Skip to main content

A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one

  • Chapter
Séminaire de Probabilités XLI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1934))

Abstract

We will focus — in dimension one — on the SDEs of the type dX t = σ(X t )dB t + b(X t )dt where B is a fractional Brownian motion. Our principal aim is to describe a simple theory — from our point of view — allowing to study this SDE, and this for any H∈(0,1). We will consider several definitions of solutions and, for each of them, study conditions under which one has existence and/or uniqueness. Finally, we will examine whether or not the canonical scheme associated to our SDE converges, when the integral with respect to fBm is defined using the Russo-Vallois synmetric integral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alos, E., Mazet, O., Nualart, D. Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Stochastic Process. Appl. 86 (2000), 121–139.

    Article  MATH  MathSciNet  Google Scholar 

  2. Alos, E., Leon, J.A., Nualart, D. Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanese J. Math. 5 (2001), 609–632.

    MATH  MathSciNet  Google Scholar 

  3. Bender, C. An Itô formular for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stochastic Process. Appl. 104 (2003), 81–106.

    Article  MATH  MathSciNet  Google Scholar 

  4. Baudoin, F., Coutin, L. Etude en temps petit du flot d’équations conduites par des mouvements browniens fractionnaires. C.R. Math. Acad. Sci. Paris 341 (2005), 39–42.

    Article  MATH  MathSciNet  Google Scholar 

  5. Boufoussi, B., Tudor, C. A. Kramers-Smoluchowski approximation for stochastic equations with fBm. Rev. Roumaine Math. Pures Appl. 50 (2005), 125–136.

    MATH  MathSciNet  Google Scholar 

  6. Carmona, P., Coutin, L. Intégrales stochastiques pour le mouvement brownien fractionnaire. C.R. Math. Acad. Sci. Paris I 330 (2000), 213–236.

    MathSciNet  Google Scholar 

  7. Coutin, L., Qian, Z. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields, 122 (2002), no. 1, 108–140.

    Article  MATH  MathSciNet  Google Scholar 

  8. Decreusefond, L., Ustunel, A.S. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998), 177–214.

    Article  MathSciNet  Google Scholar 

  9. Doss, H. Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B 13 (1977), 99–125.

    MATH  MathSciNet  Google Scholar 

  10. Duncan, T. E., Hu, Y., Pasik-Duncan, B. Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000), 582–612.

    Article  MATH  MathSciNet  Google Scholar 

  11. Errami, M., Russo, F. n-covariation and symmetric SDEs driven by finite cubic variation process. Stochastic Process., Appl. 104 (2003), 259–299.

    Article  MATH  MathSciNet  Google Scholar 

  12. Feyel, D., De La Pradelle, A. On fractional Brownian processes. Potential Anal. 10 (1999), no. 3, 273–288.

    Article  MATH  MathSciNet  Google Scholar 

  13. Feyel, D., De La Pradelle, A. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006), 860–892.

    Article  MathSciNet  Google Scholar 

  14. Gradinaru, M., Nourdin I. Weighted power variations of fractional Brownian motion and application to approximating schemes. Preprint Paris VI.

    Google Scholar 

  15. Gradinaru, M., Nourdin, I., Russo, F., Vallois, P. m-order integrals and Itô’s formula for non-semimartingale processes; the, case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincar Probab. Statist. 41 (2005), 781–806.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gradinaru, M., Russo, F., Vallois, P. Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H≥1/4. Ann. Probab. 31 (2001), 1772–1820.

    MathSciNet  Google Scholar 

  17. Klingenhöfer, F., Zähle, M. Ordinary differntial equations with fractal noise. Proc. AMS 127 (1999) 1021–1028.

    Article  MATH  Google Scholar 

  18. Lejay, A. An Introduction to Rough Paths. Séminaire de probabilités XXXVII, vol. 1832 of Lecture Notes in Mathematics (2003), 1–59.

    Google Scholar 

  19. Lin, S. J. Stochastic analysis of fractional Brownian motion. Stochastics Stochastics Rep. 55 (1995), 121–140.

    Article  MATH  MathSciNet  Google Scholar 

  20. Lyons, T.J. Differential equations driven by rough signals. Rev. Math. Iberoamer 14 (1998) 215–310.

    Article  MATH  MathSciNet  Google Scholar 

  21. Neuenkirch, A. Optimal approximation of SDEs with additive fractional noise. J. Complexity 22 (4), 459–475, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  22. Neuenkirch, A., Nourdin, I. Exact rate of convergence of some approximation schemes associated to SDEs driven by, a fractional Brownian motion. J. Theor. Probab., to appear.

    Google Scholar 

  23. Nourdin, I. Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d’adéquation. PhD thesis, University of Nancy (2004).

    Google Scholar 

  24. Nourdin, I. Schemas d’approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire. C.R. Math. Acad. Sci. Paris, Ser. I 340 (2005), 611–614.

    Article  MATH  MathSciNet  Google Scholar 

  25. Nourdin, I., Simon, T. On the absolute continuity of one-dimensional SDE’s driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006), no. 9, 907–912.

    Article  MATH  MathSciNet  Google Scholar 

  26. Nourdin, I., Simon, T. Correcting Newton-Côtes integrals corrected by Lévy areas. Bernoulli 13 (2007), no. 3, 695–711.

    Article  MATH  MathSciNet  Google Scholar 

  27. Nualart, D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003), 3–39.

    Article  MathSciNet  Google Scholar 

  28. Nualart, D., Ouknine, Y. Stochastic differential equations with additive fractional noise and locally unbounded drift. Progr. Probab. 56 (2003), 353–365.

    MathSciNet  Google Scholar 

  29. D. Nualart, D., Peccati, G. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (1) (2005), 177–193.

    Article  MATH  MathSciNet  Google Scholar 

  30. Nualart, D., Răsçanu, A. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), no. 1, 55–81.

    MATH  MathSciNet  Google Scholar 

  31. Russo, F., Vallois, P. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993), 403–421.

    Article  MATH  MathSciNet  Google Scholar 

  32. Russo, F., Vallois, P. Stochastic calculus with respect to a finite quadratic variation process. Stochastics Stochastics Rep. 70 (2000), 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  33. Sussmann, H.J. An interpretation of stochastic differential equations as ordinary differential equations which depend on a sample point. Bull. Amer. Math. Soc. 83 (1977), 296–298.

    Article  MATH  MathSciNet  Google Scholar 

  34. Talay, D. Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983), 275–306.

    Article  MATH  MathSciNet  Google Scholar 

  35. Young, L. C. An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67 (1936), 251–282.

    Article  MathSciNet  Google Scholar 

  36. Zähle, M. Integration with respect to fractal functions and stochastic calculus I. Probab Theory Related Fields 111 (1998), 333–374.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nourdin, I. (2008). A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLI. Lecture Notes in Mathematics, vol 1934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77913-1_8

Download citation

Publish with us

Policies and ethics