1-

bundle. They are all Kähler. A ruled surface is rational (birational to CP
2) iff

the base of the fibration is CP
1. A symplectic analogue are S2-bundles with a

symplectic structure making all fibers symplectic. The fibers are then symplec-
tic spheres with self-intersection 0. Conversely, a result of McDuff says that a
symplectic manifold with a symplectic sphere C ⊂M with C ·C ≥ 0 is either
CP

2 with the standard structure (and C is a line or a conic) or a symplectic
ruled surface (and C is a fiber or, in the rational case, a positive section),
up to symplectic blowing-up [MD]. The proof employs pseudo-holomorphic
techniques similar to what follows.

Now let p : (M4, I) → (S2, i) be a holomorphic rational ruled surface.
In the notation we indicated the complex structures by I and i. Let ω be a
Kähler form on M and J ω the space of ω-tamed almost complex structures.
The following result was used in [SiTi3] to reduce the isotopy problem to a
fibered situation.

Proposition 2.7 For any J ∈ J ω, M arises as total space of an S2-bundle
p′ : M → S2 with all fibers J-holomorphic. Moreover, p′ is homotopic to p
through a homotopy of S2-bundles.

Sketch of proof. By connectedness of J ω there exists a path (Jt)t∈[0,1] con-
necting I = J0 with J = J1. By a standard Sard-type argument

M(Jt) := [0, 1] ×J M = {(t, j, ϕ, J) ∈ [0, 1] × M |J = Jt}

is a manifold for an appropriate (“general”) choice of (Jt). Let MF,Jt
⊂ M(Jt)

be the subset of Jt-holomorphic curves homologous to a fiber F ⊂ M of p.
The exact sequence of complex vector bundles over the domain Σ = S2 of
such a Jt-holomorphic curve (see Sect. 3.2)

0 −→ TΣ −→ TM |Σ −→ NΣ|M −→ 0

gives c1(M) · [F ] = c1(TΣ) · [Σ]+F ·F = 2. Then the dimension formula from
Corollary 2.5 shows

dimC MF,(Jt) = c1(M) · [F ] + dimCM · (1 − g) − dimG = 2 + 2 − 3 = 1.

Moreover, MF,Jt
is compact by the Gromov compactness theorem since [F ]

is a primitive class in {A ∈ H2(M,Z) |
∫
[A]
ω > 0}. In fact, by primitivity any



Symplectic Isotopy 277

pseudo-holomorphic curve C representing [F ] has to be irreducible. Moreover,
the genus formula (Proposition 3.2 below) implies that any irreducible pseudo-
holomorphic curve representing [F ] has to be an embedded sphere. We will
see in Proposition 3.4 that then the deformation theory of any C ∈ MF,Jt

is
unobstructed.

Next, the positivity of intersection indices of pseudo-holomorphic curves
implies that any two curves in MF,Jt

are either disjoint or equal. Together
with unobstructedness we find that through any point P ∈M passes exactly
one Jt-holomorphic curve homologous to F . Define

pt : M → MF,Jt
, P �−→ C, C the curve passing through P .

Since MF,J0 � S2 via C ↔ p−1(x) we may identify p0 = p. A computation
on the map of tangent spaces shows that pt is a submersion for any t. Finally,
for homological reasons MF,Jt

� S2 for any t. The proof is finished by setting
p′ = p1.

II. Isotopy of symplectic surfaces. The main topic of these lectures is the
isotopy classification of symplectic surfaces. We are now ready to explain the
relevance of pseudo-holomorphic techniques for this question. Let (M4, I, ω)
be a Kähler surface. We wish to ask the following question.

If B ⊂M is a symplectic surface then is B isotopic to a holomorphic curve?

By isotopy we mean connected by a path inside the space of smooth symplectic
submanifolds. In cases of interest the space of smooth holomorphic curves
representing [B] ∈ H2(M,Z) is connected. Hence a positive answer to our
question shows uniqueness of symplectic submanifolds homologous to B up
to isotopy.

The use of pseudo-holomorphic techniques is straightforward. By the dis-
cussion in Sect. 2.2 there exists a tamed almost complex structure J making
B a pseudo-holomorphic curve. As in 2.4,I choose a generic path (Jt)t∈[0,1] in
J ω connecting J with the integrable complex structure I. Now try to deform
B as pseudo-holomorphic curve together with J . In other words, we want to
find a family (Bt)t∈[0,1] of submanifolds with Bt pseudo-holomorphic for Jt

and with B0 = B.
There are two obstructions to carrying this through. Let MB,(Jt) be the

moduli space of pseudo-holomorphic submanifolds C ⊂ M homologous to
B and pseudo-holomorphic for some Jt. The first problem arises from the
fact that the projection MB,(Jt) → [0, 1] may have critical points. Thus if
(Bt)t∈[0,t0] is a deformation ofB with the requested properties over the interval
[0, t0] with t0 a critical point, it might occur that Bt0 does not deform to a Jt-
holomorphic curve for any t > t0. We will see in Sect. 3 that this phenomenon
does indeed not occur under certain positivity conditions on M . The second
reason is non-properness of the projection MB,(Jt) → [0, 1]. It might happen
that a family (Bt) exists on [0, t0), but does not extend to t0. In view of the
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Gromov compactness theorem a different way to say this is to view MB,(Jt)

as an open subset of a larger moduli space M̃B,(Jt) of pseudo-holomorphic
cycles. Then the question is if the closed subset of singular cycles does locally
disconnect M̃B,(Jt) or not. Thus for this second question one has to study
deformations of singular pseudo-holomorphic cycles.

III. Pseudo-holomorphic spheres with prescribed singularities. Another
variant of the above technique allows the construction of pseudo-
holomorphic spheres with prescribed singularities. The following is from
[SiTi3], Proposition 7.1.

Proposition 2.8 Let p : (M, I) → CP
1 be a rational ruled surface and

ϕ : ∆ −→M

an injective holomorphic map, ∆ ⊂ C the unit disk. Let J be an almost com-
plex structure on M making p pseudo-holomorphic and agreeing with I in a
neighborhood of ϕ(0).

Then for any k > 0 there exists a J-holomorphic sphere

ψk : CP
1 −→M

approximating ϕ to kth order at 0:

dM (ϕ(τ), ψk(τ)) = o(|τ |k).

Here dM is the distance function for some Riemannian metric on M . This
result says that any plane holomorphic curve singularity arises as the singu-
larity of a J-holomorphic sphere, for J with the stated properties. The proof
relies heavily on the fact that M is a rational ruled surface. Note that the
existence of a J-holomorphic sphere not homologous to a fiber excludes ruled
surfaces over a base of higher genus.
Sketch of proof. It is not hard to see that J can be connected to I by a path
of almost complex structures with the same properties as J . Therefore the
idea is again to start with a holomorphic solution to the problem and then to
deform the almost complex structure. Excluding the trivial case p ◦ϕ = const
write

ϕ(τ) = (τm, h(τ))

in holomorphic coordinates on M \ (F ∪H) � C
2, F a fiber and H a positive

holomorphic section of p (H ·H ≥ 0). Then h is a holomorphic function. Now
consider the space of pseudo-holomorphic maps CP

1 →M of the form

τ �−→
(
τm, h(τ) + o(|τ |l)

)
.

For appropriate l the moduli space of such maps has expected dimension 0.
Then for a generic path (Jt)t∈[0,1] of almost complex structures the union of
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such moduli spaces over this path is a differentiable one-dimensional manifold
q : Mϕ,(Jt) → [0, 1] without critical points over t = 0, 1. By a straightfor-
ward dimension estimate the corresponding moduli spaces of reducible pseudo-
holomorphic curves occurring in the Gromov compactness theorem are empty.
Hence the projection q : Mϕ,(Jt) → [0, 1] is proper. Thus Mϕ,(Jt) is a com-
pact one-dimensional manifold with boundary and all boundary points lie
over {0, 1} ⊂ [0, 1]. The closed components of Mϕ,(Jt) do not contribute to
the moduli spaces for t = 0, 1. The other components have two ends each, and
they either map to the same boundary point of [0, 1] or to different ones. In
any case the parity of the cardinality of q−1(0) and of q−1(1) are the same,
as illustrated in the following Fig. 2.1. Finally, an explicit computation shows
that in the integrable situation the moduli space has exactly one element.
Therefore q−1(1) can not be empty either. An element of this moduli space
provides the desired J-holomorphic approximation of ϕ.

2.5 Pseudo-Analytic Inequalities

In this section we lay the foundations for the study of critical points of pseudo-
holomorphic maps. As this is a local question we take as domain the unit disk,
ϕ : ∆ → (M,J). The main point of this study is that any singularity bears
a certain kind of holomorphicity in itself, and the amount of holomorphicity
indeed increases with the complexity of the singularity. The reason for this to
happen comes from the following series of results on differential inequalities for
the ∂̄-operator. For simplicity of proof we formulate these only for functions
with values in C rather than C

n as needed, but comment on how to generalize
to n > 1.

Lemma 2.9 Let f ∈ W 1,2(∆) fulfill |∂z̄f | ≤ φ · |f | almost everywhere for
φ ∈ Lp(∆), p > 2. Then either f = 0 or there exist a uniquely determined
integer µ and g ∈W 1,p(∆), g(0) �= 0 with

f(z) = zµ · g(z) almost everywhere.

Proof. A standard elliptic bootstrapping argument shows f ∈ W 1,p(∆),
see for example [IvSh1], Lemma 3.1.1,(i). This step requires p > 2. Next

t = 0 t = 1

Fig. 2.1. A one-dimensional cobordism
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comes a trick attributed to Carleman to reduce to the holomorphic situa-
tion: By hypothesis

∣
∣
∣∂z̄f

f

∣
∣
∣ ≤ φ. We will recall in Proposition 3.1 below that

∂z̄ : W 1,p(∆) → Lp(∆) is surjective. Hence there exists ψ ∈ W 1,p(∆) solving
∂z̄ψ = ∂z̄f

f . Then

∂z̄(e−ψf) = e−ψ(−∂z̄ψ)f + e−ψ∂z̄f = 0

shows that e−ψf is a holomorphic function (Carleman similarity principle).
Now complex function theory tells us that e−ψf = zµ · h for h ∈ O(∆) ∩
W 1,p(∆), h(0) �= 0. Putting g = eψ · h gives the required representation of f .
�	

Remark 2.10 (1) As for an intrinsic interpretation of µ note that it is the
intersection multiplicity of the graph of h with the graph of the zero function
inside ∆×C at (0, 0). Multiplication by eψ induces a homeomorphism of ∆×C

and transforms the graph of h into the graph of f . Hence µ is a topologically
defined entity depending only on f .

(2) The Carleman trick replaces the use of a general removable singularities
theorem for solutions of differential inequalities due to Harvey and Polking
that was employed in [IvSh1], Lemma 3.1.1. Unlike the Carleman trick this
method generalizes to maps f : ∆ → C

n with n > 1. Another possibility
that works also for n > 1 is to use the Hartman-Wintner theorem on the
polynomial behavior of solutions of certain partial differential equations in
two variables, see e.g. [McSa2]. A third approach appeared in the printed
version [IvSh2] of [IvSh1]; here the authors noticed that one can deduce a
Carleman similarity principle also for maps f : ∆ → C

n by viewing f as a
holomorphic section of ∆ × C

n, viewed as holomorphic vector bundle with
non-standard ∂̄-operator. This is arguably the easiest method to deduce the
result for all n.

A similar looking lemma of quite different flavor deduces holomorphicity
up to some order from a polynomial estimate on |∂z̄f |. Again we took this
from [IvSh1], but the proof given there makes unnecessary use of Lemma 2.9.

Lemma 2.11 Let f ∈ L2(∆) fulfill |∂z̄f | ≤ φ·|z|ν almost everywhere for some
φ ∈ Lp(∆), p > 2 and ν ∈ N. Then either f = 0 or there exists P ∈ C[z],
degP ≤ ν and g ∈W 1,p(∆), g(0) = 0 with

f(z) = P (z) + zν · g(z) almost everywhere.

Proof. By induction over ν, the case ν = 0 being trivial. Assume the case
ν−1 is true. Elliptic regularity gives f ∈W 1,p(∆). By the Sobolev embedding
theorem f is Hölder continuous of exponent α = 1 − 2

p ∈ (0, 1). Hence f1 =
f − f(0)

z
is L2 and

|∂z̄f1| =
∣
∣
∣
∣
∂z̄f

z

∣
∣
∣
∣ ≤ φ · |z|ν−1.
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Therefore induction applies to f1 and we see f1 = P1 + zν−1 · g with g of the
required form. Plugging in the definition of f1 gives f = (f(0) + zP1) + zν · g,
so P = f(0) + zP1 is the correct definition of P . �	

Remark 2.12 The lemma generalizes in a straightforward manner to maps
f : ∆→ C

n. In this situation the line C · P (0) has a geometric interpretation
as complex tangent line of im(f) in f(0), which by definition is the limit of
lines C · (f(z) − f(0)) ∈ CP

n−1 for z �= 0, z → 0.

Combining the two lemmas gives the following useful result, which again
generalizes to maps f : ∆→ C

n.

Proposition 2.13 Let f ∈ L2(∆) fulfill |∂z̄f | ≤ φ|z|ν |f | almost everywhere
for φ ∈ Lp(∆), p > 2 and ν ∈ N. Then either f = 0 or there exist uniquely
determined µ, ν ∈ N and P ∈ C[z], degP ≤ ν, P (0) �= 0, g ∈ W 1,p(∆),
g(0) = 0 with

f(z) = zµ
(
P (z) + zν · g(z)

)
almost everywhere.

Proof. Lemma 2.9 gives f = zµg. Now by hypothesis g also fulfills the stated
estimate:

|∂z̄g| =
∣
∣
∣
∣
∂z̄f

zµ

∣
∣
∣
∣ ≤ φ|z|ν

∣
∣
∣
∣
f

zµ

∣
∣
∣
∣ = φ|zν | · |g|.

Thus replacing f by g reduces to the case f(0) �= 0 and µ = 0. The result
then follows by Lemma 2.11 applied to f with φ replaced by φ · |f |. �	

3 Unobstructedness I: Smooth and Nodal Curves

3.1 Preliminaries on the ∂̄-Equation

The crucial tool to study the ∂̄-equation analytically is the inhomogeneous
Cauchy integral formula. It says

f = Hf + T (∂z̄f) (3.1)

for all f ∈ C 1(∆) with integral operators

Hf(z) =
1

2πi

∫

∂∆

f(w)
w − z dw , Tg(z) =

1
2πi

∫

∆

g(w)
w − z dw ∧ dw̄ .

(All functions in this section are C-valued.) The first operator H maps con-
tinuous functions defined on S1 = ∂∆ to holomorphic functions on ∆. Conti-
nuity of Hf along the boundary is not generally true if f is just continuous.
To understand this note that any f ∈ C 0(S1) can be written as a Fourier
series

∑
n∈Z

anz
n and then Hf =

∑
n∈N

anz
n is the projection to the space
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of functions spanned by non-negative Fourier modes. This function needs not
be continuous.

The integrand of the second integral operator T looks discontinuous, but
in fact it is not as one sees in polar coordinates with center w = z. For
differentiability properties one computes ∂z̄T = id from (3.1), while ∂zT = S
with S the singular integral operator

Sg(z) =
1

2πi
lim
ε→0

∫

∆\Bε(z)

g(w)
(w − z)2 dw ∧ dw̄ .

The Calderon–Zygmund theorem says that S is a continuous map from Lp(∆)
to itself for 1 < p <∞. Recall also that the Sobolev spaceW 1,p(∆) consists of
Lp-functions with weak partial derivatives in Lp too. For p > 2 it holds 1− 2

p >

0, so the Sobolev embedding theorem implies that any f ∈ W 1,p(∆) has a
continuous representative. Moreover, the mapW 1,p(∆) → C0(∆) thus defined
is continuous. Thus (3.1) holds for f ∈ W 1,p(∆) for any p > 2. Summarizing
the discussion, the Cauchy integral formula induces the following remarkable
direct sum decomposition of W 1,p(∆).

Proposition 3.1 Let 2 < p < ∞. Then (H, ∂̄) : W 1,p(∆) −→
(
O(∆) ∩

W 1,p(∆)
)
×Lp(∆) is an isomorphism. In particular, for any g ∈ Lp(∆) there

exists f ∈W 1,p(∆) with ∂z̄f = g.

Thus any f ∈ W 1,p(∆) can be written in the form h + T (∂z̄f) with h
holomorphic in ∆ and continuously extending to ∆ and T (∂z̄f)|∂∆ gathering
all negative Fourier coefficients of f |∆.

3.2 The Normal ∂̄-Operator

We have already described pseudo-holomorphic maps by a non-linear PDE.
One trivial variation of a pseudo-holomorphic map is by reparametrization.
It is sometimes useful to get rid of this part, especially if one is interested
in pseudo-holomorphic curves rather than pseudo-holomorphic maps. This is
achieved by the normal ∂̄-operator that we now introduce.

Recall that for a pseudo-holomorphic map ϕ : Σ → M the operator ∂̄ϕ,J

from (2.2) in Sect. 2.3 defines a natural holomorphic structure on ϕ∗TM com-
patible with the holomorphic structure on TΣ . In fact, a straightforward com-
putation shows

Dϕ ◦ ∂̄TΣ
= ∂̄ϕ,J ◦Dϕ.

If ϕ is an immersion we thus obtain a short exact sequence of holomorphic
vector bundles over Σ

0 −→ TΣ −→ ϕ∗(TM ) −→ N −→ 0.
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This sequence defines the normal bundleN along ϕ. If ϕ has critical points it is
still possible to define a normal bundle as follows. For a complex vector bundle
V denote by O(V ) the sheaf of holomorphic sections of V . (See Sect. 5.4 for a
short reminder of sheaf theory.) While at critical points Dϕ : TΣ → ϕ∗TM is
not injective the map of sheaves O(TΣ) → O(ϕ∗TM ) still is. As an example
consider ϕ(t) = (t2, t3) as map from ∆ to C

2 with standard complex structure.
Then

Dϕ(∂t) = 2t ∂z + 3t2 ∂w, (3.2)

and as germ of holomorphic function the right-hand side is non-zero. Thus in
any case we obtain a short exact sequence of sheaves of OΣ-modules

0 −→ O(TΣ)
Dϕ−→ O(ϕ∗TM ) −→ N −→ 0. (3.3)

From the definition, N is just some coherent sheaf on Σ. But on a Riemann
surface any coherent sheaf splits uniquely into a skyscraper sheaf (discrete
support) and the sheaf of sections of a holomorphic vector bundle. Thus we
may write

N = N tor ⊕O(N)

for some holomorphic vector bundle N . We call N the normal sheaf along ϕ
and N the normal bundle. The skyscraper sheaf N tor is the subsheaf of N
generated by sections that are annihilated by multiplication by some non-zero
holomorphic function (“torsion sections”). In our example ϕ(t) = (t2, t3) the
section v = 2 ∂z +3t ∂w of ϕ∗TM is contained in the image of O(TΣ) for t �= 0,
but not at t = 0, while tv = Dϕ(∂t). In fact, N tor is isomorphic to a copy of
C over t = 0 generated by the germ of v at 0. Then N is the holomorphic line
bundle generated by any a(t)∂z + b(t)∂w with b(0) �= 0.

As a simple but very powerful application of the normal sequence (3.3) we
record the genus formula for pseudo-holomorphic curves in dimension four.

Proposition 3.2 Let (M,J) be an almost complex 4-manifold and C ⊂ M
an irreducible pseudo-holomorphic curve. Then

2g(C) − 2 ≤ c1(M) · C + C · C,

with equality if and only if C is smooth.

Proof. Let ϕ : Σ → M be the pseudo-holomorphic map with image C. Since
deg TΣ = 2g(C) − 2 the normal sequence (3.3) shows

2g(C) − 2 = degϕ∗TM + degN + lgN tor = c1(M) · C + degN + lgN tor.

Here lgN tor is the sum of the C-vector space dimensions of the stalks of N .
This term vanishes iff N tor = 0, that is, iff ϕ is an immersion. The degree of N
equals C ·C if C is smooth and drops by the self-intersection number of ϕ in the
immersed case. By the PDE description of the space of pseudo-holomorphic
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maps from a unit disk to M , it is not hard to show that locally in Σ any
pseudo-holomorphic map Σ →M can be perturbed to a pseudo-holomorphic
immersion. At the expense of changing J away from the singularities of C
slightly this statement globalizes. This process does not change any of g(C),
c1(M) ·C and C ·C. Hence the result for general C follows from the immersed
case. �	
To get rid of N tor it is convenient to go over to meromorphic sections of TΣ

with poles of order at most ordP Dϕ in a critical point P of Dϕ. In fact,
the sheaf of such meromorphic sections is the sheaf of holomorphic sections
of a line bundle that we conveniently denote TΣ [A], where A is the divisor∑

P∈crit(ϕ)(ordP Dϕ) · P . Then TΣ [A] = kern(ϕ∗TM → N) and hence we
obtain the short exact sequence of holomorphic vector bundles

0 −→ TΣ [A]
Dϕ−→ ϕ∗TM −→ N −→ 0.

Thus by (3.2) together with R ◦ Dϕ = 0 the operator Dϕ,J = ∂̄ϕ,J + R :
W 1,p(ϕ∗TM ) → Lp(ϕ∗TM ⊗Λ0,1) fits into the following commutative diagram
with exact rows.

0 → W 1,p(TΣ [A]) → W 1,p(ϕ∗TM ) → W 1,p(N) → 0

∂̄TΣ

⏐
⏐
�

⏐
⏐
�Dϕ,J

⏐
⏐
�DN

ϕ,J

0 → Lp(TΣ [A] ⊗ Λ0,1) → Lp(ϕ∗TM ⊗ Λ0,1) → Lp(N ⊗ Λ0,1) → 0

This defines the normal ∂̄J -operator DN
ϕ,J . As with Dϕ,J we have the

decomposition DN
ϕ,J = ∂̄N +RN into complex linear and a zero order complex

anti-linear part. By the snake lemma the diagram readily induces the long
exact sequence

0 → H0(TΣ [A]) → kernDϕ,J → kernDN
ϕ,J

→ H1(TΣ [A]) → cokerDϕ,J → cokerDN
ϕ,J → 0

The cohomology groups on the left are Dolbeault cohomology groups for the
holomorphic vector bundle TΣ [A] or sheaf cohomology groups of the corre-
sponding coherent sheaves. Forgetting the twist by A then gives the following
exact sequence.

0 → H0(TΣ) → kernDϕ,J → kernDN
ϕ,J ⊕H0(N tor)

→ H1(TΣ) → cokerDϕ,J → cokerDN
ϕ,J → 0

(3.4)

The terms in this sequence have a geometric interpretation. Each column is
associated to a deformation problem. The left-most column deals with de-
formations of Riemann surfaces: H0(TΣ) is the space of holomorphic vector
fields on Σ. It is trivial except in genera 0 and 1, where it gives infinitesimal
holomorphic reparametrizations of ϕ. As already mentioned in Sect. 2.3, the
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space H1(TΣ) is isomorphic to the space of holomorphic quadratic differen-
tials via Serre-duality and hence describes the tangent space to the Riemann
or Teichmüller space of complex structures on Σ. Every element of this space
is the tangent vector of an actual one-parameter family of complex structures
on Σ – this deformation problem is unobstructed.

The middle column covers the deformation problem of ϕ as pseudo-
holomorphic curve with almost complex structures both on M and on Σ fixed.
In fact, Dϕ,J is the linearization of the Fredholm map describing the space of
pseudo-holomorphic maps (Σ, j) → (M,J) with fixed almost complex struc-
tures (see proof of Proposition 2.3). If cokerDϕ,J �= 0 this moduli space might
not be smooth of the expected dimension ind(Dϕ,J ), and this is then an ob-
structed deformation problem.

The maps from the left column to the middle column also have an interest-
ing meaning. On the upper part, H0(TΣ) → kernDϕ,J describes infinitesimal
holomorphic reparametrizations as infinitesimal deformations of ϕ. On the
lower part, the image of H1(TΣ) in cokerDϕ,J exhibits those obstructions of
the deformation problem of ϕ with fixed almost complex structures that can
be killed by variations of the complex structure of Σ.

The right column is maybe the most interesting. First, there are no ob-
structions to the deformations of ϕ as J-holomorphic map iff cokerDN

ϕ,J = 0,
provided we allow variations of the complex structure of Σ. Thus when it
comes to the smoothness of the moduli space relative J then cokerDN

ϕ,J is
much more relevant than the more traditional cokerDϕ,J . Finally, the term on
the upper right corner consists of two terms, with H0(N tor) reflecting defor-
mations of the singularities. In fact, infinitesimal deformations with vanishing
component on this part can be realized by sections of ϕ∗TM with zeros of the
same orders as those of Dϕ. This follows directly from the definition of N tor.
Such deformations are exactly those keeping the number of critical points of
ϕ. Note that while N tor does not explicitly show up in the obstruction space
cokerDN

ϕ,J , it does influence this space by lowering the degree of N . The exact
sequence also gives the (non-canonical) direct sum decomposition

kernDN
ϕ,J⊕H0(N tor) =

(
kernDϕ,J/H

0(TΣ)
)
⊕kern

(
H1(TΣ) → cokerDϕ,J

)
.

The decomposition on the right-hand side mixes local and global con-
tributions. The previous discussion gives the following interpretation:
kernDϕ,J/H

0(TΣ) is the space of infinitesimal deformations of ϕ as
J-holomorphic map modulo biholomorphisms; kern

(
H1(TΣ) → cokerDϕ,J

)

is the tangent space to the space of complex structures on Σ that can be
realized by variations of ϕ as J-holomorphic map.

Summarizing this discussion, it is the right column that describes the mod-
uli space of pseudo-holomorphic maps for fixed J . In particular, if
cokerDN

ϕ,J = 0 then the moduli space MJ ⊂ M of J-holomorphic maps
Σ → M for arbitrary complex structures on Σ is smooth at (ϕ, J, j) with
tangent space

TMJ ,(ϕ,J,j) = kernDN
ϕ,J ⊕H0(N tor).
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3.3 Immersed Curves

If dimM = 4 and ϕ : Σ → M is an immersion then N is a holomorphic line
bundle and

N ⊗ TΣ � ϕ∗(detTM ).

Here TM is taken as complex vector bundle. From this we are going to deduce
a cohomological criterion for the surjectivity of

DN
ϕ,J = ∂̄ +R : W 1,p(N) −→ Lp(N ⊗ Λ0,1).

By elliptic theory the cokernel of DN
ϕ,J is dual to the kernel of its formal

adjoint operator

(DN
ϕ,J )∗ : W 1,p(N∗ ⊗ Λ1,0) −→ Lp(N∗ ⊗ Λ1,1).

Note that (DN
ϕ,J )∗ = ∂̄ −R∗ is also of Cauchy–Riemann type. Now in dimen-

sion 4 the bundle N is a holomorphic line bundle over Σ. In a local holomor-
phic trivialization (DN

ϕ,J )∗ therefore takes the form f �→ ∂̄f+αf+βf̄ for some
functions α, β. Solutions of such equations are called pseudo-analytic [Ve].
While related this notion predates pseudo-holomorphicity and should not be
mixed up with it.

Lemma 3.3 Let α, β ∈ Lp(∆) and let f ∈W 1,p(∆) \ {0} fulfill

∂z̄f + αf + βf̄ = 0.

Then all zeros of f are isolated and positive.

Proof. This is another application of the Carleman trick, cf. the proof of
Lemma 2.9. Replacing α by α + β · f̄/f reduces to the case β = 0. Note
that f̄/f is bounded, so β · f̄/f stays in Lp. By Proposition 3.1 there exists
g ∈W 1,p(∆) solving ∂z̄g = α. Then

∂z̄(egf) = eg(∂z̄g · f + ∂z̄f) = eg(αf + ∂z̄f) = 0.

Thus the diffeomorphism Ψ : (z, w) �→ (z, eg(z)w) transforms the graph of f
into the graph of a holomorphic function. �	

Here is the cohomological unobstructedness theorem for immersed curves.

Proposition 3.4 Let (M,J) be a 4-dimensional almost complex manifold,
and let ϕ : Σ →M be an immersed J-holomorphic curve with c1(M) · [C] > 0.
Then the moduli space MJ of J-holomorphic maps to M is smooth at (j, ϕ, J).

Proof. By the previous discussion the result follows once we show the vanish-
ing of kern(DN

ϕ,J )∗. An element of this space is a section of the holomorphic
line bundle N∗ ⊗ Λ1,0 over Σ of degree

deg(N∗ ⊗ Λ1,0) = deg(detT ∗
M |C) = −c1(M) · [C] < 0.

In a local holomorphic trivialization it is represented by a pseudo-analytic
function. Thus by Lemma 3.3 and the degree computation it has to be iden-
tically zero. �	
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3.4 Smoothings of Nodal Curves

A pseudo-holomorphic curve C ⊂ M is a nodal curve if all singularities of
C are transversal unions of two smooth branches. It is natural to consider a
nodal curve as the image of an injective map from a nodal Riemann surface. A
nodal Riemann surface is a union of Riemann surfaces Σi with finitely many
disjoint pairs of points identified. The identification map Σ̂ :=

∐
iΣi → Σ

from the disjoint union is called normalization. (This notion has a more precise
meaning in complex analysis.) A map ϕ : Σ →M is pseudo-holomorphic if it
is continuous and if the composition ϕ̂ : Σ̂ → Σ →M is pseudo-holomorphic.
Analogously one defines W 1,p-spaces for p > 2.

For a nodal curve C it is possible to extend the above discussion to include
topology change by smoothing the nodes, as in zw = t for (z, w) ∈ ∆×∆ and
t the deformation parameter. This follows from the by now well-understood
gluing construction for pseudo-holomorphic maps. There are various ways to
achieve this, see for example [LiTi, Si]. They share a formulation by a family
of non-linear Fredholm operators

∏

i

H1(TΣi
) ×W 1,p(ϕ∗TM ) −→ Lp(ϕ∗TM ⊗ Λ0,1),

parametrized by l = "nodes gluing parameters (t1, . . . , tl) ∈ C
l of sufficiently

small norm. The definitions ofW 1,p and Lp near the nodes vary from approach
to approach. Thus fixed (t1, . . . , tl) gives the deformation problem with given
topological type as discussed above, and putting ti = 0 means keeping the
ith node. The linearization D′

ϕ,J of this operator for (t1, . . . , tl) = 0 and fixed
almost complex structures fits into a diagram very similar to the one above:

0 → W 1,p(TΣ [A]) → W 1,p(ϕ∗TM ) → W 1,p(N ′) → 0

∂̄TΣ

⏐
⏐
�

⏐
⏐
�D′

ϕ,J

⏐
⏐
�DN ′

ϕ,J

0 → Lp(TΣ [A] ⊗ Λ0,1) → Lp(ϕ∗TM ⊗ Λ0,1) → Lp(N ′ ⊗ Λ0,1) → 0.

In the right column N ′ denotes the image of N under the normalization map:

N ′ :=
⊕

i

ϕ∗
i TM/Dϕi(TΣi

).

Thus N ′ is a holomorphic line bundle on Σ only away from the nodes, while
near a node it is a direct sum of line bundles on each of the two branches.
Note that surjectivity of W 1,p(Σ,ϕ∗TM ) → W 1,p(Σ,N ′) is special to the
nodal case in dimension 4 since it requires the tangent spaces of the branches
at a node P ∈ ϕ(C) to generate TM,P . A crucial observation then is that the
obstructions to this extended deformation problem can be computed on the
normalization:

cokerDN ′

ϕ,J = cokerDN
ϕ̂,J .
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This follows by chasing the diagrams. Geometrically the identity can be un-
derstood by saying that it is the same to deform ϕ as pseudo-holomorphic
map or to deform each of the maps Σi →M separately. In fact, the position
of the identification points of the Σi are uniquely determined by the maps to
M . In view of the cohomological unobstructedness theorem and the implicit
function theorem relative J × C

l we obtain the following strengthening of
Proposition 3.4.

Proposition 3.5 [Sk] Let C ⊂ M be a nodal J-holomorphic curve on an
almost complex 4-manifold (M,J), C =

⋃
Ci. Assume that c1(M) · Ci > 0

for every i. Then the moduli space of J-holomorphic curves homologous to C
is a smooth manifold of real dimension c1(M) · C + C · C. The subset para-
metrizing nodal curves is locally a transversal union of submanifolds of real
codimension 2. In particular, there exists a sequence of smooth J-holomorphic
curves Cn ⊂ M with Cn → C in the Hausdorff sense (C can be smoothed),
and such smoothings are unique up to isotopy through smooth J-holomorphic
curves.

4 The Theorem of Micallef and White

4.1 Statement of Theorem

In this section we discuss the theorem of Micallef and White on the holomor-
phicity of germs of pseudo-holomorphic curves up to C 1-diffeomorphism. The
precise statement is the following.

Theorem 4.1 (Micallef and White [MiWh], Theorem 6.2.) Let J be an al-
most complex structure on a neighborhood of the origin in R

2n with J|0 = I,
the standard complex structure on C

n = R
2n. Let C ⊂ R

2n be a J-holomorphic
curve with 0 ∈ C.

Then there exists a neighborhood U of 0 ∈ R
2n and a C 1-diffeomorphism

Φ : U → V ⊂ C
n, Φ(0) = 0, DΦ|0 = id, such that Φ(C) ⊂ V is defined by

complex polynomial equations. In particular, Φ(C) is a holomorphic curve.

The proof in loc. cit. might seem a bit computational on first reading, but
the basic idea is in fact quite elegant and simple. As it is one substantial in-
gredient in our proof of the isotopy theorem, we include a discussion here. For
simplicity we restrict to the two-dimensional, pseudo-holomorphically fibered
situation, just as in Sect. 2.4,I. In other words, there are complex coordinates
z, w with (z, w) �→ z pseudo-holomorphic. Then w can be chosen in such a way
that T 1,0

M = C · (∂z̄ + b∂w) + C · ∂w̄ for a C-valued function b with b(0, 0) = 0.
This will be enough for our application and it still captures the essentials of
the fully general proof.
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4.2 The Case of Tacnodes

Traditionally a tacnode is a higher order contact point of a union of smooth
holomorphic curves, its branches. The same definition makes sense pseudo-
holomorphically. We assume this tangent to be w = 0. Then the ith branch
of our pseudo-holomorphic tacnode is the image of

∆ −→ C
2, t �−→ (t, fi(t)),

with fi(0) = 0, Dfi|0 = 0. The pseudo-holomorphicity equation takes the
form ∂t̄fi = b(t, fi(t)). For i �= j this gives the equation

0 =
(
∂t̄fj − b(t, fj)

)
−
(
∂t̄fi − b(t, fi)

)

= ∂t̄(fj − fi) −
b(t, fj) − b(t, fi)

fj − fi
· (fj − fi).

Now
(
b(t, fj) − b(t, fi)

)
/(fj − fi) is bounded, and hence fj − fi is another

instance of a pseudo-analytic function. The Carleman trick in Lemma 3.3
now implies that fi and fj osculate only to finite order. (This also follows
from Aronszajn’s unique continuation theorem [Ar].)

On the other hand, if fj − fi = O(|t|n) then |∂t̄(fj − fi)| =
∣
∣b(t, fi(t)) −

b(t, fj(t))
∣
∣ = O(|t|n) by pseudo-holomorphicity and hence, by Lemma 2.11

fj(t) − fi(t) = atn + o(|t|n). (4.1)

The polynomial leading term provides the handle to holomorphicity. The dif-
feomorphism Φ will be of the form

Φ(z, w) = (z, w − E(z, w)).

To construct E(z, w) consider the approximations

fi,n = M.V.
{
fj

∣
∣fj − fi = o(|t|n)

}

to fi, for every i and n ≥ 1. M.V. stands for the arithmetic mean. Because
we are dealing with a tacnode, fi,1 = fj,1 for every i, j, and by finiteness of
osculation orders, there exists N with fi,n = fi for every n ≥ N . Now (4.1)
gives ai,n ∈ C and functions Ei,n with

fi,n − fi,n−1 = ai,nt
n + Ei,n(t), Ei,n(t) = o(|t|n).

Summing from n = 1 to N shows

fi =
N∑

n=2

ai,nt
n + fi,1(t) +

N∑

n=2

Ei,n(t). (4.2)

The rest is a matter of merging the various Ei,n into E(z, w) to achieve
Φ(t, fi(t)) = (t,

∑N
n=2 ai,nt

n). We are going to set E =
∑N

i=1Ei with
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Ei(z, w) = Ei,n(z) in a strip osculating to order n to the graph of fi,n. More
precisely, choose a smooth cut-off function ρ : R≥0 → [0, 1] with ρ(s) = 1 for
s ∈ [0, 1/2] and ρ(s) = 0 for s ≥ 1. Then for n = 1 define

E1(z, w) = ρ

(
|w|

|z|3/2

)

· fi,1(z).

The exponent 3/2 may be replaced by any number in (1, 2). For n ≥ 2 take

En(z, w) =

⎧
⎨

⎩

ρ

(
|w − fi,n(z)|

ε|z|n
)

· Ei,n(z), |w − fi,n(z)| ≤ ε|z|n

0, otherwise.

To see that this is well-defined for ε and |z| sufficiently small, note that by
construction fi,n and fj,n osculate polynomially to dominant order. If this
order is larger than n then fi,n = fj,n. Otherwise |fj,n(z) − fi,n(z)| > ε|z|n
for ε and |z| sufficiently small. See Fig. 4.1 for illustration. The distinction
between the cases n = 1 and n > 1 at this stage could be avoided by formally
setting Ei,1 = fi,1. However, to also treat branches with different tangents
later on, we want Φ to be the identity outside a region of the form |z| ≤ |w|a
with a > 1.

Finally note that by construction En(t, fi(t)) = Ei,n(t), and hence

Φ(t, fi(t)) =
(
t, fi(t) −

∑

n

En(t, fi(t))
)

=
(
t, fi(t) −

N∑

n=2

Ei,n(t) − fi,1(t)
) (4.2)

= (t,
N∑

n=1

ai,nt
n).

This finishes the proof of Theorem 4.1 for the case of tacnodes under the made
simplifying assumptions.

supp E4

supp E1

Fig. 4.1. The supports of En
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As for differentiability it is clear that Φ is smooth away from (0, 0). But
∂wEn involves the term

∣
∣
∣
∣∂w̄ρ

( |w − fi,n|
ε · |z|n

)∣∣
∣
∣ =

1
|z|n · o(|z|n) = o(1).

Thus ϕ may only be C 1.

4.3 The General Case

In the general case the branches of C are images of pseudo-holomorphic maps

∆ −→ C
2, t �−→ (tQi , fi(t)),

for some Qi ∈ N. Note our simplifying assumption that the projection onto the
first coordinate be pseudo-holomorphic. By composing with branched covers
t �→ tmi we may assume Qi = Q for all i. The pseudo-holomorphicity equation
then reads ∂t̄fi = Qt̄Qb(t, fi(t)). The proof now proceeds as before but we deal
with multi-valued functions Ei,n of z. A simple way to implement this is by
enlarging the set of functions fi by including compositions with t �→ ζt for all
Qth roots of unity ζ. The definition of En(z, w) then reads

En(z, w) =

⎧
⎨

⎩

ρ

(
|w − fi,n(t)|

ε|t|n
)

· Ei,n(t), |w − fi,n(t)| ≤ ε|z|n

0, otherwise,

for any t with tQ = z. This is well-defined as before since the set of functions
fi is invariant under composition with t �→ ζt whenever ζQ = 1.

Finally, if C has branches with different tangent lines do the construction
for the union of branches with given tangent line separately. The diffeomor-
phisms obtained in this way are the identity outside of trumpet-like sets oscu-
lating to the tangent lines as in Fig. 4.2. Hence their composition maps each
branch to an algebraic curve as claimed in the theorem.

Fig. 4.2. Different tangent lines
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5 Unobstructedness II: The Integrable Case

5.1 Motivation

We saw in Sect. 3 that if c1(M) evaluates strictly positively on a smooth
pseudo-holomorphic curve in a four-manifold then this curve has unobstructed
deformations. The only known generalizations to singular curves rely on
parametrized deformations. These deformations preserve the geometric genus
and, by the genus formula, lead at best to a nodal curve. Unobstructedness
in this restricted class of deformations is a stronger statement, which thus
requires stronger assumptions. In particular, the types of the singular points
enter as a condition, and this limits heavily the usefulness of such results for
the isotopy problem. Note these problems do already arise in the integrable
situation. For example, not every curve on a complex surface can be deformed
into a curve of the same geometric genus with only nodes as singularities. This
is a fact of life and can not be circumvented by clever arguments.

Thus we need to allow an increase of geometric genus. There are two
points of views for this. The first one looks at a singular pseudo-holomorphic
curve as the image of a pseudo-holomorphic map from a nodal Riemann sur-
face, as obtained by the Compactness Theorem (Sect. 7). While this is a good
point of view for many general problems such as defining Gromov-Witten
invariants, we are now dealing with maps from a reducible domain to a com-
plex two-dimensional space. This has the effect that (total) degree arguments
alone as in Sect. 3 do not give good unobstructedness results. For example,
unobstructedness fails whenever the limit stable map contracts components
of higher genus. Moreover, it is not hard to show that not all stable maps
allowed by topology can arise. There are subtle and largely ununderstood an-
alytical obstructions preventing this. Again both problems are inherited from
the integrable situation. A characterization of holomorphic or algebraic stable
maps that can arise as limit is an unsolved problem in algebraic geometry.
There is some elementary discussion on this in the context of stable reduction
in [HaMo]. If a good theory of unobstructedness in the integrable case from
the point of view of stable maps was possible it would likely generalize to the
pseudo-holomorphic setting. Unfortunately, such theory is not in sight.

The second point of view considers deformations of the limit as a cy-
cle. The purpose of this section is to prove unobstructedness in the inte-
grable situation under the mere assumption that every component evaluates
strictly positively on c1(M). This is the direct analogue of Proposition 3.4.
Integrability is essential here as the analytic description of deformations of
pseudo-holomorphic cycles becomes very singular under the presence of mul-
tiple components, see [SiTi2].

5.2 Special Covers

We now begin with the proper content of this section. LetM be a complex sur-
face, not necessarily compact but without boundary. In our applicationM will
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be a tubular neighborhood of a limit pseudo-holomorphic cycle in a rational
ruled almost complex four-manifold M , endowed with a different, integrable
almost complex structure. Let C =

∑
imiCi be a compact holomorphic cycle

on M of complex dimension one. We assume C to be effective, that is mi > 0
for all i. There is a general theory on the existence of moduli spaces of com-
pact holomorphic cycles of any dimension, due to Barlet [Bl]. For the case at
hand it can be greatly simplified and this is what we will do in this section.

The approach presented here differs from [SiTi3], Sect. 4 in being strictly
local around C. This has the advantage to link the linearization of the model-
ing PDE to cohomology on the curve very directly. However, such a treatment
is not possible if C contains fibers of our ruled surface M → S2, and then the
more global point of view of [SiTi3] becomes necessary.

The essential simplification is the existence of special covers of a neighbor-
hood of |C| =

⋃
i Ci.

Hypothesis 5.1 There exists an open cover U = {Uµ} of a neighborhood of
C in M with the following properties:

1. cl(Uµ) � Aµ×∆̄, where Aµ is a compact, connected Riemann surface with
non-empty boundary and ∆̄ ⊂ C is the closed unit disk.

2. (Aµ × ∂∆) ∩ |C| = ∅.
3. Uκ ∩ Uµ ∩ Uν = ∅ for any pairwise different κ, µ, ν. The fiber structures

given by projection to Aµ are compatible on overlaps.

The symbol “�” denotes biholomorphism. The point of these covers is that
on Uµ there is a holomorphic projection Uµ → inn(Aµ) with restriction to
|C| proper and with finite fibers, hence a branched covering. Such cycles in
Aµ ×C of degree b over Aµ have a description by b holomorphic functions via
Weierstraß polynomials, see below. Locally this indeed works in any dimen-
sion. But it is generally impossible to make the projections match on overlaps
as required by (3), not even locally and for smooth C. The reason is that the
analytic germ of M along C need not be isomorphic to the germ of the holo-
morphic normal bundle along the zero section. This almost always fails in the
positive (“ample”) case that we are interested in, see [La]. For our application
to cycles in ruled surfaces, however, we can use the bundle projection, pro-
vided C does not contain fiber components, see Lemma 5.1 below. Without
this assumption the arguments below still work but require a more difficult
discussion of change of projections, as in [Bl]. As the emphasis of these lec-
tures is on explaining why things are true rather than generality we choose to
impose this simplifying assumption.

Another, more severe, simplification special to one-dimensional C is that
we do not allow triple intersections. This implies that Aµ can not be con-
tractible for all µ unless all components of C are rational, and hence our
charts have a certain global flavor. Under the presence of triple intersections
it seems impossible to get our direct connection of the modeling of the moduli
space with cohomological data on C.
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Lemma 5.1 Assume there exists a map p : M → S with dimS = 1 such that
p is a holomorphic submersion near |C| and no component of |C| contains a
connected component of a fiber of p. Then Hypothesis 5.1 is fulfilled.

Proof. Denote by Z ⊂M the finite set of singular points of |C| and of critical
points of the projection |C| → S. Add finitely many points to Z to make
sure that Z intersects each irreducible component of |C|. For P ∈ |C| let
F = p−1(p(P )) be the fiber through P . Then F ∩ |C| is an analytic subset
of F that by hypothesis does not contain a connected component of F . Since
F is complex one-dimensional P is an isolated point of F ∩ C. Because p
is a submersion there exists a holomorphic chart (z, w) : U(P ) → C

2 in a
neighborhood of P in M with (z, w)(P ) = 0 and z = const describing the
fibers of p. We may assume U(P ) to be so small that |C| is the zero locus
of a holomorphic function h defined on all of U(P ). Let ε > 0 be such that
F ∩ w−1(Bε(0)) = {P}. Then min

{
|f(0, w)|

∣
∣ |w| = ε

}
> 0. Hence for δ > 0

sufficiently small min{|f(z, w)| | |w| = ε, |z| ≤ δ} remains nonzero. This shows
|C| ∩ (z, w)−1(Bδ(0) × ∂Bε(0)) = ∅. This verifies Hypothesis 5.1,1 and 2 for
U(P ), while the compatibility of fiber structures in 5.1,3 holds by construction.
This defines elements U1, . . . , U�Z of the open cover U intersecting Z.

To finish the construction we define one more open set U0 as follows. This
construction relies on Stein theory, see e.g. [GrRe] or [KpKp] for the basics.
(With some effort this can be replaced by more elementary arguments, but it
does not seem worthwhile doing here for a technical result like this.) Choose a
Riemannian metric on M . Let δ be so small that B2δ(Z) ⊂

⋃
ν≥1 Uν . Since we

have chosen Z to intersect each irreducible component of |C|, the complement
|C| \ clBδ(Z) is a union of open Riemann surfaces. Thus |C| \ clBδ(Z) is a
Stein submanifold of M \ clBδ(Z), hence has a Stein neighborhood W ⊂
M \ clBδ(Z). Now every hypersurface in a Stein manifold is defined by one
global holomorphic function, say f in our case. So f is a global version of the
fiber coordinate w before. Then for δ sufficiently small the projection

U0 :=
{
P ∈W \ clB3δ/2(Z)

∣
∣ |f(P )| < δ

} p−→ S

factors holomorphically through π : U0 → |C|\clB3δ/2(Z). This is an instance
of so-called Stein factorization, which contracts the connected components of
the fibers of a holomorphic map. Choosing δ even smaller this factorization
gives a biholomorphism

U0
(π,f)−→ |C| \ clBδ(Z) ×∆

extending to cl(U0). Hence U0, U1, . . . , U�Z provides the desired open cover U .
�	

5.3 Description of the Deformation Space

Having a cover fulfilling Hypothesis 5.1 it is easy to describe the moduli space
of small deformations of C as the fiber of a holomorphic, non-linear Fredholm
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map. We use Čech notation Uµν = Uµ ∩ Uν , Uκµν = Uκ ∩ Uµ ∩ Uν . Write
Vµ = inn(Aµ). Fix p > 2 and denote by Op(Vµ) the space of holomorphic
functions on inn(Vµ) of class Lp. This is a Banach space with the Lp-norm
defined by a Riemannian metric on Aµ, chosen once and for all. Similarly
define Op(Vµν) and Op(Vκµν).

To describe deformations of C let us first consider the local situation on
Vµ × ∆ ⊂ M . For this discussion we drop the index µ. Denote by w the
coordinate on the unit disk. For any holomorphic cycle C ′ on V ×∆ with |C ′|∩
(V ×∂∆) = ∅ the Weierstraß preparation theorem gives bounded holomorphic
functions a1, . . . , ab ∈ Op(V ) with wb + a1w

b−1 + . . .+ ab = 0 describing C ′,
see e.g. [GrHa]. Here b is the relative degree of C ′ over V , and everything
takes multiplicities into account. The tuple (a1, . . . , ab) should be thought of
as a holomorphic map from V to the b-fold symmetric product Symb

C of C

with itself.

Digression on Symb
C. By definition Symb

C is the quotient of C × · · · × C

by the permutation action of the symmetric group Sb on b letters. Quite
generally, if a finite group acts on a complex manifold or complex space X
then the topological space X/G has naturally the structure of a complex space
by declaring a function on X/G holomorphic whenever its pull-back to X is
holomorphic. For the case of the permutation action on the coordinates of C

b

we claim that the map
Φ : Symd

C −→ C
d

induced by (σ1, . . . , σb) : C
b → C

b is a biholomorphism. Here

σk(w1, . . . , wb) =
∑

1≤i1<i2<...<ik≤b

wi1wi2 . . . wib

is the ith elementary symmetric polynomial. In fact, set-theoretically Symb
C

parametrizes unordered tuples of b not necessarily disjoint points in C. By the
fundamental theorem of algebra there is precisely one monic (leading coeffi-
cient equal to 1) polynomial of degree b having this zero set, with multiplicities.
The coefficients of this polynomial are the elementary symmetric functions in
the zeros. This shows that Φ is bijective. Now any symmetric holomorphic
function in w1, . . . , wb is a holomorphic function in σ1, . . . , σb. Thus Φ is a
biholomorphism. By the same token, if w,w′ are two holomorphic coordi-
nates on an open set W ⊂ C then the induced holomorphic coordinates σi, σ

′
i,

i = 1, . . . , b, are related by a biholomorphic transformation. Note however
that something peculiar is happening to the differentiable structure: Not every
Sb-invariant smooth function on C

b leads to a smooth function on Symb
C for

the differentiable structure coming from holomorphic geometry. As an example
consider b = 2 and the function f(w1, w2) = (w1−w2)(w̄1− w̄2) = |w1−w2|2.
This is the pull-back of |σ2

1−σ2|, which is only a Lipschitz function on Sym2
C.

Another, evident feature of symmetric products is that a neighborhood of a
point

∑
imiPi of Symb

C with the Pi pairwise disjoint, is canonically biholo-
morphic to an open set in

∏
i Symmi C. End of digression.
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From this discussion it follows that we can compare Weierstraß represen-
tations with compatible projections. Let (aµ : Vµ → Symbµ C) ∈ Op(Vµ)bµ be
the Weierstraß representations for the given cycle C. Let V b

µν ⊂ Vµν be the
union of connected components where the covering degree is equal to b. Note
that V b

µν = ∅ whenever b > min{bµ, bν}. For a′µ sufficiently close to aµ in Lp

there is a cycle C ′
µ in Uµ with Weierstraß representation a′µ. Denote by Fµ a

sufficiently small neighborhood of aµ in Op(Vµ)bµ where this is the case. For
every µ, ν, b let F b

µν = Op(V b
µν)b, viewed as space of maps V b

µν → Symb
C.

The above discussion gives comparison maps

Θb
µν : Fν −→ F b

µν .

Define the gluing map by

Θ :
∏

µ

Fµ −→
∏

µ<ν,b

F b
µν , Θ(a′µ) = (a′µ −Θb

µν(a′ν))µν . (5.1)

Clearly (a′µ)µ glues to a holomorphic cycle iff Θ(a′µ) = 0. We will see that Θ is
a holomorphic Fredholm map with kernel and cokernel canonically isomorphic
to the first two cohomology groups of the normal sheaf of C in M . To follow
this plan, two more digressions are necessary. One to explain the notion of
normal sheaf and one for the needed properties of sheaf cohomology.

5.4 The Holomorphic Normal Sheaf

One definition of tangent vector of a differentiable manifold M at a point P
works by emphasizing its property of derivation. Let C∞

M,P be the space of
germs of smooth functions at P . An element of this space is represented by
a smooth function defined on a neighborhood of P , and two such functions
give the same element if they agree on a common neighborhood. Applying a
tangent vector X ∈ TM,P on representing functions defines an R-linear map
D : C∞

M,P → R. For f, g ∈ C∞
M,P Leibniz’ rule gives

X(fg) = fX(g) + gX(f).

In particular, X(f2) = 0 if f(P ) = 0 and X(1) = X(12) = 2X(1) = 0. Thus
the interesting part of D is the induced map on m∞

P /(m
∞
p )2 where m∞

P =
{f ∈ C∞

M,P | f(P ) = 0} is the maximal ideal of the ring C∞
M,P . We claim

that the map TM,P → HomR(m∞
P /(m

∞
p )2,R) is an isomorphism. In fact, let

x1, . . . , xn be coordinates of M around P . Then X =
∑

i ai∂xi
applied to

xi yields ai, so the map is injective. On the other hand, if f ∈ m∞
P then by

the Taylor formula f −
∑

i ∂xi
f(P ) · xi ∈ (m∞)2, and hence any linear map

m∞
P /(m

∞
p )2 → R is determined by its values on xi. This gives the well-known

canonical identification

TM,P = HomR(m∞
P /(m

∞
p )2,R).
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If M is a complex manifold then the holomorphic tangent space at P can sim-
ilarly be described by considering holomorphic functions and C-linear maps.

Now if Z ⊂M is a submanifold the same philosophy applies to the normal
bundle. For this and what follows we will inevitably need some elementary
sheaf theory that we are also trying to explain briefly.

An (abelian) sheaf is an association of an abelian group F(U) (the sec-
tions of F over U) to every open subset U ⊂ M , together with restriction
homomorphisms ρV U : F(U) → F(V ) whenever V ⊂ U . The restriction maps
must be compatible with composition. Moreover, the following sheaf axioms
must hold for every covering {Ui} of an open set U ⊂M . Write Uij = Ui∩Uj .

(S1) (local-global principle) If s ∈ F(U) and ρUiU (s) = 0 for all i then s = 0.
(S2) (gluing axiom) Given si ∈ F(Ui) with ρUijUi

(si) = ρUijUj
(sj) for every

i, j there exists s ∈ F(U) with si = ρUiU (s).

The following are straightforward examples:

1. C∞
M : U �→ {f : U → R smooth} with restriction of functions defining the

restriction maps.
2. For E ↓M a fiber bundle the sheaf C∞(E) of smooth sections of E.
3. For M a complex manifold, OM : U �→ {f : U → C holomorphic}. This is

a subsheaf of the sheaf of complex valued smooth functions on M .
4. For G an abelian group the constant sheaf

GM : U �→ {f : U → G locally constant},

ρV U the restriction. The sections of this sheaf over any connected open
set are identified with elements of G.

A homomorphism of sheaves F → G is a system of homomorphisms F(U) →
G(U) compatible with restriction.

Returning to the normal bundle of Z ⊂M let I∞
Z be the sheaf of smooth

functions vanishing along Z. Then a normal vector field ν along Z on U ⊂ Z
induces a well-defined map

I∞
Z (U) −→ C∞

Z (U), f �−→
(
ν̃(f)

)∣
∣
Z
,

where ν̃ is a lift of ν to a vector field on M defined on a neighborhood of U
in M . As we restrict to Z after evaluation and since f vanishes along Z the
result does not depend on the choice of lift. Now as with TM,P one checks
that (I∞

Z (U))2 maps to zero and that the map of sheaves

C∞(NZ|M ) −→ HomC∞
Z

(I∞
Z /(I∞

Z )2,C∞
Z )

is an isomorphism. A section over U of the Hom-sheaf on the right is a (C∞
Z )|U -

linear sheaf homomorphism (I∞
Z /(I∞

Z )2)|U → (C∞
Z )|U . Note that multiplica-

tion of sections I∞
Z /(I∞

Z )2 by sections of C∞
Z is well-defined, so this makes

sense.
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Generally one has to be careful here where to put the brackets because
the notions of quotient and Hom-sheaves are a bit delicate. For example, if
F → G is a sheaf homomorphism the sheaf axioms need not hold for Q : U �→
G(U)/F(U). The standard example for this is the inclusion ZM → C∞

M with
M = R

2\{0} or any other non-simply connected space. On the complements of
the positive and negative real half-axes 1/2π of the angle in polar coordinates
give sections of C∞

M agreeing on R
2 \R modulo integers, but they do not glue

to a single-valued function on M .
In any case, there is a canonical procedure to force the sheaf axioms, by

taking the sheaf of continuous sections of the space of stalks

Ét(Q) :=
∐

P∈M

lim
−→

U�P

Q(U)

(étale space) of Q. Every s ∈ Q(U) induces a section of Ét(Q) over U , and the
images of these sections are taken as basis for the topology of Ét(Q). In writing
down quotient or Hom-sheaves it is understood to apply this procedure. This is
the general definition that we will need for the holomorphic situation momen-
tarily, but it is in fact not needed for sheaves that allow partitions of unity (fine
sheaves) such as I∞

Z . So a section of HomC∞
Z

(I∞
Z /(I∞

Z )2,C∞
Z ) over U is indeed

just a C∞
Z (U)-linear map of section spaces I∞

Z (U)/(I∞
Z (U))2 → C∞

Z (U).
Now if M is a complex manifold and Z ⊂ M is a complex submanifold

then NZ|M is a holomorphic vector bundle. Let IZ ⊂ OM be the sheaf of
holomorphic functions on M vanishing along Z. Then the natural map

O(NZ|M ) −→ HomOZ
(IZ/I2

Z ,OZ)

is an isomorphism. Explicitly, if Z is locally given by one equation f = 0 then
f generates IZ/I2

Z as an OZ-module. Hence a section ϕ of the Hom-sheaf
on the right is uniquely defined by ϕ(f), a holomorphic function on Z. This
provides an explicit local identification of O(NZ|M ) with OZ , which is nothing
but a local holomorphic trivialization of NZ|M .

Now the whole point of this discussion is that it generalizes well to the
non-reduced situation. Let us discuss this in the most simple situation of a
multiple pointmP inM = C. Taking P the origin and w for the coordinate on
C (z will have a different meaning below) we have ImP = OC ·wm and OmP =
OC/ImP is anm-dimensional complex vector space with basis 1, w, . . . , wm−1.
A homomorphism ImP /(ImP )2 → OmP is uniquely defined by (α0, . . . , αm) ∈
C

m via
wm �−→ α0 + α1w + . . .+ αm−1w

m−1.

This fits well with limits as follows. Consider mP as the limit of m pairwise
different points Zt := {P1(t), . . . , Pm(t)}, t > 0, given by the vanishing of
ft := wm + a1(t)wm−1 + . . . + am(t) where ai(t)

t→0−→ 0. Then IZ(t)/(IZ(t))2

=
⊕

i IPi(t)/ (IPi(t))
2 is the sheaf with one copy of C at each point of Z(t)

(a “skyscraper sheaf”). Thus
⊕

i TPi(t) = Hom(IZ(t)/(IZ(t))2,OZ(T )). Now
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IZ(t)/(IZ(t))2 is globally generated over OZ(T ) by ft, and 1, w, . . . , wm−1 are
a basis for the sections of OZ(T ) as a complex vector space. This gives an
identification of

⊕
i TPi(t) with polynomials α0 + α1w + . . .+ αm−1w

m−1, so
this is compatible with the description at t = 0! Note that a family of vector
fields along Z(t) has a limit for t→ 0 if and only if it extends to a continuous
family of holomorphic vector fields in a neighborhood of P . The limit is then
the limit of (m− 1)-jets of this family.

It therefore makes sense to define, for any subspace Z ⊂M defined by an
ideal sheaf IZ ⊂ OM , reduced or not, the holomorphic normal sheaf

NZ|M := HomOZ
(IZ/I2

Z ,OZ),

where OZ = OM/IZ is the sheaf of holomorphic functions on Z. In our
application we have Z the generally non-reduced subspace of M defined by
the one-codimensional cycle C. By abuse of notation we use C both to denote
the cycle and this subspace. Explicitly, IC is the sheaf locally generated by∏

i f
mi
i if C =

∑
imiCi and fi vanishes to first order along Ci. Note that such

a choice of generator of IC gives a local identification of NC|M with OC .
The importance of the normal sheaf for us comes from its relation with

local deformations of holomorphic cycles.

Lemma 5.2 Let V be a complex manifold and consider the open subset
M ⊂ Op(V,Symb

C) of tuples (a1, . . . , ab) such that the zero set of
f(a1,...,ab)(z, w) := wb + a1(z)wb−1 + . . .+ ab(z) is contained in V ×∆. Then
there is a canonical isomorphism

T(a1,...,ab)M � Γ (C,NC|V ×∆),

for C the holomorphic cycle in V ×∆ defined by f(a1,...,ab).

Proof. The map sends d
dt

∣
∣
t=0

(a1(t), . . . , ab(t)) = (α1, . . . , αb) to the section

f(a1,...,ab) �−→ wb + α1w
b−1 + . . .+ αb.

By the above discussion every global holomorphic function on C has a unique
representative of the form wb + α1w

b−1 + . . . + αb. Hence this map is an
isomorphism. �	

5.5 Computation of the Linearization

If F is an abelian sheaf on a topological space X and U = {Ui} is an open
cover of X the Čech cohomology groups Ȟk(U ,F) are the cohomology groups
of the Čech complex (C•(U ,F)) with cochains

Ck(U ,F) =
∏

i0<i1<...<ik

Γ (Ui0 ∩ . . . ∩ Uik
,F),
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and differentials

ď(si0 . . . sik
)i0...ik

=
(∑

l

(−1)lsi0...̂il...ik

)

i0...ik

.

By the gluing axiom (S2) it holds Ȟ0(U ,F) = F(X).

Theorem 5.3 The gluing map Θ from (5.1) is a holomorphic map with
kernDΘ = Ȟ0(V ,NC|M ) and cokerDΘ = Ȟ1(V ,NC|M ).

Proof. The holomorphicity claim is evident. For the linearization we remark
that the components of Θ factor through

(a′µ, a
′
ν) �−→ (a′µ, Θ

b
µν(a′ν)) �−→ (a′µ −Θb

µν(a′ν)).

In view of Lemma 5.2 the linearization at (aµ, aν) of the components of the
first map are canonically the restriction maps Γ (C ∩ Uµ,NC|M ) → Γ (C ∩
Uµν ,NC|M ), Γ (C∩Uν ,NC|M ) → Γ (C∩Uµν ,NC|M ). Hence DΘ is canonically
isomorphic to the Čech complex
∏

µ

Γ (C ∩ Uµ,NC|M ) −→
∏

µ<ν

Γ (C ∩ Uµν ,NC|M ), (αµ)µ �−→ (αµ − αν)µν .

Note that Ck(C ∩ U ,NC|M ) = 0 for k > 1 because triple intersections in U
are empty. �	

5.6 A Vanishing Theorem

For this paragraph we assume some familiarity with sheaf cohomology and
Serre duality on singular curves. So this section will be (even) harder to read
for somebody without training in complex geometry. Unfortunately we could
not find a more elementary treatment.

It is well-known that the Čech cohomology groups Ȟi(C ∩ V ,NC|M ) are
finite dimensional and canonically isomorphic to the sheaf cohomology groups
Hi(C,NC|M ), see [GrHa] and the references given there. In particular, Θ is a
non-linear Fredholm map. Our aim in this paragraph is to prove surjectivity
of its linearization by the following result.

Proposition 5.4 Let C =
∑r

i=0miCi be a compact holomorphic cycle on a
complex surface M . Assume that c1(M) · Ci > 0 and Ci · Ci ≥ 0 for every i.
Then H1(C,NC|M ) = 0.

Proof. In view of the identification NC|M = OC(C) a stronger statement is
the vanishing of H1(C,OC′(C)) for every effective subcycle C ′ ⊂ C. This
latter formulation allows an induction over the sum of the multiplicities of C ′.

As an auxiliary statement we first show the vanishing of H1(OCi
(C ′′))

for every i and every subcycle C ′′ of C containing Ci. Serre duality



Symplectic Isotopy 301

(see e.g. [BtPeVe], Theorem II.6.1) shows that H1(OCi
(C ′′)) is dual to

H0(HomOCi
(OCi

(C ′′),OCi
) ⊗ ωCi

). Here ωCi
is the dualizing sheaf of Ci.

If KM denotes the sheaf of holomorphic sections of detT ∗
M then it can be

computed as ωCi
= KM ⊗NCi|M = KM ⊗OCi

(Ci). Therefore

Hom(OCi
(C ′′),OCi

) ⊗ ωCi
� OCi

(−C ′′) ⊗ ωCi
� KM ⊗OCi

(Ci − C ′′).

But KM ⊗OCi
(Ci −C ′′) is the sheaf of sections of a holomorphic line bundle

over Ci of degree c1(T ∗
M ) · Ci − (C ′′ − Ci) · Ci ≤ −c1(M) · Ci < 0. Here

we use that C ′′ contains Ci and Ci · Ci ≥ 0. Because Ci is reduced and
irreducible this implies that any global section of this line bundle is trivial.
Hence H1(OCi

(C ′′)) = 0.
Setting C ′ = Ci for some i starts the induction. For the induction step

assume H1(C,OC′(C)) = 0 and let i be such that C ′ +Ci is still a subcycle of
C. Let IC′|C′+Ci

be the ideal sheaf of C ′ in C ′ + Ci. Because IC′+Ci
= IC′ ·

ICi
, multiplication induces an isomorphism OCi

(−C ′) = IC′ ⊗ (OM/ICi
) �

IC′|C′+Ci
. Thus we have a restriction sequence

0 −→ OC′+Ci
(C) ⊗OCi

(−C ′) −→ OC′+Ci
(C) −→ OC′(C) −→ 0.

Observing OC′+Ci
(C)⊗OCi

(−C ′) � OCi
(C−C ′) the long exact cohomology

sequence reads

. . . −→ H1(OCi
(C − C ′)) −→ H1(OC′+Ci

(C)) −→ H1(OC′(C)) −→ . . .

The term on the right vanishes by induction hypothesis, while the term on
the left vanishes by the auxiliary result applied to C ′′ = C − C ′. Hence
H1(OC′+Ci

(C)) = 0 proving the induction step. �	

5.7 The Unobstructedness Theorem

Under the assumptions of Proposition 5.4 and Hypothesis 5.1 we now have a
description of deformations of C by the fiber of a holomorphic map between
complex Banach manifolds whose linearization is surjective with finite dimen-
sional kernel. Applying the implicit function theorem gives the main theorem
of this lecture.

Theorem 5.5 Let M be a complex surface and C =
∑

imiCi a compact
holomorphic 1-cycle with c1(M) ·Ci > 0 and Ci ·Ci ≥ 0 for all i. Assume that
a covering U of a neighborhood of |C| in M exists satisfying Hypotheses 5.1,
1–3. Then the space of holomorphic cycles in M is a complex manifold of
dimension Γ (NC|M ) in a neighborhood of C. Moreover, analogous statements
hold for a family of complex structures on M preserving the data described in
Hypothesis 5.1.

Remark 5.6 The hypotheses of the theorem do not imply that the cycle
C is the limit of smooth cycles. For example, Γ (NC|M ) may still be triv-
ial and then C does not deform at all. Smoothability only follows with the
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additional requirement that NC|M is globally generated. This statement can
be checked by a transversality argument inside symmetric products of C,
cf. [SiTi3], Lemma 4.8.

The proof of global generatedness at some P ∈ M in our fibered sit-
uation p : M → S2 follows from comparing dimensions of Γ (NC|M ) and
Γ (NC|M (−F )) where F = p−1(p(P )). These dimensions differ maximally,
namely by the sum of the fibers of NC|M over |C|∩F if alsoH1(NC|M (−F )) =
0. This is true by the same method as seen because also (c1(M)−H) ·Ci > 0.
See [SiTi3], Lemma 4.4 for details.

In any case, if C is the limit of smooth curves then the subset of the moduli
space parametrizing singular cycles is a proper analytic subset of the moduli
space, which is smooth, and hence does not locally disconnect the moduli space
at C. In particular, any two smoothings of C are isotopic through a family of
smooth holomorphic curves staying close to C.

6 Application to Symplectic Topology in Dimension Four

One point of view on symplectic topology is as an area somewhere between
complex geometry and differential topology. On one hand symplectic con-
structions sometimes have the same or almost the flexibility as constructions
in differential topology. As an example think of Gompf’s symplectic normal
sum [Go]. It requires two symplectic manifolds M1,M2 with symplectic hy-
persurfaces D1 ⊂M1, D2 ⊂M2 (real codimension two) and a symplectomor-
phism Φ : D1 → D2 with a lift to an isomorphism of symplectic line bundles
Φ̃ : ND1|M1 → Φ∗(N∗

D2|M2
). The result is a well-defined one-parameter family

of symplectic manifoldsM1�Φ,εM2; each of its elements is diffeomorphic to the
union ofMi\Ui, where Ui is a tubular neighborhood of Di and the boundaries
∂Ui are identified via Φ̃. So the difference to a purely differential-topological
construction is that (1) the bundle isomorphism Φ needs to preserve the sym-
plectic normal structure along Di and (2) there is a finite-dimensional para-
meter space to the construction.

Compare this with the analogous problem in complex geometry. HereDi ⊂
Mi is a divisor and one can form a singular complex spaceM1�ΦM2 by gluing
M1 and M2 via an isomorphism Φ : D1 � D2. The singularity looks locally
like Di times the union of coordinate lines zw = 0 in C

2. However, even
if the holomorphic line bundles ND1|M1 and Φ∗N∗

D2|M2
are isomorphic there

need not exist a smoothing of this space [PsPi]. A smoothing would locally
replace zw = 0 by zw = ε in appropriate holomorphic coordinates. Should
this smoothing problem be unobstructed, it has as local parameter space the
product of a complex disk for the smoothing parameter ε and some finite-
dimensional space dealing with deformations of the singular space M1 �ΦM2.
Note how the deformation parameter ε reappears on the symplectic side as
gluing parameter. The most essential difference to the symplectic situation is
the appearance of obstructions.
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The correspondence between complex and symplectic geometry can be
expected to be especially interesting in dimension four, where a great deal
is known classically on the complex side and where differential topology is
so rich. In this context it is quite natural to consider the question when a
symplectic submanifold in CP

2 is isotopic to a holomorphic curve, which is
the main topic of these lectures. An even stronger motivation is explained in
the contribution by Auroux and Smith to this volume [AuSm], where they
discuss how closely related the classification of symplectic manifolds is to the
classification of symplectic surfaces in CP

2. (These surfaces can have classical
singularities, that is, nodes and cusps.)

The purpose of this section is to give a slightly different view on the rela-
tion between complex and symplectic geometry via Lefschetz fibrations. We
will see that a certain class of Lefschetz fibrations called hyperelliptic arises
as two-fold covers of rational ruled surfaces, and that our isotopy theorem for
symplectic submanifolds of S2-bundles over S2 gives a classification of a sub-
class of such Lefschetz fibrations. This point of view also has an interpretation
via representations of the braid group, a topic of independent interest.

6.1 Monodromy Representations – Hurwitz Equivalence

A symplectic Lefschetz fibration of an oriented four-manifold (M,ω) is a proper
differentiable surjection q : M → S2 with only finitely many critical points in
pairwise disjoint fibers with local model C

2 → C, (z, w) �→ zw. Here z, w and
the coordinate on S2 are complex-valued and compatible with the orienta-
tions. With the famous exception of certain genus-one fiber bundles without
sections, for example a Hopf-surface S3 × S1 → S2, see [McSa1], Expl. 6.5
for a discussion, M then has a distinguished deformation class of symplectic
structures characterized by the property that each fiber is symplectic [GoSt].
Note that if ω has this property then this is also the case for q∗ωS2 + εω for
any ε > 0. In particular, this deformation class of symplectic structures has
q∗ωS2 in its closure.

For a general discussion of Lefschetz fibrations we refer to the lectures
of Auroux and Smith. From this discussion recall that any symplectic four-
manifold (M,ω) with [ω] ∈ H2(M,Q) arises as total space of a Lefschetz fi-
bration after blowing up finitely many disjoint points and with fibers Poincaré
dual to the pull-back of k[ω] for k � 0 [Do]. The fibration structure is unique
up to isotopy for each k � 0. In other words, for each ray Q>0ω of symplectic
structures with rational cohomology one can associate a sequence of Lefschetz
fibrations, which is unique up to taking subsequences. However, the sequence
depends heavily on the choice of [ω], and it also seems difficult to control the
effect of increasing k on the fibration structure. Conversely, it is also difficult
to characterize Lefschetz fibrations arising in this way. Necessary conditions
are the existence of sections with self-intersection number −1 and irreducibil-
ity of all singular fibers for k � 0 [Sm2], but these conditions are certainly
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not sufficient. So at the moment the use of this point of view for an effective
classification of symplectic four-manifolds is limited.

On the other hand, in algebraic geometry Lefschetz fibrations have been
especially useful for low degrees, that is, for low genus of the fibers. This is
the point of view taken up in this section symplectically.

6.2 Hyperelliptic Lefschetz Fibrations

Auroux and Smith explain in their lectures that a symplectic Lefschetz fibra-
tion π : M → S2 with singular fibers over s1, . . . , sµ ∈ S2 is characterized by
its monodromy representation into the mapping class group

ρ : π1(S2 \ {s1, . . . , sµ}, s0) −→ π0 Diff+(π−1(Σ)).

Here s0 ∈ S2 \ {s1, . . . , sµ} is some fixed non-critical point in the base and
Σ = π−1(s0). For each loop running around only one critical point once
the monodromy is a Dehn twist. There is even a one-to-one correspondence
between isomorphism classes of Lefschetz fibrations with µ singular fibers
along with a diffeomorphism π−1(s0) � Σ, and such representations [Ka].

If one chooses a generating set of µ loops γ1, . . . , γµ intersecting only in s0
and each encircling one of the critical points then ρ is uniquely determined
by the tuple (τ1, . . . , τµ) of µ Dehn twists τi = ρ(γi) of Σ. Conversely, any
such tuple with the property

∏
i τi = 1 arises from such a representation.

This gives a description of symplectic Lefschetz fibrations up to isomorphism
by finite algebraic data, namely by the word τ1 . . . τµ of Dehn twists in the
genus-g mapping class group MCg � π0 Diff+(π−1(Σ)). This description is
unique up to an overall conjugation (coming from the choice of isomorphism
MCg � π0 Diff+(π−1(Σ))) and up to so-called Hurwitz equivalence. The latter
accounts for the choice of γ1, . . . , γµ. It is generated by transformations of the
form

τ1 . . . τrτr+1 . . . τµ −→ τ1 . . . τr+1(τr)τr+1 . . . τµ,

(Hurwitz move) where (τr)τr+1 = τ−1
r+1τrτr+1. Note that the set of Dehn twists

is stable under conjugation, and hence the word on the right-hand side still
consists of Dehn twists.

We now want to look at a special class of Lefschetz fibrations called hy-
perelliptic. By definition their monodromy representations take values in the
hyperelliptic mapping class group HMCg ⊂ MCg. Recall that a hyperelliptic
curve of genus g is an algebraic curve that admits a two-fold cover κ : Σ → CP

1

branched in 2g + 2 points. The hyperelliptic mapping class group is the sub-
group of MCg of isotopy classes of diffeomorphisms of Σ respecting κ. So each
σ ∈ HMCg induces a diffeomorphism of S2 fixing the branch set, well-defined
up to isotopy. This defines a homomorphism

HMCg −→ MC(S2, 2g + 2)
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to the mapping class group of S2 marked with a set of 2g + 2 points. The
kernel is generated by the hyperelliptic involution that swaps the two points
in the fibers of κ. For genus two it happens that HMCg = MCg, otherwise the
inclusion HMCg ⊂ MCg is strict. For all this a good reference is the book [Bi].

Of course, given a closed surface Σ of genus g there are many involutions
with 2g+2 fixed points exhibiting Σ as a two-fold cover of S2, and these give
different copies of HMCg in MCg. The definition of hyperelliptic Lefschetz
fibrations requires that im ρ ⊂ HMCg for one such choice of involution.

One method to produce a hyperelliptic Lefschetz fibration M → S2 is as
composition of a two-fold cover with an S2-bundles p : P → S2, with branch
locus a so-called Hurwitz curve B ⊂ P of degree 2g+2 over S2. Recall from the
lectures of Auroux and Smith that a smooth submanifold B ⊂ P is a Hurwitz
curve if near the critical points of the composition B → P → S2 there are
local complex coordinates (z, w) on P such that p(z, w) = z and B is locally
given by w = z2. Then B → S2 is a branched cover of degree 2g+2 with only
simple branch points. The critical points of this projection produce singular
fibers as follows. In the local coordinates (z, w) introduced above,M is locally
the solution set of v2 − w2 + z. This four-dimensional manifold has complex
coordinates v′ = v−w, w′ = v+w because one can eliminate z. The projection
to the z-coordinate then has the standard description (v′, w′) �→ v′w′ of a
Lefschetz fibration near a singular point.

This construction yields hyperelliptic Lefschetz fibrations with only irre-
ducible singular fibers. But there are relatively minimal hyperelliptic Lefschetz
fibrations with reducible fibers. (To be relatively minimal means that we have
not introduced reducible fibers artificially by blowing up the total space. Tech-
nically this leads to spheres contained in fibers with self-intersection number
−1, and “relatively minimal” means there are no such spheres.) After a slight
perturbation of the Lefschetz fibration any fiber contains at most one critical
point (we took this as a condition in the definition of Lefschetz fibrations),
and then any reducible fiber is a union of two surfaces, of genera h and g− h
for some 0 < h < [g/2].

Now how can one construct hyperelliptic Lefschetz fibrations with re-
ducible fibers? Here is the construction of the model for a neighborhood of a
singular fiber with irreducible components of genera h and g − h. Let ∆ ⊂ C

be the unit disk, and consider in ∆× CP
1 the holomorphic curve B̄ given by

(w − α1) · . . . · (w − α2(g−h)+1) · (w − β1z
2) · . . . · (w − β2h+1z

2) = 0. (6.1)

Here z is the coordinate on ∆, w is the affine coordinate on C ⊂ CP
1, and

both the αi and the βj are pairwise disjoint and non-zero. So B̄ consists of
2g + 2 irreducible components, each projecting isomorphically to ∆. There is
one singular point at (0, 0), a tacnode with tangent line w = 0 and contained
in 2h+ 1 branches of B̄. Figure 6.1, left, depicts the case g = 2, h = 1. Now
let ρ1 : P1 → ∆ × CP

1 be the blow up at (0, 0). This replaces the fiber F
over z = 0 by two (−1)-spheres, the strict transform F1 of F and another one
E contracted under ρ1. By taking the strict transform B1 of B̄ (the closure



306 B. Siebert and G. Tian

B
B1 B2

–1

–1

–1

–1

E

Γ

Γ´

ρ2ρ1

–2

F

Fig. 6.1. Producing reducible fibers (g = 2, h = 1)

of ρ−1
1 (B̄) \ E) the tacnode of B̄ transforms to an ordinary singular point of

multiplicity 2h + 1 lying on E \ F . Another blow up ρ2 : P̃ → P1 in this
singular point desingularizes B1. The strict transform Γ of E is a sphere of
self-intersection −2. So the fiber over 0 of P̃ → ∆ is a union of two (−1)-
spheres and one (−2)-sphere intersecting as depicted in Fig. 6.1 on the right.
Denote by B2 the strict transform of B1 under the second blow-up.

It is not hard to check that, viewed as divisor, B2 + Γ is divisible by 2
up to rational equivalence, just as B̄. Hence there exists a holomorphic line
bundle L on P̃ with a section s with zero locus B2 + Γ . The solution set to
u2 = s with u ∈ L is a two-fold cover of P̃ branched over B2 + Γ . This is
an instance of the standard construction of cyclic branched covers with given
branch locus.

The projection M̃ → ∆ is a local model for a genus-g Lefschetz fibration.
The singular fiber over 0 ∈ ∆ is a chain of three components, of genera
g − h, 0 and h, respectively. Since Γ is a (−2)-sphere in the branch locus
the rational component κ̃−1(Γ ) has self-intersection number −1 and hence
can be contracted. The result is a manifold M with the projection to ∆ the
desired local model of a relatively minimal Lefschetz fibration with a reducible
fiber with components of genera h and g − h. It is obviously hyperelliptic by
construction.

One interesting remark is that the covering involution of M̃ descends to
M . This action has one fixed point at the unique critical point of the fibration
M → ∆. In local holomorphic coordinates it looks like (u, v) �→ (−u,−v), and
the ring of invariant holomorphic functions is generated by x = u2, y = v2,
z = uv (this can be chosen to agree with the z from before). The generators
fulfill the relation z2 = xy, so the quotient is isomorphic to the two-fold cover
of C

2 branched over the coordinate axes. This is called the A1-singularity,
and we have just verified the well-known fact that this singularity is what
one obtains locally by contracting the (−2)-curve Γ on P̃ . Alternatively, and
maybe more appropriately, one should view the singular space P obtained by
this contraction as the orbifold M/(Z/2).
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6.3 Braid Monodromy and the Structure of Hyperelliptic
Lefschetz Fibrations

We have now found a way to construct a hyperelliptic Lefschetz fibration
starting from a certain branch surface B̄ in S2-bundles p̄ : P̄ → S2. This
surface may have tacnodal singularities with non-vertical tangent line, and
these account for reducible singular fibers in the resulting Lefschetz fibration.
Otherwise the projection B̄ → S2 is a simply branched covering with the
simple branch points leading to irreducible singular fibers.

Theorem 6.1 [SiTi1] Any hyperelliptic Lefschetz fibration arises in this
way.

The case of genus-two has also been proved in [Sm1], and a slightly more
topological proof is contained in [Fu]. The key ingredients of our proof are to
describe B by its monodromy in the braid group B(S2, 2g + 2) of the sphere
on 2g+2 strands, and to observe that B(S2, 2g+2) is also a Z/2-extension of
MC(S2, 2g + 2), just as HMCg. While nevertheless B(S2, 2g + 2) and HMCg

are not isomorphic, there is a one-to-one correspondence between the set of
half-twists in the braid group on one side and the set of Dehn-twists in HMCg

on the other side. This correspondence identifies the two kinds of monodromy
representations. We now give some more details.

For a topological space X the braid group on d strands B(X, d) can be
defined as the fundamental group of the configuration space

X [d] := (X × . . .×X \∆)/Sd.

Here ∆ = {(x1, . . . , xd) ∈ Xd | ∃i �= j, xi = xj} is the generalized diagonal
and Sd acts by permutation of the components. So a braid takes a number
of fixed points on X, moves them with t ∈ [0, 1] such that at no time t two
points coincide, and such that at t = 1 we end up with a permutation of the
tuple we started with.

If X is a two-dimensional oriented manifold and γ : [0, 1] → X is an
embedded path connecting two different Pj , Pk and disjoint from {P1, . . . , Pd}
otherwise, there is a braid exchanging Pj and Pk as in the following Fig. 6.2.
Any such braid is called a half-twist. Note that the set of half-twists is invariant
under the action of the group of homeomorphisms on X fixing {P1, . . . , Pk}.

Pk

Pj

Fig. 6.2. A half-twist
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The classical Artin braid group Bd := B(R2, d) can be explicitly described
as follows. Take as points Pj := e2π

√
−1j/d the dth roots of unity. Then define

σj as the half-twist associated to the line segment connecting Pj and Pj+1 for
1 ≤ j < d. In the following we take the index j modulo d. Then Bd is the
group generated by the σj subject to the famous braid relations

σjσk = σkσj for |j − k| ≥ 2,
σjσj+1σj = σjσj+1σj for all j.

It is important to note that there are infinitely many different sets of genera-
tors such as the σj , one for each self-intersection free path running through all
the Pj . This is responsible for some of the complications when dealing with
the braid group.

Now given one of our branch surfaces p : B̄ ⊂ P̄ with critical set
{s1, . . . , sµ} ⊂ S2, a closed path γ in S2 \ {s1, . . . , sµ} defines a braid in
S2 by trivializing P̄ over γ and by interpreting the pull-back of B over γ as
the strands of the braid. This defines the monodromy representation

ρ′ : π1(S2 \ {s1, . . . , sµ}, s0) −→ B(S2, 2g + 2),

which characterizes B̄ uniquely up to isotopy. Note that the braid group on
the right is really the braid group of the fiber p̄−1(s0) with the point set
B̄ ∩ p̄−1(s0).

The following possibilities arise for the monodromy around a loop γ en-
closing only one of the si. If B̄ is smooth over si then B̄ → S2 has a simple
branch point over si. In this case ρ′(γ) is the half-twist swapping the two
branches of B coming together at the branch point. Otherwise B̄ has a tac-
node mapping to si. Then the local standard form (6.1) gives the following
description of ρ′(γ). There is an embedded loop S1 ↪→ S2 = p̄−1(s0) passing
through a subset Pi1 , . . . , Pi2h+1 of B̄ ∩ p̄−1(s0) and not enclosing any other
Pj . Now ρ′(γ) is given by a full counterclockwise rotation of these points along
the loop, and by the identity on all other points.

The point now is that in the hyperelliptic case any Dehn twist arises as
a two-fold cover of a distinguished braid of the described form once a choice
of a north pole ∞ ∈ S2 has been made. In fact, the three groups HMCg,
MC(S2, 2g + 2) and B(S2, 2g + 2) all have 2g + 2 generators σ1, . . . , σ2g+1

fulfilling the Artin braid relations, and in addition:

1. MC(S2, 2g + 2): I = 1, T = 1
2. HMCg: I2 = 1, T = 1, and I is central (Iσi = σiI for all i)
3. B(S2, 2g + 2): I = 1, and this implies T 2 = 1 and T central

where
I = σ1 . . . σ2g+1σ2g+1 . . . σ1, T = (σ1 . . . σ2g+1)2g+2

Geometrically, I ∈ HMCg is the hyperelliptic involution; it induces the trivial
element in MC(S2, 2g+2), and it can not be produced from braids via two-fold
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covers. On the other hand, T is the full-twist along a loop passing through all
the points; its square is the trivial braid as one sees by “pulling the bundle
of strands across ∞ ∈ S2,” and again it induces the trivial element in both
MC(S2, 2g + 2) and in HMCg.

Thus given a hyperelliptic Lefschetz fibration one can produce a branch
surface B̄ uniquely up to isotopy by going via braid monodromy. There are
two minor global issues with this, one being the extension of B̄ over one point
at infinity, the other homological two-divisibility of B̄. The latter follows by
an a priori computation of the possible numbers of singular fibers of each
type, of the critical points of B̄ and their relation to the homology class of B̄.
The first issue can be resolved by closing up B̄ either in the trivial or in the
non-trivial S2-bundle over S2.

6.4 Symplectic Noether–Horikawa Surfaces

A simple, but important observation is that any of the branch surfaces B̃ ⊂ P̃
are symplectic with respect to ωP̃ + kp̃∗ωS2 , for k � 0. Here ωP̃ and ωS2

are any Kähler structures on P̃ and on S2, and P̃ → P resolves the tacnodes
of B̄ ⊂ P . Thus the question whether a hyperelliptic Lefschetz fibrations is
isomorphic (as a Lefschetz fibration) to a holomorphic one, is equivalent to
asking if B̃ can be deformed to a holomorphic curve within the class of branch
surfaces in P̃ .

For the understanding of symplectic Lefschetz fibrations this point of view
is certainly limited for the following two reasons. First, it is not true that
any hyperelliptic Lefschetz fibration is isomorphic to a holomorphic one. For
example, [OzSt] shows that fiber sums of two copies of a certain genus-2
Lefschetz fibration produce infinitely many pairwise non-homeomorphic sym-
plectic 4-manifolds of which only finitely many can be realized as complex
manifolds. And second, the general classification of holomorphic branch curves
up to isotopy, hence of hyperelliptic holomorphic Lefschetz fibrations, is com-
plicated, see e.g. [Ch].

On the other hand, the complex geometry becomes regular in a certain
stable range, when the deformation theory of the branch curve is always un-
obstructed. This is the case when the total number µ of singular fibers is much
larger than the number t of reducible singular fibers. In the genus-2 case, the
discussions in [Ch] suggest µ > 18t as this stable range. The example of [OzSt]
has µ = 4t. So in our opinion, the holomorphic point of view is appropriate
for a classification in a certain stable range.

Conjecture 6.2 For any g there exists an integer Ng such that any hyperel-
liptic symplectic genus-g Lefschetz fibration with µ singular fibers of which t
are reducible, and such that

µ > Ngt,

is isomorphic to a holomorphic one.
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The holomorphic classification in the stable range should in turn be simple.
We expect that there is only a very small number of deformation classes of
holomorphic genus-g Lefschetz fibrations with fixed numbers and types of sin-
gular fibers (given by the genera of its irreducible components), distinguished
by topological invariants of the total space such as Euler characteristic and
signature.

The conjecture in particular says that any hyperelliptic Lefschetz fibration
with reducible fibers is holomorphic. By the discussion above this is equivalent
to saying that each smooth branch surface (no tacnodes) in a rational ruled
surface is isotopic as branch surface to a holomorphic curve. The main theorem
of these lectures Theorem 9.1 says that this is true for connected B̄ provided
deg(B̄ → S2) ≤ 7. If B̄ is disconnected it is either a product, or it has precisely
two components and one of them is a section. In the disconnected case the
monodromy representation does not act transitively on the set of strands,
while this is true in the case with connected B̄. (With hindsight we will even
see that in the connected case the monodromy representation is surjective.) In
any case, we say the case with connected B̄ has transitive monodromy. Then
we have the following:

Theorem 6.3 [SiTi3] A Lefschetz fibration with only irreducible singular
fibers of genus two, or of genus one with a section, and with transitive mon-
odromy is isomorphic to a holomorphic Lefschetz fibration.

By the standard technique of degeneration to nodal curves (see [Te] for a
survey) it is not hard to compute the braid monodromy for smooth algebraic
branch curves in CP

1-bundles over CP
1, i.e. in Hirzebruch surfaces Fk, see

[Ch].

Proposition 6.4 The braid monodromy word of a smooth algebraic curve
B̄ ⊂ Fk of degree d and with µ simple critical points is Hurwitz-equivalent to
one of the following:

1. (σ1 . . . σd−1σd−1 . . . σ1)
µ

2d−2 (B̄ connected and k even)
2. (σ1 . . . σd−1σd−1 . . . σ1)

µ−d(d−1)
2d−2 (σ1 . . . σd−1)d (B̄ connected and k odd)

3. (σ1 . . . σd−2)
µ

d−2 (B̄ disconnected; k = 2d)

Taken together this gives a complete classification of symplectic Lefschetz
fibrations with only irreducible singular fibers and transitive monodromy in
genus two.

In the non-hyperelliptic case it is not clear what an analogue of Conjec-
ture 6.2 should be. Any symplectic manifold arises as total space of a sym-
plectic Lefschetz fibration without reducible singular fibers, after blowing up
finitely many points [Do, Sm2]. Thus the absence of reducible singular fibers
alone certainly does not suffice as obstruction to holomorphicity.

By purely braid-theoretic methods Auroux very recently achieved the fol-
lowing beautiful stable classification result:
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Theorem 6.5 [Au2] For each g there exists a universal genus-g Lefschetz
fibration π0

g with the following property: Given two genus-g Lefschetz fibrations
πi : Mi → S2, i = 1, 2, with the same numbers of reducible fibers then the
fiber connected sums of πi with sufficiently many copies of π0

g are isomorphic
Lefschetz fibrations, provided

1. there exist sections Σi ⊂Mi with the same self-intersection numbers, and
2. M1 and M2 have the same Euler number.

This refines a previous, slightly simpler result by the same author for the
genus 2 case [Au1], building on Theorem 6.3.

7 The C 0-Compactness Theorem
for Pseudo-Holomorphic Curves

In this section we discuss a compactness theorem for J-holomorphic maps in
the case that J is only assumed to be continuous. Such a compactness theorem
was first due to Gromov [Gv] and was further discussed by Parker-Wolfson,
Pansu, Ye and Ruan-Tian [PrWo,Pn,Ye,RuTi]. For the reader’s convenience,
we will present a proof of this compactness theorem and emphasize that it
depends only on the C 0-norm of the involved almost complex structures.
Our proof basically follows [Ti], where further smoothness was discussed. We
should point out that the dependence on a weaker norm for the almost complex
structures is crucial in our study of the symplectic isotopy problem.

7.1 Statement of Theorem and Conventions

First we note that in this section by a J-holomorphic map we mean a Hölder
continuous (C 0,α, 0 < α < 1) map from a Riemann surface Σ into M whose
derivative is L2-bounded and which satisfies the J-holomorphicity equation in
the distributional sense. Explicitly, the last phrase says that for any smooth
vector field X on M with compact support in a neighborhood of f(Σ) and
any smooth vector field v with compact support in Σ,

∫

Σ

g
(
X,Df(v) + J ·Df(jΣ(v))

)
dz = 0,

where jΣ denotes the conformal structure of Σ. This coincides with the stan-
dard J-holomorphicity equation whenever f is smooth. By our assumption on
f , any L2-section of f∗TM over Σ can be approximated in the L2-topology
by the pull-back of a locally constant vector field on M , so it follows that
the above equation for f also holds when X is replaced by any L2-section of
f∗TM .

As before, we denote by (M,ω) a compact symplectic manifold and by g a
fixed Riemannian metric. Let Ji be a sequence of continuous almost complex
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structures onM converging to J∞ in the C 0-topology and uniformly tamed in
the following sense: There exists a constant c > 0 such that for any X ∈ TM

and any i
cg(X,X) ≤ ω(X,JiX) ≤ c−1g(X,X). (7.1)

Here is the main result of this section.

Theorem 7.1 Let (M,ω) and g be as above. Assume that Σi is a sequence
of Riemann surfaces of fixed genus and fi : Σi →M are Ji-holomorphic with
uniformly bounded homology classes fi∗[Σi] ∈ H2(M,Z).

Then there is a connected singular Riemann surface Σ∞ with finitely many
irreducible components Σ∞,a, and smooth maps φi : Σi → Σ∞ such that the
following holds:

1. φi is invertible on the pre-image of the regular part of Σ∞
2. A subsequence of fi ◦ φ−1

i converges to a J∞-holomorphic map f∞ on the
regular part of Σ∞ in the C 0-topology

3. Each f∞|Σ∞,a
extends to a J∞-holomorphic map from Σ∞,a into M , and

the homology classes fi∗[Σi] converge to f∞∗[Σ∞] in H2(M,Z)

The rest of this section is devoted to the proof. We start with the mono-
tonicity formula for pseudo-holomorphic maps.

7.2 The Monotonicity Formula for Pseudo-Holomorphic Maps

For notational simplicity we will denote by J one of the almost complex
structures Ji or J∞. Let I and gstan denote the standard almost complex
structure and standard flat Riemannian metric on R

2n, respectively. By (7.1),
for any η > 0 there is a uniform δη such that for any geodesic ball BR(p)
(p ∈M and R ≤ δη), there is a C 1-diffeomorphism φ : BR(p) → BR(0) ⊂ R

2n

such that
‖J − φ∗I‖C 0(BR(p)) ≤ η, (7.2)

where norms are taken with respect to g. We may further assume that ‖g −
φ∗gstan‖C 0 ≤ C for some uniform constant C.

Denote by ∆r the disk in C with center at the origin and radius r, and
∆ = ∆1. Throughout the proof c will be a uniform constant whose actual
value may vary.

Lemma 7.2 There is an ε > 0 such that for any α ∈ (0, 1) and any J-
holomorphic map f : ∆r →M (r > 0) with

∫
∆r

|Df |2gdz ≤ ε, we have
∫

Br′ (q)

|Df |2gdz ≤ cαr′2α, ∀q ∈ ∆r/2 and r′ ≤ r/4, (7.3)

Moreover, we have

diamf(∆r′/2) ≤ cα
√
ε

(
r′

r

)α

. (7.4)

Here cα is a uniform constant which may depend on α.
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Proof. Since all estimates are scaling-invariant, we may assume r = 1. Let
η > 0 be a sufficiently small positive number and let δη be given as in (7.2).
For simplicity, we will write δ for δη and identify BR(p), p = f(0), with
BR(0) ⊂ R

2n by the diffeomorphism φ in (7.2). Because g and φ∗gstan are
uniformly equivalent we may then also replace | . |g in the statement by the
standard norm | . | in R

n. Choose any ρ0 ≤ 1
2 so that f(B2ρ0(0)) ⊂ Bδ(p).

As input to Morrey’s Lemma (see e.g. [GiTr], Lemma 12.2) we now derive a
growth condition for the local L2-norm of Df at a fixed y ∈ Bρ0(0), see (7.6).

In polar coordinates (r, θ) centered at y, the Cauchy–Riemann equation
becomes

∂f

∂r
+

1
r
J
∂f

∂θ
= 0,

and |Df |2 = |∂rf |2 + |r−1∂θf |2. In particular, both |∂rf |2 and |r−1∂θf |2 are
close to 1

2 |Df |2:
∣
∣2|∂rf |2 − |Df |2

∣
∣ =

∣
∣|I∂rf |2 − |r−1∂θf |2

∣
∣

≤
∣
∣(J − I)∂rf

∣
∣2 +

∣
∣|J∂rf |2 − |r−1∂θf |2

∣
∣ ≤ η|Df |2, (7.5)

∣
∣2|r−1∂θf |2 − |Df |2

∣
∣ ≤ η|Df |2.

We also obtain the pointwise estimate

0 =
∣
∣∂rf + r−1J∂θf

∣
∣2 =

∣
∣∂rf + r−1I∂θf + r−1(J − I)∂θf

∣
∣2

=
∣
∣∂rf+r−1I∂θf

∣
∣2+2

〈
∂rf+r−1I∂θf, r

−1(J − I)∂θf
〉
+
∣
∣r−1(J − I)∂θf

∣
∣2

≥
∣
∣∂rf

∣
∣2 + 2

〈
∂rf, r

−1I∂θf
〉

+
∣
∣r−1I∂θf

∣
∣2 − 2η ·

(
|∂rf | + |r−1∂θf |

)
|r−1∂θf |

≥ (1 − 4η)
∣
∣Df

∣
∣2 + 2

〈
∂rf, r

−1I∂θf
〉
.

Then integrating by parts twice, we have for ρ ≤ ρ0 and any constant vector
λ ∈ R

n,

0 ≥ (1 − 4η)
∫

Bρ(y)

∣
∣Df

∣
∣2rdrdθ + 2

∫ ρ

0

∫ 2π

0

〈∂f

∂r
, I(
∂f

∂θ
)
〉
drdθ

= (1 − 4η)
∫

Bρ(y)

∣
∣Df

∣
∣2rdrdθ + 2

∫ 2π

0

〈
f − λ, I(∂f

∂θ
)
〉
(ρ, θ)dθ

−2
∫ ρ

0

∫ 2π

0

〈
f − λ, I( ∂

2f

∂r∂θ
)
〉
drdθ

= (1 − 4η)
∫

Bρ(y)

∣
∣Df

∣
∣2rdrdθ + 2

∫ 2π

0

〈
f − λ, I(∂f

∂θ
)
〉
(ρ, θ)dθ

+2
∫ ρ

0

∫ 2π

0

〈∂f

∂θ
, I(
∂f

∂r
)
〉
drdθ.

The last term gives another (1 − 2η)
∫

Bρ(y)

∣
∣Df

∣
∣2rdrdθ by the following:
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2r−1
〈
∂θf, I∂rf

〉
=
〈
r−1∂θf, I∂rf

〉
−
〈
r−1I∂θf, ∂rf

〉

≥ −2
∣
∣Df

∣
∣2 · η +

〈
r−1∂θf, J∂rf

〉
+
〈
r−1J∂θf, ∂rf

〉

= −2
∣
∣Df

∣
∣2 · η +

∣
∣r−1∂θf

∣
∣2 +

∣
∣∂rf

∣
∣2 = (1 − 2η)

∣
∣Df

∣
∣2.

It follows that

(1 − 3η)
∫

Bρ(y)

∣
∣Df

∣
∣2rdrdθ ≤ −

∫ 2π

0

〈f − λ, I(∂f
∂θ

)
〉
dθ.

≤
(∫ 2π

0

|f − λ|2dθ
)1/2

·
(∫ 2π

0

∣
∣
∣
∣
∂f

∂θ

∣
∣
∣
∣

2

dθ
)1/2

.

Now choose

λ =
1
2π

∫ 2π

0

fdθ.

Then by the Poincaré inequality on the unit circle, we have
∫ 2π

0

|f − λ|2dθ ≤
∫ 2π

0

∣
∣
∣
∣
∂f

∂θ

∣
∣
∣
∣

2

dθ ≤ ρ2
∫ 2π

0

∣
∣
∣
∣r

−1 ∂f

∂θ

∣
∣
∣
∣

2

dθ.

Moreover, |r−1∂θf |2 ≤ 1+η
2 |Df |2 by (7.5) and 1−3η

1+η ≥ 1 − 4η. Plugging all
this into the previous inequality gives

(1 − 4η)
∫

Bρ(y)

|Df |2rdrdθ ≤ ρ2

2

∫ 2π

0

|Df |2dθ.

But
∂

∂ρ

∫

Bρ(y)

|Df |2rdrdθ = ρ

∫ 2π

0

|Df |2dθ,

so the above is the same as

2(1 − 4η)
∫

Bρ(y)

|Df |2rdrdθ ≤ ρ ∂
∂ρ

∫

Bρ(y)

|Df |2rdrdθ,

that is,
∂

∂ρ

(

ρ−2(1−4η)

∫

Bρ(y)

|Df |2rdrdθ
)

≥ 0.

This implies, for any ρ < ρ0 and y ∈ Bρ0(0),
∫

Bρ(y)

|Df |2rdrdθ ≤ c
( ρ

ρ0

)2(1−4η)
∫

∆

|Df |2rdrdθ, (7.6)

where c is a uniform constant. It follows from this and Morrey’s lemma that

sup
x,y∈∆ρ0

|f(x) − f(y)|
|x− y|1−4η

≤ cηρ−1+4η
0

(∫

∆

|Df |2rdrdθ
)1/2

,
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where cη is some uniform constant depending only on η. In particular, choosing
η ≤ 1/8, we obtain for x, y ∈ ∆ρ0

|f(x) − f(y)| ≤ cη

( |x− y|
ρ0

)1/2

·
√
ε ≤ cη

√
2
√
ε.

Thus the diameter of f(∆ρ0) is bounded by c
√
ε.

It remains to prove that if ε is sufficiently small, then f(∆1/2) is contained
in a ball of radius δ. In fact, we can then set ρ0 = 1/2 above and conclude
the desired uniform estimates for α = 1 − 4η. For any x ∈ ∆, define

t(x) = sup
{
t ∈ [0, 1/2]

∣
∣ diam(f(Bt(1−|x|)(x))) ≤ δ

}
.

If the above claim is false then t(0) < 1/2. Let x0 ∈ ∆1/2 be such that
t(x0) = inf t(x) < 1/2. Set a(x) = t(x)(1 − |x|). Then for any x ∈ Ba(x0)(x0),
we have

a(x) ≥ t(x0)(1 − |x|) ≥ a(x0) − t(x0)|x− x0| > a(x0) − t(x0)a(x0) >
1
2
a(x0).

This implies Ba(x)(x) ⊃ Ba(x0)/2(x) and thus, from the above diameter esti-
mate, for any x ∈ Ba(x0)(x0), we have

diam(f(Ba(x0)/2(x))) ≤ c
√
ε.

It follows that
diam(f(Ba(x0)(x0))) ≤ 2c

√
ε.

Since the constant c here depends only on δ, we get a contradiction if ε is
sufficiently small. The claim is proved.

7.3 A Removable Singularities Theorem

As an application of the Monotonicity Lemma we derive the following sort of
Uhlenbeck removable singularity theorem under the condition that J is only
continuous as described above.

Proposition 7.3 Let (M,ω) and J be as above. If f : ∆r0\{0} → M is
a J-holomorphic map with

∫
∆r0

|Df |2gdz < ∞, then f extends to a Hölder
continuous map from ∆ into M .

Proof. Fix any α ∈ (0, 1). By choosing r0 smaller, we may assume
∫

∆r0

|Df |2gdz < ε,

where ε is as in Lemma 7.2.
Let x, y ∈ ∆r0/2 with |y| ≤ |x|, say. If |x− y| ≤ |x|/2, then by Lemma 7.2

applied to the restriction of f to Br0/2(x) ⊂ ∆r0 , we have
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d(f(x), f(y)) ≤ diam(f(B|x−y|(x))) ≤ 2cα
√
ε

(
|x− y|
r0

)α

.

If |x−y| > |x|/2 ≥ |y|/2, choose z such that it is collinear to x and has |z| = |y|.
We can cover ∂B|y|(0) by 12 balls of radius |y|/2, so applying Lemma 7.2 at
most 12 times, we get

d(f(z), f(y)) ≤ 12cα
√
ε

(
|y|
r0

)α

≤ 24cα
√
ε

(
|x− y|
r0

)α

.

Next we can find finitely many balls B|x|/2(x0), . . . , B|x|/2k(xk) such that
x0 = x, xk = z and xi+1 ∈ B|xi/2|(xi). Then applying Lemma 7.2, we get

d(f(z), f(x)) ≤
(
1 + 1

2 + . . .+ 1
2k−1

)
cα

√
ε

(
|x|
r0

)α

≤ 4cα
√
ε

(
|x− y|
r0

)α

.

Hence,

d(f(x), f(y)) ≤ 28cα
√
ε

(
|x− y|
r0

)α

.

It follows that f extends to a Hölder continuous map from ∆r0/2 to M .

7.4 Proof of the Theorem

Now we are in position to prove Theorem 7.1.
First we observe: There is a uniform constant c depending only on g and

[ω](fi∗[Σi]) such that for any fi,
∫

Σi

|Dfi|2gdz ≤ c.

Therefore, the L2-norm of Dfi is uniformly bounded.
Next we observe: If ε in Lemma 7.2 is sufficiently small, say c1/2

√
ε ≤ δ1/2,

then for each i, either fi is a constant map or
∫

Σi

|Dfi|2gdz ≥ ε > 0.

This can be seen as follows: If the above inequality is reversed, Lemma 7.2
implies that the image fi(Σi) lies in a Euclidean ball; on a ball the symplectic
form ω is exact and so the energy is zero, that is, fi is constant.

Consider the following class of metrics hi on the regular part of Σi. The
metrics hi have uniformly bounded geometry, namely, for each p ∈ Σi there
is a local conformal coordinate chart (U, z) of Σα containing p such that U is
identified with the unit ball ∆ and

hi|U = eϕdzdz̄
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for some ϕ(z) satisfying:

‖ϕ‖C k(U) ≤ ck, for any k > 0,

where ck are uniform constants independent of i. We also require that there
are finitely many cylinder-like necks Ni,a ⊂ Σi (a = 1, . . . , ni) satisfying:
(1) ni are uniformly bounded independent of α.
(2) The complement Σi\

⋃
aNi,a is covered by finitely many geodesic balls

BR(pi,j) (1 ≤ j ≤ mi) of hi in Σi, where R and mi are uniformly bounded.
(3) Each Ni,a is diffeomorphic to a cylinder of the form S1 × (α, β) (α and β
may be ±∞) satisfying: If s, t denote the standard coordinates of S1 × [0, β)
or S1 × (α, 0], then

hi|Ni,a
= eϕ(ds2 + dt2),

where ϕ is a smooth function satisfying uniform bounds as stated above.
We will say that such a hi is admissible. We will call {hi} uniformly ad-

missible if all hi are admissible with uniform constants R, ck, etc.
Admissible metrics always exist on any sequence Σi of Riemann surfaces

of the same genus. We will start with a fixed sequence of uniformly admissible
metrics hi on Σi. We will introduce a new sequence of uniformly admissible
metrics h̃i on Σi such that there is a uniform bound on the gradient of fi.
Once this is done, the theorem follows easily.

We will define h̃i by induction.
Set

ri = inf
{
r
∣
∣
∣

∫

Br(x,hi)

|Dfi|2hi,gdz ≥ ε for some x ∈ Σi

}
.

Here | · |h,g denotes the norm induced by g on M and h on the domain. If ri is
uniformly bounded from below, the induction stops and we just take h̃i = hi.
Then our main theorem follows from Lemma 7.2 and standard convergence
theory.

Now assume that ri tends to zero as i goes to infinity. By going over to a
subsequence we may assume ri ≤ 1/2 for all i. Let p1i be the point where ri is
attained. Let z be a local complex coordinate on Σi centered at p1i and with
values containing 2∆ ⊂ C. Define h1

i = hi outside the region where |z| < 1
and

h1
i =

r−2
i

χi(r−2
i |z|2)

hi for |z| < 1.

Here χi : R → R is a cut-off function satisfying: χ(t) = 1 for t ≤ 1, χi(t) =
t− 1/2 for t ∈ [2, r−2

i ], and χi(t) = r−2
i for t ≥ r−2

i + 1; we may also assume
that 0 ≤ χ′i(t) ≤ 1. Clearly, we have h1

i ≥ hi and it holds hi(z) = r−2
i hi for

|z| ≤ r2i and hi(z) = hi for |z| ≥ r−2
i +1. It is easy to check that the sequence

h1
i is uniformly admissible. Moreover, we have

∫

B1(p1
i ,h1

i )

|Dfi|2h1
i ,gdz = ε
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where B1(p1i , h
1
i ) denotes the geodesic ball of radius 1 and centered at pi with

respect to the metric h1
i .

Next we define

r1i = inf
{
r
∣
∣
∣

∫

Br(x,h1
i )

|Dfi|2h1
i ,gdz ≥ ε for some x ∈ Σi

}
.

If r1i is uniformly bounded from below, the induction stops and we just take
h̃i = h1

i . Then our main theorem again follows from Lemma 7.2 and standard
convergence theory. Otherwise, by taking a subsequence if necessary, we may
assume that r1i → 0 as i→ ∞ and r1i ≤ 1/2 for all i. Let p2i be the point where
r1i is attained. Then for i sufficiently large, p2i ∈ Σ\B2(p1i , h

1
i ). For simplicity,

we assume that this is true for all i. Now we can get h2
i by repeating the

above construction with hi replaced by h1
i . Clearly, h2

i coincides with h1
i on

B1(pi, h
1
i ), so

B1(p1i , h
2
i ) = B1(p1i , h

1
i ).

We also have B1(p2i , h
2
i ) ∩B1(p1i , h

1
i ) = ∅ and

∫

B1(p2
i ,h2

i )

|Dfi|2h2
i ,gdz = ε > 0.

We can continue this process to construct metrics hL
i (L ≥ 2) and find

points pα
i (α = 1, . . . , L) such that B1(pα

i , h
L
i )∩B1(p

β
i , h

L
i ) = ∅ for any α �= β

and ∫

B1(pα
i ,hL

i )

|Dfi|2hL
i ,gdz = ε > 0.

It follows that
c ≥

∫

Σi

|Dfi|2hL
i ,gdz ≥ Lε.

Hence the process has to stop at some L. We obtain h̃i = hL
i and a uniform

r0 > 0 such that for any x ∈ Σi,
∫

Br0 (x,h̃i)

|Dfi|2h̃i,g
dz < ε.

By uniform admissibility of h̃i, we may choose m and R such that there are
finitely many cylinder-like necks Ni,α ⊂ Σi (α = 1, . . . , l) satisfying:
(1) Σi\

⋃
αNi,α is covered by geodesic balls BR(qij , h̃i) (1 ≤ j ≤ m) in Σi

(2) Each Ni,α is diffeomorphic to a cylinder of the form S1 × (ai,α, bi,α) (ai,α

and bi,α may be ±∞)
Now by taking a subsequence if necessary, we may assume that for each

j, the sequence (Σi, h̃i, qij) of pointed metric spaces converges to a Riemann
surface Σ0

∞,j . Such a limit Σ0
∞,j is of the form

Σ∞,j\{pj1, . . . , pjγj
},
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where Σ∞,j is a compact Riemann surface. More precisely, there is a natural
admissible metric h̃∞,j on each Σ0

∞,j and a point q∞j in Σ0
∞,j , such that for

any fixed r > 0, when i is sufficiently large, there is a diffeomorphism φi,r from
Br(q∞j , h̃∞,j) onto Br(qij , h̃i) satisfying: φi,r(q∞j) = qij and the pull-backs
φ∗i,rh̃i converge to h̃∞,j uniformly in the C∞-topology over Br(q∞j , h̃∞,j).
Note that such a convergence of h̃i is assured by uniform admissibility.

Next we put together all these Σ∞,j to form a connected curve Σ′
∞ as

follows: For any two components Σ∞,j and Σ∞,j′ , we identify punctures pjs ∈
Σ∞,j and pj′s′ ∈ Σ∞,j′ (j may be equal to j′) if for any sufficiently large i and
r, the boundaries of Br(qij , h̃i) and Br(qij′ , h̃i) specified above are contained
in a cylindrical neck Ni,α. In this way, we get a connected curve Σ∞ (not
necessarily stable) since each Σi is connected.

Since we have ∫

Br0 (x,h̃i)

|Dfi|2h̃i,g
dz < ε,

by taking a subsequence if necessary, we may assume that fi converge to a
J-holomorphic map f∞ from

⋃
j Σ

0
∞,j intoM . By Proposition 7.3, f∞ extends

to a Hölder continuous J-holomorphic map from Σ∞ into M . There is clearly
also a limiting metric h̃∞ on Σ∞, and Σ∞ has the same genus as Σi for large i.

It remains to show that the homology class of f∞ is the same as that of
fi. By convergence we have

∫

Σ∞

|Df∞|2
h̃∞,g

dz = lim
r→∞

lim
i→∞

∫

⋃
j Br(qij ,h̃i)

|Dfi|2h̃i,g
dz.

In fact, since the complement of
⋃

j Br(qij , h̃i) in Σi is contained in the union
of cylindrical necks Ni,α, it suffices to show that for each i, if Ni,α = S1×(a, b),
then

lim
r→∞

lim
i→∞

∫

S1×(a+r,b−r)

|Dfi|2h̃i,g
dz = 0.

This can be seen as follows: By our choice of h̃i, we know that for any p ∈ Ni,α,
∫

B1(p,h̃i)

|Dfi|2h̃i,g
dz ≤ ε.

It follows from Lemma 7.2 that

diam(fi(B2(p, h̃i))) ≤ c
√∫

B4(p,h̃i)

|Dfi|2h̃i,g
dz,

where c is a uniform constant. Since ε is small, both fi(S1 × {a + r}) and
fi(S1 × {b − r}) are contained in geodesic balls of radius c

√
ε. Moreover, by

varying r slightly, we may assume that
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∫

S1×(a+r,b−r)

|Dfi|2h̃i,g
dz ≤ 10

∫

B4(p,h̃i)

|Dfi|2h̃i,g
dz.

It follows that there are two smooth maps uij : ∆1 →M (j = 1, 2) with

ui1|∂∆1 = fi|S1×{a+r}, ui2|∂∆1 = fi|S1×{b−r}.

and such that
∫

∆1

|Dui1|2h̃i,g
≤ c

∫

S1×(a+r−2,a+r+2))

|Dfi|2h̃i,g
dz

and ∫

∆1

|Dui2|2h̃i,g
≤ c

∫

S1×(b−r−2,b−r+2))

|Dfi|2h̃i,g
dz,

where c is a uniform constant. The maps fi|Ni,α
and uij can be easily glued

together to form a continuous map from S2 intoM . Since each fi|S1×[d−1,d+1],
where d ∈ (a+ r, b− r), is contained in a small geodesic ball of M , this map
must be null homologous. It follows

∫

S1×(a+r,b−r)

|Dfi|2h̃i,g
dz =

∫

S1×(a+r,b−r)

f∗i ω =
∫

∆1

u∗i1ω −
∫

∆1

u∗i2ω.

Therefore, we have
∫

S1×(a+r,b−r)

|Dfi|2h̃i,g
dz ≤ c

∫

S1×(a+r−2,a+r+2)∪(b−r−2,b−r+2)

|Dfi|2h̃i,g
dz.

This implies that the homology classes of fi converge to the homology class
of f∞. So Theorem 7.1 is proved. �	

Remark 7.4 If (Σi, fi) are stable maps, we may construct a stable limit
(Σ∞, f∞). Observe that Σ′

∞ may have components Σ∞,j where f∞ restricts
to a constant map and which are conformal to CP

1 and contain fewer than
three other components. There are two possibilities for such Σ∞,j ’s. If a Σ∞,j

attaches to only one other component, we simply dropΣ∞,j from the construc-
tion; if Σ∞,j contains exactly two other components, then we contract Σ∞,j

and identify those points where Σ∞,j intersects with the other two compo-
nents. Carrying out this process inductively, we eventually obtain a connected
curve Σ∞ such that the induced f∞ : Σ∞ →M is a stable map.

8 Second Variation of the ∂̄J-Equation and Applications

In Sect. 2 we saw that one prime difficulty in proving the isotopy theorem is
the existence of a smoothing of a singular pseudo-holomorphic curve. Under
positivity assumptions nodal curves can always be smoothed according to
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Proposition 3.5. So to solve this problem it remains to find criteria when a
pseudo-holomorphic map ϕ : Σ →M can be deformed to an immersion with
only transversal branches. This seems generally a difficult problem, but over
generic paths of almost complex structures miracles happen.

The content of this section is the technical heart of Shevchishin’s work
in [Sh]. The purpose of our presentation is to make this work more accessible
by specializing to what we actually need.

8.1 Comparisons of First and Second Variations

Any of our moduli spaces M of pseudo-holomorphic maps is the zero set
of a transverse section s of a Banach bundle E over a Banach manifold B.
This ambient Banach manifold also comes with a submersion π to a Banach
manifold of almost complex structures. The purpose of this paragraph is to
relate the first and second variations of s with those of π.

After choosing a local trivialization of the Banach bundle we have the ab-
stract situation of two submersions of Banach manifolds. For the first variation
the following result holds.

Proposition 8.1 Let Φ : X → Y , Ψ : X → Z be locally split submersions
of Banach manifolds. For P ∈ X let M = Φ−1(Φ(P )), F = Ψ−1(Ψ(P )) be
the fibers through P and Φ̄ = Φ|F , Ψ̄ = Ψ|M the restrictions.

Then there exist canonical isomorphisms

kern(DΦ̄|P ) = kern(DΦ|P ) ∩ kern(DΨ|P ) = kern(DΨ̄|P ),
coker(DΦ̄|P ) = (TY ,Φ(P ) ⊕ TZ ,Ψ(P ))/(DΦ|P ,DΨ|P )(TX ,P ) = coker(DΨ̄|P ).

Proof. Let X = TX ,P , Y = TY ,Φ(P ), Z = TZ ,Ψ(P ), M = kernDΦ = TM ,P ,
F = kernDΨ = TF ,P . The claim follows from the following commutative
diagram with exact rows.

0 → kern(DΦ̄|P ) → F
DΦ̄|P−−−−→ Y → coker(DΦ̄|P ) → 0

∥
∥
∥

⏐
⏐
�

⏐
⏐
�

⏐
⏐
��

0 → F ∩M → X
(DΦ|P ,DΨ|P )
−−−−−−−−−→ Y ⊕ Z → (Y ⊕ Z)/X → 0

∥
∥
∥

2
⏐
⏐

2
⏐
⏐

2
⏐
⏐�

0 → kern(DΨ̄|P ) → M
DΨ̄|P−−−−→ Z → coker(DΨ̄|P ) → 0

�	
As an application of this lemma we can detect critical points of the pro-

jection M → J by looking at critical points of s for fixed almost complex
structure. Note also that the linearization of a section B → E of a Banach
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bundle at any point P of its zero set is a well-defined map TB,P → EP . In
fact, if Q ∈ EP lies on the zero section then TE ,Q � TB,P ⊕ EP canonically.

The intrinsic meaning of the second variation is less apparent. In the no-
tation of the proposition we are interested in situations when Ψ |M is totally
degenerate at P , that is, if TM ,P = TM ,P ∩TF ,P . Now in any case the second
variations of Φ̄ and Ψ̄ induce two bilinear maps

β1 : (TM ,P ∩ TF ,P ) × (TM ,P ∩ TF ,P ) −→ coker(DΦ̄|P )
β2 : (TM ,P ∩ TF ,P ) × (TM ,P ∩ TF ,P ) −→ coker(DΨ̄|P ),

as follows. For v, w ∈ TM ,P ∩ TF ,P let ṽ, w̃ be local sections around P of TF

and TM , respectively, with ṽ(P ) = v, w̃(P ) = w. Then DΦ̄ · ṽ is a section αṽ

of Φ̄∗TY with αṽ(P ) = 0 since ṽ(P ) = v lies in TM ,P = kernDΦ. If

prY : TΦ̄∗TY ,P = TF ,P ⊕ TY ,Φ(P ) −→ TY ,Φ(P )

denotes the projection define

β1(v, w) = prY (Dαṽ · w),

viewed modulo DΦ̄(TP F ). This definition does not depend on the choice of
extension ṽ by applying the following lemma with ṽ the difference of two
extensions.

Lemma 8.2 If ṽ(P ) = 0 then prY (Dαṽ · w) ∈ im(DΦ̄).

Proof. In the local situation of open sets in Banach spaces X ⊂ X = TX ,P ,
Y ⊂ Y = TY ,Φ(P ), Z ⊂ Z = TZ ,Ψ(P ) we have

prY (Dαṽ · w) = ∂w(∂ṽΦ) = ∂2
wṽ(P )Φ+DΦ · ∂wṽ.

The claim follows because ṽ(P ) = 0 and ∂wṽ ∈ TP F . �	
The analogous definition with Φ and Ψ swapped defines β2.

Proposition 8.3 Let Φ : X → Y , Ψ : X → Z be submersions of Banach
manifolds with splittable differentials. For P ∈ X let M = Φ−1(Φ(P )), F =
Ψ−1(Ψ(P )) be the fibers through P and Φ̄ = Φ|F , Ψ̄ = Ψ |M the restrictions.
Let Λ : coker(DΦ̄|P ) → coker(DΨ̄|P ) denote the canonical isomorphism of
Proposition 8.1 and β1, β2 the bilinear maps introduced above. Then

β2 = Λ ◦ β1.

Proof. In the local situation of the proofs of Proposition 8.1 and Lemma 8.2,
by the definition of ṽ, w̃ it holds ∂ṽΨ = 0, ∂w̃Φ = 0. Hence

(DΦ|P ,DΨ|P )[w̃, ṽ] =
(
DΦ|P [w̃, ṽ],DΨ|P [w̃, ṽ]

)

=
(
∂w(∂ṽΦ) − ∂v(∂w̃Φ), ∂w(∂ṽΨ) − ∂v(∂w̃Ψ)

)

= (β1(v, w), 0) − (0, β2(v, w)).

Hence β1(v, w) and β2(v, w) induce the same element in (Y ⊕ Z)/X, that is,
β2 = Λ ◦ β1. �	
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8.2 Moduli Spaces of Pseudo-Holomorphic Curves
with Prescribed Singularities

Let ϕ : Σ → (M,J) be a pseudo-holomorphic map with Dϕ vanishing at P
of order µ− 1 > 0. Then C = imϕ has a singular point at ϕ(0). The number
µ is the multiplicity of the singularity, which agrees with the degree of the
composition of ϕ with a general local projection M → C with J-holomorphic
fibers. (For non-general projections this mapping degree can be larger than the
multiplicity.) Choosing charts we may assume M = C

2, Σ = ∆, ϕ(0) = 0 and
J to agree with the standard complex structure I at 0. Let j be the complex
structure on∆. Writing 0 = Dϕ+J◦Dϕ◦j = (Dϕ+I◦Dϕ◦j)+(J−I)◦Dϕ◦j
gives the estimate ∣

∣∂t̄ϕ(t)
∣
∣ ≤ c · |t|µ−1 · |ϕ|.

Thus the higher dimensional analogue of Proposition 2.13 shows that ϕ is
polynomial in t up to order 2µ − 1. It is not hard to see that this defines a
holomorphic (2µ − 1)-jet on T∆,0 with values in TM,ϕ(0). Note that this jet
generally does not determine the embedded topological type of C at ϕ(0).
In the integrable situation one needs twice the Milnor number of C at ϕ(0)
minus one coefficients to tell the topological type, and the Milnor number can
be arbitrarily large for given multiplicity.

The induced jet with values in the normal bundle Nϕ,0 (see Sect. 3.2)
vanishes either identically or to order µ + ν, 0 ≤ ν ≤ µ − 1. Define the cusp
index of ϕ at P to be µ in the former case and to equal ν ≤ µ − 1 in the
latter case. (In [Sh] the multiplicity and cusp index are called primary and
secondary cusp indices, respectively.)

For example, let ϕ : ∆ → (C2, J) be a pseudo-holomorphic singularity of
multiplicity 2. Then

ϕ(t) =
(
αt2 + βt3 + a(t), γt2 + δt3 + b(t)

)

with one of α or β non-zero and a(t) = o(|t|3), b(t) = o(|t|3). A linear coordi-

nate change transforms
(
α β
γ δ

)

to
(

1 0
0 δ

)

, and hence we may assume α = 1,

β = γ = 0 and δ = 0 or 1. Then ϕ defines the 3-jet with values in TM,ϕ(0)

represented by t �→ t2∂z + δt3∂w. Going over to N means reducing modulo
∂z. This leads to the 3-jet represented by t �→ δt3. Thus ϕ has cusp index 0
if δ �= 0 and cusp index 1 otherwise. In analogy with the integrable situation
the former singularity is called an ordinary cusp. We have seen that in this
case

ϕ(t) = (t2, t3) + o(|t|3)
in appropriate complex coordinates. We will use this below.

We can now define moduli spaces Mµ,ν with prescribed multiplicities
(µ1, . . . , µm) and cusp indices (ν1, . . . , νm), 0 ≤ νi ≤ µi, in k marked
points P1, . . . , Pm ∈ Σ, and an immersion everywhere else. A straightfor-
ward transversality argument shows that Mµ,ν is a submanifold of the total
moduli space M (without marked points) of real codimension
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2(|µ|n−m(n+ 1)) + 2(n− 1)|ν|, (8.1)

where n = dimCM . For details see [Sh], Sects. 3.2 and 3.3.

8.3 The Locus of Constant Deficiency

By the implicit function theorem critical points of the projection π : M → J
have the property that the ∂̄J -operator for fixed J is obstructed. In fact,
according to Proposition 8.1 the cokernels of the respective linearizations

D(j,ϕ,J) = Dϕ,J + J ◦Dϕ ◦ j′

and Dπ|(j,ϕ,J) are canonically isomorphic. It is therefore important to study
the stratification of M into subsets

M h1 := {(j, ϕ, J) ∈ M | dim coker(D(j,ϕ,J)) ≥ h1}.

To obtain an analytic description note that the discussion in Sect. 3.2 implies
the following:

cokerD(J,ϕ,j) = cokerDϕ,J/H
1(TΣ) = cokerDN

ϕ,J .

So in studying cokerDπ we might as well study the cokernel of the normal
∂̄-operator DN

ϕ,J .
The bundles N = Nϕ = ϕ∗TM/Dϕ(TΣ [A]) on Σ from Sect. 3.2 do not

patch to a complex line bundle on M × Σ because their degree decreases
under the presence of critical points of ϕ. However, once we restrict to Mµ,ν

the holomorphic line bundles O([A]) encoding the vanishing orders of Dϕ vary
differentiably with ϕ; hence for any µ,ν there exists a complex line bundle N
on Mµ,ν × Σ with fibers Nϕ relative Mµ,ν . For the following discussion we
therefore restrict to one such stratum Mµ,ν ⊂ M . Denote by N , F the Banach
bundles over Mµ,ν with fibersW 1,p(Nϕ) and Lp(Nϕ⊗Λ0,1), respectively. The
normal ∂̄-operators define a family of Fredholm operators

σ : N −→ F

with the property that for any x = (j, ϕ, J) ∈ Mµ,ν there is a canonical
isomorphism

cokerσx = cokerDN
ϕ,J = cokerDπ|x.

To understand the situation around some x0 = (j, ϕ, J) ∈ Mµ,ν choose a com-
plement Q ⊂ Fx0 to imσx0 and let V ⊂ Nx0 be a complement to kernσx0 .
Extend these subspaces to subbundles V ⊂ N and Q ⊂ F . (Here and in the
following we suppress the necessary restrictions to an appropriate neighbor-
hood of x0.) Then

V ⊕Q −→ F , (v, q) �−→ σ(v) + q
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is an isomorphism around x0 since this is true at x0. In particular, σ(V) ⊂ F
is a subbundle and there are canonical isomorphisms

Q �−→ F/σ(V), V �−→ F/Q.

Having set up the bundles Q and V we fit kernσx0 into a vector bundle by
setting

K := kern(N → F/Q).

By the Fredholm property of σ this is a bundle of finite rank; it contains
kernσx for any x and it is complementary to V:

K ⊕ V = N .

We claim that σ induces a section σ̄ of the finite rank bundle Hom(K,Q) with
the property that there are canonical isomorphisms

kernσx � kern σ̄x, cokerσx � coker σ̄x,

for any x ∈ Mµ,ν in the domain of our construction. In fact, this follows
readily from the Snake Lemma applied to the following commutative diagram
with exact columns and rows.

kern σ̄x kernσx
⏐
⏐
�

⏐
⏐
�

0 −−−−→ Kx −−−−→ Nx −−−−→ Nx/Kx −−−−→ 0

σ̄x

⏐
⏐
� σx

⏐
⏐
�

⏐
⏐
��

0 −−−−→ Qx −−−−→ Fx −−−−→ Fx/Qx −−−−→ 0
⏐
⏐
�

⏐
⏐
�

coker σ̄x cokerσx

(8.2)

Because σx maps Nx/Kx isomorphically to Fx/Qx we also see that

M h1

µ,ν =
{
(j, ϕ, J) ∈ Mµ,ν

∣
∣ dim cokerD(j,ϕ,J) ≥ h1

}
, h1 = dim cokerσx

equals the zero locus of σ̄ viewed as section of Hom(K,Q) locally.

Proposition 8.4 ( [Sh], Corollary 4.4.2.) M h1
µ,ν is a submanifold inside Mµ,ν

of codimension (index + h1) · h1.

Proof. This follows from the implicit function theorem once we prove that σ̄
is a transverse section for Hom(K,Q) since

rank Hom(K,Q) = (index + h1) · h1.
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To this end we look at variations at x ∈ M with ϕ and j fixed and with the
variation Js of J constant along imϕ. Note that such a path stays inside M .
The pull-back to the path of the bundles N and F with fibers

W 1,p(N) = W 1,p(ϕ∗TM )/Dϕ
(
W 1,p(TΣ)[A]

)

Lp(N ⊗ Λ0,1) = Lp(ϕ∗TM ⊗ Λ0,1)/Dϕ
(
Lp(TΣ)[A] ⊗ Λ0,1

)

are manifestly trivial. Now σ is fiberwise given by DN
ϕ,J , which in turn can be

computed by lifting a section of N to ϕ∗TM , applying

Dϕ,J = ∇ + J ◦ ∇j(.) + ∇J ◦Dj(.)ϕ

and reducing modulo Dϕ(TΣ [A]). The result of our variation is thus
(
∇J ′σ

)
(v) = (∇vJ

′) ◦Dϕ ◦ j,

written in the form lifted to ϕ∗TM . Following the discussion above we now
want to look at the derivative of the induced section σ̄ of Hom(K,Q). Write
h0 = dim kernσx, in analogy to h1 = dim cokerσx. For the construction of Q
let W ⊂ M be an open set such that ϕ−1(W ) ⊂ Σ is a unit disk and such
that there are complex-valued coordinates z, w on M with

ϕ(t) = (t, 0) for t ∈ ∆

in these coordinates. Note that Dϕ(TΣ [A]) = 〈∂z〉, so for the induced section
of N only the ∂w-part matters. Let χ be the characteristic function of ϕ−1(W )
in Σ, that is, χ|ϕ−1(W ) = 1 and suppχ ⊂ clϕ−1(W ). Then

χ∂w ⊗ dt̄ ∈ Lp(Σ,ϕ∗TM ⊗ Λ0,1).

Because ϕ is injective away from finitely many points, open sets of the form
ϕ−1(W ) span a base for the topology of Σ away from finitely many points.
Now characteristic functions span a dense subspace in Lp. We can therefore
find pairwise disjointW1, . . . ,Wh1 ⊂M such that the corresponding χj∂w⊗dt̄
span the desired complementary subspace Q of imσx.

To compute ∇J ′ σ̄ ∈ Hom(Kx,Qx) = Hom(kernσx, Q) it suffices to restrict
∇J ′σ to kernσx ⊂ Nx, and to compose with a projection

q : Fx −→ R
h1

that induces an isomorphism Q→ R
h1

. This follows from Diagram (8.2). For
q we take the map

Fx � ξ �−→
(
Im

∫

ϕ−1(Wj)

dt ∧ 〈dw, ξ〉
)

j=1,...,h1
.
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This maps χj∂w ⊗ dt̄ to a non-zero multiple of the jth unit vector. Hence q is
one-to-one on Q.

Then q ◦ ∇J ′σ maps v ∈ kernσx to

(
Im

∫

ϕ−1(Wj)

dt ∧ 〈dw,∇vJ
′ ◦Dϕ ◦ j〉

)

j=1,...,h1
.

Now consider variations of the form J ′ = gw dz̄ ⊗ ∂w in coordinates (z, w),

that is,
(

0 0
gw 0

)

in matrix notation. If v is locally represented by f∂w then

∇vJ
′ ◦Dϕ ◦ j = (fgdz̄ ⊗ ∂w) ◦Dϕ ◦ j =

√
−1fgdt̄⊗ ∂w,

and (
q ◦ ∇J ′σ

)
(v) =

(
Im

∫

ϕ−1(Wj)

√
−1fg dt ∧ dt̄

)

j=1,...,h1
.

By the identity theorem for pseudo-analytic functions the restriction map
kernσx → Lp(ϕ−1(Wj), N) is injective. Thus for each j there exist
gj1, . . . , gjh0 with support on Wj such that

kernσx −→ R
h0
, f∂w �−→

(
Im

∫

ϕ−1(Wj)

√
−1fgjk dt ∧ dt̄

)

k=1,...,h0

is an isomorphism. The corresponding variations J ′
jk of σ̄x (with support on

ϕ−1(Wj)) span Hom(kern σ̄x, Q). �	

Remark 8.5 The proof of the proposition in [Sh] has a gap for h1 > 1, as
pointed out to us at the summer school by Jean-Yves Welschinger. In this
reference Qx is canonically embedded into Lp(Σ,N∗ ⊗ Λ1,0) as kernel of the
adjoint operator. The problem is that the proof of surjectivity of the relevant
linear map

TMµ,ν ,(j,ϕ,J) −→ Hom(Kx,Qx)

relies on the fact that 〈Kx,Qx〉 spans an h0 · h1-dimensional subspace of
Lp(Σ,Λ1,0), where 〈 , 〉 is the dual pairing. Our proof shows that this is indeed
the case.

Corollary 8.6 For a general path {Jt}t∈[0,1] of almost complex structures
any critical point (j, ϕ, t) of the projection p : M{Jt} → [0, 1] is a pseudo-
holomorphic map with only ordinary cusps and such that dim cokerDN

ϕ,Jt
= 1.

Proof. This is a standard transversality argument together with dimension
counting. Note that each singular point of multiplicity µ causes
dim(kernσ(j,ϕ,Jt)) to drop by µ− 1. �	
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8.4 Second Variation at Ordinary Cusps

Corollary 8.6 leaves us with the treatment of pseudo-holomorphic maps with
only ordinary cusps and such that DN

ϕ,Jt
has one-dimensional cokernel. Then

the projection p : M{Jt} → [0, 1] is not a submersion. The maybe most in-
triguing aspect of Shevchishin’s work is that one can see quite clearly how the
presence of cusps causes these singularities. They turn out to be quadratic,
non-zero and indefinite. In particular, such a pseudo-holomorphic map always
possesses deformations with fixed almost complex structure Jt into non-critical
points of π.

Let us fit this situation into the abstract framework of Sect. 8.1. In the
notation employed there Z = (−ε, ε) is the local parameter space of the path
{Jt}, X is a neighborhood of the critical point P = (j, ϕ, t) in the pull-back
(via Z = (−ε, ε) → J ) of the ambient Banach manifold

B := Tg ×W 1,p(Σ,M) × J ,

and Y = Lp(Σ,ϕ∗TM ⊗ Λ0,1). The map Φ : X → Y is a local non-linear
∂̄J -operator obtained from s via a local trivialization of the Banach bundle E ,
while Ψ : X → Z is the projection, and Ψ̄ = p. The fiber of Φ through P is
(an open set in) M{Jt}, and the fiber of Ψ through P is the ambient Banach
manifold for MJt

.
Because Z is one-dimensional and (j, ϕ, J) is a critical point of the pro-

jection p : M{Jt} → [0, 1] it holds TM{Jt},P ⊂ TF ,P . Proposition 8.3 now
says that we can compute the second order approximation of p near P by
looking at the second order approximation of Φ restricted to F , composed
with the projection to the cokernel of the linearization. In Sect. 8.1 this sym-
metric bilinear form was denoted β1. We are going to compute the associ-
ated quadratic form. We denote tangent vectors of the relevant tangent space
TM{Jt},P ∩ TF ,P = TM{Jt},P by pairs (j′, v) with j′ a tangent vector to the
space of complex structures on Σ and v ∈W 1,p(Σ,ϕ∗TM ).

Recall that the linearization of the ∂̄J -operator for fixed almost complex
structure J is

D∂̄J : (j′, v) �−→ D(j,ϕ,J)(j′, v) = Dϕ,Jv + J ◦Dϕ ◦ j′,

where

Dϕ,Jv = ∇v + J ◦ ∇ ◦ j(v) + ∇vJ ◦Dϕ ◦ j = 2∂̄ϕ,J +R.

Near a cusp choose local coordinates z, w on M and t on Σ such that J|(0,0)

equals I, the standard complex structure on C
2, and ϕ(t) = (t2, t3)+o(|t|3) in

these coordinates. Let 0 < ε < 1 and let ρ : ∆ → [0, 1] be a smooth function
with support in |t| < 3ε/4, identically 1 for |t| < ε/4 and with |dϕ| < 3/ε.
Ultimately we will let ε tend to 0, but for the rest of the computation ε is
fixed. We consider the variation of σ along (j′, v) with



Symplectic Isotopy 329

v = Dϕ(ρ t−1∂t) = ρ t−1∂tϕ, j′ = j ◦ ∂̄(ρ t−1∂t) = it−1∂t̄ρ ∂t ⊗ dt̄.

Again we use complex notation for the complex vector bundle ϕ∗TM ⊗C TΣ .
Taking the real part reverts to real notation. Note that j′ is smooth and
supported in the annulus ε/4 < |t| < 3ε/4. For any µ ∈ C the multiple
µ · (j′, v) is indeed a tangent vector to MJt

because

Dϕ,J ◦Dϕ = ∂̄ϕ,J ◦Dϕ = Dϕ ◦ ∂̄,

since R ◦ Dϕ = 0 and by definition of the holomorphic structure on ϕ∗TM ;
taking into account pseudo-holomorphicity J ◦Dϕ◦j = −Dϕ of ϕ this implies

Dϕ,J (µv)+J ◦Dϕ◦(µj′) = (Dϕ◦ ∂̄)(µρt−1∂t)+(J ◦Dϕ◦j)
(
∂̄(µρ t−1∂t)

)
= 0,

as needed.
At this point it is instructive to connect this variation to the discussion

of the normal ∂̄-operator DN
ϕ,J in Sect. 3.2. There we identified the tangent

space of M relative J with kernDN
ϕ,J ⊕H0(N tor), see (3.4). Away from the

node the vector field v lies in Dϕ(W 1,p(TΣ)), and indeed v is a local frame
for the complex line bundle Dϕ(TΣ [A]). Thus we are dealing with a variation
whose part in kernDN

ϕ,J vanishes and which generates the skyscraper sheaf
N tor locally at the cusp.

The variation (j′, v) is concentrated in Bε(0) ⊂ Σ and we can work in our
local coordinates t, z, w. Then

v = ρt−1∂t

(
(t2, t3) + o(|t|3)

)
= ρ · (2, 3t) + o(|t|),

which can be represented by the variation

ϕs = ϕ+ sρt−1∂tϕ = ϕ+ sρ ·
(
(2, 3t) + o(|t|)

)
.

Similarly, we represent j′ by a variation of holomorphic coordinate ts of t with
associated ∂̄-operator

∂t̄s
= ∂t̄ + as∂t, as = sit−1∂t̄ρ.

The derivative with respect to s yields it−1∂t̄ρ∂t, and hence ∂̄s indeed repre-
sents j′.

The non-linear ∂̄-operator for (js, ϕs) applied to ϕs yields

∂̄sϕs =
1
2

(
Dϕs + J|ϕs

◦Dϕs ◦ js
)

= (∂t̄s
ϕs)dt̄s +

1
2
Ks,

with
Ks = (J|ϕs

− I) ◦Dϕs ◦ js.
Using dt̄s to trivialize E along the path (js, ϕs) we now compute for the second
variation
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d2

ds2

∣
∣
s=0
∂t̄s
ϕs = d2

ds2

∣
∣
s=0

(∂t̄ + as∂t)
(
ϕ+ sρ ·

(
(2, 3t) + o(|t|)

))

= it−1∂t̄ρ ·
(
ρ · 3∂w + o(1)

)
=

3i
2
t−1∂t̄ρ

2 · ∂w + t−1 · o(1),

(8.3)
and

K ′′ := d2

ds2

∣
∣
s=0
Ks = (J|ϕ−I)· d2

ds2

∣
∣
s=0

(Dϕs◦js)+∇vJ ◦∇v◦j+∇vJ ◦Dϕ◦j′.

This is non-zero only for |t| < ε, and the first two terms are bounded point-
wise, uniformly in ε. Here ∇ denotes the flat connection with respect to the
coordinates z, w. For the last term we have

|∇vJ ◦Dϕ ◦ j′| ≤ const · |t||t−1| · |∂t̄ρ| ≤ const · ε−1,

by the choice of ρ. Taken together this gives the pointwise bound

|K ′′| ≤ const · ε−1 · χε,

where χε is the characteristic function for Bε(0), that is, χε(t) = 1 for |t| < ε
and 0 otherwise.

Lemma 8.7 Let λdt ∈ kern(DN
ϕ,j)

∗ ⊂ W 1,p(N∗ ⊗ Λ1,0) and denote by Λ :
cokerDN

ϕ,j → R the associated homomorphism with kernel imDN
ϕ,j induced by

Lp(ϕ∗TM ⊗ Λ0,1) → R, γ �−→ Re
∫

Σ

〈λdt, γ〉.

Then for µ ∈ C it holds

(Λ ◦ β1)
(
µ · (j′, v), µ · (j′, v)

) ε→0−→ −3πRe(µ2)λ(∂w)(0).

Proof. The formal adjoint of DN
ϕ,j is, just as the operator itself, the sum of a

∂̄-operator and an operator of order zero:

(D∂̄J )∗ = ∂̄N∗⊗Λ1,0 +R∗.

Thus

∂̄N∗⊗Λ1,0(λdt) = −R∗(λdt) (8.4)

is uniformly bounded pointwise. By the definition of β1 and the discussion
above we need to compute
∫

Σ

〈λdt, ( d2

ds2

∣
∣
s=0
∂t̄s
ϕs)dt̄+ 1

2K
′′〉 =

3i
2

∫

Bε(0)

λ(∂w)∂t̄ρ
2t−1dt ∧ dt̄

+
∫

Bε(0)

(
o(1)t−1 + const · ε−1

)
dt ∧ dt̄.
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The second integral tends to 0 with ε. The first integral can be rewritten as
a sum of

3i
2

∫

Bε(0)

t−1ρ2∂̄
(
λ(∂w)dt

)
,

again tending to zero with ε in view of (8.4), and

−3i
2

∫

Bε(0)

t−1∂̄
(
ρ2λ(∂w)dt

)
=

3i
2

· (2πi)
(
ρ2λ(∂w)

)
(0) = −3πλ(∂w)(0).

Here the first equality follows from the Cauchy integral formula.
Our computation is clearly quadratic in rescaling (j′, v) by µ. Thus re-

placing (j′, v) by µ · (j′, v) and taking the real part gives the stated formula.
�	

Proposition 8.8 Let {Jt}t∈[0,1] be a general path of almost complex struc-
tures on a four-manifold M . Assume that P = (j, ϕ, t) is a critical point of
the projection p : M{Jt} → [0, 1] with ϕ not an immersion. Then there ex-
ists a locally closed, two-dimensional submanifold Z ⊂ M{Jt} through P with
coordinates x, y such that

p(x, y) = x2 − y2.

Moreover, Z can be chosen in such a way that the pseudo-holomorphic maps
corresponding to (x, y) �= 0 are immersions.

Proof. By Corollary 8.6 the critical points of ϕ are ordinary cusps and
dim cokerDN

ϕ,j = 1. Assume first that there is exactly one cusp. Another
transversality argument shows that for general paths {Jt} a generator λdt of
kern(DN

ϕ,j)
∗ does not have a zero at this cusp. Let (j′, v) be as in the discussion

above with ε > 0 so small that the quadratic form

C � µ �−→ (Λ ◦ β1)
(
µ · (j′, v), µ · (j′, v)

)

is non-degenerate and indefinite. This is possible by Lemma 8.7 and by what
we just said about generators of kern(DN

ϕ,j)
∗. Let Z ⊂ M{Jt} be a locally

closed submanifold through P with TZ,P spanned by Re(j′, v) and Im(j′, v).
The result is then clear by the Morse Lemma because β1|TZ,P

describes the
second variation of the composition Z → MJt

→ [0, 1].
In the general case of several cusps, for each cusp we have a tangent vector

(j′l , vl) with support close to it. Now run the same argument as before but with
(j′, v) =

∑
l(j

′
l , vl). For ε sufficiently small these variations are supported on

disjoint neighborhoods, and hence the only difference to the previous argument
is that the coefficient λ(∂w) for the quadratic form gets replaced by the sum
λ
(∑

l ∂wl

)
. Again, for general paths, this expression is non-zero. �	

Remark 8.9 We have chosen to use complex, local notation as much as pos-
sible and to neglect terms getting small with ε. This point of view clearly
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exhibits the holomorphic nature of the critical points in the moduli space
near a cuspidal curve and is also computationally much simpler than the
full-featured computations in [Sh]. In fact, in the integrable case coordinates
can be chosen in such a way that all error terms o(1) etc. disappear and the
formula in Lemma 8.7 holds for ε > 0.

9 The Isotopy Theorem

9.1 Statement of Theorem and Discussion

In this section we discuss the central result of these lectures. It deals with
the classification of symplectic submanifolds in certain rational surfaces. As
a consequence the expected “stable range” for this problem indeed exists.
In this range there are no new symplectic phenomena compared to complex
geometry.

Theorem 9.1 (1) Let M be a Hirzebruch surface and Σ ⊂ M a connected
surface symplectic with respect to a Kähler form. If deg(p|σ) ≤ 7 then Σ
is symplectically isotopic to a holomorphic curve in M , for some choice of
complex structure on M .

(2) Any symplectic surface in CP
2 of degree d ≤ 17 is symplectically isotopic

to an algebraic curve.

A Hirzebruch surface M is a holomorphic CP
1-bundle over CP

1. They are
projectivizations of holomorphic 2-bundles over CP

1. The latter are all split,
so M = Fk := P(O ⊕ O(k)) for some k ∈ N. The k is determined uniquely
as minus the minimal self-intersection number of a section. If k = 0 we have
M = CP

1 × CP
1 and there is a whole CP

1 worth of such sections; otherwise
the section is holomorphically rigid and it is in fact unique. Topologically Fk

is the non-trivial S2-bundle over S2 for k odd and Fk � S2 × S2 for k even.
It is also worthwhile to keep in mind that for any k, l with 2l ≤ k there is
a holomorphic one-parameter deformation with central fiber Fk and general
fiber Fk−2l, but not conversely. So in a sense, CP

1 ×CP
1 and F1 are the most

basic Hirzebruch surfaces, those that are stable under small deformations of
the complex structure. Note also that F1 is nothing but the blow-up of CP

2

in one point.
The degree bounds in the theorem have to do with the method of proof

and are certainly not sharp. For example, it should be possible to treat the
case of degree 18 in CP

2 with present technology. We even believe that the
theorem should hold without any bounds on the degree.

In Sect. 6.4 we saw the importance of this result for genus-2 Lefschetz
fibrations and for Hurwitz-equivalence of tuples of half-twists in the braid
group B(S2, d) with d ≤ 7.
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9.2 Pseudo-Holomorphic Techniques for the Isotopy Problem

Besides the purely algebraic approach by looking at Hurwitz-equivalence for
tuples of half-twists, there exists only one other approach to the isotopy prob-
lem for symplectic 2-manifolds inside a symplectic manifold (M,ω), namely
by the technique of pseudo-holomorphic curves already discussed briefly in
Sect. 2.4,III, as explained in Sect. 2.4,II. This works in three steps. (1) Classify
pseudo-holomorphic curves up to isotopy for one particular almost complex
structure I on M ; typically I is integrable and the moduli space of holomor-
phic curves can be explicitly controlled by projective algebraic geometry; this
step is quite simple. (2) Choose a general family of almost complex structures
{Jt}t∈[0,1] with (a) B is J0-holomorphic (b) J1 = I. By the results on the space
of tamed almost complex structures this works without problems as long as
the symplectic form ω is isotopic to a Kähler form for I. (3) Try to deform B
as pseudo-holomorphic curve with the almost complex structure, that is, find
a smooth family {Bt} of submanifolds such that Bt is Jt-holomorphic.

The last step (3) is the hardest and most substantial obstruction for iso-
topy results for two reasons. First, while for general paths of almost complex
structures the space of pseudo-holomorphic curves M{Jt} over the path is a
manifold, the projection to the parameter interval [0, 1] might have critical
points. If {Bt}t≤t0 happens to run into such a point it may not be possible
to deform Bt0 to t > t0 and we are stuck. To avoid this problem one needs
an unobstructedness result for deformations of smooth pseudo-holomorphic
curves. The known results on this require some positivity of M , such as in
Proposition 3.4. And second, even if this is true, as in the cases of CP

2 and
Fk that we are interested in, there is no reason that limt→t0 Bt is a subman-
ifold at all. The Gromov compactness theorem rather tells us that such a
limit makes only sense as a stable Jt-holomorphic map or as a Jt-holomorphic
2-cycle. In the sequel we prefer to use the embedded point of view and stick
to pseudo-holomorphic cycles. In any case, these are singular objects that we
are not allowed to use in the isotopy. So we need to be able to change the
already constructed path {Bt} to bypass such singular points. This is the
central problem for the proof of isotopy theorems in general.

In view of unobstructedness of deformations of smooth curves it suffices
to solve the following:

1. Find a Jt0 -holomorphic smoothing of C = limt→t0 Bt

2. Show that any two pseudo-holomorphic smoothings of C are isotopic

In our situation the smoothing problem (1) of a pseudo-holomorphic cycle
C =

∑
amaCa = limt→t0 Bt has the following solution. For a general path

{Jt} we know by the results of Sect. 8 that each Jt0-holomorphic curve has a
deformation into a nodal curve. Now for each a takema copies Ca,1, . . . , Ca,ma

of Ca. Deform each Ca,j slightly in such a way that
∑

a,j Ca,j is a nodal curve.
This is possible by positivity. Finally apply the smoothing result for nodal
curves (Proposition 3.5) to obtain a smoothing of C.
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Problem (2) concerns the isotopy of smoothings of singular pseudo-holomor-
phic objects, which boils down to a question about the local structure of the
moduli space of pseudo-holomorphic cycles as follows:

Let C =
∑

amaCa be a Jt0-holomorphic cycle. Looking at the space of pairs
(C ′, t) where t ∈ [0, 1] and C ′ is a Jt-holomorphic cycle, do the points

parametrizing singular cycles locally disconnect it?

So we ask if any point has a neighborhood that stays connected once we re-
move the points parametrizing singular cycles. We believe this question has
a positive answer under the positivity assumption that c1(M) · Ca > 0 for
each irreducible component Ca of C. In the integrable case this follows from
the unobstructedness results of Sect. 5, which say that there is a local complex
parameter space for holomorphic deformations of C; the subset of singular cy-
cles is a proper analytic subset, and hence its complement remains connected.
However, as already discussed briefly in Sect. 5.1 no such parametrization
is known for general almost complex structures except in the nodal case of
Sect. 3.4.

9.3 The Isotopy Lemma

Instead of solving the parametrization problem for pseudo-holomorphic cy-
cles we use a method to reduce the “badness” of singularities of limt→t0 Bt by
cleverly adding pointwise incidence conditions. This technique has been intro-
duced into symplectic topology by Shevchishin in his proof of the local isotopy
theorem for smoothings of a pseudo-holomorphic curve singularity [Sh].

How does this work? The pseudo-holomorphic cycle C consists of irre-
ducible components Ca. Write Ca as image of a pseudo-holomorphic map
ϕa : Σa → M . Pseudo-holomorphic deformations of Ca keeping the genus
(equigeneric deformations) can be realized by deforming ϕa and the complex
structure on Σa. The moduli space of such maps has dimension

ka := c1(M) · Ca + g(Ca) − 1 ≥ 0.

Each imposing of an incidence with a point on M reduces this dimension
by one, provided the number of points added does not exceed c1(M) · Ca.
Thus choosing ka general points on Ca implies that there are no non-trivial
equigeneric deformations of Ca respecting the incidences. Doing this for all a
we end up with a configuration of

∑
a ka points such that any Jt0 -holomorphic

deformation of C containing all these points must somehow have better sin-
gularities. This can happen either by dropping

∑
a(ma − 1), which measures

how multiple C is, or, if this entity stays the same, by the virtual number δ
of double points of |C|. The latter is the sum over the maximal numbers of
double points of local pseudo-holomorphic deformations of the map with im-
age |C| near the singular points. Pseudo-holomorphic deformations where the
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pair (m, δ) gets smaller in the way just described are exactly the deformations
that can not be realized by deforming just the ϕa.

On the other hand, to have freedom to move Bt by keeping the incidence
conditions there is an upper bound on the number of points we can add by
the excess positivity that we have, which is c1(M) · C. In fact, each point
condition decreases this number in the proof of Proposition 3.4 by one. Thus
this method works as long as

∑

a

(
c1(M) · Ca + g(Ca) − 1

)
< c1(M) · C. (9.1)

If C is reduced (ma = 1 for all a) then this works only if all components have
at most genus one and at least one has genus zero. So this is quite useless for
application to the global isotopy problem.

The following idea comes to the rescue. Away from the multiple compo-
nents and from the singularities of the reduced components not much happens
in the convergence Bt → C: In a tubular neighborhood Bt is the graph of a
function for any t sufficiently close to t0 and this convergence is just a con-
vergence of functions. So we can safely replace this part by some other (part
of a) pseudo-holomorphic curve, for any t, and prove the isotopy lemma with
this replacement made. By this one can actually achieve that each reduced
component is a sphere, see below. If Ca is a sphere it contributes one less to
the left-hand side than to the right-hand side of (9.1). So reduced components
do not matter! For multiple components the right-hand side receives an addi-
tional (ma−1)c1(M) ·Ca that has to be balanced with the genus contribution
g(Ca) on the left-hand side.

Here is the precise formulation of the Isotopy Lemma from [SiTi3].

Lemma 9.2 [SiTi3] Let p : (M,J) → CP
1 be a pseudo-holomorphic S2-

bundle. Let {Jn} be a sequence of almost complex structures making p pseudo-
holomorphic. Suppose that Cn ⊂M , n ∈ N, is a smooth Jn-holomorphic curve
and that

Cn
n→∞−→ C∞ =

∑

a

maC∞,a

in the C 0-topology, with c1(M) · C∞,a > 0 for every a and Jn → J in C 0,α
loc .

We also assume:

(∗) If C ′ =
∑

am
′
aC

′
a is a non-zero J ′-holomorphic cycle C 0-close to a sub-

cycle of
∑

ma>1maC∞,a, with J ′ ∈ J , then

∑

{a|m′
a>1}

(
c1(M) · C ′

a + g(C ′
a) − 1

)
< c1(M) · C ′ − 1.

Then any J-holomorphic smoothing C†
∞ of C∞ is symplectically isotopic

to some Cn. The isotopy from Cn to C†
∞ can be chosen to stay arbitrarily

close to C∞ in the C 0-topology, and to be pseudo-holomorphic for a path of
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almost complex structures that stays arbitrarily close to J in C 0 everywhere,
and in C 0,α

loc away from a finite set.

In the assumptionsC 0-convergenceCn → C∞ is induced byC 0-convergence
inside the space of stable maps.

Using the genus formula one can show easily that the degree bounds in the
theorem imply Assumption (∗) in the Isotopy Lemma, see [SiTi3], Lemma 9.1.

9.4 Sketch of Proof

We want to compare two different smoothings of the pseudo-holomorphic cy-
cle C∞, one given by Cn for large n and one given by some J-holomorphic
smoothing, for example constructed via first deforming to a nodal curve and
then smoothing the nodal curve, as suggested above. There is only one general
case where we know how to do this, namely if J is integrable locally around
the cycle, see Sect. 5. But J generally is not integrable and we seem stuck.

Step 1: Make J integrable around |C|. On the other hand, for the applica-
tion of the Isotopy Lemma to symplectic geometry we are free to change our
almost complex structures within a C 0-neighborhood of J . This class of al-
most complex structures allows a lot of freedom! To understand why recall the
local description of almost complex structures with fixed fiberwise complex
structure along w = const via one complex-valued function b:

T 0,1
M = C · (∂z̄ + b∂w) + C · ∂w̄.

The graph Γf = {(z, f(z))} of a function f is pseudo-holomorphic with respect
to this almost complex structure iff

∂z̄f(z) = b(z, f(z)).

Thus the space of almost complex structures making Γf pseudo-holomorphic
is in one-to-one correspondence with functions b with prescribed values ∂z̄f
along Γf . On the other hand, the condition of integrability (vanishing of the
Nijenhuis tensor) turns out to be equivalent to

∂w̄b = 0.

Thus it is very simple to change an almost complex structure only slightly
around a smooth pseudo-holomorphic curve to make it locally integrable; for
example, one could take b constant in the w-direction locally around Γf .

It is then also clear that if we have a C 1-convergence of smooth
Jn-holomorphic curves Cn → C with Jn → J in C 0 it is possible to find
J̃n integrable in a fixed neighborhood of C such that Cn is J̃n-holomorphic
and J̃n → J̃ in C 1.

For the convergence near multiple components of C a little more care
shows that Hölder convergence Jn → J in C 0,α is enough to assure sufficient
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convergence of the values of b on the various branches of Cn. Finally, near
the singular points of |C| one employs the local holomorphicity theorem of
Micallef-White to derive:

Lemma 9.3 ([SiTi3], Lemma 5.4) Possibly after going over to a subsequence,
there exists a finite set A ⊂ M , a C 1-diffeomorphism Φ that is smooth away
from A, and almost complex structures J̃n, J̃ on M with the following prop-
erties:

1. p is J̃n-holomorphic
2. Φ(Cn) is J̃n-holomorphic
3. J̃n → J̃ in C 0 on M and in C 0,α

loc on M \A
4. J̃ is integrable in a neighborhood of |C|

Thus we can now assume that J is integrable in a neighborhood of |C|, but
the convergence Jn → J is only C 0 at finitely many points.

Note that if the convergence Jn → J is still in C 0,α everywhere we are
done at this point! In fact, in the integrable situation we do have a smooth
parametrization of deformations of holomorphic cycles when endowing the
space of complex structures with the C 0,α-topology. So the whole difficulty in
the Isotopy Problem stems from the fact that the theorem of Micallef-White
only gives a C 1-diffeomorphism rather than one in C 1,α for some α > 0.

Step 2: Replace reduced components by spheres. The next ingredient, already
discussed in connection with (9.1), is to make all non-multiple components
rational. To this end we use the fact, derived in Proposition 2.8, that any
J-holomorphiccurvesingularitycanbeapproximatedbyJ-holomorphicspheres.
Let U ⊂ M be a small neighborhood of the multiple components of C union
the singular set of |C|. Then from Cn keep only Cn ∩ U , while the rest of
the reduced part of Cn gets replaced by large open parts of J-holomorphic
approximations by spheres of the reduced branches of C at the singular points.
For this to be successful it is important that the convergence Jn → J is in
C 0,α rather than in C 0, for the former implies C 1,α-convergence Cn → C∞
near smooth, reduced points of C∞. As this is true in our case it is indeed
possible to extend Cn ∩ U outside of U by open sets inside J-holomorphic
spheres.

There are two side-effects of this. First, the result C̃n of this process on
Cn is not a submanifold anymore, for the various added parts of spheres will
intersect each other, and they will also intersect Cn away from the interpola-
tion region. There is, however, enough freedom in the construction to make
these intersections transverse. Then the C̃n are nodal curves. Second, C̃n is
neither Jn nor J-holomorphic. But in view of the large freedom in choosing
the almost complex structures that we saw in Step 1 it is possible to perform
the construction in such a way that C̃n is J̃n-holomorphic with J̃n → J̃ in
C 0, and in C 0,α

loc on M \ Ã, and J̃n, J̃ having the other properties formulated
above.
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Now assume the Isotopy Lemma holds for these modified curves and al-
most complex structures, so an isotopy exists between C̃n for large n and some
smoothing of C̃∞ = limn→∞ Cn. Here “isotopy” means an isotopy of nodal,
pseudo-holomorphic curves, with the almost complex structure and the con-
necting family of pseudo-holomorphic curves staying close to J , in C 0,α away
from finitely many points where this is only true in C 0. Then one can revert
the process, thus replace the spherical parts by the original ones, and produce
a similar isotopy of Cn with the given smoothing of C∞.

Thus we can also suppose that the reduced parts of C are rational, at the
expense of working with nodal curves rather than smooth ones in the isotopy.
As we can mostly work with maps rather than subsets of M , the introduction
of nodes is essentially a matter of inconvenience rather than a substantial
complication. We therefore ignore this for the rest of the discussion and simply
add the assumption that the reduced components of C are rational.

Step 3: Break it! Now comes the heart of the proof. We want to change Cn

slightly, for sufficiently large n, such that we find a path of pseudo-holomorphic
cycles connecting Cn with a J-holomorphic smoothing of C∞. Recall the pair
(m, δ) introduced above as a measure of how singular a pseudo-holomorphic
cycle is. By induction we can assume that the Isotopy Lemma holds for every
convergence of pseudo-holomorphic curves where the limit has smaller (m, δ).
This implies that whenever we have a path of pseudo-holomorphic cycles
with smaller (m, δ) then there is a close-by path of smooth curves, pseudo-
holomorphic for the same almost complex structure at each time. Thus in
trying to connect Cn with a J-holomorphic smoothing of Cn we have the lux-
ury to work with pseudo-holomorphic cycles, as long as they are less singular
than labelled by (m, δ). We achieve this by moving Cn along with appropriate
point conditions that force an enhancement of singularities throughout the
path.

We start with choosing k ≤ c1(M) · C∞ − 1 points x1, . . . , xk on |C∞|
such that ka = c1(M) · C∞,a + g(C∞,a) − 1 of them are general points on
the component C∞,a. Then there is no non-trivial equigeneric J-holomorphic
deformation of |C∞| incident to these points, provided J is general for this
almost complex structure and the chosen points. One can show that one can
achieve this within the class of almost complex structures that we took J
from, e.g. integrable in a neighborhood of |C∞|. With such choices of points
and of J any non-trivial J-holomorphic deformation of C∞ decreases (m, δ).
This enhancement of singularities even holds if we perturb J in a general one-
parameter family. By applying an appropriate diffeomorphism for each n we
may assume that the points also lie on Cn, for each n.

For the rest of the discussion in this step we now restrict to the most
interesting case m > 0, that is, C∞ does have multiple components. Then
Condition (∗) in the statement of the Isotopy Lemma implies that there even
exists a multiple component C∞,b of C∞ such that

c1(M) · C∞,b + g(C∞,b) − 1 < c1(M) · C∞,b − 1.
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Thus we are free to ask for incidence with one more point x without spoiling
genericity. Now the idea is to use incidence with a deformation x(t) of x to
move Cn away from C∞, uniformly with n but keeping the incidence with
the other k points. The resulting C ′

n then converge to a J-holomorphic cycle
C ′

∞ �= C∞ incident to the k chosen points and hence, by our choice of points,
having smaller (m, δ) as wanted.

The process of deformation of Cn incident to x(t) and to the k fixed points
works well if we also allow a small change of almost complex structure along
the path to make everything generic – as long as (1) we stay sufficiently
close to |C∞| and (2) the deformation of Cn does not produce a singular
pseudo-holomorphic cycle with the k + 1 points unevenly distributed. This
should be clear in view of what we already know by induction on (m, δ)
about deformations of pseudo-holomorphic curves, smoothings and isotopy.
A violation of (1) actually makes us happy because the sole purpose was to
move Cn away from C∞ slightly. If we meet problems with (2) we start all
over with the process of choosing points etc. but only for one component Ĉn

of the partial degeneration of Cn containing less than c1(M) · Ĉn − 1 points.
To keep the already constructed rest of the curve pseudo-holomorphic we
also localize the small perturbation of Jn away from the other components.
Because each time c1(M) · Ĉn decreases by an integral amount (2) can only
be violated finitely many times, and the process of moving Cn away from C∞
will eventually succeed.

This finishes the proof of the Isotopy Lemma under the presence of multiple
components.

Step 4: The reduced case. In the reduced case we do not have the luxury to
impose one more point constraint. But along a general path of almost complex
structures incident to the chosen points non-immersions have codimension one
and can hence be avoided. One can thus try to deform Cn along a general
path Jn,t of almost complex structures connecting Jn with J and integrable
in a fixed neighborhood of |C∞|. This bridges the difference between C 0-
convergence and C 0,α-convergence of Jn to J . If successful it leads to a J ′-
holomorphic smoothing of C∞ that falls within the smoothings we have a
good parametrization for, and which hence are unique up to isotopy. The
only problem is if for every n this process leads to pseudo-holomorphic curves
moving too far away from C∞. In this case we can again take the limit n→ ∞
and produce a J-holomorphic deformation of C∞ with smaller (m, δ). As in
the non-reduced case we are then done by induction.
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[OzSt] B. Ozbağçi, A. Stipsicz: Noncomplex smooth 4-manifolds with genus-2
Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), 3125–3128.

[Pn] P. Pansu: Compactness, in: Holomorphic curves in symplectic geometry,
M. Audin, J. Lafontaine (eds.), 233–249, Birkhäuser 1994.
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