Skip to main content

The Hypergroup Property and Representation of Markov Kernels

  • Chapter
Séminaire de Probabilités XLI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1934))

Abstract

For a given orthonormal basis (f n ) on a probability measure space, we want to describe all Markov operators which have the f n as eigenvectors. We introduce for that what we call the hypergroup property. We study this property in three different cases.

On finite sets, this property appears as the dual of the GKS property linked with correlation inequalities in statistical mechanics. The representation theory of groups provides generic examples where these two properties are satisfied, although this group structure is not necessary in general.

The hypergroup property also holds for Sturm-Liouville bases associated with logconcave symmetric measures on a compact interval, as stated in Achour-Trimèche’s theorem. We give some criteria to relax this symmetry condition in view of extensions to a more general context.

In the case of Jacobi polynomials with non-symmetric parameters, the hypergroup property is nothing else than Gasper’s theorem. The proof we present is based on a natural interpretation of these polynomials as harmonic functions and is related to analysis on spheres. The proof relies on the representation of the polynomials as the moments of a complex variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A, Chour and K. Trimèche. Opérateurs de translation généralisée associé à un opérateur différentiel singulier sur un intervalle borné. C. R. Acad. Sci. Paris Sér. A-B, 288(7):A399–A402, 1979.

    Google Scholar 

  2. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématiques de France, Paris, 2000. With a preface by D. Bakry and M. Ledoux.

    Google Scholar 

  3. R. Askey. Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal., 5:119–124, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Askey and J. Fitch. Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl., 26:411–437, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bakry. Transformation de Riesz pour les semi-groupe symétriques. II. Étude sous la condition Γ 2 ≥ 0. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 145–174. Springer, Berlin, 1985.

    Google Scholar 

  6. D. Bakry. Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In Séminaire de Probabilités, XXI, volume 1247 of Lecture Notes in Math. pages 137–172. Springer, Berlin, 1987.

    Google Scholar 

  7. D. Bakry, The Riesz transforms associated with second order differential operators. In Seminar on Stochastic Processes. 1988 (Gainesville, FL. 1988) volume 17 of Progr. Probab. pages 1–43. Birkhäuser Boston, Boston, MA, 1989.

    Chapter  Google Scholar 

  8. D. Bakry and M. Echerbault. Sur les inégalités GKS. In Séminaire de Probabilités, XXX, volume 1626 of Lecture Notes in Math. pages 178–206. Springer, Berlin, 1996.

    Google Scholar 

  9. D. Bakry and M. Emery. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, pages 177–206. Springer, Berlin, 1985.

    Chapter  Google Scholar 

  10. W. Beckner. Inequalities in Fourier analysis. Ann. of Math. (2), 102(1):159–182, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S n. Proc. Nat. Acad. Sci. U.S.A., 89(11):4816–4819, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. H. Bingham. Random walk on spheres. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22:169–192, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Bloom, W.R. et Heyer. Harmonic analysis of probability measures on hypergroups. Walter de Gruyter, 1995.

    Google Scholar 

  14. B. L. J. Braaksma and B. Meulenbeld. Jacobi polynomials as spherical harmonics. Nederl. Akad. Wetensch. Proc Ser. A 71=Indag. Math., 30:384–389, 1968.

    Article  MathSciNet  Google Scholar 

  15. H. Brézis. Analyse fonctionnelle. Masson, Paris, 1983. Théorie et applications.

    MATH  Google Scholar 

  16. H. Chebli. Opérateurs de translation généralisée et semi-groupes de convolution. In Théorie du potentiel et analyse harmonique (Journées Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973), pages 35–59. Lecture Notes in Math., Vol. 404. Springer, Berlin, 1974.

    Chapter  Google Scholar 

  17. W. C. Connett, C. Markett, and A. L. Schwartz. Jacobi polynomials and related hypergroup structures. In Probability measures on groups, X (Oberwolfach, 1990), pages 45–81, Plenum, New York, 1991.

    Chapter  Google Scholar 

  18. W. C. Connett and A. L. Schwartz. Product formulas, hypergroups, and the Jacobi polynomials. Bull. Amer. Math. Soc. (N.S.) 22(1):91–96, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. C. Connett and A. L. Schwartz. Subsets of R which support hypergroups with polynomial characters. In Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delf, 1994), volume 65, pages 73–84, 1995.

    MATH  MathSciNet  Google Scholar 

  20. E. B. Davies. Heat kernels and spectral theory. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  21. C. Dellacherie and P. A. Meyer. Probabilités et potentiel. Hermann, Paris, 1975. Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No.1372.

    MATH  Google Scholar 

  22. P. Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward, CA, 1988.

    MATH  Google Scholar 

  23. A. Dijksma and T. H. Koornwinder. Spherical harmonics and the product of two Jacobi polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., 33:191–196, 1971.

    Article  MathSciNet  Google Scholar 

  24. G. Gasper. Linearization of the product of Jacobi polynomials. Can. J. Math., 22:171–175,582–593, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Gasper. Positivity and the convolution structure for Jacobi series. Ann. of Math., 2(93):112–118, 1971.

    Article  MathSciNet  Google Scholar 

  26. G. Gasper. Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math., 2(95):261–280, 1972.

    Article  MathSciNet  Google Scholar 

  27. R.B. Griffiths. Correlation in Ising ferronmagnets. J. Math. Phys. 8:478–489, 1967.

    Article  Google Scholar 

  28. L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.

    Article  MathSciNet  Google Scholar 

  29. L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semigroups. In Dicrichlet forms (Varenna, 1992), pages 54–88. Springer, Berlin, 1993.

    Chapter  Google Scholar 

  30. J. Hadamard. Résolution d’une question relative aux déterminants. bulletin des Sciences Mathématiques, 17:240–246, 1893.

    MATH  Google Scholar 

  31. I. Martin Isaacs. Chanacter theory of finite groups. Dover Publications Inc., New York, 1994, Corrected reprint of the 1976 original [Academic Press, New York; MRo460423 (57#417)].

    Google Scholar 

  32. D. G. Kelly and S. Sherman. General Griffiths’ inequality on correlation in Ising ferromagnets. J. Math. Phys., 9:466–484, 1968.

    Article  Google Scholar 

  33. H. Kharaghani and B. Tayfeh-Rezaie. A Hadamard matrix of order 428. J. Combin. Des., 13(6):435–440, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. H. Koornwinder. Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal., 5:125–137, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. H. Koornwinder. The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25:236–246, 1973. Lie algebras: applications and computational methods (Conf., Drexel Univ., Philadelphia, Pa., 1972).

    Article  MATH  MathSciNet  Google Scholar 

  36. O. Mazet. Semigroupes de Markov associés à une famille de polynômes orthogonaux. PhD. thesis, Université Paul Sabatier, Jan 1998.

    Google Scholar 

  37. R. E. A. C. Paley. On orthogonal matrices. Journal of Mathematics and Physics, 12:311–320, 1933.

    Article  Google Scholar 

  38. G. Schefler. Local Poincaré inequalities in non-negative curvature and finite-dimension. J. Funct. Anal., 198(1):197–228, 2003.

    Article  MathSciNet  Google Scholar 

  39. G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975.

    Google Scholar 

  40. A. Zettl. Sturm-Liouville theory, volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakry, D., Huet, N. (2008). The Hypergroup Property and Representation of Markov Kernels. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLI. Lecture Notes in Mathematics, vol 1934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77913-1_15

Download citation

Publish with us

Policies and ethics