Skip to main content

Hydrodynamics from the Dissipative Boltzmann Equation

  • Chapter
Mathematical Models of Granular Matter

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

In this chapter we discuss various questions related with the modeling of hydrodynamic equations for granular gases, starting from the kinetic description based on the dissipative Boltzmann equation. A comparison with the elastic case is briefly presented, together with the main open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobylev, A.V., Cercignani, C.: Moment equations for a Granular Material in a Thermal Bath’ J. Statist. Phys. 106, 547 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann equation and their applications. J. Statist. Phys. 106, 1039 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Statist. Phys. 110, 333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobylev, A.V., Carrillo, J.A. Gamba, I.: On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Statist. Phys. 98, 743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. Mat. Mod. Numer. Anal., 31, 615 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111, 403 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates towards self-similarity for the Ernst-Brito conjecture on large time asymptotics of the inelastic Maxwell model. Preprint (2005), 301–331

    Google Scholar 

  8. Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates towards self-similarity for the Ernst-Brito conjecture on large time asymptotics of the inelastic Maxwell model. (Preprint) (2005)

    Google Scholar 

  9. Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flows at low density. Phys. Rew. E 58, 4638 (1998)

    Article  Google Scholar 

  10. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Statist. Phys. 63, 323 (1991)

    MathSciNet  Google Scholar 

  11. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math. 46, 667 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ben-Naim, E., Krapivski, P.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5 (2000)

    Article  Google Scholar 

  13. Ben-Naim, E., Krapivski, P.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147 (2002)

    Article  MATH  Google Scholar 

  14. Baldassarri, A., Marconi, U.M.B., Puglisi, A.: Influence of correlations in velocity statistics of scalar granular gases. Europhys. Lett. 58, 14 (2002)

    Article  Google Scholar 

  15. Bobylev, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math. Phys. 7, 111 (1988)

    MathSciNet  Google Scholar 

  16. Brilliantov, N.V., Pöschel, T.: Granular gases with impact-velocity dependent restitution coefficient. in Granular Gases, T. Pöschel, S. Luding Eds. Lecture Notes in Physics, Vol. 564, Springer Verlag, Berlin, (2000)

    Google Scholar 

  17. Brilliantov, N.V., Pöschel, T.: Self–diffusion in granular gases. Phys. Rev. E 61, 1716 (2000)

    Article  Google Scholar 

  18. Brilliantov, N.V., Pöschel, T.: Velocity distribution in granular gases of viscoelastic particles. Phys. Rev. E 61, 5573 (2000)

    Article  Google Scholar 

  19. Brilliantov, N.V., Pöschel, T.: Granular Gases - The early stage. (in: Miguel Rubi (ed.) Coherent Structures in Classical Systems, Springer, New York (2000)

    Google Scholar 

  20. Brilliantov, N.V., Pöschel, T.: Hydrodynamics of Granular Gases of viscoelastic particles. Phil. Trans. R. Soc. Lond. A 360, 415 (2002)

    Article  MATH  Google Scholar 

  21. Brilliantov, N.V., Pöschel, T.: Kinetic integrals in the kinetic theory of dissipative gases. (in Granular Gas Dynamics, T. Pöschel, N.V. Brilliantov Eds. Lecture Notes in Physics, Vol. 624, Springer Verlag, Berlin, (2003)

    Google Scholar 

  22. Brilliantov, N.V., Pöschel, T.: Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E 67, 61304 (2003)

    Article  Google Scholar 

  23. Bisi, M., Spiga, G., Toscani, G.: Grad’s equations and hydrodynamics for weakly inelastic granular flows. Phys. Fluids 16, 4235 (2004)

    Article  MathSciNet  Google Scholar 

  24. Cercignani, C.: Recent developments in the mechanism of granular materials. Fisica Matematica e ingegneria delle strutture, Pitagora Editrice, Bologna, (1995)

    Google Scholar 

  25. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases Springer Series in Applied Mathematical Sciences, Vol. 106, Springer–Verlag, (1994)

    Google Scholar 

  26. Carrillo, J.A., Jüngel, A., Markowich, P., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chapman, S., Cowling, T.G.: The mathematical theory of non–uniform gases Cambridge University Press, Cambridge, (1970)

    Google Scholar 

  28. Carrillo, J.A., Toscani, G.: Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Caglioti, E., Villani, C.: Homogeneous cooling states are not always good approximations to granular flows. Arch. Ration. Mech. Anal. 163, 329 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Du, Y., Li, H., Kadanoff, L.P.: Breakdown of hydrodynamics in a one–dimensional system of inelastic particles. Phys. Rev. Lett. 74, 1268 (1995)

    Article  Google Scholar 

  31. Dufty, J.W.: Kinetic theory and Hydrodynamics for rapid granular flows–A perspective. cond–mat/0108444v1 (2001)

    Google Scholar 

  32. Ernst, M.H., Brito, R.: High energy tails for inelastic Maxwell models. Europhys. Lett. 58, 182 (2002)

    Article  Google Scholar 

  33. Ernst, M.H., Brito, R.:   Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Statist. Phys. 109, 407 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Esipov, S., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385 (1997)

    Article  MATH  Google Scholar 

  35. Gorban, A.N., Karlin, I.V.: Hydrodynamics from Grad’s equations: What can we learn from exact solutions. Ann. Phys. 11, 783 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gabetta, E., Pareschi, L., Toscani G.: Relaxation schemes for nonlinear kinetic equations. SIAM J. Numer. Anal. 34, 2168 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  38. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gabetta, E., Toscani, G., Wennberg, W.: Metrics for Probability Distributions and the Trend to Equilibrium for Solutions of the Boltzmann Equation. J. Statist. Phys. 81, 901 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  40. Haff, P. K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)

    Article  MATH  Google Scholar 

  41. Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal. 87, 355 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kogan, M.N.: Rarefied Gas Dynamics Plenum Press, New York, (1969)

    Google Scholar 

  43. Krook, T., Wu, T.T.: Formation of Maxwellian tails. Phys. Rew. Lett. 36, 1107 (1976)

    Article  Google Scholar 

  44. Lun, C.K.K., Savage, S.B.: The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 63, 15 (1986)

    Article  MATH  Google Scholar 

  45. Mischler, S., Mouhot, C.: Cooling process for the inelastic Boltzmann equation for hard spheres. Part I: The Cauchy problem. To appear on J. Statist. Phys. (2005)

    Google Scholar 

  46. Mischler, S., Mouhot, C.: Cooling process for the inelastic Boltzmann equation for hard spheres. Part II: Self–similar solutions and tail behavior. To appear on J. Statist. Phys. (2005)

    Google Scholar 

  47. McNamara, S., Young, W.R.: Kinetics of a one–dimensional granular medium in the quasi–elastic limit. Phys. Fluids A 5, 34 (1993)

    Article  MathSciNet  Google Scholar 

  48. Pareschi, L,, Russo, G.: Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comput. 23, 1253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Risso, D., Cordero, P.: Dynamics of rarefied granular gases. Phys. Rew. E 65, 21304 (2002)

    Article  Google Scholar 

  50. Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465 (1999)

    Article  Google Scholar 

  51. Schwager, T.T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650 (1998)

    Article  Google Scholar 

  52. Toscani, G.: Kinetic and hydrodynamic models of nearly elastic granular flows. Monatsc. Math. 142(1–2), 179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. Toscani, G., Villani, C.: Sharp entropy production bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  54. Toscani, G., Villani, C.: Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas. J. Statist. Phys. 94, 619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  55. Vázquez, J.L.: Asymptotic behavior and propagation properties of the one-dimensional flow of a gas in a porous medium. Trans. Amer. Math. Soc. 277, 507 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  56. Vázquez, J.L.: Asymptotic behaviour for the porous medium equation in the whole space. J. Evol. Equ. 3, 67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toscani, G. (2008). Hydrodynamics from the Dissipative Boltzmann Equation. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_3

Download citation

Publish with us

Policies and ethics