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Summary. Let (ξ, η) be a bivariate Lévy process such that the integral∫∞
0

e−ξt− dηt converges almost surely. We characterise, in terms of their Lévy
measures, those Lévy processes for which (the distribution of) this integral has
atoms. We then turn attention to almost surely convergent integrals of the form
I :=

∫∞
0

g(ξt) dt, where g is a deterministic function. We give sufficient conditions
ensuring that I has no atoms, and under further conditions derive that I has a
Lebesgue density. The results are also extended to certain integrals of the form∫∞
0

g(ξt) dYt, where Y is an almost surely strictly increasing stochastic process,
independent of ξ.

1 Introduction

The aim of this paper is to study continuity properties of stationary distri-
butions of generalised Ornstein-Uhlenbeck processes and of distributions of
random variables of the form

∫∞
0 g(ξt) dt for a Lévy process ξ and a general

function g : R → R.
For a bivariate Lévy process (ξ, ζ) = (ξt, ζt)t≥0, the generalised Ornstein-

Uhlenbeck (O-U) process (Vt)t≥0 is defined as

Vt = e−ξt

(∫ t

0
eξs− dζs + V0

)
, t ≥ 0,

where V0 is a finite random variable, independent of (ξ, ζ). This process ap-
pears as a natural continuous time generalisation of random recurrence equa-
tions, as shown by de Haan and Karandikar [11], and has applications in many
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areas, such as risk theory (e.g. Paulsen [19]), perpetuities (e.g. Dufresne [6]),
financial time series (e.g. Klüppelberg et al. [14]) or option pricing (e.g.
Yor [23]), to name just a few. See also Carmona et al. [2, 3] for further prop-
erties of this process. Lindner and Maller [17] have shown that the existence
of a stationary solution to the generalised O-U process is closely related to
the almost sure convergence of the stochastic integral

∫ t

0 e
−ξs− dηs as t→∞,

where (ξ, η) is a bivariate Lévy process, and η can be explicitly constructed
in terms of (ξ, ζ). The stationary distribution is then given by

∫∞
0 e−ξs− dηs.

Necessary and sufficient conditions for the convergence of
∫∞
0 e−ξs− dηs were

obtained by Erickson and Maller [7]. Distributional properties of the limit
variable and hence of the stationary distribution of generalised O-U processes
are of particular interest. Gjessing and Paulsen [9] determined the distribu-
tion in many cases when ξ and η are independent and the Lévy measure
of (ξ, η) is finite. Carmona et al. [2] considered the case when ηt = t and
the jump part of ξ is of finite variation. Under some additional assumptions,
they showed that

∫∞
0 e−ξs−ds is absolutely continuous, and its density satis-

fies a certain integro-differential equation. In Section 2 we shall be concerned
with continuity properties of the limit variable

∫∞
0 e−ξs− dηs without any re-

strictions on (ξ, η), assuming only convergence of the integral. We shall give
a complete characterisation of when this integral has atoms, in terms of the
characteristic triplet of (ξ, η). This characterisation relies on a similar result of
Grincevičius [10] for “perpetuities” which are a kind of discrete time analogue
of Lévy integrals.

Then, in Section 3, we turn our attention to continuity properties of the
distribution of the integral

∫∞
0 g(ξt) dt, where ξ = (ξt)t≥0 is a one-dimensional

Lévy process with non-zero Lévy measure and g is a general deterministic
Borel function. Such integrals appear in a variety of situations, for exam-
ple concerning shattering phenomena in fragmentation processes, see, e.g.,
Haas [12].

Fourier analysis and Malliavin calculus are classical tools for establishing
the absolute continuity of distributions of functionals of stochastic processes.
In a different direction, the book of Davydov et al. [5] treats three different
methods for proving absolute continuity of such functionals: the “stratifica-
tion method”, the “superstructure method” and the “method of differential
operators”. Chapter 4 in [5] pays particular attention to Poisson functionals,
which includes integrals of Lévy processes. While it may be hard to check
the conditions and apply these methods in general (in particular to find ad-
missible semigroups for the stratification method), it has been carried out
in some cases. For example, Davydov [4] gives sufficient conditions for abso-
lute continuity of integrals of the form

∫ 1
0 g(Xt) dt for strictly stationary pro-

cesses (Xt)t≥0 and quite general g. Concerning integrals of Lévy processes,
Lifshits [16], p. 757, has shown that

∫ 1
0 g(ξt) dt is absolutely continuous if ξ

is a Lévy process with infinite and absolutely continuous Lévy measure, and
g is locally Lipschitz-continuous and such that on a set of full Lebesgue mea-
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sure in [0, 1] the derivative g′ of g exists and is continuous and non-vanishing;
see also Problem 15.1 in [5]. For our study of atoms of the distributions of
integrals such as

∫∞
0 g(ξt) dt, we will impose less restrictive assumptions on

g in Section 3. Note also that [5] and the references given there are usually
concerned with the absolute continuity of functionals such as

∫ 1
0 g(ξt) dt on

the compact interval [0, 1], while we are concerned with integrals over (0,∞).
That absolute continuity of the distribution of integrals over compact sets and
over (0,∞) can be rather different topics is straightforward by considering the
special case of compound Poisson processes. See also part (iii) of Theorem 2.2
below for situations where the integral over every finite time horizon may be
absolutely continuous, while the limit variable can degenerate to a constant.

Section 3 is organised as follows: we start with some motivating examples,
in some of which

∫∞
0 g(ξt) dt has atoms while in others it does not. Then, in

Section 3.2 we present some general criteria which ensure the continuity of
the distribution of

∫∞
0 g(ξt) dt. The proofs there are based on the sample path

behaviour and on excursion theory for Lévy processes. Then, in Section 3.3
we use a simple form of the stratification method to obtain absolute conti-
nuity of

∫∞
0 g(ξt) dt for certain cases of g and ξ (which assume however no

differentiability properties of g); the results are also extended to more general
integrals of the form

∫∞
0 g(ξt) dYt, where Y = (Yt)t≥0 is a strictly increasing

stochastic process, independent of the Lévy process ξ.
Observe that our focus will be on continuity properties of the distribution

of the integral
∫∞
0 g(ξt) dt (or similar integrals), under the assumption that it

is finite a.s. A highly relevant question is to ask under which conditions the
integral does converge. It is important of course that any conditions we impose
to ensure continuity of the integral, or its absence, be compatible with conver-
gence. We only occasionally address this issue, when it is possible to give some
simple sufficient (or, sometimes, necessary) conditions for convergence. Our
approach is essentially to assume convergence and study the properties of the
resulting integral. For a much fuller discussion of conditions for convergence
per se we refer to Erickson and Maller [7, 8], who give an overview of known
results as well as new results on the finiteness of Lévy integrals.

We end this section by setting some notation. Recall that a Lévy process
X = (Xt)t≥0 in Rd (d ∈ N) is a stochastically continuous process having inde-
pendent and stationary increments, which has almost surely càdlàg paths and
satisfies X0 = 0. For each Lévy process, there exists a unique constant
γ = γX = (γ1, . . . , γd) ∈ Rd, a symmetric positive semidefinite ma-
trix Σ = ΣX , and a Lévy measure Π = ΠX on Rd \ {0} satisfying∫

Rd min{1, |x|2}ΠX(dx) <∞, such that for all t > 0 and θ ∈ Rd we have

(1/t) logE exp(i〈θ,Xt〉) = i〈γ, θ〉 − 1
2
〈θ,Σθ〉

+
∫

Rd

(ei〈z,θ〉 − 1− i〈z, θ〉1|z|≤1) ΠX(dz).
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Here, 〈·, ·〉 and | · | denote the inner product and Euclidian norm in Rd, and 1A

is the indicator function of a set A. Together, (γ,Σ,Π) form the characteristic
triplet of X. The Brownian motion part of X is described by the covariance
matrix ΣX . If d = 1, then we will also write σ2

X for ΣX , and if d = 2 and
X = (ξ, η), the upper and lower diagonal elements of ΣX are given by σ2

ξ

and σ2
η. We refer to Bertoin [1] and Sato [21] for further definitions and basic

properties of Lévy processes. Integrals of the form
∫ b

a
e−ξt− dηt for a bivariate

Lévy process (ξ, η) are interpreted as the usual stochastic integral with respect
to its completed natural filtration as in Protter [20], where

∫ b

a
denotes integrals

over the set [a, b], and
∫ b

a+ denotes integrals over the set (a, b]. If η (or a
more general stochastic process Y = (Yt)t≥0 as an integrator) is of bounded
variation on compacts, then the stochastic integral is equal to the pathwise
computed Lebesgue-Stieltjes integral, and will also be interpreted in this sense.
Integrals such as

∫∞
0 are to be interpreted as limits of integrals of the form∫ t

0 as t→∞, where the convergence will typically be almost sure. The jump
of a càdlàg process (Zt)t≥0 at time t will be denoted by ΔZt := Zt − Zt− =

Zt − limu↑t Zu, with the convention Z0− := 0. The symbol “D=” will be used

to denote equality in distribution of two random variables, and “ P→” will
denote convergence in probability. Almost surely holding statements will be
abbreviated by “a.s.”, and properties which hold almost everywhere by “a.e.”.
The Lebesgue measure on R will be denoted by λ. Throughout the paper, in
order to avoid trivialities, we will assume that ξ and η are different from the
zero process t �→ 0.

2 Atoms of exponential Lévy integrals

Let (ξ, η) = (ξt, ηt)t≥0 be a bivariate Lévy process. Erickson and Maller [7]
characterised when the exponential integral It :=

∫ t

0 e
−ξs− dηs, t > 0, con-

verges almost surely to a finite random variable I as t → ∞. They showed
that this happens if and only if

lim
t→∞

ξt = +∞ a.s., and
∫

R\[−e,e]

(
log |y|

Aξ(log |y|)

)
Πη(dy) <∞. (2.1)

Here, the function Aξ is defined by

Aξ(y) := 1 +
∫ y

1
Πξ((z,∞)) dz, y ≥ 1.

As a byproduct of the proof, they obtained that It converges almost surely to
a finite random variable I if and only if it converges in distribution to I, as
t→∞. Observe that the convergence condition (2.1) depends on the marginal
distributions of ξ and η only, but not on the bivariate dependence structure
of ξ and η.
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In this section we shall be interested in the question of whether the limit
random variable I can have a distribution with atoms. A complete char-
acterisation of this will be given in Theorem 2.2. A similar result for the
characterisation of the existence of atoms for discrete time perpetuities was
obtained by Grincevičius [10], Theorem 1. We will adapt his proof to show
that

∫∞
0 e−ξt− dηt has atoms if and only if it is constant. This will be a con-

sequence of the following lemma, which is formulated for certain families of
random fixed point equations.

Lemma 2.1 For every t ≥ 0, let Qt, Mt and ψt be random variables such
that Mt �= 0 a.s., and ψt is independent of (Qt,Mt). Suppose ψ is a random
variable satisfying

ψ = Qt +Mtψt for all t ≥ 0,

and such that
ψ

D=ψt for all t ≥ 0,

and suppose further that

Qt
P→ ψ as t→∞.

Then ψ has an atom if and only if it is a constant random variable.

Proof. We adapt the proof of Theorem 1 of [10]. Suppose that ψ has an atom
at a ∈ R, so that

P (ψ = a) =: β > 0.

Then for all ε ∈ (0, β) there exists some δ > 0 such that

P (|ψ − a| < 2δ) < β + ε. (2.2)

Since Qt
P→ ψ as t→∞, there exists t′ = t′(ε) such that

P (|ψ −Qt| ≥ δ) = P (|Mtψt| ≥ δ) < ε for all t ≥ t′. (2.3)

Then (2.2) and (2.3) imply that, for all t ≥ t′,

P (|Qt − a| < δ) ≤ P (|Qt − ψ| ≥ δ) + P (|ψ − a| < 2δ) ≤ β + 2ε. (2.4)

Now observe that, for all t ≥ 0,

β = P (ψ = a) ≤ P (ψ = a, |ψ −Qt| < δ) + P (|ψ −Qt| ≥ δ)

=
∫

R

P (Qt +Mts = a, |Mts| < δ) dP (ψt ≤ s) + P (|ψ −Qt| ≥ δ)

=
∑
s∈Dt

P (Qt +Mts = a, |Mts| < δ)P (ψt = s) + P (|ψ −Qt| ≥ δ).

Here, the last equation follows from the fact that P (Qt + Mts = a) can be
positive for only a countable number of s, s ∈ Dt, say, since the number of
atoms of any random variable is countable.
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Since
∑

s∈Dt
P (ψt = s) ≤ 1 for all s, and since P (|ψ − Qt| ≥ δ) < ε for

t > t′, by (2.3), it follows that for such t there is some st ∈ R such that

βt := P (Qt +Mtst = a, |Mtst| < δ) ≥ β − ε. (2.5)

Observing that, for all t ≥ 0

{ψ = a} ∪ {Qt +Mtst = a, |Mtst| < δ} ⊂ {|ψ −Qt| ≥ δ} ∪ {|Qt − a| < δ},

we obtain for t ≥ t′ that

P (|ψ −Qt| ≥ δ) + P (|Qt − a| < δ)
≥ P (ψ = a) + P (Qt +Mtst = a, |Mtst| < δ)
−P (Qt +Mtst = a, |Mtst| < δ, ψ = a)

= β + βt − βt P (ψt = st).

We used here that P (Mt = 0) = 0. From (2.3) and (2.4) it now follows that

βt P (ψt = st) ≥ β + βt − ε− (β + 2ε) = βt − 3ε.

Using (2.5) and the fact that ψD=ψt, we obtain

P (ψ = st) = P (ψt = st) ≥ 1− 3ε
βt
> 1− 3ε

β − ε .

Letting ε→ 0 and observing that P (ψ = a) > 0, it follows that P (ψ = a) = 1.
�

As a consequence, we obtain:

Theorem 2.2 Let (ξ, η) be a bivariate Lévy process such that ξt converges
almost surely to ∞ as t → ∞, and let It :=

∫ t

0 e
−ξs− dηs. Denote the char-

acteristic triplet of (ξ, η) by (γ,Σ,Πξ,η), where γ = (γ1, γ2), and denote the
upper diagonal element of Σ by σ2

ξ . Then the following assertions are equiva-
lent:

(i) It converges a.s. to a finite random variable I as t→∞, where I has an
atom.

(ii) It converges a.s. to a constant random variable as t→∞.
(iii) ∃ k ∈ R \ {0} such that P

(∫ t

0 e
−ξs− dηs = k(1− e−ξt) for all t > 0

)
= 1.

(iv) ∃ k ∈ R \ {0} such that e−ξ = E(−η/k), i.e. e−ξ is the stochastic expo-
nential of −η/k.

(v) ∃ k ∈ R \ {0} such that

Σξ,η =
(

1 k
k k2

)
σ2

ξ ,
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the Lévy measure Πξ,η of (ξ, η) is concentrated on {(x, k(1 − e−x)) :
x ∈ R},
and

γ1 − k−1γ2 = σ2
ξ/2 +

∫
x2+k2(1−e−x)2≤1

(e−x − 1 + x) Πξ(dx). (2.6)

Proof. To show the equivalence of (i) and (ii), suppose that I exists a.s. as a
finite random variable and define

ψ := I =
∫ ∞

0
e−ξs− dηs, Qt := It =

∫ t

0
e−ξs− dηs and Mt := e−ξt , t ≥ 0.

Then
ψ

D=
∫ ∞

t+
e−(ξs−−ξt) d(η· − ηt)s =: ψt.

So we have the setup of Lemma 2.1:

ψ = Qt +Mtψt, t ≥ 0, (2.7)

Qt converges in probability (in fact, a.s.) to ψ as t→∞, and ψt is independent
of (Qt,Mt) for all t ≥ 0. We conclude from Lemma 2.1 that I = ψ is finite
a.s. and has an atom if and only if it is constant, equivalently, if (ii) holds.

Now suppose that (ii) holds and that the constant value of the limit vari-
able is k. Then it follows from (2.7) that, a.s.,

k =
∫ t

0
e−ξs− dηs + e−ξtk, for each t > 0,

hence ∫ t

0
e−ξs− dηs = k(1− e−ξt) for all t > 0. (2.8)

Observe that k = 0 is impossible by uniqueness of the solution to the stochas-
tic differential equation d

∫ t

0 Xs− dηs = 0 (which implies e−ξs = Xs = 0,
impossible). Since Qt and e−ξt are càdlàg functions, (2.8) holds on an event
of probability 1. This shows that (ii) implies (iii). The converse is clear, since
limt→∞ ξt = ∞ a.s. by assumption.

Dividing (2.8) by −k, we obtain e−ξt = 1 +
∫ t

0 e
−ξs−d(−ηs/k), which is

just the defining equation for e−ξ = E(−η/k), see Protter [20], p. 84, giving
the equivalence of (iii) and (iv).

The equivalence of (iv) and (v) follows by straightforward but messy calcu-
lations using the Doléans-Dade formula and the Lévy-Itô decomposition (for
the calculation of γ), and is relegated to the appendix. �

Remarks. (i) Under stronger assumptions, Theorem 2.2 may be strength-
ened to conclude that I has a density or is constant. Suppose (ξ, η) is a
bivariate Lévy process such that ξ has no positive jumps and drifts to ∞, i.e.
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limt→∞ ξt = ∞ a.s. Assume further that
∫

R\[−e,e](log |y|) Πη(dy) < ∞. Then

the condition (2.1) is fulfilled, and thus I := limt→∞
∫ t

0 e
−ξs−dηs exists and

is finite a.s. Applying the strong Markov property at the first passage time
Tx := inf{t ≥ 0 : ξt > x} = inf{t ≥ 0 : ξt = x} (since ξ has no positive jumps)
yields the identity

I =
∫ Tx

0
e−ξs−dηs + e−xI ′

where I ′ has the same distribution as I and is independent of
∫ Tx

0 e−ξs−dηs.
Thus I is a self-decomposable random variable, and as a consequence its law is
infinitely divisible and unimodal and hence has a density, if it is not constant;
see Theorem 53.1, p. 404, in Sato [21]. Thus I is continuous. A generalisation
of this result to the case of multivariate η was recently obtained by Kondo et
al. [15].

(ii) As another important special case, suppose ξ is a Brownian motion
with a positive drift, and in addition that

∫
R\[−e,e](log |y|) Πη(dy) < ∞.

Then I is finite a.s. From Condition (iii) of Theorem 2.2 we then see that
Δηt = 0, so the condition can hold only if ηt is also a Brownian motion. By
Ito’s lemma, Condition (iii) implies dηt = k(dξt − σ2

ξdt/2), or, equivalently,
ηt = k(ξt − σ2

ξ t/2). Similarly, if η is a Brownian motion, (iii) of Theorem
2.2 can only hold if ξ is a Brownian motion and the same relation is satis-
fied. Thus we can conclude that, apart from this degenerate case,

∫∞
0 e−Bsdηs

and
∫∞
0 e−ξsdBs, when convergent a.s., have continuous distributions, for a

Brownian motion Bt.

3 Integrals with general g

We now turn our attention to the question of whether the integral
∫∞
0 g(ξt) dt

can have atoms, where g is a more general deterministic function, and
ξ = (ξt)t≥0 is a non-zero Lévy process. To start with, we shall discuss some
natural motivating examples. Then we shall present a few criteria that ensure
the absence of atoms. Finally, we shall obtain by a different technique, which
is a variant of the stratification method, a sufficient condition for the absolute
continuity of the integral.

3.1 Some examples

Example 3.1 Let (ξt)t≥0 be a compound Poisson process (with no drift)
and g : R → R a deterministic function such that g(0) �= 0 and such that∫∞
0 g(ξt) dt is finite almost surely. Then

∫∞
0 g(ξt) dt has a Lebesgue density.
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Proof. Denote the time of the first jump of ξ by T1. Recall that ξ is always as-
sumed nondegenerate, so T1 is a nondegenerate exponential random variable.
We can write ∫ ∞

0
g(ξt) dt = g(0)T1 +

∫ ∞

0
g(ξT1+t) dt

(from which it is evident that the integral on the righthand side converges a.s.).
Recall that the jump times in a compound Poisson process are independent
of the jump sizes. By the strong Markov property of Lévy processes (see [1],
Prop. 6, p. 20), the process (ξT1+t)t≥0, and a fortiori the random variable∫∞
0 g(ξT1+t) dt, are independent of T1. From this follows the claim, since g(0)T1

has a Lebesgue density and hence its sum with any independent random
variable has also. �

The following example shows that this property does not carry over to
compound Poisson processes with drift, at least not if the support of g is
compact.

Example 3.2 Let ξ = (ξt)t≥0 = (at+Qt)t≥0 be a compound Poisson process
together with a deterministic drift a �= 0, such that limt→∞ ξt = sgn(a)∞
a.s. Suppose that g is a deterministic integrable Borel function with compact
support. Then

∫∞
0 g(ξt) dt is finite almost surely and its distribution has atoms.

Proof. Since ξ drifts to ±∞ a.s., there is a random time τ after which
ξt /∈ supp g for all t; that is, if ξ enters supp g at all; if it doesn’t, then
g(ξt) = 0 for all t ≥ 0. In either case,

∫∞
τ
g(ξt) dt = 0, and since g is integrable

and the number of jumps of Q until time τ is almost surely finite, it follows
that

∫∞
0 g(ξt) dt <∞ a.s.

Suppose now that a > 0, so that ξ drifts to +∞ a.s., and let r =
sup(supp g). If r ≤ 0 there is a positive probability that ξ does not enter
supp g, except, possibly, when r = t = 0, and then g(ξt) = 0; in either case,∫∞
0 g(ξt) dt = 0 with positive probability, giving an atom at 0. If r > 0, let
T = r/a. The event A that the first jump of ξ occurs at or after time T has
positive probability. On A, ξt = at for all 0 ≤ t ≤ T . Also, since ξ drifts to +∞
a.s., on a subset of A with positive probability ξ does not re-enter supp g after
time T . On this subset, we have

∫∞
0 g(ξt) dt =

∫ T

0 g(at) dt, which is constant.
Similarly if a < 0. �

Our third example relies on the following classical criterion for the continu-
ity of infinitely divisible distributions (cf. Theorem 27.4, p. 175, in Sato [21]),
that we shall further use in the sequel.

Lemma 3.3 Let μ be an infinitely divisible distribution on IR with an infinite
Lévy measure, or with a non-zero Gaussian component. Then μ is continuous.

If ξ has infinite Lévy measure, or no drift, Example 3.2 may fail, as shown
next:
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Example 3.4 Suppose that ξ is a subordinator with infinite Lévy measure,
or is a non-zero subordinator with no drift. Then

∫∞
0 1[0,1](ξt) dt is finite a.s.

and has no atoms.

Proof. Since ξt drifts to ∞ a.s. it is clear that
∫∞
0 1[0,1](ξt) dt is finite almost

surely. For x > 0 define

Lx := inf{t > 0 : ξt > x}.

Then
∫∞
0 1[0,1](ξt) dt = L1, and for a > 0 we have

{L1 = a} = {inf{u : ξu > 1} = a}
= {ξa−ε ≤ 1 for all ε > 0, ξa+ε > 1 for all ε > 0}
⊆ {ξa = 1} ∪ {Δξa > 0}.

A Lévy process is stochastically continuous so P (Δξa > 0) = 0. If ξ is a
subordinator with infinite Lévy measure, then P (ξa = 1) = 0 by Lemma 3.3.
Thus we get P (L1 = a) = 0. If ξ is a subordinator with no drift, then ΔξL1 > 0
a.s. ([1], p. 77) (and this includes the case of a compound Poisson), so again

P (L1 = a) = P (L1 = a,ΔξL1 > 0) ≤ P (Δξa > 0) = 0. �

3.2 Some criteria for continuity

We shall now present some fairly general criteria which ensure the continuity
of the distribution of the integral

∫∞
0 g(ξt)dt whenever the latter is finite a.s.

and the Lévy process ξ is transient (see Bertoin [1], Section I.4 or Sato [21],
Section 35 for definitions and properties of transient and recurrent Lévy pro-
cesses).

Remarks. (i) One might expect that the existence of
∫∞
0 g(ξt) dt already

implies the transience of ξ. That this is not true in general was shown by
Erickson and Maller [8], Remark (2) after Theorem 6. As a counterexample,
we may take ξ to be a compound Poisson process with Lévy measure Π(dx) =√

2δ1 + δ−
√

2. Note that
∫
xΠ(dx) = 0, so ξ is recurrent. Nonetheless ξ never

returns to 0 after its first exit-time and thus 0 <
∫∞
0 1{ξt=0} dt <∞ a.s.

(ii) Sufficient conditions under which the existence of
∫∞
0 g(ξt) dt implies

the transience of ξ are mentioned in Remark (3) after Theorem 6 of [8]. One
such sufficient condition is that there is some non-empty open interval J ⊂ R
such that inf{g(x) : x ∈ J} > 0.

We shall now turn to the question of atoms of
∫∞
0 g(ξt) dt. For the next

theorem, denote by E◦ the set of inner points of a set E, by E its topological
closure and by ∂E its boundary.
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Theorem 3.5 Let g : R → [0,∞) be a deterministic Borel function. Assume
that its support, supp g, is compact, that g > 0 on (supp g)◦, and that 0 ∈
(supp g)◦. Write ∂supp g := supp g \ (supp g)◦ for the boundary of supp g.
Let ξ be a transient Lévy process, and assume that I :=

∫∞
0 g(ξt) dt is almost

surely finite. If either
(i) ξ is of unbounded variation and ∂supp g is finite,
or
(ii) ξ is of bounded variation with zero drift and ∂supp g is at most countable,
then the distribution of I has no atoms.

Proof. If ξ is a compound Poisson process without drift, the result follows
from Example 3.1, so we will assume that ξ has unbounded variation, or is of
bounded variation with zero drift such that its Lévy measure is infinite, and
that g has the properties specified in the statement of the theorem.

Write
I(x) :=

∫ x

0
g(ξt) dt, x ∈ (0,∞].

Then x �→ I(x) is increasing and I = I(∞) is finite a.s. by assumption,
so I(x) < ∞ a.s. for all x ≥ 0. Plainly I(x) is a.s. continuous at each
x > 0. Assume by way of contradiction that there is some a ≥ 0 such that
P (I = a) > 0, and proceed as follows.

Define
Ts := inf{u ≥ 0 : I(u) = s}, s ≥ 0.

Since ξt is adapted to the natural filtration {Ft}t≥0 of (ξt)t≥0, so is g(ξ·)
(g is Borel), thus {Ts > u} = {

∫ u

0 g(ξt)dt < s} ∈ Fu, because I(·) is adapted
to {Ft}t≥0. Thus Ts is a stopping time for each s ≥ 0. Further, Ts > 0 for all
s > 0. Since 0 ∈ (supp g)◦, it is clear that a �= 0. By assumption, ξ is transient,
so there is a finite random time σ such that ξt �∈ supp g for all t ≥ σ. Then
I(∞) = I(σ), and it follows that P{Ta <∞} > 0.

Define the stopping times τn := Ta−1/n ∧ n. Then (τn)n∈N is strictly in-
creasing to Ta, showing that Ta is announceable; it follows that t �→ ξt is
continuous at t = Ta on {Ta <∞}, see e.g. Bertoin [1], p. 21 or p. 39.

Let B = {Ta < ∞, I(∞) = a}. We restrict attention to ω ∈ B from now
on. Since Ta is the first time I(·) reaches a, for every ε > 0 there must be
a subset Jε ⊂ (Ta − ε, Ta) of positive Lebesgue measure such that g(ξt) > 0
for all t ∈ Jε. Thus ξt ∈ supp g for all t ∈ Jε, and so ξTa

∈ supp g. Since we
assume that ∂supp g := supp g \ (supp g)◦ is countable, and that ξ has infinite
Lévy measure or a non-zero Gaussian component, we have by Lemma 3.3 that
P (ξt ∈ ∂supp g) = 0 for all t > 0. Consequently

E(λ{t ≥ 0 : ξt ∈ ∂supp g}) =
∫ ∞

0
P (ξt ∈ ∂supp g)dt = 0.

It follows that there are times t < Ta arbitrarily close to Ta with ξt in
(supp g)◦. By the continuity of t �→ ξt at t = Ta, we then have ξTa

∈ (supp g)◦
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for ω ∈ B′ ⊆ B, where P (B′) = P (B) > 0. Since g > 0 on (supp g)◦ it follows
that ξTa

∈ ∂((supp g)◦) on the event B′ ⊆ {I(∞) = a}; for, if not, this would
imply, by an application of the Markov property, that I(t) > a for t > Ta,
which is impossible.

Now suppose (i), so that ξ is of infinite variation. Then it follows from
Shtatland’s (1965) result ([22], see also Sato [21], Thm 47.1, p. 351) that 0
is regular for both (−∞, 0) and (0,∞). Since ξTa

belongs to the finite set
∂supp g, there is an open interval U ⊂ (supp g)◦ which has ξTa

either as left
or right end point. In either case, the regularity of 0 for (0,∞) and for (−∞, 0)
implies that immediately after time Ta there must be times t such that ξt is
strictly less than ξTa and other times t such that ξt is strictly greater than
ξTa . By the continuity of ξ at Ta, it follows that there must be times after
Ta such that ξt ∈ U . Consequently, there is some ε = ε(ω) > 0 such that
ξTa+ε ∈ (supp g)◦. By the right-continuity of ξ at Ta + ε it follows further
that I(∞) > I(Ta) = a on B′, where P (B′) > 0 and B′ ⊆ {I(∞) = a}, a
contradiction.

Alternatively, suppose (ii), so that ξ has finite variation and zero drift (and
infinite Lévy measure). Then it follows that ξ almost surely does not hit single
points (by Kesten’s theorem [13]; see [1], p. 67). Thus, since ∂((supp g)◦) ⊆
supp g \ (supp g)◦ and the latter is at most countable, ξ almost surely does
not hit ∂((supp g)◦). But on the set B′, where P (B′) > 0 and B′ ⊆ {Ta <∞,
I(∞) = a}, we have ξTa

∈ ∂((supp g)◦), contradicting P (I(∞) = a) > 0. �
Remarks. (i) The assumptions on the topological structure of {x : g(x) > 0}
in the previous theorem are easy to check. That they cannot be completely
relaxed can be seen from the following example: let g(x) = 1 for all x ∈
Q∩ [−1, 1] and g(x) = 0 otherwise, then supp g = [−1, 1], (supp g)◦ = (−1, 1),
but g > 0 on (−1, 1) does not hold. And in fact, it is easy to see that in that
case we have for every Lévy process of unbounded variation or infinite Lévy
measure that

E

∫ ∞

0
g(ξt) dt = E

∫ ∞

0
1Q∩[−1,1](ξt) dt =

∫ ∞

0
P (ξt ∈ Q ∩ [−1, 1]) dt = 0

by Lemma 3.3, so that
∫∞
0 g(ξt) dt = 0 a.s.

(ii) Suppose g is as in Theorem 3.5, and assume
∫∞
0 g(x)dx <∞. Let ξ be a

Brownian motion with non-zero drift. Then
∫∞
0 g(ξt)dt <∞ a.s. by Theorem

6 of [8] and the integral has a continuous distribution by Theorem 3.5.

Theorem 3.5 allows a wide class of transient Lévy processes (we have to
exclude ξ which are of bounded variation with nonzero drift, by Ex. 3.2),
but restricts us, essentially, to nonnegative g which have compact support.
Another approach which combines excursion theory and Lemma 3.3 allows
a much wider class of g at the expense of placing restrictions on the local
behaviour of ξ. Here is the first result in this vein. We refer e.g. to Chapters
IV and V in [1] for background on local time and excursion theory for Lévy
processes.
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Theorem 3.6 Let g : IR → [0,∞) be a measurable function such that g > 0
on some neighbourhood of 0. Suppose that ξ is a transient Lévy process such
that 0 is regular for itself, in the sense that inf {t > 0 : ξt = 0} = 0 a.s., and
that the integral I :=

∫∞
0 g(ξt)dt is finite a.s. Then the distribution of I has

no atoms.

Proof. Thanks to Example 3.1, we may assume without losing generality that
ξ is not a compound Poisson. Then 0 is an instantaneous point, in the sense
that inf{t > 0 : ξt �= 0} = 0 a.s. The assumption that ξ is transient implies
that its last-passage time at 0, defined by

� := sup {t ≥ 0 : ξt = 0} ,

is finite a.s. Since the point 0 is regular for itself, there exists a continuous
nondecreasing local time process at level 0 which we denote by L = (Lt, t > 0);
we also introduce its right-continuous inverse

L−1(t) := inf {s ≥ 0 : Ls > t} , t ≥ 0

with the convention that inf ∅ = ∞. The largest value of L, namely, L∞, is
finite a.s.; more precisely, L∞ has an exponential distribution, and we have
L−1(L∞−) = � and L−1(t) = ∞ for every t ≥ L∞ ([1], Prop. 7 and Thm 8,
pp. 113–115). We denote the set of discontinuity times of the inverse local
time before explosion by

D := {t < L∞ : L−1(t−) < L−1(t)}

and then, following Itô, we introduce for every t ∈ D the excursion ε(t) with
finite lifetime ζt := L−1(t)− L−1(t−) by

εs(t) := ξL−1(t−)+s , 0 ≤ s < ζt .

Itô’s excursion theory shows that conditionally on L∞, the family of finite
excursions (ε(t), t ∈ D) is distributed as the family of the atoms of a Poisson
point process with intensity L∞1{ζ<∞}n, where n denotes the Itô measure
of the excursions of the Lévy process ξ away from 0, and ζ the lifetime of a
generic excursion ([1], Thm 10, p. 118).

Since ξ is not a compound Poisson process, the set of times t at which
ξt = 0 has zero Lebesgue measure a.s., and we can express the integral in the
form I = A+B with

A :=
∑
t∈D

∫ L−1(t)

L−1(t−)
g(ξs)ds =

∑
t∈D

∫ ζt

0
g(εs(t))ds (3.1)

and
B :=

∫ ∞

�

g(ξs)ds .
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Excursion theory implies that A and B are independent, and hence we just
need to check that A has no atom. Now, the conditional distribution of A
given L∞ is infinitely divisible, with Lévy measure Λ given by the image of
L∞1{ζ<∞}n under the map ε→

∫ ζ

0 g(εs)ds.
The fact that 0 is an instantaneous point implies that the measure 1{ζ<∞}n

is infinite, and further that the excursions ε(t) leave 0 continuously for all
t ∈ D a.s. The assumption that g > 0 on some neighbourhood of 0 then
entails that

∫ ζt

0 g(εs(t))ds > 0 for every t ∈ D. Thus Λ{(0,∞)} = ∞, and we
conclude from Lemma 3.3 that the conditional distribution of A given L∞ has
no atoms. It follows that P (A = a) = E(P (A = a|L∞)) = 0 for every a > 0,
completing the proof of our statement. �

Remark. See Bertoin [1], Ch. V and Sato [21], Section 43, for discussions
relevant to Lévy processes for which 0 is regular for itself.

An easy modification of the argument in Theorem 3.6 yields the following
criterion in the special case when the Lévy process has no positive jumps.
This extends the result of Theorem 3.5 by allowing a drift, as long as there is
no upward jump.

Proposition 3.7 Let g : IR → [0,∞) be a measurable function with g > 0
on some neighbourhood of 0. Suppose that ξt = at − σt, where a > 0 and σ
is a subordinator with infinite Lévy measure and no drift, and such that the
integral I :=

∫∞
0 g(ξt)dt is finite a.s. Assume further that a �= Eσ1, so that ξ

is transient. Then the distribution of I has no atoms.

Remark. We point out that in the case when ξ is a Lévy process with no
positive jumps and infinite variation, then 0 is regular for itself ([1], Cor. 5, p.
192), and thus Theorem 3.6 applies. Recall also Example 3.2 for the case of
compound Poisson processes with drift. Therefore our analysis covers entirely
the situation when the Lévy process has no positive jumps and is not the
negative of a subordinator.

Proof. Introduce the supremum process ξ̄t := sup0≤s≤t ξs. We shall use the
fact that the reflected process ξ̄− ξ is Markovian and that ξ̄ can be viewed as
its local time at 0; see Theorem VII.1 in [1], p. 189. The first-passage process
Tx := inf {t ≥ 0 : ξt ≥ x} (x ≥ 0) thus plays the role of the inverse local
time. It is well-known that T· is a subordinator (killed at some independent
exponential time when ξ drifts to −∞); more precisely, the hypothesis that
ξt = at − σt has bounded variation implies that the drift coefficient of T· is
a−1 > 0.

Let us consider first the case when ξ drifts to ∞, so the first-passage times
Tx are finite a.s. We write D for the set of discontinuities of T· and for every
x ∈ D, we define the excursion of the reflected Lévy process away from 0 as

εs(x) = x− ξTx−+s , 0 ≤ s < ζx := Tx − Tx− .



On Continuity Properties of the Law of Integrals of Lévy Processes 151

According to excursion theory, the point measure∑
x∈D

δ(x,ε(x))

is then a Poisson random measure with intensity dx⊗ n̄, where n̄ denotes the
Itô measure of the excursions of the reflected process ξ̄ − ξ away from 0. Let
b > 0 be such that g > 0 on [−b, b]. We can express∫ ∞

0
g(ξs)ds = A+B + C

where

A = a−1
∫ ∞

0
g(x)dx ,

B =
∑

x∈D,x≤b

∫ Tx

Tx−
g(ξs)ds =

∑
x∈D,x≤b

∫ ζx

0
g(x− εs(x))ds ,

C =
∑

x∈D,x>b

∫ Tx

Tx−
g(ξs)ds =

∑
x∈D,x>b

∫ ζx

0
g(x− εs(x))ds .

The first term A is deterministic, and B and C are independent infinitely
divisible random variables (by the superposition property of Poisson random
measures). More precisely, the Lévy measure of B is the image of 1{0≤x≤b}dx⊗
n̄ by the map

(x, ε) �→
∫ ζ

0
g(x− εs)ds .

Observe that the value of this map evaluated at any x ∈ [0, b] and excursion
ε is strictly positive (because excursions return continuously to 0, as ξ has no
positive jumps). On the other hand, the assumption that the Lévy measure
of the subordinator σt = at− ξt is infinite ensures that 0 is an instantaneous
point for the reflected process ξ̄ − ξ, and hence the Itô measure n̄ is infinite.
It thus follows from Lemma 3.3 that the infinitely divisible variable B has no
atom, which establishes our claim.

The argument in case ξ drifts to −∞ is similar; the only difference is that
the excursion process is now stopped when an excursion with infinite lifetime
arises. This occurs at time (in the local-time scale ξ̄) ξ̄∞ = supt≥0 ξt, where
this variable has an exponential distribution. �

3.3 A criterion for absolute continuity

Next we will investigate some different sufficient conditions, and some of them
also ensure the existence of Lebesgue densities. We will work with more general
integrals of the form

∫∞
0 g(ξt) dYt for a process (Yt)t≥0 of bounded variation,
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independent of the Lévy process ξ. The method will be a variant of the strati-
fication method, by conditioning on almost every quantity apart from certain
jump times. Such an approach was also used by Nourdin and Simon [18] for
the study of absolute continuity of solutions to certain stochastic differential
equations.

We need the following lemma, which concerns only deterministic functions.
Part (a) is just a rewriting of Theorem 4.2 in Davydov et al. [5], and it is this
part which will be invoked when studying

∫∞
0 g(ξt) dYt for Yt = t.

Lemma 3.8 Let Y : [0, 1] → R be a right-continuous deterministic function
of bounded variation. Let f : [0, 1] → R be a deterministic Borel function such
that

f �= 0 a.e. (3.2)

and such that the Lebesgue-Stieltjes integral
∫ 1
0 f(t) dYt exists and is finite.

Let
H : (0, 1] → R, x �→

∫ x

0+
f(t) dYt,

and denote by μ := H(λ|(0,1]) the image measure of λ under H. Then the
following are sufficient conditions for (absolute) continuity of μ:
(a) Suppose the absolute continuous part of the measure induced by Y on [0, 1]
has a density which is different from zero a.e. Then μ is absolutely continuous.
(b) Suppose that Y is strictly increasing and that f is in almost every point
t ∈ [0, 1] right- or left-continuous. Then μ is continuous.

Proof. (a) Denoting the density of the absolute continuous part of Y by φ,
it follows that H is almost everywhere differentiable with derivative fφ �= 0
a.e., and the assertion follows from Theorem 4.2 in Davydov et al. [5].

(b) Suppose that Y is strictly increasing and denote

K := {t ∈ (0, 1) : f is right- or left-continuous in t}.

By assumption, K has Lebesgue measure 1. Using the right-/left-continuity,
for every t ∈ K such that f(t) > 0 there exists a unique maximal interval
J+(t) ⊂ (0, 1) of positive length such that t ∈ J+(t) and f(y) > 0 for all
y ∈ J+(t). By the axiom of choice there exists a subfamily K+ ⊂ K such that
(J+(t) : t ∈ K+) are pairwise disjoint and their union covers K ∩ {t ∈ (0, 1) :
f(t) > 0}. Since each of these intervals has positive length, there can only be
countably many such intervals, so K+ must be countable.

Similarly, we obtain a countable cover (J−(t) : t ∈ K−) of K ∩{t ∈ (0, 1) :
f(t) < 0} with disjoint intervals. Now let a ∈ Range(H). Then

H−1({a}) ⊂

⎛⎝ ⋃
t∈K+

(H−1({a}) ∩ J+(t))

⎞⎠ ∪
⎛⎝ ⋃

t∈K−

(H−1({a}) ∩ J−(t))

⎞⎠
∪ ([0, 1] \K) ∪ {t ∈ [0, 1] : f(t) = 0} ∪ {0, 1}.
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Observing that

λ
(
H−1({a}) ∩ J±(t)

)
= λ
(
(H|J±(t))−1({a})

)
= 0

since H is strictly increasing (decreasing) on J+(t) (J−(t)) as a consequence
of f > 0 on J+(t) (f < 0 on J−(t)) and strict increase of Y , it follows that
λ(H−1({a})) = 0, showing continuity of μ. �

We now come to the main result of this subsection. Note that the case
Yt = t falls under the case (i) considered in the following theorem, giving
particularly simple conditions for absolute continuity of

∫∞
0 g(ξt) dt. In par-

ticular, part (b) shows that if ξ has infinite Lévy measure and g is strictly
monotone on a neighbourhood of 0, then

∫∞
0 g(ξt) dt is absolutely continuous.

Theorem 3.9 Let ξ = (ξt)t≥0 be a transient Lévy process with non-zero Lévy
measure Πξ. Let Y = (Yt)t≥0 be a stochastic process of bounded variation on
compacts which has càdlàg paths and which is independent of ξ. Denote the
density of the absolutely continuous part of the measure induced by the paths
t �→ Yt(ω) by φω. Let g : R → R be a deterministic Borel function and suppose
that the integral

I :=
∫

(0,∞)
g(ξt) dYt

exists almost surely and is finite.
(a) [general Lévy process] Suppose that there are a compact interval J ⊂
R \ {0} with Πξ(J) > 0 and some constant t0 > 0 such that

λ({|t| ≥ t0 : g(t) = g(t+ z)}) = 0 for all z ∈ J. (3.3)

Case (i): If λ({t ∈ [t0,∞) : φ(t) = 0}) = 0 a.s., then I is absolutely continu-
ous.
Case (ii): If Y is strictly increasing on [t0,∞) and g has only countably many
discontinuities, then I does not have atoms.

(b) [infinite activity Lévy process] Suppose the Lévy measure Πξ is infinite.
Suppose further that there is ε > 0 such that

λ({t ∈ (−ε, ε) : g(t) = g(t+ z)}) = 0 for all z ∈ [−ε, ε]. (3.4)

Case (i): If λ({t ∈ (0, ε) : φ(t) = 0}) = 0 a.s., then I is absolutely continuous.
Case (ii): If Y is strictly increasing on (0, ε) and g has only countably many
discontinuities, then I does not have atoms.

Proof. (a) Let J be an interval such that (3.3) is satisfied, and define

Rt :=
∑

0<s≤t,Δξs∈J

Δξs, Mt := ξt −Rt, t ≥ 0.
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Then R = (Rt)t≥0 is a compound Poisson process, independent of M =
(Mt)t≥0. For i ∈ N denote by Ti and Zi the time and size of the ith jump of
R, respectively, and let T0 := 0. Further, denote

Ii :=
∫

(T2i−2,T2i]
g(ξt) dYt

=
∫

(T2i−2,T2i−1]

⎛⎝g
⎛⎝Mt +

2i−2∑
j=1

Zj

⎞⎠− g
⎛⎝Mt +

2i−1∑
j=1

Zj

⎞⎠⎞⎠ dYt

+
∫

(T2i−2,T2i]
g

⎛⎝Mt +
2i−1∑
j=1

Zj

⎞⎠ dYt

+
[
g(ξT2i−1)− g(ξT2i−1 − Z2i−1)

]
ΔYT2i−1

+ [g(ξT2i
)− g(ξT2i

− Z2i)] ΔYT2i
. (3.5)

We now condition on all random quantities present except the odd numbered
Ti. Thus, for every Borel set B ⊂ R, we write

P (I ∈ B) = E P

( ∞∑
i=1

Ii ∈ B
∣∣Y,M, (T2j)j∈N, (Zj)j∈N

)
.

To show that I has no atoms, it is hence sufficient to show that

P

( ∞∑
i=1

Ii ∈ B
∣∣Y,M, (T2j)j∈N, (Zj)j∈N

)
= 0 a.s. (3.6)

for every Borel set B of the form B = {a} with a ∈ R. Similarly, for showing
that I is absolutely continuous it is sufficient to show that (3.6) holds for every
Borel set B of Lebesgue measure 0. Observe that the (Ii)i∈N are conditionally
independent given

V := (Y,M, (T2j)j∈N, (Zj)j∈N).

Thus the conditional probability that I =
∑∞

i=1 Ii ∈ B is the convolution of
the conditional probabilities that Ii ∈ B, i ∈ N. Hence it suffices to show that
there is some random integer i0 ∈ N such that almost surely, the conditional
distribution of Ii0 given V is absolutely continuous (case (i)) or has no atoms
(case (ii)), respectively.

Define the integer i0 as the first index i such that

min

⎧⎨⎩ inf
t∈(T2i−2,T2i]

{|Mt +
2i−2∑
j=1

Zj |} , T2i−2

⎫⎬⎭ ≥ t0, (3.7)

with t0 as in (3.3). Since ξ is transient i0 is almost surely finite. As a function
of V , i0 is constant under the conditioning by V . The right hand side of (3.5) is
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comprised of four summands. The second and fourth summands are constant
given V . The third summand is still random, after conditioning, since T2i−1
enters in ΔY ; but here R and Y are independent, so that the third summand
equals 0 a.s. Thus it is sufficient to show that, given V , the first summand,
evaluated at i0, namely

Ĩi0 :=
∫

(T2i0−2,T2i0−1]

⎛⎝g
⎛⎝Mt +

2i0−2∑
j=1

Zj

⎞⎠− g
⎛⎝Mt +

2i0−1∑
j=1

Zj

⎞⎠⎞⎠ dYt,

is almost surely absolutely continuous (case (i)) or has no atoms (case (ii)). De-
fine the functions f = fV : [T2i0−2, T2i0 ] → R and H = HV : (T2i0−2, T2i0 ] →
R by

f(t) = g

⎛⎝Mt +
2i0−2∑
j=1

Zj

⎞⎠− g

⎛⎝Mt +
2i0−1∑
j=1

Zj

⎞⎠ ,
H(x) :=

∫
(T2i0−2,x]

f(t) dYt.

Observing that T2i0−1 is uniformly distributed on (T2i0−2, T2i0) given V , it
follows from Fubini’s theorem that for any Borel set B ⊂ R

P (Ĩi0 ∈ B|V ) = E(1{H(T2i0−1)∈B}|V ) =
∫

(T2i0−2,T2i0 )
1{H(x)∈B}

dx

T2i0 − T2i0−2

=
λ(H−1(B))
T2i0 − T2i0−2

.

We shall apply Lemma 3.8 to show that Ĩi0 given V is absolutely continuous
or has no atoms, respectively. For this, observe that (3.2) is satisfied because
of (3.3) and (3.7), and note that z := Z2i0−1 ∈ J , since all the jumps of
R are in the interval J . In case (i) this then gives absolute continuity of Ĩi0
conditional on V by Lemma 3.8 (a) and hence of the distribution of I. Now
concentrate on case (ii), when Y is strictly increasing on [t0,∞) and g has only
countably many discontinuities. Denote this set of discontinuities of g by F . By
assumption, F is countable. This then implies that almost surely, the function
f is almost everywhere right-continuous. For by the a.s. right-continuity of the
paths of Lévy processes, f can happen to be non-right-continuous at a point
t only if ξ(1)t := Mt +

∑2i0−1
j=1 Zj ∈ F or ξ(2)t := Mt +

∑2i0−2
j=1 Zj ∈ F . But

E(λ{t ≥ 0 : ξ(1)t ∈ F or ξ(2)t ∈ F}) =
∫ ∞

0
P (ξ(1)t ∈ F or ξ(2)t ∈ F ) dt,

and by Lemma 3.3 the last integral is zero if ξ has infinite Lévy measure, so
that almost surely, f is almost everywhere right-continuous if Πξ is infinite.
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If ξ has finite Lévy measure, then f is trivially almost everywhere right-
continuous. So we see that in case (ii) our assumptions imply the conditions
of Lemma 3.8 (b), which then gives the claim.

(b) The proof is similar to the proof of (a): for 0 < δ < ε/2, let

R
(δ)
t :=

∑
|Δξs|∈[δ,ε/2]

Δξs, M
(δ)
t := ξt −R(δ)

t , t ≥ 0,

and denote the time and size of the ith jump of R(δ) = (R(δ)
t )t≥0 by T (δ)

i and
Z

(δ)
i , respectively. Further, define the set Ωδ by

Ωδ := {T (δ)
2 ≤ ε, sup

0≤t<T
(δ)
2

|M (δ)
t | ≤ ε/2}.

Let Pδ(·) := P (·|Ωδ), and denote expectation with respect to Pδ by Eδ. Since
P (Ωδ) → 1 as δ ↓ 0 because the Lévy measure of ξ is infinite, it is sufficient
to show that, given δ > 0, we have Pδ(B) = 0 for all Borel sets B such that
λ(B) = 0 (case (i)), or such that B = {a}, a ∈ R (case (ii)), respectively. Let

Vδ := (Y,M (δ), (T (δ)
j )j≥2, (Z

(δ)
j )j∈N.

Then we can write
Pδ(I ∈ B) = EδPδ(I ∈ B|Vδ),

and it suffices to show that Pδ(I ∈ B|Vδ) = 0 a.s. for the sets B under
consideration. But, conditional on Vδ, I almost surely differs from

Ĩ1 :=
∫

(0,T
(δ)
2 ]

(
g
(
M

(δ)
t

)
− g
(
M

(δ)
t + Z

(δ)
1

))
dYt

only by a constant. It then follows in complete analogy to the proof of (a) that
under Pδ, Ĩ1 given Vδ has no atoms or is absolutely continuous, respectively,
which then transfers to I under Pδ and hence to I under P . �

Remarks. (i) The preceding proof has shown that the independence assump-
tion on ξ and Y can be weakened. Indeed, we need only assume that the
processes (Rt)t≥0 and Y are independent.
(ii) In addition to the assumptions of Theorem 3.9, assume that g is continu-
ous. Then almost surely, g(ξt−) = g(ξt)− exist for all t > 0, and the assertions
of Theorem 3.9 remain true for integrals of the form∫

(0,∞)
g(ξt)− dYt.

This follows in complete analogy to the proof of Theorem 3.9.
(iii) Similar statements as in Theorem 3.9 can be made for integrals of the
form

∫∞
0 (g(ξt + ψ(t)) dt, where ψ is some deterministic function behaving

nicely. We omit the details.
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Appendix

Proof of the equivalence of (iv) and (v) in Theorem 2.2. Assume
(iv), and observe that by the Doléans-Dade formula (e.g. [20], p. 84), e−ξ =
E(−η/k), where k �= 0, if and only if Πη({y ∈ R : k−1y ≥ 1}) = 0 and ξt = Xt,
where

Xt := k−1ηt +k−2σ2
ηt/2−

∑
0≤s≤t

(
log(1− k−1Δηs) + k−1Δηs

)
, t ≥ 0. (3.8)

Now (X, η) is a bivariate Lévy process, whose Gaussian covariance matrix is

given by ΣX,η =
(

1 k
k k2

)
σ2

X . Further, (3.8) implies ΔXt = − log(1−k−1Δηt),

showing that the Lévy measure ΠX,η of (X, η) is concentrated on {(x, k(1 −
e−x)) : x ∈ R}.

Conversely, if (Y, η) is a bivariate Lévy process with Gaussian covari-
ance matrix given by ΣY,η = ΣX,η, whose Lévy measure is concentrated on
{(x, k(1− e−x)) : x ∈ R}, then ΔYt = − log(1− k−1Δηt), and it follows that
there is some c ∈ R such that Yt = Xt + ct, so that e−Yt+ct = (E(−η/k))t.
Hence we have established the equivalence of (iv) and (v) in Theorem 2.2,
subject to relating γ1 and γ2 as in (2.6).

To do this, let Xt as in (3.8) and use the Lévy–Itô decomposition. Define(
X

(1)
t

η
(1)
t

)
:=

lim
ε↓0

⎛⎜⎝ ∑
0<s≤t

(ΔXs)2+(Δηs)2>ε2

(
ΔXs

Δηs

)
− t
∫∫

x2
1+x2

2∈(ε2,1]

(
x1

x2

)
ΠX,η(d(x1, x2))

⎞⎟⎠
and (X(2)

t , η
(2)
t )′ := (Xt, ηt)′−(X(1)

t , η
(1)
t )′ where the limit is a.s. as ε ↓ 0. (Note

that the expression in big brackets on the right is not precisely the compen-
sated sum of jumps.) Then (X(2)

t , η
(2)
t )′

t≥0 is a Lévy process with characteristic

triplet (γ,Σ, 0), so has the form (X(2)
t , η

(2)
t )′ = (γ1t, γ2t)′ + Bt, t ≥ 0, where

(Bt)t≥0 is a Brownian motion in R2. From this follows that

X
(2)
t − k−1η

(2)
t = (γ1 − k−1γ2)t+ B̃t, t ≥ 0, (3.9)

for some Brownian motion (B̃t)t≥0 in R1. We wish to determine γ1 − k−1γ2.
To do this, observe that from (3.8) and σ2

X = k−2σ2
η, we have
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(Xt −X(1)
t )− k−1(ηt − η(1)

t )

= σ2
Xt/2 +

∑
0≤s≤t

(ΔXs − k−1Δηs)

− lim
ε↓0

⎛⎜⎝ ∑
0<s≤t

(ΔXs)2+(Δηs)2>ε2

(ΔXs − k−1Δηs)

− t
∫∫

x2
1+x2

2∈(ε2,1]
(x1 − k−1x2) ΠX,η(d(x1, x2))

⎞⎟⎠ .
Noting that k−1Δηs = 1− e−ΔXs and that

∑
0<s≤t(ΔXs − 1 + e−ΔXs) con-

verges absolutely, we obtain, letting ε ↓ 0, that

X
(2)
t − k−1η

(2)
t = σ2

Xt/2 + t

∫∫
x2
1+x2

2≤1
(x1 − k−1x2)ΠX,η(d(x1, x2))

= σ2
Xt/2 + t

∫
x2+k2(1−e−x)2≤1

(x− 1 + e−x) ΠX(dx).

Comparing this with (3.9) gives (2.6). �
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processes. In: Lévy Processes, Theory and Applications (O.E. Barndorff-Nielsen,
T. Mikosch and S. Resnick, Eds.), pp. 41–55. Birkhäuser, Boston.
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