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Summary. In some earlier papers an elementary approach was followed to suggest
a set of balance laws governing, within a continuum theory, the evolution of bod-
ies made up of countless molecules afflicted by chaotic agitation. The set is larger
than usual to insure strict observer independence of consequent thermal entities.
Here preliminary steps are taken to pursue the same goal but with an inception
closely akin to that prefacing the kinetic theory of gases; the quest here, however,
exacts divergence from the route followed in the latter theory. Thus some, possibly
controversial, notions emerge and are proffered here for criticism.

1 Kinetics

Consider a body in its deportment at an instant τ , when it occupies a region B;
a region which, in imagination, is envisaged as split into tiny spatial segments.
Each segment e contains many molecules and, although it is said to be located
at a place x within B, it must be imagined to have a microexpanse within
which subplaces can be distinguished at a lower scale. Accordingly, and con-
trary to the bias mooted by the standard kinetic theory, of each molecule one
presumes here to gauge not only the velocity w (which in principle can be
any member of the vector space V) but also the subplace z within e (z being
distinct, at our penetrating magnification, from x).

Consequently one seeks the distribution θ, valid for e (x) at time τ , such
that θ (τ, x; z, w) dzdw gives the number of molecules passing in the vicinity
of z and with velocity near w. θ is presumed to be such that all integrations
involving it and mentioned below are convergent. In particular

ω =
∫

e

∫
V

θ (τ, x; z, w) , [θ] = L−6T 3, (1)

gives the (finite, though large) number of molecules in e (x) at time τ . Take
note that, at any instant τ , there may be many molecules passing through the
immediate neighbourhood of z, possibly with widely different velocities.
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If all molecules have the same mass µ (as always presumed below for
simplicity) then

µω = (meas e) ρ, (2)

where ρ is the gross mass density at x.
Some formulae below are shortened by use of the distribution θ̃

θ̃ (τ, x; z) =
∫
V

θ (τ, x; z, w) ,
[
θ̃
]

= L−3, (3)

which counts the number of molecules near z whatever their velocity.
Vice versa, within the kinetic theory, as already mentioned, only the

alternative reduced distribution θ̂ matters,

θ̂ (τ, x;w) =
∫

e

θ (τ, x; z, w) ,
[
θ̂
]

= L−3T 3, (4)

which counts the number of molecules in the whole e and velocity near w.
Using θ, or θ̃, one determines he centre of gravity of all molecules in e

x = ω−1

∫
e

∫
V

θz = ω−1

∫
e

θ̃z; (5)

it is after such x that the segment is labelled. Then z can be split into x and
y, and, with a slight abuse of notation, one has∫

e

∫
V

θy =
∫

e

θ̃y = 0. (6)

As it is done, with success, in the standard theory of fluids, the velocity v
assigned at x is, by fiat, the average velocity

v = ω−1

∫
e

∫
V

θw. (7)

Similarly one attributes to the subelement at z the average velocity w̃ of
all molecules passing there

w̃ = θ̃−1

∫
V

θw (8)

so that, in particular,

v = ω−1

∫
e

θ̃w̃, ω =
∫

e

θ̃. (9)

Thus correct evaluation of total momentum for e is assured summoning
reduced quantities θ̃ and w̃ only. Actually v can be secured also by turning to
θ̂ only

v = ω−1

∫
V

θ̂w, ω =
∫
V

θ̂, (10)

as in the kinetic theory of gases, within which, though, no meaning can be
attached to w̃.
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2 A Shadow Speck of Matter

Availability of the fields v and w̃ grants us licence to invent a shadow speck
of matter which, in imagination, simply translates with velocity v and within
which, besides, the shadow subspeck at z flies with relative velocity w̃. We can
then deal with the speck as it were a subbody (in the sense of standard theory
of continua) rather than a collection of riotous molecules, a subbody occupying
instantaneously the segment e consisting of subplaces each identified by the
variable z, where the material density is µθ̃.

One may now proceed to evaluate Euler’s inertia tensor Y around x,

Y = ω−1

∫
e

∫
V

θy ⊗ y = ω−1

∫
e

θ̃y ⊗ y (11)

and the tensor moment of momentum K

K = ω−1

∫
e

∫
V

θy ⊗ (w − v) = ω−1

∫
e

∫
V

θy ⊗ w = ω−1

∫
e

θ̃y ⊗ w̃. (12)

Neither tensor could be defined with access to the distribution θ̂ only. Vice
versa the kinetic energy tensor per unit mass W

W =
1
2
ω−1

∫
e

∫
V

θw ⊗ w =
1
2
ω−1

∫
V

θ̂w ⊗ w (13)

cannot be achieved with the distribution θ̃ only. Thus, the ‘reduced’ tensor
W̃ acquires a decisive reserve rôle

W̃ =
1
2
ω−1

∫
e

∫
V

θw̃ ⊗ w̃ =
1
2
ω−1

∫
e

θ̃w̃ ⊗ w̃. (14)

The difference

W − W̃ =
1
2
ω−1

∫
e

∫
V

θ (w − w̃) ⊗ (w − w̃) (15)

will be relegated within some ‘internal energy’ tensor.
One can take now a further step and invent for the shadow speck a con-

gruent affine kinetic field with a rate of deformation B, say; congruent in the
sense that, for it, the tensor moment of momentum, now amounting to Y BT ,
is still equal to K: B need only be chosen to coincide with KT Y −1. There is
a similarity here with the process that led to the selection of v: in that case it
was the global momentum of the molecules pertaining to the segment which
turned out to be equal to that which would have been experienced, within
the segment, were all molecules to fly with the same velocity v. In the devised
affine impetus, the tensor moment of momentum remains that occurring in
the real molecular transit through e.
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Having also assembled the field B (x, τ), one can imagine it generated
by a fictitious affine deformation G from an arbitrary constant reference. In
principle one need only integrate the partial differential equation

∂G

∂τ
+ (gradG) v = BG, (16)

an integration which determines G a constant right factor apart. Basically the
process in not different from that which leads to trajectories in ordinary fluid
dynamics through an integration over v (a vector which we know to be an
average over a population, not the property of a specific mass-point).

Abiding by the notation Ñ = GGT and R′ = Ñ− 1
2 G used in an earlier

paper [1] G can be split into the product

G = Ñ
1
2 R′, (17)

with the orthogonal tensor R′ providing an intrinsic local reference R. The
inverse G−1 could be intended to express the retrogression of e into a paragon
segment e∗ and of the subplace y into a paragon subplace s: y = Gs (in such a
way, we recall, that K does not change if, in its definition, w−v is substituted
by Ġs).

The average molecular velocity with respect to R, w̃ − v − Ġs, can be
pulled back with the help of G to provide us with the ‘peculiar’ velocity c

c = G−1
(
w̃ − v − Ġs

)
. (18)

Some additional remarks:

(i) c is observer-independent; any rotation of the observer does not influence
the reading of c.

(ii) The choices of s and c are such that, not only
∫

e
θ̃s = 0,

∫
e
θ̃c = 0, but

also ∫
e

θ̃s ⊗ c = 0. (19)

(iii) Those choices make the integral∫
e

θ̃ (w̃ − v − By)2 (20)

a minimum; thus, also in this sense, the option suggested for B is best
fitting.

A crucial precondition for progress is to make it clear, even if repetitive,
that the spatial segment e is meant to be interpreted as the instantaneous
placement of a fictitious material speck which translates with the velocity v
and deforms affinely with a rate directed by B; the placement e derives from
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another changeless fictional placement e∗, with the central assumption that
the transplacement from e∗ to e preserves mass:

·
µθ detG = 0. (21)

A decisive corollary ensues: if G is a sufficiently regular function of z and τ ,
then (∫

e

θ̃G
)·

=
∫

e

θ̃G·. (22)

Hence, in particular, ω̇ = 0.
The assumption (21) is compatible with macroscopic mass balance because

molecules of one speck may protrude into and from neighbouring specks. Inside
e the agitation of the molecules is described only within the limits allowed by
the assignment of the field w̃. A global estimate of the intensity of agitation
at x (i.e., within e) is offered by the tensor H :

H = ω−1

∫
e

θ̃
(
w̃ − v − Ġs

)
⊗

(
w̃ − v − Ġs

)
= ω−1G

(∫
e

θ̃c ⊗ c

)
GT ; (23)

notice that
W̃ = BY BT + H. (24)

Exploiting the shadow kinetics, one finds that

Ẏ =
(

ω−1

∫
e

θ̃y ⊗ y

)·
= ω−1

∫
e

θ̃
·

(y ⊗ y) =

= ω−1

∫
e

θ̃ (w ⊗ y + y ⊗ w) = KT + K = BY + Y BT . (25)

On the other hand from the equation for G above one gets also(
GGT

)·
= BGGT + GGT BT . (26)

Thus the ‘strain’ GGT satisfies the same condition required of Y ; choosing the
arbitrary factor so as to adjust also dimensions one is led to the identification

Y = (meas e)
2
3 GGT . (27)

Y can be interpreted as an intrinsic metric at x and, ultimately at all points
occupied by the body.

3 Straining and Allied Notions

It may be argued that our entire analysis balances precariously on the razor
edge of ingrained ambiguities tied with the simultaneous concerns with two
scales; misconceptions must be prevented already with regards to the notion
of straining.
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Above the tensor G was sought from knowledge of B; likewise the formal
construction of the placement gradient F can be effected. However, whereas
the former rendition is conceived strictly within e, the latter demands knowl-
edge of v over all elements in the immediate gross neighbourhood of x, so that
L = gradxv be available. Then F can be sought as a solution of Ḟ = FL and
there is no geometric reason for F to be conditioned by G, nor, of course,
L by B. Furthermore, within e, one can evaluate gradyw̃:

gradyw̃ = B + G (gradyc) , (28)

yet another distinct tensor, which averaged over e

ω−1

∫
e

θ̃gradyw̃ = B + ω−1G

(∫
e

θ̃gradyc

)
(29)

leads to a new field over B, say J (x, τ), which assesses a sort of micro-
stretching and spin evoked from the molecular maelstrom and to be, possibly,
attributed to e.

Thus B, chosen to estimate most fittingly the relative kinetic energy is
not quite as successful in matching average micro straining. Of course, the
additional term might still vanish or, at least, amount to little and thus be
negligible; only the scrutiny of many special instances will offer evidence one
way or another. Rewriting the correction to B in the form

ω−1G

(∫
e

θ̃gradyc

)
= ω−1G

(∫
∂e

θ̃c ⊗ n −
∫

e

c ⊗ grady θ̃

)
(30)

(n the normal to ∂e) evidences a contribution due to a flux through ∂e and
one due to a rearrangement within e.

Below attention is focused on the requited rôle of F versus G or of L
versus B. In a sense, G may be envisioned to account for:

(i) The influence within the element of the macrostretch F , plus
(ii) The rearrangement of molecules within the macrostretched element inso-

far as a crowding near the centre implies a smaller moment of inertia than
a crowding at the periphery, and

(iii) The protrusion of molecules beyond the element bounds after they are
expanded by the macrostretch and insofar as they can be accounted for
affinely.

Above the concepts of stretch are, of course, virtual as quantities derived
from an irregularly evolving reality. They might, nevertheless, take up direct
capacity within some ensuing developments; then the formal splitting of G into
the product of GF−1 by F (or, rather, of F by F−1G ) separates nominally
the outcome of action (i) from the other two; to the combined effect of the
latter the contribution of (ii) could be measured by GGT though such choice
includes consequences of protrusion proper (though excluding, however, the
effects mentioned in the previous paragraph).
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In an essay on perfect pseudofluids [2], the following strain characteristics
were invoked

C = FT F, N = GT G, X = G−1F, (31)

leading to the rates

Ċ = 2FT (symL)F, Ṅ = 2GT (symB)G, Ẋ = G−1 (L − B)F. (32)

Notice that Ẋ is not independent of Ċ, Ṅ . Thus, strictly, X is not the appro-
priate characteristic to pool with C and N ; rather that rôle could be properly
taken by

Q = R′T R, (33)

where R and R′ are the orthogonal tensors associated with F and G respec-
tively, with

F = RC
1
2 , G = R′N

1
2 . (34)

In fact,
Q̇ = R′T

(
ṘRT − Ṙ′R′T

)
R = R′T (skwL − skwB)R (35)

is evidently independent of Ċ, Ṅ .
Protrusion does not necessarily mean loss or gain of molecules: in an ele-

ment number density may easily be balanced by intrusion from neighbouring
elements. Thus a discrepancy between F and G by itself is insufficient to imply
mass variation, it might simply give a hint as to the extent of interpenetra-
tion. A scalar measure of the latter could be the different change of volume
attributed by F and G: α = det

(
FG−1

)
, leading to the rate

α̇ = αtr (L − B) . (36)

Rather, it is only in the presence of a relatively steep gradient of α or, more
generally, of X that protrusion implies deviant features. Thus that gradient
enters necessarily among descriptive variables, perhaps through associated
quantities, such as wryness, torsion, Burgers’ vector, but also ‘extra matter’.

Strain measures like C, N and Q appear inappropriate when address-
ing phenomena in fluids; in fact one may deem the bare pull-back linked
to F , or G, as artificial; although a reference state could still be imagined:
e.g., one where molecules are distributed homogenously within the element
at some standard number density. Also, one must not disregard the oppor-
tunity offered apparently by those strain measures, to compare and contrast
models of semisolids subject to ‘configurational’ changes, i.e. to mutations of
background.

Strictly, when seeking theories for fluids, one should rather evidence
measures bearing only on the current state such as the metrics

C̃ = FFT and Ñ = (meas e)−
2
3 Y = GGT , (37)
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the rotation
Q̃ = R′RT , (38)

a wryness w defined as the gradient of GF−1, the consequent torsion h, dis-
location density and Burgers’ vector b (relative to any plane of normal n)
given by

w = grad
(
GF−1

)
, h =

1
2
(
w − wt

)
, b =

(
ehT

)
n, (39)

where the exponents t and T mean minor right transposition and major
transposition respectively in the third-order tensors w and h, e is Ricci’s
permutation tensor. The common invariants of all those tensors have then
a crucial rôle to play.

4 Balance Laws

The scenario promoted in the previous sections evidences within the region B,
once totals over each e are affected, the substratum provided by the fields of
gross density ρ and moment of inertia Y

ρ =
µ

(meas e)

∫
e

θ̃, Y = ω−1

∫
e

θ̃y ⊗ y (40)

and, later, the kinematic fields v, B and H

v = ω−1

∫
e

θ̃w̃, B =
(∫

e

θ̃w̃ ⊗ y

)(∫
e

θ̃y ⊗ y

)−1

, (41)

H = ω−1

∫
e

θ̃ (w̃ − v − By) ⊗ (w̃ − v − By) . (42)

Thus, the intention is not to press the depth of description of events in the
body down to the details of the distribution θ (or, yet less deeply, θ̃) but to
stop at the stage set by those fields. Further, one expects that the evolution of
the latter be ruled by balance laws also lingering at their level, hence involving,
on the one hand, the time derivatives of v, B (or, better, K), H and, on the
other hand, totals over e of impact and/or bonding effects be those intimate
(or close, i.e. among subspecks within e), internal (among distinct specks),
external to the body. Such totals per unit mass are formally expressed by the
integrals

ω−1

∫
e

θ̃gc, ω−1

∫
e

θ̃gi, ω−1

∫
e

θ̃ge (43)

and could, in principle, be given substance once a collision/coherence oper-
ator (as occurs in Boltzmann equation) were known. Be that as it may, the
presumption below is that

·
w̃ equals the sum gc + gi + ge as per Newton law.
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Disregarding, as said above, possible deeper inhomogeneities (which would
be gauged by θ̃ (τ, z) and would be related to div w̃), conservation of mass is
invoked by the standard law

ρ̇ + ρdiv v = 0. (44)

What could be called law of conservation of moment of inertia was already
written (see (27)) and follows immediately from the definition (40)2

Ẏ = 2symK. (45)

Because totals of intimate interactions vanish, conservation of momentum
embodied by (see (41)1 and (43))

ρv̇ = ρω−1

∫
e

θ̃
(
gi + ge

)
, (46)

might take the usual form

ρv̇ = ρb + divT, (47)

though here one should justify anew the presumption that external actions
sum up into a functional absolutely continuous with gross volume, whereas
internal actions obey Cauchy’s assertions.

Conservation of moment of momentum follows from the definition of K
(see (12) and, again, (43))

K̇ = ω−1

∫
e

θ̃w̃ ⊗ w̃ + ω−1

∫
e

θ̃y ⊗ (
gc + gi + ge

)
, (48)

from the link (24) and the property (25)

ω−1

∫
e

θ̃w̃ ⊗ w̃ = ω−1

∫
e

θ̃
(
Ġs + Gc

)
⊗

(
Ġs + Gc

)
= BK + H, (49)

with the conclusion

K̇ − BK − H = ω−1

∫
e

θ̃y ⊗ (
gc + gi + ge

)
. (50)

Notation introduced in earlier papers could be called upon

M = ω−1

∫
e

θ̃y ⊗ ge, A = −1
ρ

∫
e

θ̃y ⊗ gc. (51)

No impelling case, but analogy and convenience, is yet available to declare
that the third addendum in the right-hand side of (50) be expressible as the
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divergence of a third-order tensor m, the factor ρ−1 apart, again as used in
earlier papers. But, when that is the case the next balance law reads

ρ
(
K̇ − BK − H

)
= ρM − A + div m. (52)

Finally one finds, again with reference to (43), (24), (25)

Ḣ = 2sym
[
ω−1

∫
e

θ̃
(
gc + gi + ge − Ġc

)
⊗ Gc

]
(53)

or
Ḣ + 2symBH = 2ω−1sym

∫
e

θ̃
(
gc + gi + ge

)⊗ Gc. (54)

Again, using notation of earlier papers for tensor virials

S = 2ω−1sym

∫
e

θ̃ge ⊗ Gc, (55)

Z = −1
ρ
sym

∫
e

θ̃gc ⊗ Gc, (56)

and presuming again that also the virial of internal actions have contact char-
acter so that they be expressed as the divergence of a third-order tensor s, the
last balance equation takes the disguise

ρ
(
Ḣ + 2symBH

)
= ρS − Z + divs. (57)

5 Balance of Kinetic Energy

Energy has the leading rôle in the continuum discussed here. Thus it seems
appropriate to assemble a few results below, even if largely mentioned else-
where.

Within our model the kinetic energy tensor per unit mass W can be split
thus

W = W̃ + U (58)

with a thermal contribution

U =
1
2
ω−1

∫
e

∫
V

θ (w − w̃) ⊗ (w − w̃) (59)

and a properly kinetic one

W̃ =
1
2ω

∫
e

θ̃w̃ ⊗ w̃ =
1
2ω

∫
e

θ̃
(
v + Ġs + Gc

)
⊗

(
v + Ġs + Gc

)
, (60)
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or, see remarks at the end of Sect. 2,

W̃ = v ⊗ v + BY BT + H. (61)

The tensorial kinetic energy theorem follows from the balance equations
(47), (52), (57) multiplying tensorially the first by v, the second by B, sum-
ming the two with the third one (divided by 2) term by term, taking the
symmetric part of both sides and integrating, by parts where appropriate,
over the region occupied by the body∫

B
ρ

·
W̃ =

∫
B

ρsym

(
v ⊗ f + BM +

1
2
S

)
−

−
∫
B

(
sym

(
1
2
Z + LT T

)
+ BA + bmt

)
+ (62)

+
∫

∂B
sym

(
v ⊗ Tn + B (mn) +

1
2
sn

)
,

where n is the unit normal vector to ∂B, b is the gradient of B, and the
exponent t to m indicates minor right transposition:

(
bmt

)
ij

= Bia,bmajb.
The central term in the right-hand side must be interpreted as the tensor
power of intimate and internal actions, with densities respectively

−sym

(
1
2
Z + BA

)
and −sym

(
LT T + bmt

)
. (63)

Hence the density of scalar power is given by

−
(

1
2
trZ + L · T + B · AT + b · (mt

)T
)

. (64)

The equation of balance of moment of momentum (52) does not secure
here observer independence of (64), as occurs in the classical case for the
vectorial version. Two observers on frames in relative motion read different
values of L and B: the change in both is the addition of the same skew tensor.
Hence observer independence is assured if and only if

skwT = skwA. (65)

If one were to demand observer independence of the tensor power then the
stronger condition

T = −AT (66)

would be required, when the tensor power would reduce to

−sym

(
1
2
Z + (L − B) T T + bmt

)
. (67)
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It was already remarked in Sect. 3 that symL and symB can be expressed
in terms of the strain rates Ċ and Ṅ respectively and skw (L− B) in terms
of Q̇

symL =
1
2
FT ĊF−1, symB =

1
2
GT ṄG−1,

skw (L − B) = R′Q̇RT . (68)

Longer algebra shows that

bijk + bjik = G−1
Bi ṅABKG−1

AjF
−1
Kk − ṄABG−1

BaGaC,k

(
G−1

Ai G
−1
Cj + G−1

AjG
−1
Ci

)
(69)

where n = (gradN)F .
Thus the scalar power density can be written as an affine function of

Ċ, Ṅ , Q̇, ṅ

−trZ − (
tb − b

) · m − (
F−1 (symT )F−T

) · Ċ − (
G−1 (symA)G−T

) · Ṅ +

+
(
G−1

Ai G
−1
Cj + G−1

Aj G
−1
Ci

)
G−1

BaGaC,kmijkṄAB − (70)

− 2
[
R′T (skwT )R

] · Q̇ − G−1
Ai G

−1
BjmijkF

−1
Ck ṅABC .

This result suggests the possible existence of continua for which a potential
ϕ (C,N,Q,m) exists and is such that

symT = 2ρF
∂ϕ

∂C
FT , skwT = skwA = ρR′ ∂ϕ

∂Q
RT , (71)

mijk = 2ρGiAGjBFkC
∂ϕ

∂nABC
; (72)

thus m is symmetric in the first two indices and, as a consequence, the second
term in the sum (70) vanishes. The factor multiplying ṄAB is equal to

G−1
Ai (symA)ij G−1

Bj + 2ρGiRGjSFkT
∂ϕ

∂nRST

(
G−1

Ai G
−1
Cj + G−1

AjG
−1
Ci

)
G−1

BaGaC,k

(73)
and hence

(symA)ij = 2ρGiA
∂ϕ

∂NAB
GjB − 2ρ (GiRGjS)k FkT

∂ϕ

∂nRST
. (74)

Finally
trZ = 2ρϕ̇. (75)

When the constitutive laws above apply, the balance equations of momen-
tum and tensor moment of momentum acquire the rôle of evolution equations
for v and B (or x and G). The rule of progress for H needs additional physical
insight.
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6 The First Principle

A deeper kinetic energy theorem ensues if molecular events are graded more
finely inside the distribution θ rather than θ̃. Then, some intriguing corol-
laries ensue; their deduction is barely sketched below omitting adscititious
qualifications to display the essence.

Choose θ (z, w)h dwdz to represent the resultant of the forces acting on
the molecules belonging to the immediate neighbourhood of z, w, molecules
numbering θdwdz and h to be eventually split into the sum hc + hi + he, as
g was earlier.

Then ẇ = h and

Ẇ =
(

1
2
ω−1

∫
e

∫
V

θw ⊗ w

)·
= ω−1

∫
e

∫
V

θsym (w ⊗ h) . (76)

Recall notation introduced at the beginning of Sect. 5

W = W̃ + U. (77)

Hence
·

W̃ + U̇ = ω−1

∫
e

∫
V

θsym (w ⊗ (h − g)) + ω−1

∫
e

∫
V

θsym (w ⊗ g) ; (78)

but, from the restricted kinetic energy theorem and the appropriate interpre-
tation of terms∫

B
ρ

·
W̃ =

∫
B

µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ g) −

−
∫
B

sym

(
1
2
Z + LT T + BA + bmt

)
(79)

so that ∫
B

ρU̇ =
∫
B

µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ (h − g)) +

+
∫
B

sym

(
1
2
Z + LT T + BA + bmt

)
. (80)

Finally, through the standard criterion of localization justified by the fact that
the law above would equally apply when the integrals were extended to any
subbody of B,

ρU̇ = µ (meas e)−1
∫

e

∫
V

θsym (w ⊗ (h − g))+

+ sym

(
1
2
Z + LT T + BA + bmt

)
. (81)

Such is the local equation which expresses, under the circumstances, the first
principle of thermodynamics.
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