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Summary. In a dilatant granular material with rotating grains the kinetic energy
in addition to the usual translational one consists of three terms owing to the
microstructural motion; in particular, it includes the rotation of granules and the
dilatational expansion and contraction of the individual (compressible) grains and of
the grains relative to one another. Therefore the balance and constitutive equations
of the medium are obtained by considering it as a continuum with a constrained
affine microstructure. Moreover, the balance of granular energy is demonstrated to
be a direct consequence of the balance of micromomentum, while the dilatational
and the rotational microstresses are turned out to be of different physical nature.
Finally, a kinetic energy theorem implies that, locally, the power of all inertial forces
is the opposite of the time-rate of change of kinetic energy plus the divergence of
a flux through the boundary. The peculiar case of a suspension of rotating rigid
granules puts in evidence the possibility for granular materials of supporting shear
stresses through the generation of microrotational gradients.

1 Introduction

In this study we extend the continuum theory of dilatant granular materials,
as developed in [31], by the consideration of possible rotations of compressible
granules (see also, [1] and [40]); that theory generalized the models of perfect
fluids with microstructure of Capriz in Sect. 12 of [7] and of distributed bodies
of Goodman and Cowin [33].

The theory of distributed continuum proposed in [33] was widely used to
study the slow flows of granular materials and, in particular, the propagation
of all sort of waves, the basic equations of the equilibrium theory obtained
from variational principles, the multiphase granular mixtures, the shearing
flows, etc. (see, e.g., [34], [38], [45]–[48] and [22]). The material was assumed
to consist of dry cohesionless compressible spheres of uniform size and the
flow behaviour has required a combination of suggestions from both fluid and
solid mechanics owing to the fact that the material has an essentially fluid-like
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behaviour, but it can also be heaped and, moreover, its bulk compressibility
depends on the initial voids distribution in the reference placement (see the
experimental results in [41] and [2]). An additional equation of balance for
the microinertia was needed for the new independent kinematical variable
introduced in [33], the volume fraction of the grains which describes the local
arrangements of the grains themselves: hence granular materials are a special
case of continua with microstructure [7].

In [50] and [16] it was observed that the constitutive hypotheses made
in [33] raised some uncertainties: these was partially rectified in Sect. 3 of [50]
and in [20] and [28], at least in the case of incompressible grains. Instead, the
compressible case was extensively analysed in [30], [27] and [31]. In particu-
lar, in [30] the dynamic equations of motion was obtained, in the conservative
case, from a Hamiltonian variational principle of local type for a perfect fluid
with microstructure, in accordance with the fluid-like behaviour of granu-
lar materials (the preference for a Eulerian variational principle, rather than
Lagrangian, was not in contrast with the previous appeal to a reference
placement because the difference between the former and the latter formu-
lation is not so peremptory for such materials (see also, [3])). The choice of
the expression of the total kinetic energy and of the independent constitutive
variables was made in accordance with [4] (“. . . the dilatational motion consists
of expansion and contraction of the individual (compressible) grains . . . and of
the grains relative to one another . . . ”) and [21] (“. . . the gradient of solid’s
volume fraction is not, by itself, the appropriate second geometric measure of
local structure . . . ”), respectively.

An interesting application of the theory in [30] was investigated in [32] for
the study of seismic waves propagating through a sediment filled basin in the
case of rigid grains; one of the advantages of the model, with respect to purely
propagative models, was the reproduction of a nonlinear effect experimentally
observed for real seismic waves: site amplification decreases as the amplitude
of the incident wave increases.

In this chapter we consider a suspension of elastic spheres in a compressible
gas of negligible mass; we assume a volume concentration close to that of
packed particles, so that the mean free path of the particles is very short
in comparison to the size of the particles themselves (as it is the case of
cohesionless soil or sand with rough surface grains).

In Sects. 2 and 3 we present the model for a dilatant granular material with
rotating grains and make a proposal for the kinetic energy instead to mention
momentum and inertia, because it appears easier to conceive an appropri-
ate expression of the former quantity rather than of the latter. The total
kinetic energy consists of four terms: in addition to the usual translational
one, there are three types of microstructural motion that are modelled by our
theory, the two dilatational motions previously mentioned and the rotation of
granules.
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In Sects. 4 and 5 we introduce the balance equations and the principal fields
for continua with affine microstructure and analyse the meaning of objectivity
for change in observer for these fields.

In Sect. 6 we study the kinematical constraint of spherical microstructure
by imposing that the changes in the affine microstructure are conformal and
then obtain the pure field equations that rule the time evolution of the macro-
and micro-motion and of the temperature; moreover, we get an equation for
reactions to the constraint.

In Sect. 7 we assume the validity of a kinetic energy theorem which implies
that, locally, the power of all inertial forces be the opposite of the given time-
rate of change of the kinetic energy plus the divergence of the flux through the
boundary. Furthermore, we define the granular temperature in our theory and
recover the balance of granular energy as a direct consequence of the balance
of micromomentum.

In Sect. 8 we impose constitutive postulates for a thermoelastic granular
medium, deduce that the Helmholtz free energy represents a sort of potential
for stresses and microstresses, and compare the results with previous theo-
ries by using comments and remarks. In particular, we observe the different
physical nature of the dilatational microstress with respect to the rotational
one, the former expressing a sort of internal non-local action rather than the
usual connection with boundary microtractions of the latter [12].

Finally, in Sect. 9 we consider the peculiar case of a suspension of rotating
rigid granules in a fluid matrix and notice that the microstructure behaves as
that of a microrigid Cosserat’s continua. By considering possible rotations of
grains during the motion, we also show that, even when the volume fraction
of the grain distribution is constant, the model predicts the possibility of
supporting shear stress through the generation of microrotational gradients.

2 A First Model

The continuum model for dilatant granular materials here considered is
directly referred to the models proposed in [6] and [4]. The material elements
of the body are a sort of quasi-particle, that will be called a ‘chunk’ of mate-
rial, and are thought of as envelopes which fill the body without voids between
them (see also, [13]): each one consists of a grain and its immediate neigh-
bours as it is the case of a suspension of elastic particles in a compressible
fluid, whose density is considered to be negligible compared with the proper
density ρm of the suspended particles; so the chunk mass density ρ of the
body equals ρm times the volume fraction ν of the grains

ρ = ρmν, (1)

with ν ∈ [0, 1).
In [31] the motions allowed within the chunk were merely expansions (or

contractions) of the inclusions and radial motions of the spherical crust due
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to the displacements of the grain relative to the centre of mass of the element
itself; neither diffusion of the grains through the envelope, nor effects of rela-
tive rotations of the elements or of the granules themselves were considered:
assumptions rather limiting for this type of media, but necessary to obtain
suggestions for the choice of an appropriate expression of the density per unit
mass of the additional kinetic coenergy χ (ρm, ρ̇m) due to the microstructure
and related to the kinetic energy κd by the Legendre transformation

∂χ

∂ρ̇m
· ρ̇m − χ = κd (2)

(see [10]). In (2) the dot denotes material time derivative, i.e.,

˙ρm :=
∂ρm

∂τ
+ v · gradρm. (3)

In particular, if v denotes the velocity of the mass centre of the element,
whose local position vector is x at the time τ (x∗ being the reference one),
thus the total kinetic coenergy of the material in [31] is homogeneous of second
degree in the macro- and micro-velocities and so equal to the total kinetic
energy κtot (see again, [10]); precisely, it is:

κtot = κt + κf + κd, (4)

with

κt :=
1
2
v · v, κf :=

1
2
γ(ρ)ρ̇2, κd :=

1
2
α(ρm)ρ̇2

m. (5)

In (4) κt is the usual translational kinetic energy related to the velocity of
the centre of mass of the macro-element; κf is the ‘fluctuation’ kinetic energy
associated to the ‘dilatancy’, as defined by Reynolds [49], by means of the
motion of individual grains relative to the centre of mass, i.e., the kinetic
energy due to the variations of the volume of chunk interstitial voids and
expressed in terms of the rate of change of the chunk mass density ρ, with
γ(ρ) a scalar constitutive coefficient; κd is the ‘dilatational’ kinetic energy
related to local expansions (or contractions) of the inclusions in the chunk
and written in terms of the rate of change of the proper mass density of the
grains ρm, with α(ρm) another scalar constitutive function.

Explicit evaluations for the constitutive functions γ(ρ) and α(ρm) can be
obtained if one imagines simple microstructural motions and peculiar geomet-
rical shapes for chunks and/or granules. In particular, if the grains and the
chunks expand or contract homogeneously with independent motions and if
the envelope of the chunk is imagined as a spherical surface of radius ς con-
taining some spherical inclusions, the grains, of radius ϕ, which have the same
radius ς∗ and ϕ∗, respectively, in a reference placement B∗ of the material, we
calculate the following expressions (see the Appendix):

γ(ρ) = γ∗ρ−
8
3 , α(ρm) = α∗ρ

− 8
3

m , (6)
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with

γ∗ =
16
351

ρ
2
3∗ ς2

∗ , α∗ =
1
15

ρ
2
3
m∗ϕ2

∗ (7)

and where, now and in the course, the subscript (·)∗ refers to the value of the
quantity in the reference placement B∗.

When other geometric configurations of the grains and of the elements are
considered, it is possible to compute more general expressions for γ and α (see
Sect. 2 of [4]).

3 Rotations

Hereafter we denote by Lin+, Sym+ and Orth+ the collection of second-order
tensors with positive determinant, symmetric and positive definite, and proper
orthogonal, respectively. Moreover, sym A and skw A are the symmetric and
skew parts of a second-order tensor A, respectively, while the spherical and
deviatoric parts of A are defined to be, respectively,

sphA :=
1
3
(trA)I and dev A := symA − sphA, (8)

where trA := A · I is the trace of A and I := (δik) the identity tensor with
δik the delta of Kronecker. Also, Skw is the collection of all skew second-
order tensors and Sym that of all symmetric second-order tensors, direct sum
of Sph and Dev, the subspaces of spherical and traceless elements of Sym,
respectively.

Now we generalize the expression of the density of dilatational kinetic
energy κd obtained in [31], and defined in (5)3, in order to allow effects of
relative rotations of the compressible granules.

We suppose that each grain of the continuum is capable of an affine defor-
mation distinct from (and independent of) the local affine deformation ensuing
from the macromotion (and so not adequately modelled by the classical gra-
dient of deformation F = ∂x

∂x∗
(x∗, τ) ∈ Lin+). In particular, we assume that

the microstructure of the dilatant granular material is spherical, as defined
in [16], i.e., the microstructural tensor field G of Lin+, describing the changes
in the affine structure, is conformal:

G(x∗, τ) = β(x∗, τ)R(x∗, τ), (9)

with β(x∗, τ) > 0 and R(x∗, τ) ∈ Orth+, and the reference microinertia tensor
field J∗ ∈ Sym+ has spherical values:

J∗(x∗) = µ2
∗(x∗) I, ∀x∗ ∈ B∗. (10)

Remark: We observe that the reference microinertia tensor J∗ is directly
related to the Euler’s microinertia tensor per unit mass J of the generic chunk
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with respect to its centre of mass x at time τ and to the corresponding kinetic
energy density κs, two fields which have the following form, respectively:

J = GJ∗GT ∈ Sym+ and κs =
1
2
(VJ∗) · V, (11)

where V(x∗, τ) := Ġ(x∗, τ) is the microvelocity over the current placement
Bτ = x(B∗, τ) of the body B (see e.g., (2.10) and (2.35) of [16] and, more in
general, (5) and (16) of [9]).

For dilatant granular materials with rotating grains, the microstructure is
supposed spherical and relations (9) and (10) apply, hence the Euler’s tensor
J is always spherical and the inertia related to the admissible micromotions
of grains is decomposed in two terms because the trace of the skew tensor
product ṘRT vanishes; they are expressed by

J = µ2 I and κs =
3
2
µ̇2 +

1
2
µ2 Ṙ · Ṙ, (12)

respectively, with
µ(x∗, τ) := µ∗(x∗)β(x∗, τ). (13)

An explicit suggestion for the constitutive expression of µ is obtained by
considering the previous model of Sect. 2 as a particular case of this one; thus,
by restricting the rotation R to coincides with the identity tensor I, the kinetic
energy κs must reduce to the kinetic energy κd of (5)3 with α(ρm) given by
(6)2. Thus the following relation is valid by identification (in the case R = I):

3
2
µ̇2 =

1
2
α∗ ρ

− 8
3

m ρ̇2
m; (14)

so that a straightforward integration of the latter equation yields the following
requested constitutive term:

µ(ρm) = µ∗ +
√

3α∗(ρ
− 1

3
m − ρ

− 1
3

m∗ ). (15)

Therefore, by choosing µ∗ = ρ
− 1

3
m∗

√
3α∗, we have that

µ(ρm) = ρ
− 1

3
m

√
3α∗ and β(ρm) =

(
ρm∗
ρm

) 1
3

, (16)

so the conformal coefficient β accounts for the homogeneous expansion or
contraction of the grains.

At the end, in this chapter the total kinetic energy κext of the extended
model for dilatant granular media is:

κext =
1
2
v · v +

1
2
γ(ρ)ρ̇2 +

3
2
µ̇2(ρm) +

1
2
µ2(ρm) Ṙ · Ṙ, (17)

with γ(ρ) and µ(ρm) given by (6)1 and (16)1, respectively.
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4 Balance of Interactions for Material Bodies
with Affine Microstructure

The local statements of the balance laws for granular materials will be
obtained in Sect. 6 by the general ones for bodies with affine microstruc-
ture by imposing the internal constraint (9) on the tensor field G describing
the changes in the affine structure. These equations of balance governing an
admissible thermomechanical process are (see e.g., Sect. 21 of [7] and Sect. II.C
of [43]):

ρ̇ + ρ trL = 0, (18)
c + div T = 0, (19)

C − Z + div Σ = 0, (20)

skwT = skw
(
GZT + gradG� Σ

)
, (21)

ρε̇ = T · L + Z · V + Σ · gradV + ρλ − div q. (22)

Equation (18) is the conservation law of mass and L is the usual velocity gra-
dient: L := gradv (= ḞF−1); equation (19) is the standard law of Cauchy’s
balance, where c is the vector density per unit volume of external bulk forces
and T the stress tensor; equation (20) is the balance of microstructural inter-
actions, in which C and −Z are the resultant tensor densities per unit volume
of external bulk interactions on the microstructure and internal self-force,
respectively, while Σ is the third-order microstress tensor that, in general, is
not necessarily related to a sort of boundary microtractions, unless it is pos-
sible to define a physically significant connection on the manifold of values of
the microstructure by which the gradient on it may be evaluated in covariant
manner (see [11]); equation (21) is the balance law of angular momentum and
the tensor product � between third-order tensors is so defined:

(gradG � Σ)ij := Gih,kΣjhk; (23)

equation (22) is the balance of mechanical energy in which ε is the specific
internal energy per unit mass, λ the scalar rate of heat generation per unit
mass due to irradiation and q the heat flux vector.

We accept here the principle of entropy as it applies in its classical form
purely thermal: intrinsic production of entropy is always non-negative during
every admissible thermodynamic process for the body. This production is
given by the rate of variation of the specific entropy, whose density per unit
mass is η, less the rate of heat exchange due to a flux of entropy through
the boundary of vector density −θ−1q, where θ is the (positive) absolute
temperature, and a production owing to distributed entropy sources of specific
density per unit mass λθ−1. The local form of the principle is given by the
Clausius–Duhem inequality

ρη̇ + div
(
θ−1q

)− ρλθ−1 ≥ 0; (24)
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moreover, if we introduce the Helmholtz free energy per unit mass ψ := ε−θη
and use (22), we obtain a reduced version of this inequality, that is,

ρ
(
ψ̇ + θ̇η

)
+ θ−1q · g ≤ T · L + Z ·V + Σ · gradV. (25)

where g := grad θ.
Equations (20) and (21) are not immediately recognized to be the bal-

ance equations which are usually proposed for studying continua with affine
microstructure (see e.g., [17]) or micromorphic media (see e.g., [26]), but, mod-
ulo some innocuous changes in notation and, after, by considering the effects
of inertia of possible internal vibrations of the substructures, we can recover
them.

Firstly, by transposing the balance equation of micromomentum (20) and
multiplying both sides by the microstructural tensor variable G, we have the
following result:

GCT − GZT − gradG � Σ + div
(
G � tΣ

)
= 0, (26)

where the minor left transposition (of exponent t) on a tensor Ω of the third
order has the following meaning: ((tΩa)b)c = ((Ωa)c)b, for each triple of
vectors a, b and c, while the tensor product � between tensors of the second
and the third order is so defined: (A � Ω)ijl := AihΩhjl.

Then, by using the balance equation of moment of momentum (21) and
by introducing the following second- and third-order tensors

C̃ := GCT , Z̃ := sym [GZT + gradG � Σ] and Σ̃ := G� tΣ (27)

into (26), it becomes

C̃− Z̃ − skwT + div Σ̃ = 0. (28)

Secondly, we decompose the volume forces C in their inertial Cin and
noninertial ρB parts as

C = Cin + ρB (29)

and observe that Cin is the opposite of the Lagrangian derivative of the
microstructural kinetic coenergy χs(V), homogeneous of second degree in the
micro-velocity V and so equal to the kinetic energy κs defined in (11)2, thus
it is

Cin = −ρ

[
d

dτ

(
∂κs

∂V

)
− ∂κs

∂G

]
= −ρV̇J∗ (30)

(see also, [10] or (60) of [43]).
Hence, by transposing this relation, multiplying both sides by the

microstructural tensor variable G and using relation (11)1, we have that:
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G(Cin)T = −ρGJ∗V̇T = −ρJ(V̇G−1)T , (31)

Then, by introducing the second-order tensors B̃ := GBT and using the
relation (31) together with the (29) into (28), it becomes

ρJ(V̇G−1)T = ρB̃− Z̃ − skwT + div Σ̃. (32)

Finally, let us insert the second-order kinematical tensor W for the micro-
motion corresponding to the velocity gradient L of the macromotion, i.e., the
wrenching tensor

W(x∗, τ) := V(x∗, τ)G−1(x∗, τ); (33)

for relation (11)1 it satisfies the kinematical relation

J̇ = JWT + WJ (34)

that some Author calls the new fundamental conservation equation of microin-
ertia, similar, in some sense, to the continuity equation (18) for macromotion
(see, e.g., Theorem 5 in [26]): here, however, it is a simple consequence of
definition (11)1.

By using the wrenching (33) and relation (34) into (32), we are led to the
requested classical form of equation for micromomentum (4.18) of [17]:

ρ
[ ˙(JWT) − WJWT

]
= ρB̃− Z̃ − skwT + div Σ̃, (35)

where B̃ is the generalized body moment, Σ̃ is the hyperstress and Z̃ rep-
resents the symmetric part of the generalized moment of interaction of the
microstructure and the gross motion. By replacing these fields in (22), we
obtain the related energy equation in presence of affine microstructure in the
usual form (see also (2.5) of [16]):

ρε̇ = T · L + (Z̃ + skwT) ·WT + Σ̃ · grad
(
WT

)
+ ρλ − div q. (36)

5 Observers

Now, in order to give a suitable definition of a continuum with microstructure
subject to internal kinematical constraints, as (9) and (10) are, and to study
the consequences of them on the balance equations (18)–(22) and (25), we
need an objective version of the total power density of mechanical internal
actions Pint acting on the body B, that is the quantity appearing, with the
opposite sign, in the right-hand side of the reduced version of the imbalance
of entropy (25) (see Sect. 3 of [31]):

Pint = − (T · L + Z · V + Σ · gradV) . (37)
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A change in observer of a body with affine microstructure B relates two
processes (x̆, Ğ, θ̆)(τ) and (x,G, θ)(τ) if, for any (x∗, τ) ∈ B∗ ×�,

x̆(x∗, τ) = c(τ) + Q(τ)x(x∗, τ), Ğ(x∗, τ) = Q(τ)G(x∗, τ) (38)

and
θ̆(x∗, τ) = θ(x∗, τ), (39)

where c is a vector and Q a proper orthogonal tensor of Orth+.
This means that G transforms like the deformation gradient F and can be

considered as a double vector, while the velocity v, the microvelocity V and
the gradient of temperature g transform as follows:

v̆ = ċ + Q̇d + Qv, V̆ = Q̇G + QV and ğ = Qg, (40)

where d is the position vector of x relative to a fixed origin in E .
Now, let D (:= symL) and Y (:= −skwL) be the stretching and the

spin tensor, respectively, and D̃ (:= symW) and Ỹ (:= −skwW) the micro-
stretching and the micro-spin tensor, respectively, so that

L = D− Y and W = D̃ − Ỹ; (41)

therefore one can compute from (40)1,2 the transformation laws for L̆ and W̆:

L̆ = ˘grad v̆ =
∂L̆
∂x∗

F̆−1 =
(
Q̇F + Q

∂v
∂x∗

)
F−1QT = Q̇QT + QLQT (42)

and
W̆ = V̆Ğ−1 =

(
Q̇G + QV

)
G−1QT = Q̇QT + QWQT ; (43)

consequently, L̆ can be split into the symmetric and skew part, respectively:

D̆ = QDQT and Y̆ = −Q̇QT − QYQT , (44)

as well as W̆.
Owing to the transformation laws (40)2 and (42)4, the expression (37) for

the power density Pint is not frame indifferent, apparently; instead, by using
the balance of angular momentum (21) and relations (41), we have that

−Pint = D · symT + Y · skw
(
ZGT + Σ � gradG

)
+

+W · (ZGT + Σ� gradG
)

+ (G � tΣ) · grad (WT ) =

= D · symT + (Y − Ỹ) · skw
(
ZGT + Σ� gradG

)
+

+ D̃ · sym
(
ZGT + Σ � gradG

)
+ (G � tΣ) · grad (D̃ + Ỹ)

(45)

and hence Pint is indifferent to changes in observer, as requested.
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6 Dilatant Granular Materials with Rotating Grains

We now impose the perfect kinematical constraint of spherical microstructure,
as described by formulas (9) and (10), in order to obtain the balance laws for
granular materials which allow effects of microrotation of the compressible
grains, other than the dilatancy of the chunks.

The body B is said to be internally constrained if the allowed velocity,
microvelocity and temperature gradient distributions are such that not all
values of the objective factors D, D̃, (Y − Ỹ), grad D̃, grad Ỹ and g are
accessible. In our case the wrenching W, the micro-stretching D̃ and the
micro-spin Ỹ are given by

W = β̇β−1I + ṘRT , D̃ = β̇β−1I, Ỹ = −ṘRT , (46)

respectively, and so the macromotion is not constrained at all, while

grad (WT ) = I ⊗ grad (β̇β−1) + grad (ṘRT ). (47)

Furthermore, we follow classical theories (see [36] and [18]) and suppose
that each quantity, which, in absence of the constraint, is ruled by a consti-
tutive prescription (that is T, Z, Σ, q, ε, η, ψ) is now the direct sum of one
active and one reactive component

T = Ta + Tr, Z = Za + Zr, etc. (48)

and only the active component is bound through suitable constitutive relations
to the independent thermokinetic variables.

The additional request that the constraint is perfect, i.e., internally friction-
less, is specified, in this wider thermomechanic rather than purely mechanical
context, by the property that the entropy production due to the reaction
is null, that is the contribution of the reactions to the inequality (25) are
identically zero for every process allowed by the constraint (see also, Sect. 27
of [7]):

ρ
(
ψ̇r + ηr θ̇

)
+ θ−1qr · g = Tr · L + Zr · V + Σr · gradV. (49)

By using the representation (45)1 of Pint, the constraint relation (9), (46)
and (47) into (49), we have

ρ
(
ψ̇r + ηr θ̇

)
+ θ−1qr · g = symTr ·D − skw Tr · Y +

+ (β̇β−1) [βZr ·R + Σr · grad (βR)] +
(
βΣT

r RT
) · grad

(
β̇β−1

)
− (50)

− skw
[
βZrRT + Σr � grad (βR)

] · Ỹ + (βR � tΣr) · grad Ỹ,

for every totally free choice of θ̇ and (β̇β−1) among the scalars, g among
the vectors, Y and Ỹ among the skew tensors and D among the symmetric
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tensors; in (50) the transposition of exponent T on a tensor Ω of the third
order has the following meaning: ((ΩT a)b)c = ((Ωc)b)a, for each triple of
vectors a, b and c.

The reactions are then characterized by the following requirements:

ψr = const., ηr = 0, qr = 0, (51)

Tr = 0, Zr · βR + Σr · grad (βR) = 0,

skw
[
βZrRT + Σr � grad (βR)

]
= 0,

ΣT
r RT = 0 and skw

[
βR (Σrw)T

]
= 0, ∀ vectorw;

(52)

hence, from definitions (27)2,3, we have that reactions must be such that

Z̃r =
[
β ZrRT + Σr � grad (βR)

] ∈ Dev,

Σ̃r w = β R (Σr w)T ∈ Dev, ∀ vectorw,
(53)

and, accordingly,

Z̃a ∈ Sph and
(
Σ̃a w

)
∈ Sph ⊕ Skw, ∀ vectorw, (54)

while, for (52)1, Ta is a free tensor field, not necessarily symmetric-valued.
Now we are able to obtain a set of pure equations which rules the ther-

momechanical evolution of our model of dilatant granular material B; in fact,
by splitting the stress tensor T into its symmetric and skew parts and by
using the condition (52)1 into (48)1, together with the balance of moment of
momentum (21) and condition (52)3, the following reaction-free expression for
the stress T follows:

T = symTa + skw
[
βRZT

a + grad (βR) � Σa

]
, (55)

which will be the object of a constitutive prescription and it is clearly not
symmetric, in general.

Moreover, by using relations (53) and (54), the balance for micromomen-
tum in the shape (28), broken up into spherical, skew and deviatoric part,
delivers

sph
(
C̃− Z̃a + div Σ̃a

)
= 0, skw

(
C̃ − T + div Σ̃a

)
= 0 (56)

and Z̃r − div Σ̃r = dev C̃, (57)

respectively; therefore, the constraint (9), definitions (27) and the skew part of
the stress tensor furnished by (55) permit us to write the following equations:

β (C − Za + div Σa) ·R = 0, β skw
[
(C− Za + div Σa)RT

]
= 0 (58)

and Zr − div Σr =
[
dev

(
CRT

)]
R . (59)
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In conclusion, only the active constitutive components of the fields of
stress, internal actions and microstress appear in the Cauchy equation (19),
with T given by (55), and in the spherical and skew parts of equation for
micromomentum (58): these are the pure equations which rule the mechanical
evolution of the body.

Once a motion is ensued from them, the corresponding reactions to the
constraint are obtained by the condition (59) (other than by (51)) within
the intrinsic indeterminacy generated from equation itself for Zr and Σr, as
pointed out in Sects. 205 and 227 of [51] or in Remark 1, Sect. 3 of [15].

Now let us use the definition of the Helmholtz free energy ψ and the results
(51), (52) and (55) in the balance equation for energy (22); on repeating the
same procedure leading to (50), we immediately get

ρ
˙(ψa + θηa) = D · symTa +

(
β̇β−1

)
[βZa ·R + Σa · grad (βR)] +

+
(
Y + ṘRT

)
· skw

[
βZaRT + Σa � grad (βR)

]
+ (60)

+
(
βΣT

a RT
) · grad

(
β̇β−1

)
− (βR � tΣa) · grad

(
ṘRT

)
+ ρλ − div qa,

where there is no trace of effects due to the constraint: we have obtained the
pure equation of evolution for the temperature of the body.

We observe that (60) will be greatly simplified when the constitutive pre-
scriptions for the active fields will be given and the consequences of the
Clausius–Duhem inequality (25) will be taken into account.

7 Inertia Forces and Balance of Granular Energy

The fundamental pure equations of balance (19) (with the stress tensor T
given by (55)), (58) and (60) presented in the previous sections apply to the
general class of materials with spherical microstructure.

The material properties of granular media are assigned through constitu-
tive hypotheses of thermomechanic and kinematical character: the former will
be rendered explicit in the next section with the choice of constitutive postu-
lates for a thermoelastic continuum; the latter involve the delicate argument of
the connection between an appropriate choice of the densities of macro- and
micro-structural inertia forces and the chosen expression (17) for the total
kinetic energy density κext.

We follow Mariano [43] and Capriz [7] and, firstly, decompose the volume
force density c in its inertial cin and noninertial ρ f part, as made in (29)
for C:

c = cin + ρf ; (61)

after we assume the validity of a kinetic energy theorem, which implies that,
locally, the power for unit volume of inertial forces be the opposite of the time-
rate of change of the kinetic energy density per unit mass κext, times ρ, plus
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the divergence of the flux of kinetic energy density k through the boundary,
that is

cin · v + Cin ·V = −ρ κ̇ext + div k. (62)

It is easy to check that

ρ κ̇ext = ρ
[
v · v̇ + ρ̇

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
+ 3µ̇µ̈ + µµ̇ Ṙ · Ṙ + µ2 Ṙ · R̈

]
=

=
{
ρv̇ + grad

[
ρ2

(
γ(ρ)ρ̈ + 1

2γ′(ρ)ρ̇2
)]} · v + (63)

+ µ∗ρ
(
µ̈R + 2µ̇Ṙ + µR̈

)
·
(
β̇R + βṘ

)
− div

[
ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
v
]
,

where the continuity equation (18), the relation (13) and the properties
R ·R = 3 and R · Ṙ = 0 of the orthogonal tensor R are used; the prime
(·)′ denotes differentiation with respect to the argument. Therefore, it must
be:

cin = −ρ v̇ − grad
[
ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)]
, (64)

Cin = −µ∗ρ
(
µ̈R + 2µ̇Ṙ + µR̈

)
and k = −ρ2

(
γ(ρ)ρ̈ + 1

2γ
′(ρ)ρ̇2

)
v.

We observe that, for the constraints (9) and (10), Cin satisfies again
relation (30)2, while the expression (64)1 for cin was already obtained in
Appendix B of [28] and Sect. 3 of [30] with variational procedures.

Furthermore, we also note from (64)1 that there is a contribution to
the total Cauchy stress tensor T̃ in addition to the classical surface actions
exerted through the boundary and coming from an influx of linear momentum
described by a tensor of inertia flux M which is the Lagrangian derivative,
times ρ I, of the fluctuation energy κf and measures the agitation within a
chunk of material (see [29]): hence, it is

T̃ = T + M with M := −ρ2

[
γ(ρ)ρ̈ +

1
2
γ′(ρ)ρ̇2

]
I (65)

with T given by (55) (see also, the collisional–translational contribution to
the total stress tensor in (2.6) of [39] or, for (18), the spherical part of a
type of Reynolds stress tensor of the turbulence theory in (3.14) of the review
paper [37], in which many other granular theories that split the stress tensor
are examined); therefore, by using (61), the Cauchy equation in this context
is so written:

ρv̇ = ρf + div T̃. (66)

From relations (29), (64)2 and (13) and the properties of R, it follows that
the frictionless micromomentum balances (58) are now:

ρ
(
3µµ̈ − µ2Ỹ · Ỹ

)
= βR · (ρB− Za + div Σa) and

ρ
(
µ2Ỹ

)·
= skw

[
βR (ρB− Za + div Σa)T

] (67)
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or, by inserting the constitutive expressions (16) and (6)2,

3ρρ
4
3
m

[
α(ρm)

(
ρ̈m − ρmỸ · Ỹ

)
+ 1

2α
′(ρm)ρ̇2

m

]
= ρ

1
3
m∗R · (ρB− Za + div Σa)

and 3ρρ
1
3
m

(
ρ2

mα(ρm)Ỹ
)·

= ρ
1
3
m∗skw

[
R (ρB − Za + div Σa)T

]
. (68)

Equation (59) for the reactions is now

Zr − div Σr = ρ
[
dev

(
BRT + µ∗µ2Ỹ2

)]
R , or

Zr − div Σr = ρ
[
dev

(
BRT + 3ρ−

1
3

m∗ ρ
7
3
m α(ρm) Ỹ2

)]
R .

(69)

In the sequel of this section, we recover the relation of evolution for the
granular temperature of the body (the granular heat transfer equation (4.6)
of [13] or the balance of pseudo-thermal energy (2.7) of [39]) as a direct
consequence of our equations for micromomentum balance (67).

The quantity that is usually introduced as granular temperature ϑ rep-
resents a fraction of the extra energy due to grains agitation and to chunks
dilatancy (and is the trace of the so-called Reynolds tensor which measures
the momentum flux in fluid dynamics); in our theory it corresponds to the
fluctuation energy κf plus the roto-dilatational kinetic energy κs (multiplied
by 2

3 ):

ϑ :=
2
3
(κf + κs) =

1
3
γ(ρ)ρ̇2 + µ̇2(ρm) +

1
3
µ2(ρm) Ỹ · Ỹ, (70)

where relation (46)3 was used.
By differentiating with respect to the time and by using (17), (63) and (18),

the representation (65)2 of the inertia flux tensor M and the antisymmetry
of Ỹ, we obtain

3
2
ρϑ̇ = M · L + ρµ̇µ−1

(
3µµ̈ − µ2Ỹ · Ỹ

)
+ ρỸ ·

(
µ2Ỹ

)·
; (71)

at the end, the equations for micromomentum balance (67) give

3
2
ρϑ̇ = div u + M · L + ι + ρB · (βR)· . (72)

Equation (72) is the so-called balance of granular energy in which we can
easily recognize, with appropriate identifications, usual terms introduced in
granular theories: u :=

[
ΣT

a

(
βRT

)·] is the granular heat flux vector, an
interstitial work flux of mechanical nature, in excess of the usual flux due to
surface tractions, owing to interactions between chunks and due to grains–
boundary collisions or to exchange of granules through the chunk boundary
itself as well as to weakly nonlocal spatial effects (see [31], [24], [25] and
[23]); (M · L) is the rate of working of the inertia component of the stress
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tensor;
[
ρB · (βR)·

]
is a granular heat source, that some author call the ‘stir’

due to external actions; ι := − [
Za · (βR)· + Σa · grad (βR)·

]
is the local

rate of dissipation due to the inelastic nature of collisions between particles,
dissipation which also appears, when (9) and (52)2,3,4,5 are taken into account,
on the right-hand side of the balance of thermic internal energy (22) with the
opposite sign (see also, (2.4) of [39]).

8 Constitutive Restrictions in the Thermoelastic Case

The peculiar flow behaviour of granular materials can be considered similar
to fluid one, except that its bulk compressibility and temperature distribution
depend on the initial porosity (see e.g., [2] and the experimental results in [4])
and thus the medium has a preferred reference placement with respect to
volume distribution.

Therefore, we assume that the overall response of a thermoelastic dilatant
granular materials with rotating grains depends on the set S ≡ {ρ∗, ρ, s :=
gradρ,S := grad 2ρ, β,p := gradβ,P := grad 2β,R,Π := gradR, θ∗, θ,g}.
The symmetric tensors S and P are inserted among variables not only for con-
sistency with the results of the conservative case in absence of rotations [30],
but also because they seem the appropriate second geometric measures of
local structure, namely, a sort of rough measurements of anisotropy of grains
and chunks distributions, respectively (see, also, [21] and [44]).

The equipresence principle requires that each dependent constitutive field
is given by a smooth function of the set S, i.e.,

{ψa, ηa, symTa, Za, Σa, qa} =
{
ψ̂, η̂, T̂, Ẑ, Σ̂, q̂

}
(S); (73)

now let us check the compatibility of these prescriptions with the Clausius–
Duhem inequality, in its reduced version (25), by incorporating the condition
(49) of perfect constraint and the functional dependence of the free energy ψa

and by using the chain rule, the conservation of mass (18) and the identities

˙gradR = grad Ṙ − (gradR)L and ˙gradω = grad ω̇ − LT gradω, (74)

for each scalar function ω.
We require that the entropy imbalance (25) be valid for any choice of the

fields in the set S and their derivatives, consequently, when the terms are
appropriately ordered, the inequality reads{

sym
[
Ta + ρ

(
s ⊗ ψ̂s + p ⊗ ψ̂p + ΠT � ψ̂T

Π

)]
+ ρ2

(
ψ̂ρ + ψ̂s · s

)
I
}
·D −

− skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
s ⊗ ψ̂s + p⊗ ψ̂p + ΠT � ψ̂T

Π

)]
·Y −

− ρ
(
η̂ + ψ̂θ

)
θ̇ +

[
βẐ · R + Σ̂ · grad (βR) − ρβψ̂β − ρψ̂p · p

] (
β̇β−1

)
+
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+skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
ψ̂RRT + ψ̂Π � Π

)]
· Ỹ −

− ρ
(
ψ̂S · Ṡ + ψ̂P · Ṗ + ψ̂g · ġ

)
+ β

(
Σ̂T RT − ρψ̂p

)
· grad

(
β̇β−1

)
+

+
[
R �

(
β tΣ̂− ρ tψ̂Π

)]
· grad Ỹ · +ρ2

(
I⊗ ψ̂s

)
· gradD − θ−1q · g ≥ 0,

(75)

where subscripts denote partial differentiation with respect to the shown field,
e.g., ψ̂p := ∂ψ̂

∂p .
The left-hand member of inequality (75) is linear in D, Y, θ̇, (β̇β−1),

Ỹ, Ṡ, Ṗ, ġ, grad
(
β̇β−1

)
, grad Ỹ and gradD and hence, because one can

imagine, for each material element, thermomechanical processes along which
these quantities take up arbitrary values at a given instant, its fulfillment
implies that the coefficients in the linear expression must all vanish:

ψ̂ = ψ̂(ρ∗, ρ, β,p,R,Π, θ∗, θ), η̂ = −ψ̂θ,

T̂ = −ρ
[
ρψ̂ρI + sym

(
p ⊗ ψ̂p + ΠT � ψ̂T

Π

)]
,

skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
p⊗ ψ̂p + ΠT � ψ̂T

Π

)]
= 0,

βẐ · R + Σ̂ · grad (βR) = ρ
(
βψ̂β + ψ̂p · p

)
, (76)

skw
[
βRẐT + grad (βR) � Σ̂ + ρ

(
ψ̂RRT + ψ̂Π � Π

)]
= 0,

Σ̂T RT = ρψ̂p, skw
{
R

[(
β Σ̂ − ρ ψ̂Π

)
w

]T
}

= 0, ∀ vectorw,

while the heat flux q̂ must satisfy identically the Fourier inequality

q̂ · g ≤ 0. (77)

The following compatibility condition on the free energy ψ̂, which comes
out from (76)4 and (76)6:

skw
(
p⊗ ψ̂p + R ψ̂T

R + ΠT � ψ̂T
Π + Π� ψ̂Π

)
= 0, (78)

expresses simply the condition of frame-indifference for ψ̂, namely,

ψ̂
(
ρ∗, ρ, β,Qp,QR, (Q� Π)QT , θ∗, θ

)
= ψ̂(ρ∗, ρ, β,p,R,Π, θ∗, θ), (79)

for each Q ∈ Orth+.
Moreover, the total Cauchy stress tensor T̃ for a thermoelastic medium is

given by (65), (55) and (76)3,4:



184 P. Giovine

T̃ = −ρ2

[
γ(ρ)ρ̈ +

1
2
γ′(ρ)ρ̇2 + ψ̂ρ

]
I − ρ

(
p⊗ ψ̂p + ΠT � ψ̂T

Π

)
, (80)

where we recognize the usual thermodynamic pressure for fluids π := ρ2ψ̂ρ,
related to the compressibility of granules, a stress of Ericksen’s type (−ρp⊗
ψ̂p) that justifies the ability of granular continua to support shear in equi-
librium also in absence of microrotation, as evidenced by the characteristic
angle of repose of these materials, and a further stress term

(
−ρΠT � ψ̂T

Π

)
,

which shows that they could still sustain shear stresses when the grains are
rigid, giving rise to the generation of microrotation gradients.

As observed at the end of Sect. 6, the evolution equation for the temper-
ature of granular materials (60) simplifies considerably and reduces to the
classical one, that is,

ρθ ˙̂η = ρλ − div q̂. (81)

Furthermore, with the use of constitutive relations (76) in (73), we are
able to express the dependent fields on the right-hand side of pure equations
of micromotion (68) in function of the Helmholtz free energy ψ̂; precisely, by
using (76)5,7 in the former and (76)6,8 in the latter, we have(

div Σ̂ − Ẑ
)
·R = div

(
ρψ̂p

)
− ρψ̂β and (82)

skw
[
β R

(
div Σ̂− Ẑ

)T
]

= skw
{
R

[
div

(
ρψ̂Π

)
− ρψ̂R

]T
}

,

where ψ̂ represents a sort of potential for stresses and microstresses.
Now, if we introduce in (82) internal forces of dilatancy δ and of rotation

N, the dilating microstress vector hdil and the third order spinning hyperstress
tensor Σspi, defined by

δ := 1
3ρ

(
βψ̂β + p · ψ̂p

)
, N := 1

3ρ skw
(
R ψ̂T

R + Π⊗ ψ̂Π

)
, (83)

hdil := 1
3ρβψ̂p and Σspiw := 1

3 skw
[
ρR

(
ψ̂Πw

)T
]
, ∀ vectorw, (84)

as a consequence the balances of dilatational and rotational micromomentum
(68) are, respectively:

ρρm

[
α(ρm)

(
ρ̈m − ρmỸ · Ỹ

)
+ 1

2α
′(ρm)ρ̇2

m

]
= ρ φ − δ + div hdil

and ρ
(
ρ2

mα(ρm)Ỹ
)·

= ρO− N + div Σspi, (85)

where φ := 1
3β B · R and O := 1

3 skw
(
βRBT

)
are the external dilatational

force and the external tensor moment per unit mass, respectively.
These equations for micromomentum together with the balance of mass

(18) and the Cauchy’s balance of linear momentum (66) (T̃ given by (80)) are
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the pure field equations of motion for thermoelastic dilatant granular materials
with rotating grains, the evolution of the temperature being ruled by (81).

Remark 1: We observe now that hdil and Σspi, defined in (84), are particular
examples of the stirring and the twisting hyperstress tensor defined in [14]
and [8], but, unlike those papers, we think that it is not possible the assignment
of prescribed boundary conditions to both of them, the stirrer hdiln̂ and the
twister Σspin̂ (n̂ is the exterior unit normal to the boundary surface).

In fact they are of different physical nature: while for the twister the bound-
ary distribution of the external couples could be assigned in analogy to the
microrigid Cosserat brother’s continua [19], on the contrary, for the stirrer,
it appears difficult to imagine a direct way to act on the proper grain com-
pressibility through the boundary itself; rather, only the sum (−δ + div hdil)
has sense, has the right properties of covariance and could express weakly
non-local effects (see [7], pages 26–27, [42], page 21, and [5]).

In [11] a wide discussion about the manifold of values of the microstruc-
tures with, or without, physically significant connection and the consequent
presence, or absence, of the related microstress is presented.

Remark 2: In this context, the mechanical interstitial work flux u, introduced
at the end of Sect. 7 in the balance of granular energy (72), is now written as

u = 3
[(

β̇β−1
)

hdil + ΣT
spiỸ

]
; (86)

thus terms related to contractions or dilatations of grains and to rotations
appear clearly put in evidence.

9 Suspension of Rigid Granules in a Fluid Matrix

In the analysis of flows of a large number of discrete inelastic particles at
relatively high concentrations and with interstices filled with a fluid or a gas
of negligible mass (as it is the case of cohesionless soil, such as sand with
rough surface grains, or of fluidized particulate beds), we must assume that the
granules are incompressible; therefore, the proper mass density ρm is constant
and, for relation (1), the chunk mass density ρ comes down to be proportional
to the volume fraction ν of grains (ρ = ρm∗ν) and so the conservation of mass
(18) gives

ν̇ + ν trL = 0. (87)

Furthermore, for condition (16)2, the coefficient β in the constraint relation
(9) disappears (β ≡ 1) and G = R, so that

κs =
1
2
µ2
∗ Ṙ · Ṙ, W = ṘRT = ỸT , D̃ = 0 and grad (WT ) = grad Ỹ. (88)
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Remark: When the effects of relative rotations of the chunks and of the
grains are also negligible (R = I), we recover the essence of the theory in [28]
and in Sect. 6 of [31]: in particular, in both of them the Coulomb’s model for
the stress at equilibrium in a granular material with incompressible grains:

Te =
(
β0 − β1ν

2 + β2gradν · grad ν + 2 β3 ν ∆ν
)
I − 2 β4 gradν ⊗ gradν

with βi material constants for i = 0, 1, 2, 3, 4, is obtained as a peculiar example
(see also, (9.1) of [33]). Alternatively, the complementary case in which R = I,
but the grains are elastic, is studied in [30] and again in [31].

We focus here on the simple inelastic case for which relations (88) apply
and we develop calculations of Sects. 6–8 with few adjustments.

Firstly, we obtain the following prescriptions for reactions:(
ZrRT + Σr � gradR

) ∈ Sym, R (Σr w)T ∈ Sym, ∀ vectorw,

Tr = 0, ψr = const., ηr = 0, qr = 0,
(89)

and, correspondingly, for actions(
ZaRT + Σa � gradR

) ∈ Skw, R (Σa w)T ∈ Skw, ∀ vectorw,

T = symTa − skw
(
ZaRT + Σa � gradR

)
.

(90)

Secondly, the reaction-free equation of micromomentum balance for our
suspension of rigid granules is now

ρµ2
∗

˙̃Y = skw
[
R (ρB− Za + div Σa)T

]
, (91)

while the equation for the reactions to the constraint is

Zr − div Σr = ρ
[
sym

(
BRT + µ2

∗Ỹ
2
)]

R. (92)

We observe that the (91) for the microstructural actions is the same that
rules the micromotion for the microrigid Cosserat’s continua (see (23.1) of [7]
or (63) of [35]).

Thirdly, the set of constitutive variables for a thermoelastic materials with
rotating rigid grains is now

Srigid ≡ {ν∗, ν, gradν, grad 2ν,R,Π, θ∗, θ,g},
and so the entropy imbalance (25) and relations (65) and (87) give the
following constitutive prescriptions for dependent fields:

ρm∗ψa = ψ̄(ν∗, ν,R,Π, θ∗, θ) =

= ψ̄
(
ν∗, ν,QR, (Q� Π)QT , θ∗, θ

)
, ∀Q ∈ Orth+,

T̃ = −ν2
[
γ̄(ν)ν̈ + 1

2 γ̄
′(ν)ν̇2 + ψ̄ν

]
I − νΠT � ψ̄T

Π, ηa = −ψ̄θ, (93)

skw
{
R

[(
Σa − ν ψ̄Π

)
w

]T
}

= 0, ∀ vectorw, qa · g ≤ 0,
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with
γ̄(ν) = γ̄∗ν− 8

3 and γ̄∗ =
16
351

ρm∗ν
2
3∗ ς2

∗ . (94)

In (93)3 the thermodynamic pressure is now π̄ := ν2ψ̄ν and is related to
the compressibility of chunks, while the stresses of Reynolds’ and of Ericksen’s
type measure, respectively, the agitation within a chunk of material and
the ability of rigid granular continua to support shear stresses in equilib-
rium, by inducing the generation of microrotation gradients, even when the
proper mass density and the volume fraction of the grain distribution is
constant.

Finally, the balance of rotational micromomentum (68) is given by

ρm∗νµ2
∗

˙̃Y = ρm∗ν Ō− N̄ + div Σ̄spi, (95)

where

Ō := skw
(
RBT

)
, N̄ := ν skw

(
R ψ̄T

R + Π⊗ ψ̄Π

)
, (96)

Σ̄spiw := skw
[
νR

(
ψ̄Πw

)T
]
, ∀ vectorw, (97)

are the new external and internal rotational tensor moment per unit mass and
the new third order spinning hyperstress tensor, respectively.

The pure field equations of mass, macro- and micromotion and of temper-
ature for granular materials with rigid rotating grains are then (87), (66) with
T̃ given by (93)3, (95) and (81).

Appendix: Kinetic Energy Coefficients

To compute explicitly the constitutive functions γ(ρ) and α(ρm) we imagine
the chunk consisting, in a mental magnification, of a spherical grain and its
immediate spherical neighbours (see [6]), and the envelope of the chunk as a
spherical surface of variable radius ς containing all these spherical compress-
ible inclusions of variable radius ϕ with interstices filled with a fluid or a gas
of negligible mass; the envelopes and the grains have the same radius ς∗ and
ϕ∗, respectively, in a reference placement B∗ of the material.

Moreover, we assume that the chunks and the grains expand and/or con-
tract homogeneously with independent radial motions; therefore, if we indicate
with ς̃ the distance from the centre of mass of the chunk to the centre of mass
of a grain in the chunk itself, and with ϕ̃ the distance from the centre of mass
of a grain to the element of volume dvm, they are related to ς and ϕ by

ς̃ =
ς̃∗
ς∗

ς and ϕ̃ =
ϕ̃∗
ϕ∗

ϕ, (98)

respectively.
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Furthermore, the average density of kinetic energy (κch
f + κch

d ) per unit
volume associated to each chunk, as effect of the homogeneous expansions or
contractions of a typical chunk itself and of the inclusions (in addition to the
classical kinetic energy of translation κch

t ), will be written

κch
f + κch

d =
1
2

1
4
3πς3

n∑(
m ˙̃ς2 +

∫
Vm

ρm
˙̃ϕ2 dVm

)
, (99)

where
∑

denotes summation over all of the grains of the chunk, n is the
number of the grains in a chunk, Vm and m are the volume and the mass of
a typical grain, respectively, i.e.,

Vm =
4
3
πϕ3 and m =

4
3
ρmπϕ3 =

4
3
ρm∗πϕ3

∗ (100)

(see also, (2.3) of [4]); hence, from relations (98)2 and (100)3, the time rate of
change of ϕ̃ can be expressed in terms of the rate of change of ρm:

˙̃ϕ = −1
3
ϕ̃∗ ρ

1
3
m∗ ρ

− 4
3

m ρ̇m. (101)

We observe that the quasi-particles are assumed to fill the space of the
granular material, without voids between them, and so the volume fraction ν
of the chunk is

ν =
1

4
3πς3

n∑ 4
3
πϕ3 =

n∑(
ϕ

ς

)3

, (102)

while (being ς∗ and ϕ∗ constants in the same chunk)

ν∗ =
n∗∑(

ϕ∗
ς∗

)3

= n∗

(
ϕ∗
ς∗

)3

. (103)

Moreover, the granules are supposed homogeneous, strictly packed and
such that they do not diffuse throughout the envelope of the chunk; there-
fore, ρm∗ = const., the immediate neighbours of a grain are twelve, with
n = n∗ = 13, and, finally, the volume and the mass density of a macroelement
are, respectively,

V =
4
3
πς3 and ρ =

ρ∗V∗
V = ρ∗

(
ς∗
ς

)3

. (104)

Thus, it follows from (98)1 and (104)3 that the time rate of change of ς̃
can be expressed in terms of the rate of change of ρ

˙̃ς = −1
3
ς̃∗ ρ

1
3∗ ρ−

4
3 ρ̇ (105)
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and, from (100)3, (104)3 and (105), that the ‘fluctuation’ kinetic energy κch
f

of the chunk is

κch
f =

1
2

1
4
3πς3

n∑
m ˙̃ς2 =

ρ
2
3∗ ρ̇2

18ρ
8
3 ς3

n∗∑
ρm∗ϕ3

∗ς̃
2
∗ =

ρm∗ϕ3
∗ρ̇

2

18ς3∗ρ
1
3∗ ρ

5
3

n∗∑
ς̃2
∗ , (106)

where we used the fact that the single grains of a chunk are homogeneous and
of the same radius ϕ∗ in the reference placement B∗ of the material.

Nevertheless, we supposed the granules strictly packed in B∗, therefore, the
centre of mass of the chunk coincides with the centre of the main grain (hence
the related ς̃∗ vanishes), while the centre of mass of its twelve immediate
spherical neighbours are distant two time the constant radius ϕ∗ of a grain
from the centre of the main grain (hence, ς̃∗ = 2ϕ∗); moreover, the radius of
the chunk envelope ς∗ is three time the radius ϕ∗, i.e., ς∗ = 3ϕ∗ and ς̃∗ = 2

3 ς∗.
Thus, by using also relations (1) and (103), we have

ρm∗

(
ϕ∗
ς∗

)3

=
ρ∗
n∗

and
n∗∑

ς̃2
∗ =

4
9
(n∗ − 1)ς2

∗ ; (107)

at the end, by inserting (107) and n∗ = 13 in (106)3, we obtain the density of
kinetic energy κch

f per unit volume associated to each chunk

κch
f =

1
2
ρ

(
16
351

ρ
2
3∗ ς2

∗

)
ρ−

8
3 ρ̇2. (108)

Now, if we consider the ‘dilatational’ kinetic energy κch
d of the chunk and

use relations (100), (101), (104)3 and, after, (1) and (103)1, we obtain

κch
d =

1
2

1
4
3πς3

n∑∫
Vm

ρm
˙̃ϕ2 dVm =

ρρ
5
3
m∗ρ̇2

m

24πρ∗ς3∗ρ
8
3
m

n∗∑∫ ϕ∗

0

4πϕ̃4
∗ dϕ̃∗ =

=
ρρ

2
3
m∗ϕ2

∗ρ̇
2
m

30ρς3∗ρ
8
3
m

[
ρm∗
ρ∗

n∗∑(
ϕ∗
ς∗

)3
]

=
1
2
ρ

(
1
15

ρ
2
3
m∗ϕ2

∗

)
ρ
− 8

3
m ρ̇2

m. (109)

The constitutive expressions (6) and (7) for the coefficients γ(ρ) and α(ρm),
which appear in formula (5) are then easily recognized in (108) and (109)4.
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